1. Technical Field
The present invention relates to designing and fabricating objects that incorporate voltage switchable dielectric materials.
2. Description of Related Art
A printed circuit board, printed wiring board, integrated circuit (IC) package, or similar substrate (hereinafter, PCB) may be used to assemble and connect electronic components. A PCB typically includes a dielectric material and one or more conductive leads to provide electrical conductivity among various attached components, chips, and the like. In some cases, metallic leads may be included (e.g., as a layer of Cu which is subsequently etched) to provide electrical connectivity.
A typical PCB may be fabricated from reinforcements (e.g., glass fibers) that have been pre-impregnated with a matrix (e.g., a polymer resin). A matrix may be combined with (e.g. infiltrated into) the reinforcement while substantially liquid. Handling of the pre-impregnated material may be enhanced by subjecting the matrix to a partial cure (e.g., a B-stage cure) to at least partially solidify the matrix, which may at a later stage be fully cured to a C-stage. A PCB may be fabricated from one or more layers of pre-impregnated material.
A pre-impregnated material is often described as a “prepreg.” Prepreg is typically available as a sheet or roll of material, and may be characterized by specifications such as grain (associated with “length” in the roll direction) and fill (associated with “width” in the roll direction). Prepreg may be characterized by various other specifications, such as dimensions (e.g., uncured thickness, cured thickness, and the like), reinforcement material (e.g., glass fibers having a diameter), weave pattern (e.g., of the fibers), matrix composition (e.g., resin composition, % matrix, fillers, and the like), curing protocols, and the like. A type of prepreg may be characterized by a “style,” which may summarize one or many parameters describing the prepreg. A style may include a description of the reinforcement type (e.g., woven glass), strand size, weave configuration, density, and the like. Exemplary standard styles include 106, 1080, 2313, 2116, 7628, and the like.
PCB fabrication may include choosing one or more layers of prepreg, stacking the layers, and curing the stacked layers (often with pressure) to form a solid substrate. Vias and/or leads may be incorporated on and/or within a PCB. Prepreg often shrinks during curing, typically in a predictable fashion, and expected shrinkage may be incorporated into a PCB specification. Many prepreg materials are anisotropic, particularly with respect to dimensional changes (e.g., during curing). Dimensional changes may be different in the grain direction than in another direction (e.g., the fill direction).
Many prepreg materials are characterized with one or more specifications for “artwork compensation,” which may describe an expected shrinkage during curing. Specifications for artwork compensation are often sufficiently controlled and predictable that they may be incorporated into the PCB design. The artwork compensation specification for a PCB fabricated from a stack of prepregs may often be calculated from the individual prepreg specifications, orientations, and stacking order of the prepreg layers.
A substrate, particularly a thin substrate, may be warped, bent, or otherwise deformed by various processes. In some cases, a substrate may be inadvertently deformed during processing (e.g., during curing of a PCB). A substrate may be warped by external forces. A substrate may be warped by internal elastic forces (e.g., a thermal expansion mismatch between materials).
Viewed in cross-section (i.e., viewing parallel to the plane of a PCB), a PCB may be characterized by a centerline. Typical PCB stacks are designed to be mechanically “balanced” with respect to the centerline, such that forces (e.g., induced during curing and/or cooling from high temperature) above the centerline are cancelled or otherwise opposed by equivalent forces below the centerline. For example, a prepreg layer with a first grain orientation and a first distance above the centerline may be balanced by an equivalent layer having the same grain orientation located the same distance below the centerline. Balancing is often achieved by creating a symmetrical prepreg stack with respect to the centerline. In some cases, the centerline may represent a line of mirror symmetry (at least with respect to mechanical and/or thermal properties), with layers above the centerline being balanced by corresponding “mirror” layers below the centerline.
Various electrical and electronic components may benefit from surge protection, such as protection against electrostatic discharge (ESD) and other electrical events. ESD protection may include incorporating a voltage switchable dielectric material (VSDM). A VSDM may behave as an insulator at a low voltage, and a conductor at a higher voltage. A VSDM may be characterized by a so-called “switching voltage” between these states of low and high conductivity. A VSDM may provide a shunt to ground that protects a circuit and/or component against voltages above the switching voltage by allowing currents at these voltages to pass to ground through the VSDM, rather than through the device being protected.
Many VSDM materials are polymer-based, and may include filled polymers. Processing a VSDM layer on a PCB may cause warping, which may be undesirable. Controlling dimensional changes (e.g., maintaining planarity) may improve the processing of devices incorporating a VSDM, and particularly a layer of VSDM on a thin substrate (whose dimensions may be altered by stress in the VSDM).
Voltage switchable dielectric materials may have thermal, elastic, plastic, viscous, and other properties that are different than those of typical prepreg layers. Incorporating a VSDM into a prepreg stack may result in an unbalanced substrate. During various processing steps, imbalance in a substrate may be manifest as loss of dimensional control (e.g., warpage of a PCB).
Various aspects provide for the incorporation of a voltage switchable dielectric material into a substrate in a manner that results in the substrate meeting various specifications, including dimensionality specifications. In some embodiments, a method for designing a PCB to meet a specification may comprise choosing a first design for a PCB comprising one or more prepreg layers. A first region comprising a VSDM may be incorporated into the first design to create an ESD-protected design. A balance region may be identified, whose incorporation into the ESD-protected design is expected or predicted to balance an imbalance induced by the incorporation of the first region. The balance region may be incorporated into the ESD-protected design to create a balanced, ESD-protected design. The balance region may also provide additional desirable properties. For example, the balance region may be resistive and/or capacitive.
Some designs may be substantially planar (e.g., sufficiently planar to meet a planarity specification or perform in a desired manner). Some designs include a centerline. Certain embodiments include a prepreg stack that does not display mirror symmetry with respect to a centerline associated with the prepreg stack. Some aspects include a balanced, ESD-protected PCB (and or PCB design) that does not have mirror symmetry with respect to a centerline associated with the ESD-protected design.
A first region incorporating a VSDM may be disposed on the same side of the centerline as a balance region. The first region may be on the opposite side of the balance region. The balance region may be on the same side as the first region and opposite side of the centerline. In some cases, a balance region may be disposed a greater distance from the centerline than the first region.
Incorporating a balance region may include adding or subtracting a prepreg layer from a prepreg stack. Incorporating a balance region may include adding a first and subtracting a second prepreg layer from a prepreg stack. In some cases, a balance region comprises a plurality of separate regions. An added prepreg layer may be a different style, thickness, grain orientation, resin content, reinforcement, weave, and/or different in other ways. An added prepreg layer may be the same as another prepreg layer already in a prepreg stack.
Incorporating a balance region may include adding another material to the substrate (e.g., other than another prepreg layer). A balance region may comprise a polymer, a ceramic, a metal, and/or composites thereof. A balance region may include a filled polymer, and may include a second VSDM material. In some cases, a material incorporated into a balance region may be chosen to have similar thermal, elastic, mechanical, or other properties similar to those of the first region incorporating the VSDM.
In some cases, a PCB design may be characterized by an artwork compensation specification, which may be an integrated or averaged value of the artwork compensation specifications of the components (e.g., prepreg layers) from which the PCB is fabricated. In some cases, a balance region may include a material having a larger artwork compensation specification than that of the first design. In certain cases, a balance region may include a material having a larger artwork compensation specification than those of the individual prepreg layers. A balance region may include a material having a larger coefficient of thermal expansion (CTE) than that of the first region and/or the stackup associated with the first design. In certain cases, a balance region may include a material having a larger CTE than those of the individual prepreg layers. A balance region may include a material having a CTE that substantially matches that of the first region. A balance region may include a material having a shrinkage percentage (e.g., a strain associated with shrinkage or expansion due to curing) that substantially matches that of the first region. In some embodiments, a balance region comprises a second VSDM having similar properties and opposite location (in the stack) as compared to the VSDM in the first region.
A printed circuit board may include one or more prepreg layers, and may be characterized by a lack of mirror symmetry associated with a centerline. In some examples, an ESD-protected PCB may include a VSDM. An ESD-protected PCB may be characterized by a lack of mirror symmetry with respect to a centerline associated with the ESD-protected PCB and/or a centerline associated with the one or more prepreg layers.
An ESD-protected PCB may have one or more dimensionality specifications within an industry-defined specification (e.g., IEEE, IEC, IPC, ISO, and the like). Certain ESD-protected substrates (e.g., an ESD-protected PCB) may be characterized by a flatness within a tolerance such as an IPC (Association Connecting Electronics Industries) 4101A specification.
Certain aspects provide for molding a substrate comprising a VSDM. In exemplary embodiments, a flexible substrate such as a carrier foil (e.g., a thin polymer, metal, or composite substrate) is provided. A VSDM may be coated on at least a portion of the carrier foil. The coated carrier foil may be formed into a shape (e.g., using a mold). A mold may include planar, parallel plates. A mold may include other shapes, such as a cylinder, sphere, ellipsoid, and the like. A coated substrate may be processed (e.g., cured) while molded. In some cases, curing a coated substrate while in the mold may result in a demolded, cured, coated substrate “springing back” to a shape other than that of the mold. A cylindrically molded substrate (e.g., with the VSDM facing outward) may be cured, cooled and demolded to yield a substantially flat, coated, substrate. A cylinder used for molding may have a diameter between 0.25 and 20 inches, between 0.5 and 10 inches, between 1 and 8 inches, and between 2 and 5 inches.
Various aspects provide for incorporating a VSDM into a substrate to create an ESD-protected substrate. In some cases, a VSDM is incorporated in a manner that results in the ESD-protected substrate meeting one or more specifications (e.g., thickness, planarity, and the like) for various subsequent processes or applications. Various aspects provide for designing a substrate (e.g., a PCB) incorporating a VSDM, and adjusting one or more aspects of the substrate to design a balanced, ESD-protected substrate. Certain embodiments include an ESD-protected substrate (e.g., incorporating a VSDM) that is mechanically and/or elastically balanced, but may not display a structural symmetry (e.g., mirror symmetry) with respect to a centerline through the substrate.
In some embodiments, a specification for a PCB is received, a VSDM is incorporated, and a balance region is incorporated into the design of the PCB to accommodate the incorporation of the VSDM while meeting the specification. Incorporating a balance region may include modifying the structure of the PCB (e.g., an order of a prepreg stackup). Incorporating a balance region may include modifying the components of the PCB (e.g., adding a polymer layer). Incorporating a balance region may include modifying the processing protocol (e.g., ramp rate, dwell time, pressure, and/or temperature associated with curing). Incorporating a balance region may include using forms, shapes, molds, and the like to mold the substrate/VSDM (or PCB) into a shape (e.g., during curing).
A VSDM may be applied as a layer to a carrier foil, which may be a polymer, a metal, a ceramic, a composite, and the like. A VSDM may be applied to a wafer, package, printed circuit board (PCB), printed wiring board (PWB), and the like. For the purposes of this specification, PCB may generally describe a substrate into which a VSDM may be incorporated. As used herein, the term “layer” can include one or more sub-layers, which themselves can constitute a layer. The term “region” is defined similarly.
A balance region may include a portion of the substrate whose incorporation into the design balances one or more forces induced or associated with the VSDM (e.g., during subsequent processing). A balance region may include one or more additional layers of prepreg. A balance region may include another material (e.g., a polymer, a filled polymer, a VSDM, a resin layer, a reinforcement layer, and the like). A balance region may be characterized by the removal of a layer from the design. A balance region may be planar, and may include shapes other than planer.
In some embodiments, a balance region may be associated with a PCB stackup. Many typical PCB stackups (not incorporating a VSDM) are balanced. A PCB stackup incorporating a balance region may appear “imbalanced” with respect to a centerline, particularly when the inclusion of the VSDM is not accounted for (i.e., the PCB stack, ex-VSDM, may appear unbalanced). Concomitant incorporation of a first region comprising a VSDM and a balance region may result in a balanced PCB design, notwithstanding an apparent imbalance in the PCB stack ex-VSDM. Balanced PCB 200 may include a balance region 220.
In the example shown in
Processed PCB 202 may meet one or more specifications, such as thickness, flatness, size, thermal properties, dielectric properties, and the like. Some specifications may be standardized, (e.g., by a standards-setting organization), such as ISO, IEEE, IEC, IPC, JEDEC and the like. In some embodiments, a substrate (which may incorporate a VSDM layer) may meet a flatness standard, such as IPC-4101A.
As used herein, the term “flat” refers to processed PCB having a “warpage” of less than or equal to about 13.1% when measured using the following procedure. In the data presented herein, warpage is measured by measuring the maximum vertical displacement of the four corners of an 8″×10″ thin core sample with a thickness less than 300 micrometers. The warpage is then computed by dividing the maximum displacement by the average of the length and width of the sample panel. As summarized in the following table, in preferred embodiments the warpage is less than or equal to 8.7%, and most preferably is less than or equal to 4.4%. Due to the thickness and stiffness decrease, thin cores are much more sensitive to mechanical stresses than thick cores.
A design may be modified to incorporate a balance region by calculating or otherwise estimating the effects of incorporation of the first region (e.g., the VSDM) on subsequent processing steps. For example, a shrinkage associated with curing of a VSDM may be measured on a test coupon. For a given thickness of VSDM (incorporated into a PCB design), VSDM properties, and associated process of the other materials in the PCB (e.g., prepreg), an expected effect may be calculated (e.g., using a rule of mixtures law and associated geometrical factors). In the example shown in
In an exemplary calculation, a first design may include a first prepreg stackup. A planar first region incorporating a VSDM may be incorporated into the design. In some cases, a thickness, location, switching voltage, shape, and other properties of the first region may be at least partially determined by desired electrical properties (e.g., location of vias, lines, chips, and the like). An expected result of the incorporation may be calculated based on properties of the first region and properties of the prepreg stackup. Exemplary expected results include an expected warpage associated with curing the VSDM or expected warpage associated with cooling of a cured substrate from a higher temperature to room temperature. A balance region may be identified by simulating the addition, subtraction, (and/or both) of additional prepreg layers (and the corresponding effect on final properties). A “goodness of fit” parameter may be maximized such that a simulation is chosen that is most likely to result in desired properties. For example, a plurality of randomly selected additions/subtractions of prepreg layers may be simulated, and those that are most expected to result in a flat substrate after curing and cooling may be chosen. In some embodiments, desired properties (e.g., elastic moduli, curing shrinkage, CTE, thickness, location) of a balance region may be solved for analytically, and an appropriate material having such properties may be chosen and designed into the appropriate location or locations.
The design for ESD-protected substrate 500 may be modified to create a design for a balanced, ESD-protected substrate 502. In this example, balanced ESD-protected substrate 502 includes a balance region comprising an additional layer 520 of style 106 prepreg, inserted on the opposite side of the centerline (with respect to first region 510). In this example, additional layer 520 is inserted between the two layers of style 2113 prepreg, opposite the first region 510.
Certain embodiments include adjusting a type associated with a balance region (e.g., a type of prepreg layer). A type may be a multivariable descriptor of one or more (and in some cases, many) characteristics of a material such as a prepreg layer. Type may include a style and/or other parameters characterizing a layer, such as reinforcement (e.g., E-glass), resin type (e.g., epoxy), additional resins (e.g., multistage resins), halogen concentration, curative type, resin content, catalyst, resin filler type and loading, Tg, CTE, permittivity, loss, dielectric constant, modulus, and the like. In some cases, a type may include a standard characteristic (e.g., a style) modified and annotated to further define characteristics (e.g., a halogen-free, two-stage resin of style 106 having a high Tg). Choosing a type may include choosing appropriate prepreg parameters (e.g., resin composition, resin content, filler composition, filler content, curing kinetics, and the like).
Balanced ESD-protected PCB 502 may not display mirror symmetry with respect to the centerline 530, which may be located at a mid-point of the substrate (including the first region 510) or a mid-point of the PCB-stack (not including the first region 510). In some embodiments, the removal of one or more layers of prepreg, to rebalance an imbalanced PCB, may be described as the incorporation of a balance region.
Balanced ESD-protected PCB 602 includes a different prepreg stacking than that of ESD-protected PCB 600. An aspect of this difference may be described as a difference in prepreg layers on the opposite side of first region 610. In this example, the opposite layer of style 7628 prepreg has been swapped for two layers of style 2113 prepreg, resulting in a balanced, ESD-protected PCB. Balanced ESD-protected PCB 602 may not display mirror symmetry with respect to the centerline 630, which may be located at a mid-point of the substrate (including the first region 610) or a mid-point of the PCB-stack (not including the first region 610).
Balanced ESD-protected PCB 702 includes a different prepreg stacking than that of ESD-protected PCB 700. Differences include an addition of a prepreg layer on the same side as first region 710, a swapping of prepreg layers on the opposite side of the centerline, and a change in grain orientation of prepreg layers.
In this example, an additional prepreg layer style 106 is added between first region 710 and adjacent prepreg layer style 2116. On the opposite side of the centerline, the styles 2116 and 7628 prepreg layers have been replaced with styles 1080, 2313, 1080′, and 2313′ in a stacking as shown. In this example, styles 1080 and 1080′ have different grain orientations, and styles 2313 and 2313′ have different grain orientations. Balanced ESD-protected PCB 702 may not display mirror symmetry with respect to the centerline 730, which may be located at a mid-point of the substrate (including the first region 710) or a mid-point of the PCB-stack (not including the first region 710).
A carrier foil 900 is provided in step 800. In step 810, a VSDM 910 may be applied to (e.g., coated on) at least a portion of the carrier foil 900. In step 820, the coated carrier foil may be shaped or formed using a mold 920. In some embodiments, an optional drying step may be performed on the coated carrier foil to dry and/or partially cure the VSDM. Molding may include the use of pressure 922. Pressure may be applied via an external component (e.g., mold 920). Pressure may be applied via internally-generated elastic forces. For example, a coated carrier foil may be wrapped around a cylinder. For situations in which the carrier foil has a much higher elastic modulus than that of the VSDM, the VSDM may be constrained to (and sheared by) the shape and size of the carrier foil. A mold may be any shape, including flat (e.g., planar, parallel plates), cylindrical, spherical, hyperbolic, ellipsoidal, parabolic, angled, and other shapes.
In step 830, the coated carrier foil is processed. In some cases, processing may include heating the coated carrier foil to a temperature, which may be performed in an oven 930. In some cases, pressure 922 may be maintained during processing. Processing may include curing, drying, post-cure treatments, exposure to light (e.g, ultraviolet light), vibration, ultrasonication, application of pressure or other forces, bending, stretching, clamping, and the like. In some embodiments, a coated carrier foil may be wrapped around a cylinder (e.g., with the VSDM facing outward), and the wrapped cylinder may be placed in an oven and heated to a curing temperature associated with the VSDM. A residual contraction of the cured VSDM/carrier foil composite (e.g., upon cooling and demolding) may yield a substantially planar carrier foil having a cured VSDM layer thereon.
The cores after lamination were then cut to a size of 8 inch by 10 inch, then masked and etched the copper off one side at a time using Ferric Chloride Copper Etchant Solution. It will be understood that the warpage issue is amplified by etching the whole copper off instead of etching only the electrical traces.
The warpage (vertical displacement of the corners) was then measured by recording the max displacement of the four corners of the cores laying freely on a leveled flat surface (modified from IPC-TM-650 2.4.22.1 Bow and Twist-Laminate). Cores as it is (with full copper), with only one side of the copper etched off, as well as cores with both sides of the copper being removed are test for warpage.
Due to the unsymmetrical nature of VSDM embedded core, the warpage has directions. As used herein, the warpage is referred to as positive if the four corners warp to the VSDM side of the core; negative if the corners of the core warp to the side without VSD material.
Control measurements without a balancing layer were made on a substrate having a stack-up from the bottom up of copper having a thickness of about 18 micrometers coated with a VSDM layer having a thickness of about 25 micrometers, various thicknesses of prepreg, and a top layer of copper having a thickness of about 18 micrometers. The table below and
As can be seen upon review of Table 2 and
The measurements of the effect of the balancing layer were then made on a substrate having a stack-up from the bottom up of copper having a thickness of about 18 micrometers coated with a VSDM layer having a thickness of about 25 micrometers, 1 or 2 plies of Panasonic R1551V 106 (having a total thickness of about 55 or about 110 micrometers), and a balance region consisting of resin coated copper (RCC) from Oak-Mitsui resin type, MRG200 or other epoxy coated copper of various thicknesses. As used herein, the term “about” is intended to allow for variations in thickness which arise due to process variations.
The stacked materials were laminated under the same conditions as showing in
It has been observed that the core (without copper) warpage is a function of a combination of young's modulus, thickness and CTE of each layer of materials in the structure. In particular, the warpage depends significantly on the two outer layers, meaning the VSD and the balancing materials. In other words, the balancing material choice and the thickness is a function of the VSD material and thickness, especially when the thickness and material of the center layer (in most case, the prepregs) are predetermined. This can be seen upon review the data in of
Once the right balancing resin is determined for a particular VSD coating, it has been observed that the material and thickness of the prepregs used has little to no effect on the warpage. In other words, the thicknesses of the balance material and the VSDM which result in a flat core are independent (or substantially independent) of the thickness or type of the prepregs. This observation is supported by the measured results shown in
Some embodiments include adjusting a formulation of a VSDM, which may include changing an epoxy (e.g., type, ratio), curative agent (e.g., type, ratio to epoxy or resin), and/or the addition of other additives to improve balance. Exemplary epoxies include Epon 828, GP611, Polybd, and the like. Exemplary curative agents include Dicyandiamide, Diaminodiphenylsulfone, Nadic methyl anhydrides, and the like.
A first region having a VSDM may consist of the VSDM. A first region may comprise a VSDM and another substance (or gaps, holes, and the like). A first region may be uniform (e.g., planar). A first region may include discrete elements (e.g., disks, lines, wires, and the like).
Some embodiments include sensors to sense various parameters (e.g., thickness, strain, temperature, stress, viscosity, concentration, depth, length, width, thickness, number of layers, coefficient of thermal expansion (CTE), switching voltage and/or voltage density (between insulating and conducting), trigger voltage, clamp voltage, off-state current passage, dielectric constant, time, date, and other characteristics). Various apparatus may monitor various sensors, and systems may be actuated by automated controls (solenoid, pneumatic, piezoelectric, and the like). Some embodiments include a computer readable storage medium coupled to a processor and memory. Executable instructions stored on the computer readable storage medium may be executed by the processor to perform various methods described herein. Sensors and actuators may be coupled to the processor, providing input and receiving instructions associated with various methods. Certain instructions provide for closed-loop control of various parameters via coupled sensors providing input and coupled actuators receiving instructions to adjust parameters. Certain embodiments include materials. Various embodiments include telephones (e.g., cell phones), USB-devices (e.g., a USB-storage device), personal digital assistants, laptop computers, netbook computers, tablet PC computers and the like.
The above description is illustrative and not restrictive. Many variations of the invention will become apparent to those of skill in the art upon review of this disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
This application is a continuation-in-part and claims the priority benefit of U.S. patent application Ser. No. 12/694,702, filed Jan. 27, 2010 now U.S. Pat. No. 8,399,773, which claims the priority benefit of U.S. provisional patent application No. 61/147,730, filed Jan. 27, 2009 and entitled “Techniques for Reducing Warpage in the Application of VSD Material to Core and Substrate.” The disclosure of the aforementioned applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3347724 | Schneble, Jr. et al. | Oct 1967 | A |
3685026 | Wakabayashi et al. | Aug 1972 | A |
3685028 | Wakabayashi et al. | Aug 1972 | A |
3723635 | Smith | Mar 1973 | A |
3808576 | Castonguay et al. | Apr 1974 | A |
3926916 | Mastrangelo | Dec 1975 | A |
3977957 | Kosowsky et al. | Aug 1976 | A |
4113899 | Henry et al. | Sep 1978 | A |
4133735 | Afromowitz et al. | Jan 1979 | A |
4252692 | Taylor et al. | Feb 1981 | A |
4269672 | Inoue | May 1981 | A |
4331948 | Malinaric et al. | May 1982 | A |
4359414 | Mastrangelo | Nov 1982 | A |
4405432 | Kosowsky | Sep 1983 | A |
4439809 | Weight et al. | Mar 1984 | A |
4506285 | Einzinger et al. | Mar 1985 | A |
4591411 | Reimann | May 1986 | A |
4642160 | Burgess | Feb 1987 | A |
4702860 | Kinderov et al. | Oct 1987 | A |
4714952 | Takekawa et al. | Dec 1987 | A |
4726877 | Fryd et al. | Feb 1988 | A |
4726991 | Hyatt et al. | Feb 1988 | A |
4799128 | Chen | Jan 1989 | A |
4888574 | Rice et al. | Dec 1989 | A |
4892776 | Rice | Jan 1990 | A |
4918033 | Bartha et al. | Apr 1990 | A |
4928199 | Diaz et al. | May 1990 | A |
4935584 | Boggs | Jun 1990 | A |
4977357 | Shrier | Dec 1990 | A |
4992333 | Hyatt | Feb 1991 | A |
4996945 | Dix, Jr. | Mar 1991 | A |
5068634 | Shrier | Nov 1991 | A |
5092032 | Murakami | Mar 1992 | A |
5095626 | Kitamura et al. | Mar 1992 | A |
5099380 | Childers et al. | Mar 1992 | A |
5142263 | Childers et al. | Aug 1992 | A |
5148355 | Lowe et al. | Sep 1992 | A |
5167778 | Kaneko et al. | Dec 1992 | A |
5183698 | Stephenson et al. | Feb 1993 | A |
5189387 | Childers et al. | Feb 1993 | A |
5246388 | Collins et al. | Sep 1993 | A |
5248517 | Shrier et al. | Sep 1993 | A |
5252195 | Kobayashi et al. | Oct 1993 | A |
5260848 | Childers | Nov 1993 | A |
5262754 | Collins | Nov 1993 | A |
5278535 | Xu et al. | Jan 1994 | A |
5282312 | DiStefano et al. | Feb 1994 | A |
5294374 | Martinez et al. | Mar 1994 | A |
5295297 | Kitamura et al. | Mar 1994 | A |
5300208 | Angelopoulos et al. | Apr 1994 | A |
5317801 | Tanaka et al. | Jun 1994 | A |
5340641 | Xu | Aug 1994 | A |
5347258 | Howard et al. | Sep 1994 | A |
5354712 | Ho et al. | Oct 1994 | A |
5367764 | DiStefano et al. | Nov 1994 | A |
5378858 | Bruckner et al. | Jan 1995 | A |
5380679 | Kano | Jan 1995 | A |
5393597 | Childers et al. | Feb 1995 | A |
5403208 | Felcman et al. | Apr 1995 | A |
5404637 | Kawakami | Apr 1995 | A |
5413694 | Dixon et al. | May 1995 | A |
5416662 | Kurasawa et al. | May 1995 | A |
5440075 | Kawakita et al. | Aug 1995 | A |
5444593 | Allina | Aug 1995 | A |
5476471 | Shifrin et al. | Dec 1995 | A |
5481795 | Hatakeyama et al. | Jan 1996 | A |
5483407 | Anastasio et al. | Jan 1996 | A |
5487218 | Bhatt et al. | Jan 1996 | A |
5493146 | Pramanik et al. | Feb 1996 | A |
5501350 | Yoshida et al. | Mar 1996 | A |
5502889 | Casson et al. | Apr 1996 | A |
5510629 | Karpovich et al. | Apr 1996 | A |
5550400 | Takagi et al. | Aug 1996 | A |
5557136 | Gordon et al. | Sep 1996 | A |
5654564 | Mohsen | Aug 1997 | A |
5669381 | Hyatt | Sep 1997 | A |
5685070 | Alpaugh et al. | Nov 1997 | A |
5708298 | Masayuki et al. | Jan 1998 | A |
5714794 | Tsuyama et al. | Feb 1998 | A |
5734188 | Murata et al. | Mar 1998 | A |
5744759 | Ameen et al. | Apr 1998 | A |
5781395 | Hyatt | Jul 1998 | A |
5802714 | Kobayashi et al. | Sep 1998 | A |
5807509 | Shrier et al. | Sep 1998 | A |
5808351 | Nathan et al. | Sep 1998 | A |
5834160 | Ferry et al. | Nov 1998 | A |
5834824 | Shepherd et al. | Nov 1998 | A |
5834893 | Bulovic et al. | Nov 1998 | A |
5848467 | Khandros et al. | Dec 1998 | A |
5856910 | Yurchenco et al. | Jan 1999 | A |
5865934 | Yamamoto et al. | Feb 1999 | A |
5869869 | Hively | Feb 1999 | A |
5874902 | Heinrich et al. | Feb 1999 | A |
5906042 | Lan et al. | May 1999 | A |
5910685 | Watanabe et al. | Jun 1999 | A |
5926951 | Khandros et al. | Jul 1999 | A |
5940683 | Holm et al. | Aug 1999 | A |
5946555 | Crumly et al. | Aug 1999 | A |
5955762 | Hively | Sep 1999 | A |
5956612 | Elliott et al. | Sep 1999 | A |
5962815 | Lan et al. | Oct 1999 | A |
5970321 | Hively | Oct 1999 | A |
5972192 | Dubin et al. | Oct 1999 | A |
5977489 | Crotzer et al. | Nov 1999 | A |
6013358 | Winnett et al. | Jan 2000 | A |
6023028 | Neuhalfen | Feb 2000 | A |
6064094 | Intrater et al. | May 2000 | A |
6108184 | Minervini et al. | Aug 2000 | A |
6114672 | Iwasaki | Sep 2000 | A |
6130459 | Intrater | Oct 2000 | A |
6160695 | Winnett et al. | Dec 2000 | A |
6172590 | Shrier et al. | Jan 2001 | B1 |
6184280 | Shibuta | Feb 2001 | B1 |
6191928 | Rector et al. | Feb 2001 | B1 |
6198392 | Hahn et al. | Mar 2001 | B1 |
6211554 | Whitney et al. | Apr 2001 | B1 |
6239687 | Shrier et al. | May 2001 | B1 |
6251513 | Rector et al. | Jun 2001 | B1 |
6310752 | Shrier et al. | Oct 2001 | B1 |
6316734 | Yang | Nov 2001 | B1 |
6340789 | Petritsch et al. | Jan 2002 | B1 |
6351011 | Whitney et al. | Feb 2002 | B1 |
6373719 | Behling et al. | Apr 2002 | B1 |
6407411 | Wojnarowski et al. | Jun 2002 | B1 |
6433394 | Intrater | Aug 2002 | B1 |
6448900 | Chen | Sep 2002 | B1 |
6455916 | Robinson | Sep 2002 | B1 |
6468593 | Iazawa | Oct 2002 | B1 |
6512458 | Kobayashi et al. | Jan 2003 | B1 |
6534422 | Ichikawa et al. | Mar 2003 | B1 |
6542065 | Shrier et al. | Apr 2003 | B2 |
6549114 | Whitney et al. | Apr 2003 | B2 |
6570765 | Behling et al. | May 2003 | B2 |
6593597 | Sheu | Jul 2003 | B2 |
6621172 | Nakayama et al. | Sep 2003 | B2 |
6628498 | Whitney et al. | Sep 2003 | B2 |
6642297 | Hyatt et al. | Nov 2003 | B1 |
6657532 | Shrier et al. | Dec 2003 | B1 |
6677183 | Sakaguchi et al. | Jan 2004 | B2 |
6693508 | Whitney et al. | Feb 2004 | B2 |
6709944 | Durocher et al. | Mar 2004 | B1 |
6741217 | Toncich et al. | May 2004 | B2 |
6797145 | Kosowsky | Sep 2004 | B2 |
6882051 | Majumdar et al. | Apr 2005 | B2 |
6903175 | Gore et al. | Jun 2005 | B2 |
6911676 | Yoo | Jun 2005 | B2 |
6916872 | Yadav et al. | Jul 2005 | B2 |
6981319 | Shrier | Jan 2006 | B2 |
7034652 | Whitney et al. | Apr 2006 | B2 |
7049926 | Shrier et al. | May 2006 | B2 |
7053468 | Lee | May 2006 | B2 |
7064353 | Bhat | Jun 2006 | B2 |
7067840 | Klauk | Jun 2006 | B2 |
7132697 | Weimer et al. | Nov 2006 | B2 |
7132922 | Harris et al. | Nov 2006 | B2 |
7141184 | Chacko et al. | Nov 2006 | B2 |
7173288 | Lee et al. | Feb 2007 | B2 |
7183891 | Harris et al. | Feb 2007 | B2 |
7202770 | Harris et al. | Apr 2007 | B2 |
7205613 | Fjelstand et al. | Apr 2007 | B2 |
7218492 | Shrier | May 2007 | B2 |
7279724 | Collins et al. | Oct 2007 | B2 |
7320762 | Greuter et al. | Jan 2008 | B2 |
7341824 | Sexton | Mar 2008 | B2 |
7417194 | Shrier | Aug 2008 | B2 |
7446030 | Kosowsky | Nov 2008 | B2 |
7488625 | Knall | Feb 2009 | B2 |
7492504 | Chopra et al. | Feb 2009 | B2 |
7528467 | Lee | May 2009 | B2 |
7535462 | Spath et al. | May 2009 | B2 |
7585434 | Morita | Sep 2009 | B2 |
7593203 | Dudnikov, Jr. et al. | Sep 2009 | B2 |
7609141 | Harris et al. | Oct 2009 | B2 |
7872251 | Kosowsky et al. | Jan 2011 | B2 |
7923844 | Kosowsky | Apr 2011 | B2 |
20020004258 | Nakayama et al. | Jan 2002 | A1 |
20020050912 | Shrier et al. | May 2002 | A1 |
20020061363 | Halas et al. | May 2002 | A1 |
20030010960 | Greuter et al. | Jan 2003 | A1 |
20030025587 | Whitney et al. | Feb 2003 | A1 |
20030079910 | Kosowsky | May 2003 | A1 |
20030151029 | Hsu | Aug 2003 | A1 |
20030218851 | Harris et al. | Nov 2003 | A1 |
20040000725 | Lee | Jan 2004 | A1 |
20040062041 | Cross et al. | Apr 2004 | A1 |
20040063839 | Kawate et al. | Apr 2004 | A1 |
20040095658 | Buretea et al. | May 2004 | A1 |
20040154828 | Moller et al. | Aug 2004 | A1 |
20040160300 | Shrier | Aug 2004 | A1 |
20040201941 | Harris et al. | Oct 2004 | A1 |
20040211942 | Clark et al. | Oct 2004 | A1 |
20040241894 | Nagai et al. | Dec 2004 | A1 |
20040262583 | Lee et al. | Dec 2004 | A1 |
20050026334 | Knall | Feb 2005 | A1 |
20050039949 | Kosowsky | Feb 2005 | A1 |
20050057867 | Harris et al. | Mar 2005 | A1 |
20050083163 | Shrier | Apr 2005 | A1 |
20050106098 | Tsang et al. | May 2005 | A1 |
20050121653 | Chacko | Jun 2005 | A1 |
20050184387 | Collins et al. | Aug 2005 | A1 |
20050218380 | Gramespacher et al. | Oct 2005 | A1 |
20050255631 | Bureau et al. | Nov 2005 | A1 |
20050274455 | Extrand | Dec 2005 | A1 |
20050274956 | Bhat | Dec 2005 | A1 |
20050275070 | Hollingsworth | Dec 2005 | A1 |
20060060880 | Lee et al. | Mar 2006 | A1 |
20060142455 | Agarwal | Jun 2006 | A1 |
20060152334 | Maercklein et al. | Jul 2006 | A1 |
20060166474 | Vereecken et al. | Jul 2006 | A1 |
20060167139 | Nelson et al. | Jul 2006 | A1 |
20060181826 | Dudnikov et al. | Aug 2006 | A1 |
20060181827 | Dudnikov, Jr. et al. | Aug 2006 | A1 |
20060193093 | Bertin | Aug 2006 | A1 |
20060199390 | Dudnikov, Jr. et al. | Sep 2006 | A1 |
20060211837 | Ko et al. | Sep 2006 | A1 |
20060214156 | Pan et al. | Sep 2006 | A1 |
20060234127 | Kim | Oct 2006 | A1 |
20060291127 | Kim et al. | Dec 2006 | A1 |
20070114640 | Kosowsky | May 2007 | A1 |
20070116976 | Tan et al. | May 2007 | A1 |
20070123625 | Dorade et al. | May 2007 | A1 |
20070139848 | Harris et al. | Jun 2007 | A1 |
20070146941 | Harris et al. | Jun 2007 | A1 |
20070208243 | Gabriel et al. | Sep 2007 | A1 |
20070241458 | Ding et al. | Oct 2007 | A1 |
20080045770 | Sigmund et al. | Feb 2008 | A1 |
20080047930 | Blanchet et al. | Feb 2008 | A1 |
20080073114 | Kosowsky et al. | Mar 2008 | A1 |
20080144355 | Boeve et al. | Jun 2008 | A1 |
20080278873 | Leduc et al. | Nov 2008 | A1 |
20090044970 | Kosowsky | Feb 2009 | A1 |
20090151989 | Hunrath | Jun 2009 | A1 |
20090309074 | Chen et al. | Dec 2009 | A1 |
20100038119 | Kosowsky | Feb 2010 | A1 |
20100038121 | Kosowsky | Feb 2010 | A1 |
20100040896 | Kosowsky | Feb 2010 | A1 |
20100044079 | Kosowsky | Feb 2010 | A1 |
20100044080 | Kosowsky | Feb 2010 | A1 |
20100187006 | Kosowsky et al. | Jul 2010 | A1 |
20100243302 | Kosowsky et al. | Sep 2010 | A1 |
20100270588 | Kosowsky et al. | Oct 2010 | A1 |
20110061230 | Kosowsky | Mar 2011 | A1 |
20110062388 | Kosowsky et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
56091464 | Jul 1981 | JP |
WO9726665 | Jul 1997 | WO |
WO9924992 | May 1999 | WO |
WO02103085 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20110132647 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61147730 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12694702 | Jan 2010 | US |
Child | 12976236 | US |