The present invention relates to the field of chemical mechanical polishing. More particularly, the present invention relates to methods and apparatus for chemical mechanical polishing of substrates used in the manufacture of integrated circuits.
Chemical mechanical polishing is a method of planarizing or polishing semiconductor and other types of substrates. At certain stages in the fabrication of devices on a substrate, it may become necessary to polish the surface of the substrate before further processing may be performed. One polishing process, which passes a conformable polishing pad over the surface of the substrate to perform the polishing, is commonly referred to as mechanical polishing. Mechanical polishing may also be performed with a chemically active abrasive slurry, which typically provides a higher material removal rate, and a higher chemical selectivity between films of the semiconductor substrate, than is possible with mechanical polishing. When a chemical slurry is used in combination with mechanical polishing, the process is commonly referred to as chemical mechanical polishing, or CMP.
One prior art CMP process is disclosed in U.S. Pat. No. 5,234,867, Schultz. That process generally includes the steps of rotating a polishing pad which has a diameter several times larger than a substrate, pouring a chemical slurry on the rotating polishing pad, and placing a substrate on the rotating polishing pad and independently rotating the substrate while maintaining pressure between the rotating polishing pad and the substrate. The polishing pad is held on a relatively massive planer platen which is coupled to a motor. The motor rotates the platen and polishing pad, and the platen provides a flat surface to support the rotating polishing pad. To independently rotate the substrate, it may be located within a separate rotating polishing head or carrier, which is also movable in an x-y plane to locate the substrate rotating therein in specific positions on the large, rotating platen. As the polishing pad is several times larger than the substrate, the substrate may be moved from the outer diameter to the center of the rotating polishing pad during processing.
The rate of material removed from the substrate in CMP is dependent on several factors, including among others, the chemicals and abrasives used in the slurry, the surface pressure at the polishing pad/substrate interface, the net motion between the substrate and polishing pad at each point on the substrate. Generally, the higher the surface pressure, and net motion at the regions of the substrate which contact the polishing pad, the greater the rate of material removed from the substrate. In Schultz, '867, the removal rate across the substrate is controlled by providing an irregularly shaped polishing pad, and rotating the substrate and polishing pad to attempt to create an equal “residence time” of the polishing pad against all areas of the substrate, and in one embodiment thereof by also varying the pressure at the substrate/polishing pad interface. It should be appreciated that equipment capable of performing this process is relatively massive and difficult to control to the degree necessary to consistently remove an equal amount of material on all areas of the substrate.
Using a large rotating polishing pad for CMP process has several additional processing limitations which lead to non-uniformities in the polished substrate. Because the entire substrate is rotated against the polishing pad, the entire surface of the substrate is polished to a high degree of flatness as measured across the diameter of the substrate. Where the substrate is warped, the portions of the substrate which project upwardly due to warpage tend to have higher material removal rates than the remainder of the substrate surface. Further, as the polishing pad polishes the substrate, material removed from the substrate forms particulates which may become trapped in the pad, and the polishing slurry dries on the pad. When the pad becomes filled with particulates and the slurry dries in the pad, the polishing surface of the pad glazes and its polishing characteristics change. Unless the user constantly monitors the removal rate of the polishing pad with each substrate, or group of substrates, and adjusts the slurry, load, position, and/or rotation speed of the polishing pad or substrate to maintain the desired material removal rate, the amount of material removed by the polishing pad from each substrate consecutively processed thereon will decrease.
The present invention provides methods and apparatus for polishing of substrates wherein the polishing pad is no larger than, and is preferably substantially smaller than, the radius of the substrate being polished. In a first preferred embodiment, the apparatus includes a rotating plate on which a substrate is held, and a polishing arm which is located adjacent the plate and is moved across the surface of the substrate as the substrate rotates on the rotating plate. The polishing arm includes a polishing pad on the end thereof, which is preferably variably loadable against the surface of the substrate as different areas of the substrate are polished thereby. The speed of rotation of the substrate may be varied, in conjunction with, or independently of, any adjustment in the load of the polishing pad against the substrate to control the rate of material removed by the polishing pad as it crosses the substrate.
In one alternative embodiment, the polishing arm is modified to receive a cartridge of polishing pad material, in tape form, a discrete length of which is exposed over the lower tip of the polishing arm to contact the substrate for polishing. The tape of polishing pad material may be moved over the polishing arm tip during processing to continuously provide a new polishing pad surface as the substrate is processed, or may be moved to provide a discrete new section of polishing pad tape to polish each new substrate.
In an additional alternative embodiment, the polishing pad may be offset from the polishing arm, and the polishing arm is rotated over the rotating substrate to cause the polishing pad to contact the rotating substrate as the polishing pad also rotates about the axis of the polishing arm.
These, and other features of the invention will be apparent from the following description when read in conjunction with the accompanying draw wherein:
Referring to
The positioning of the polishing arm 14, with respect to the substrate 18, is provided by a linear positioning mechanism 22 formed as an integral part of the cross arm 16. In one embodiment, as shown in
To rotate the polishing arm 14, a servo motor 25 is coupled to slide member 23, and a drive shaft 27 extends from motor 25 into slide member 23 to engage the upper end of polishing arm 14. The upper end of polishing arm 14 is received in a rotary union at the base of slide member 23, which allows polishing arm 14 to rotate and also permits the transfer of liquids or gasses from slide member 23 into the hollow interior of the polishing arm 14. To provide vibratory motion, an offset weight may be coupled to the motor drive shaft 27. As the motor 25 rotates, this offset weight causes the motor 25, and thus slide member and, polishing attached thereto, to vibrate.
To partially control the material removal rate of polishing pad 20, the load applied at the interface of the polishing pad 20 and substrate upper surface 19 is also variably maintained with a load mechanism 24 which is preferably an air cylinder, diaphragm or bellows. Load mechanism 24 and is preferably located integrally with polishing arm 14 between cross arm 16 and substrate 18. The load mechanism 24 provides a variable force to load the polishing pad 20 against the substrate 18, preferably on the order of 03 to 0.7 Kg/cm2. An load cell 26, preferably a pressure transducer with an electric output, is provided integrally with polishing arm 14, and it detects the load applied by the polishing pad 20 on substrate upper surface 19. The output of the load cell 26 is preferably coupled to the load mechanism 24 to control the load of the polishing pad 20 on the substrate upper surface 19 as the polishing pad 20 actuates across the substrate 18.
To provide the slurry to the polishing pad 20, the slurry is preferably passed through the polishing arm 14 and out the open end 28 of polishing arm 14 to pass through the polishing pad 20 and on the substrate. To supply slurry to the polishing arm, a slurry supply tube is connected to slide member 23, and passages within the slide member 23 direct the slurry from the supply tube 32 through the rotary union and into to the hollow interior of polishing arm 14. During polishing operations, a discrete quantity of chemical slurry, selected to provide polishing selectivity or polishing enhancement for the specific substrate upper surface 19 being polished, is injected through tube 32, slide member 23 and arm 14, to exit through polishing pad 20 to contact the substrate upper surface 19 at the location where polishing is occurring. Alternatively, the slurry may be metered to the center of the substrate 18, where it will flow radially out to the edge of the rotating substrate 18.
Referring now to
Referring again to
Referring now to
To ensure even net relative motion between the polishing pads 20 and the substrate upper surface 19, the length of the span between the secondary polishing arms 84 on intermediate plate 80, in combination with the length of travel of the slide member to position the pads 20 from the edge to center of the substrate, should not exceed the radius of the substrate, and the rate in rpm, and direction, of rotation of both plate 12 and polishing arm 14 must be equal. Preferably, the span between the centers of the two polishing pads 20 on the ends of secondary polishing arms 84 is 3 to 4 cm. Additionally, although-two secondary polishing arms 84 are shown, one, or more than two, polishing arms, or an annular ring of polishing pad material may be connected to the underside of the intermediate plate 80 without deviating from the scope of the invention.
Referring now to
Once polishing pad 20 engages the edge of substrate 14 the controller 72 further signals the load member 24 to create a bias force, or load, at the interface of the polishing pad 20 and the substrate upper surface 19, signals motor 25 to vibrate and/or rotate polishing arm 14, and simultaneously starts the flow of the polishing slurry into polishing pad 20. The controller 72 monitors and selectively varies the location, duration, pressure and linear and rotational relative velocity of the polishing pad 20 at each radial location on the substrate upper surface 19 through the linear position mechanism 22, load member 24, motor 25 and motor 36 until the polishing end point is detected. An end point detector, such as an ellipsometer capable of determining the depth of polishing at any location on the substrate 18, is coupled to the controller 72. The controller 72 may stop the movement of the linear position apparatus 22 in response to end point detection at a specific substrate radius being polished, or may cycle the linear position apparatus 22 to move polishing pad 20 back and forth over the substrate 18 until the polishing end point is reached and detected at multiple points on substrate upper surface 19. In the event of a system breakdown, a stop 40 projects from upright 15a generally parallel to cross bar 16 to prevent slide member 23 from traveling completely over the substrate 18. Once the polishing end point is reached, the controller 72 signals the load cell to lift polishing arm 14 off the substrate 18, stop delivery of the polishing slurry, and move slide member 23 back into engagement with zero position stop 42. The polished substrate 18 is then removed, and a new substrate 18 may be placed on plate 12 for polishing.
As herein described, the chemical mechanical polishing apparatus of the present invention provides a compact processing station which uses minimal consumables to provide a polished substrate. By providing the chemical agent in metered amounts through the polishing pad 20, or on the portion of polishing tape 56 adjacent roller 48, a minimal amount of chemical slurry is needed to polish the substrate 14 and substantially less chemical is wasted as compared to prior art apparatus in which only a portion of the slurry reaches the polishing pad/substrate interface. Also, because the entire surface of the polishing pad 20 is maintained against the substrate upper surface 19 during most of the period of time when slurry is being pumped therethrough, the slurry should not dry as quickly in the polishing pad 20 and thus the resulting variation in polishing characteristics which occurs when slurry dries in the large polishing pad should be substantially delayed. Additionally, the polishing pad 20 of the present invention may be cleaned in place on the end of polishing arm 14 by passing the polishing pad 20 over a reconditioning blade 38 or other reconditioning member, without the need to shut down the apparatus as is required in the prior art large polishing pad machines. As a result, substantially less polishing pad material need be used to polish a substrate 18, and the polishing apparatus may be used for longer periods of time between equipment shutdowns. Further, the present invention can provide equal polishing over an entire substrate to a much finer precision than that found in the prior art. By providing a relatively small polishing pad, as compared to the sized of the rotating polished object, the amount of material removed at each location on the substrate may be finely controlled in the specific small area under the polishing pad 20. Additionally, the polishing pad 20 may be controlled to follow the warped contour of a substrate 18, and thus substantially equalize the amount of material removed from upper 14 substrate surface 19 irrespective of the existence of raised areas created by warpage of substrate 18.
Although specific preferred embodiments of the invention have been described, it should be appreciated by those skilled in the art that modifications to these specific embodiments may be made without deviating from the scope of the invention. For example, although a polishing pad 20 on the order of five to fifty mm has been described, the size of the polishing pad 20 may be varied up to the radius of the substrate being polished, without detracting from the advantages of the present invention.
This application is a continuation of U.S. application Ser. No. 10/142,382, filed May 8, 2002 now U.S. Pat. No. 6,951,507, which is a continuation of U.S. application Ser. No. 09/724,639, filed Nov. 28, 2000, now U.S. Pat. No. 6,398,625, which is a continuation of U.S. application Ser. No. 09/342,316, filed on Jun. 29, 1999, now U.S. Pat. No. 6,159,080, which is a continuation of U.S. application Ser. No. 08/814,570, filed Mar. 10, 1997, now U.S. Pat. No. 5,944,582, which is a division of U.S. application Ser. No. 08/153,331, filed on Nov. 16, 1993, now abandoned, each of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4490948 | Hanstein et al. | Jan 1985 | A |
4956944 | Ando et al. | Sep 1990 | A |
Number | Date | Country | |
---|---|---|---|
20060030244 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08153331 | Nov 1993 | US |
Child | 08814570 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10142382 | May 2002 | US |
Child | 11241281 | US | |
Parent | 09724639 | Nov 2000 | US |
Child | 10142382 | US | |
Parent | 09342316 | Jun 1999 | US |
Child | 09724639 | US | |
Parent | 08814570 | Mar 1997 | US |
Child | 09342316 | US |