The invention claimed herein was made subject to and as a result of a joint research agreement between Infineon Technologies AG, Chartered Semiconductor Manufacturing Ltd., and International Business Machines Corporation.
This invention relates generally to semiconductor devices and methods, and more particularly to a strained semiconductor device and a method of making the same.
Semiconductor devices are used in a large number of electronic devices, such as computers, cell phones and others. One of the goals of the semiconductor industry is to continue shrinking the size and increasing the speed of individual devices. Smaller devices can operate at higher speeds since the physical distance between components is smaller. In addition, higher conductivity materials, such as copper, are replacing lower conductivity materials, such as aluminum. One other challenge is to increase the mobility of semiconductor carriers such as electrons and holes.
One technique to improve transistor performance is to strain (i.e., distort) the semiconductor crystal lattice near the charge-carrier channel region. Transistors built on strained silicon, for example, have greater charge-carrier mobility than those fabricated using conventional substrates. One technique to strain silicon is to provide a layer of germanium or silicon germanium. A thin layer of silicon may be grown over the germanium-containing layer. Since the germanium crystal lattice is larger than silicon, the germanium-containing layer creates a lattice mismatch stress in adjacent layers. Strained channel transistors may then be formed in the strained silicon layer.
Another technique is to provide a stress layer over the transistor. Variants of stress layers can be used for mobility improvement and performance boost of devices. For example, stress can be provided by a contact etch stop layer (CESL), single layers, dual layers, stress memory transfer layers, STI liners, and CA liners. Most of these techniques use nitride layers to provide tensile and compressive stresses; however, other materials can be used in other applications, e.g., HDP oxide layers.
Another method for inducing strain, known as embedded SiGe (eSiGe), involves creating a recess in the source and drain regions of a MOS transistor and growing a doped SiGe film within the recess in lieu of a conventional silicon source and drain region. The larger germanium crystal lattice creates a stress in the channel between the source and drain and thereby enhances the carrier mobility. Typically, the higher the Ge concentration in the SiGe film grown within the recesses, the higher the carrier mobility that can be achieved.
In the field of small, densely packed applications using small geometry CMOS transistors, however, the use of eSiGe to enhance carrier mobility becomes challenging because as the geometries of the semiconductor process get smaller, higher stress is required in the channel in order to maintain adequate performance. While increasing the concentration of Ge in the SiGe film is desirable to achieve this goal, manufacturing a high yield SiGe film with a higher and higher Ge concentration becomes progressively more difficult.
In one embodiment, a semiconductor body comprising a first semiconductor material is provided. A compound semiconductor region is embedded in the semiconductor body so that a side portion of the compound semiconductor region is abuts a side portion of the semiconductor body. The compound semiconductor region comprises a compound semiconductor including the first semiconductor material and a second semiconductor material. The concentration of the second semiconductor material varies along an interface between the side portion of the compound semiconductor region and the side portion of the semiconductor body.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
a-2f provide cross sectional views of a preferred embodiment process;
a-3c are graphs depicting Ge concentration with respect to distance from Si/SiGe interface;
a-5b are graphs showing transistor off current versus on current over various process variations;
a-6b are graphs depicting compressive stress as a function of depth;
a-8b are graphs depicting DC characteristics of the fabricated semiconductor device;
a-9b show boron concentration as a function of depth in the eSiGe source/drain region; and
a-10d are summary comparison graphs which compare the performance of a graded eSiGe process with an ungraded eSiGe process.
Corresponding numerals and symbols in different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the preferred embodiments and are not necessarily drawn to scale. To more clearly illustrate certain embodiments, a letter indicating variations of the same structure, material, or process step may follow a figure number.
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The invention will now be described with respect to preferred embodiments in a specific context, namely a method for improving carrier mobility in a CMOS device. Concepts of the invention can also be applied, however, to other electronic devices. As but one example, bipolar transistors (or BiCMOS) can utilize concepts of the present invention.
With reference now to
Experimental results have shown that the higher the concentration of Ge within the eSiGe source/drain regions 102, the more stress that is imparted to the channel 101. Unfortunately, high-yielding SiGe films with uniform Ge concentrations greater than 20% are difficult to manufacture. In a preferred embodiment of the present invention, however, the Ge concentration within the eSiGe source/drain regions 102 is graded so that the Ge concentration within the eSiGe source/drain regions 102 reaches its peak Ge concentration in the region adjacent to the channel 101 in the active area 106.
The graphs in
a-2f provide cross-sectional views that illustrate a preferred embodiment for forming a semiconductor device 200 of the present invention. While certain details may be explained with respect to only one of the embodiments, it is understood that these details can also apply to other ones of the embodiments.
Referring first to
In the first embodiment, STI regions 210 are formed in the semiconductor body 104. First, isolation trenches can be formed using conventional techniques. For example, a hard mask layer (not shown here), such as silicon nitride, can be formed over the semiconductor body 104 and patterned to expose the isolation areas. The exposed portions of the semiconductor body 104 can then be etched to the appropriate depth.
The trenches are then filled with an isolating material. For example, exposed silicon surfaces can be thermally oxided to form a thin oxide layer. The trenches can then be lined with a first material such as a nitride layer (e.g., Si3N4). The trenches can then be filled with a second material, such as an oxide. For example, a high plasma density (HDP) can be performed, with the resulting fill material being referred to as HDP oxide. In other embodiments, other trench filling processes can be used.
As also shown in
The gate dielectric 108 may be deposited by chemical vapor deposition (CVD), atomic layer deposition (ALD), metal organic chemical vapor deposition (MOCVD), physical vapor deposition (PVD), or jet vapor deposition (JVD), as examples. In other embodiments, the gate dielectric 108 may be deposited using other suitable deposition techniques. The gate dielectric 108 preferably comprises a thickness of about 10 Å to about 60 Å in one embodiment, although alternatively, the gate dielectric 108 may comprise other dimensions.
In the illustrated embodiment, the same dielectric layer would be used to form the gate dielectric 108 for both the p-channel and n-channel transistors. This feature is not required, however. In alternate embodiments, the p-channel transistor and the n-channel transistor could each have different gate dielectrics.
The gate electrode 122 is formed over the gate dielectric 108. The gate electrode 122 preferably comprises a semiconductor material, such as polysilicon or amorphous silicon, although alternatively, other semiconductor materials may be used for the gate electrode 122. In other embodiments, the gate electrode 122 may comprise TiN, HfN, TaN, W, Al, Ru, RuTa, TaSiN, NiSix, CoSix, TiSix, Ir, Y, Pt, Ti, PtTi, Pd, Re, Rh, borides, phosphides, or antimonides of Ti, Hf, Zr, TiAlN, Mo, MoN, ZrSiN, ZrN, HfN, HfSiN, WN, Ni, Pr, VN, TiW, a partially silicided gate material, a fully silicided gate material (FUSI), other metals, and/or combinations thereof, as examples. In one embodiment, the gate electrode 122 comprises a doped polysilicon layer underlying a silicide layer (e.g., titanium silicide, nickel silicide, tantalum silicide, cobalt silicide, or platinum silicide).
A nitride layer 202 is formed over the gate electrode 122. This layer 202 can be used as a hard mask during the etching of gate electrode 122. The nitride will also prevent embedded SiGe material from forming on the gate electrode 122 during the later step of forming the SiGe source/drain stress-inducing regions (see
The gate layer (and optionally the gate dielectric layer) are patterned and etched using known photolithography techniques to create the gate electrode 122 of the proper pattern. In a preferred embodiment of the present invention, the gate layer will be etched to achieve a gate length of less than 60 nm, for example, 45 nm. After formation of the gate electrodes 122, lightly doped source/drain regions (not shown) can be implanted using the gate electrode 122 as a mask. Other implants (e.g., pocket implants, halo implants or double-diffused regions) can also be performed as desired.
As shown in
In the embodiment of
Turning now to
In the preferred embodiment, a CMOS structure is formed. Since the strain is only desired for the p-channel transistors, resist (not shown) would fully cover any p-wells (where the n-channel transistors are formed). In the illustrated embodiment, the recesses 212 extend from the gate stack (e.g. spacer 114) to the STI region 210, but this feature is not needed. While it is desirable that the recesses 212 extend as close to channel 101 as possible, it is not necessary that the region extend to the STI 210.
In
The present invention can be fabricated using any of a number of processes. As just one example, the recess 212 is filled by exposing the semiconductor body 104 to SiH2Cl2 (dichlorosilane (DCS)) or SiH4 (silane), HCl, B2H6, and GeH4 (germane) gases under the following conditions:
The SiH4 (silane) or SiH2Cl2 (DCS) gas serves as the silicon source gas and the GeH4 (germane) serves as the Ge source gas in the deposition of the embedded SiGe film 102. The B2H6 serves as a p-type dopant source; i.e., a source for boron dopants. In other embodiments, other gases may be used. If the source/drain regions are subsequently doped, e.g., by implantation, the dopant source gas can be eliminated. Furthermore, in other embodiments where the embedded compound semiconductor is a material other than SiGe (e.g. SiC) other gases may be used also. If the source/drain is not doped in situ, a subsequent implantation step can be performed.
In the preferred embodiment of the present invention, the eSiGe source/drain areas 102 are characterized by a graded profile, hence, the germane gas flow rate is variable and depth dependent. The initial GeH4 gas flow rate is defined in the chart above under the heading “Initial Period” and is ramped up over time to a level defined under the heading “Peak Period.” The peak flow rate is held for a duration defined in the table, and then is ramped down to a level defined under the heading “Final Period.” These periods correspond to the right-most graph in
In other embodiments of the present invention, this target Ge concentration may be higher or may be lower at the top of the eSiGe source/drain region. The eSiGe source/drain region 102 is grown to a height such that the edges and top of the layer 112 are completely covered by either the second spacer 114, or the eSiGe source/drain region 102.
After the eSiGe source/drain regions are formed, an optional anneal step may be performed to activate the dopants in the source/drain regions. In this step, the semiconductor body 104 is heated to between 900° C. and 1400° C.
Experimentation using one particular process provides a peak Ge concentration of about 26%. In other embodiments, the peak Ge concentration can range from 24% to 36%. For example, if the germane flow rate is increased above 60 sccm, the peak concentration can exceed 30%. In other embodiments, other concentrations can be achieved.
As shown in
Referring now to
In regions where contact holes are made, the ILD 222 is etched down to the CESL 220. Using a contact mask, photoresist (not shown) is deposited to mask off the non-exposed regions to the etch process. The ILD 222 is then etched down to the CESL 220 using standard etch techniques. In this step, the ILD 222 etches away at a faster rate than the CESL 220. Once the etch is complete, the photoresist may be removed. A second etch is then performed. This time, the CESL 220 is etched to expose the silicided source/drain regions 206 using the ILD 222 as a mask using standard etch techniques.
Source/drain contacts 224 are formed through the interlayer dielectric by depositing conductive material on the exposed portions of the silicided source/drain regions 206. Any standard contact fabrication technique may be used. Typically, a liner, such as TiN, is deposited to form an ohmic contact, after which tungsten is deposited using CVD techniques. Metallization layers that interconnect the various components are also included in the chip, but not illustrated for the purpose of simplicity.
a shows a graph depicting the relative Ge concentration as a function of the distance from the Si/SiGe interface in a preferred embodiment of the present invention. Line 314 signifies the position of the Si/SiGe interface and line 312 signifies the position of the SiGe top surface. Line 302 represents a high Ge concentration, line 304 represents a medium SiGe concentration, and line 306 represents a low SiGe concentration. Line 330 represents the relative Ge concentration level. As is shown by the graph, the Ge concentration is between low 306 and medium 304 near the Si/SiGe interface at point 308, increases to a peak Ge concentration between high 302 and medium 304 at point 309, is held at the peak concentration until point 310, and then decreases to a low 306 concentration at point 311 which is at the top surface of the SiGe film. Other embodiments of the present invention, however, may have different Ge concentrations as a function of distance. For example,
In
a shows a scatter plot of pFET on current (Ion) versus off current (Ioff) currents with respect to graded eSiGe processing methods 502 and ungraded eSiGe processing methods 504. These measurements were made with the drain of the device biased at 1 V. Since fast digital logic requires a high current drive on the one hand, but low leakage current on the other hand, a higher Ion current and a lower Ioff current signifies a better performing device. Consequently, the better performing devices will have scatter points to the lower right hand portion of the graph. As such, experimental results show that the shown embodiment graded eSiGe process performs better than a similar, but ungraded eSiGe process. Other embodiments of the present invention, however, may produce on current (Ion) and off current (Ioff) currents different from the specific embodiment described herein.
b shows a scatter plot of nFET on current (Ion) versus off current (Ioff) currents with respect to graded eSiGe processing methods 502 and ungraded eSiGe processing methods 504. These measurements were made with the drain of the device biased at 1 V. Since the eSiGe processing methods were applied only to pFET devices not used for the nFET devices contained on the same semiconductor body, no improvement nor degradation is seen for the nFET on current (Ion) versus off current (Ioff) currents characteristics. In other embodiments, however, performance differences may be seen between nFETs that utilize a graded eSiGe process.
a shows a graph of Ge peak concentration dependence of channel stress for graded SiGe devices derived from 2D TSuprem-4 simulations. The y-axis signifies channel stress, and the x-axis represents depth from the surface of the channel region. Curves 602, 604, and 606 represent different Ge concentrations, where curve 602 has the lowest level Ge concentration and curve 606 has the highest Ge concentration. In these embodiments of the present invention, a higher Ge concentration yields a higher channel stress.
b shows a graph of measured stress in the source/drain region for a graded eSiGe process 612, and an ungraded eSiGe process 610. The graded eSiGe process 612 shows a higher level of stress than in the ungraded eSiGe process 610 up to a depth of over 0.5 microns. In other embodiments of the present invention, however, the stress depths and level of improvement between graded and non-graded eSiGe processes may differ from the results and improvements shown herein.
A Ge profile 702 of a graded eSiGe source/drain region is shown in
a shows a graph of drain current versus drain voltage for a graded eSiGe process 502 and an ungraded eSiGe process 504. The graded eSiGe process 502 shows an 18.5% improvement in drain current over an ungraded SiGe process at a gate overdrive voltage (VG-VT) of 1 V. In other embodiments of the present invention, however, the level of improvement in drain currents between graded and non-graded eSiGe processes may differ from the results shown herein.
b shows a graph of drain current versus gate voltage for a pFETs with a graded eSiGe process and nFETs on the same semiconductor body. Measurements were made at a drain voltage of 0.5V (curve 506) and at a drain voltage of 1 V (curve 508). The curves on the right hand side of the graph designate nFET device performance and the curves on the left hand side of the graph designate pFET device performance. In other embodiments of the present invention, however, the drain current versus gate voltage characteristic processes may differ from the results shown herein.
a-9b show the boron depth profile of SIMS data showing substantially difference in the boron concentration between the an ungraded eSiGe implementation 710 (
a-10d provide a graphical summary comparisons between a ungraded eSiGe process and a graded SiGe process. In
In
In
In
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, the graded SiGe techniques can be combined with other stress techniques. For example, the CESL 220 (
In the preferred embodiments disclosed above, the device has been described in the context of a SiGe region embedded in a Si layer. In other embodiments, other materials can be used. For example, SiC can be embedded in the Si to create desirable stress for n-channel transistors. This can be done in combination with the embodiments described herein or in alternative thereto.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
4855017 | Douglas | Aug 1989 | A |
6030874 | Grider et al. | Feb 2000 | A |
6218711 | Yu | Apr 2001 | B1 |
6228166 | Suzuki et al. | May 2001 | B1 |
6277657 | Nozawa et al. | Aug 2001 | B1 |
6885084 | Murthy et al. | Apr 2005 | B2 |
7019380 | Sanuki | Mar 2006 | B2 |
7026693 | Shimizu et al. | Apr 2006 | B2 |
20030111690 | Adachi | Jun 2003 | A1 |
20040125629 | Scheuerlein et al. | Jul 2004 | A1 |
20040159873 | Goldbach et al. | Aug 2004 | A1 |
20050142768 | Lindert et al. | Jun 2005 | A1 |
20060043529 | Chidambarrao et al. | Mar 2006 | A1 |
20060166492 | Orlowski et al. | Jul 2006 | A1 |
20070235802 | Chong et al. | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070295989 A1 | Dec 2007 | US |