Green et al., “Chemical Vapor Deposition of Ruthenium and Ruthenium Dioxide Films,” J. Electrochem. Soc., 132, 2677-2685 (1985). |
Johnson et al., “Chemistry”, Nature, 901-902 (1967). |
Liao et al., “Characterization of RuO2 thin films deposited on Si by metal-organic chemical vapor deposition,” Thin Solid Films, 287, 74-79 (1996). |
Macchioni et al., “Cationic Bis- and Tris(η2-(pyrazol-1-y1)methane) Acetyl Complexes of Iron (II) and Ruthenium (II): Synthesis, Characterization, Reactivity and Interionic Solution Structure by Noesy NMR Spectroscopy,” Organometallics, 16, 2139-2145 (1997). |
Versteeg et al., “Metalorganic Chemical Vapor Deposition By Pulsed Liquid Injection Using An Ultrasonic Nozzle: Titanium Dioxide on Sapphire from Titanium (IV) Isopropoxide,” Journal of the American Ceramic Society, 78, 2763-2768 (1995). |
Bhatt et al., “Novel high temperature multi-layered electrode barrier structure for high-density ferroelectric memories,” Appl. Phys. Lett., 71, 719-721 (1997). |
Cohan et al., “Laser-assisted organometallic chemical vapor deposition of films of rhodium and iridium,” Appl. Phys. Lett., 60, 1402-1403 (1992). |
Doppelt et al., “Mineral precursor for chemical vapor deposition of Rh metallic films,” Mater. Sci. Eng., 817, 143-146 (1993). |
Etspuler et al., “Deposition of Thin Rhodium Films by Plasma-Enhanced Chemical Vapor Deposition,” Appl. Phys. A, 48, 373-375 (1989). |
Hoke et al., “Low-temperature Vapour Deposition of High-purity Iridium Coatings from Cyclooctadiene Complexes of Iridium,” J. Mater. Chem., 1, 551-554 (1991). |
Hsu et al., “Synthesis and X-ray structure of the heteronuclear cluster (β-H)2(η5-C5H5)IrOs3(CO)10,” Journal of Organometallic Chemistry, 426, 121-130 (1992). |
Kaesz et al., “Low-Temperature Organometallic Chemical Vapor Deposition of Transition Metals,” Mat. Res. Soc. Symp. Proc., 131, 395-400 (1989). |
Khakani et al., “Pulsed laser deposition of highly conductive iridium oxide thin films,” Appl. Phys. Lett., 69, 2027-2029 (1991). |
Kumar et al., “New precursors for organometallic chemical vapor deposition of rhodium,” Can. J. Chem., 69, 108-110 (1991). |
Lu et al., “Ultrahigh vacuum chemical vapor deposition or rhodium thin films on clean and TiO2-covered Si(111),” Thin Solid Films, 208, 172-176 (1992). |
Macomber et al., “The Synthesis and 1H NMR Study of Vinyl Organometallic Monomers: (η5-C5H4CH+CH2)M(CO)2(NO) (M + Cr, Mo, W) and (η5-C5H4CH+CH2)M(CO)2 (M + Co, Rh, Ir,),” Journal of Organometallic Chemistry, 250, 311-318 (1983). |
Pathangey et al., “Various approaches have been explored to obtain atomic layer controlled growth, but one of the most straightforward growth techniques is molecular beam epitaxy (MBE),” Vacuum Technology and Coating, 33-41 (May 2000). |
Rausch et al., “Isolation and Structural Characterization of Bis(η5-cyclopentadienyl)bis(carbonyl)-β-(o-phenylene)-diiridium (Ir-Ir), (C5H5)2Ir2(C6H4): A Product Formally Derived from the Double Oxidative Addition of Benzene to Iridium,” J. Amer. Chem. Soc., 99, 7870-7876 (1977). |
Smith et al., “Low-Temperature Chemical Vapor Deposition of Rhodium and Iridium Thin Films,” Mat. Res. Soc. Symp. Proc., 168, 369-374 (1990). |
Suntola, “Atomic layer epitaxy,” Thin Solid Films, 216, 84-89 (1992). |
Uchida et al., “Preparation of organoiridium compound for metalorganic chemical vapor deposition (MOCVD) of thin film of iridium or iridium oxide,” (Abstract of JP 08,306,627) CA Selects: Chemical Vapor Deposition, 5, 1, Abstract No. 126:89572d (1997). |
Van Hemert et al., “Vapor Deposition of Metals by Hydrogen Reduction of Metal Chelates,” J. Electrochem. Soc., 112, 1123-1126 (1965). |
Burkhard Niemer et al., Organometallic chemical vapor deposition of tungsten metal and suppression of carbon incorporation by codeposition of platinum, Oct. 12, 1992, Appl. Phys. Lett. 61 (15) pp. 1793-1795.* |
Takasu et al., Preparation of a novel Pt-RuO2/Ti electrocatalyst by use of highly porous ruthenium oxide supported prepared from RuO2-La2O3/electrode, Sep. 26, 1997, Journal of Alloys and Compounds 261 (1997) 172-175. |