Surgical instrument configured to operate in different states

Information

  • Patent Grant
  • 11026680
  • Patent Number
    11,026,680
  • Date Filed
    Thursday, September 28, 2017
    6 years ago
  • Date Issued
    Tuesday, June 8, 2021
    2 years ago
Abstract
A surgical instrument comprising a firing system configured to perform one or more staple firing strokes, a power system, and a control system is disclosed. The firing system comprises a cutting member and an electric motor configured to drive the cutting member through each staple firing stroke and retract the cutting member after each staple firing stroke. The control system comprises a powered operating state in which the power system has enough power to drive the cutting member through a staple firing stroke, a limited-power operating state for placing the surgical instrument in a default condition that has sufficient functionality to retract the cutting member, a firing system lockout configured to prevent the firing system from performing a staple firing stroke when the control system is in the limited-power operating state, and a display configured to indicate that the surgical instrument is in the limited-power operating state.
Description
FIELD OF THE INVENTION

The present invention relates to surgical instruments and, in various arrangements, to powered surgical cutting and stapling instruments and staple cartridges therefor that are designed to cut and staple tissue.


BACKGROUND

Surgical staplers are often used to deploy staples into soft tissue to reduce or eliminate bleeding from the soft tissue, especially as the tissue is being transected, for example. Surgical staplers, such as an endocutter, for example, can comprise an end effector which can be moved, or articulated, with respect to an elongated shaft assembly. End effectors are often configured to secure soft tissue between first and second jaw members where the first jaw member often includes a staple cartridge which is configured to removably store staples therein and the second jaw member often includes an anvil. Such surgical staplers can include a closing system for pivoting the anvil relative to the staple cartridge.


Surgical staplers, as outlined above, can be configured to pivot the anvil of the end effector relative to the staple cartridge in order to capture soft tissue therebetween. In various circumstances, the anvil can be configured to apply a clamping force to the soft tissue in order to hold the soft tissue tightly between the anvil and the staple cartridge. If a surgeon is unsatisfied with the position of the end effector, however, the surgeon must typically activate a release mechanism on the surgical stapler to pivot the anvil into an open position and then reposition the end effector. Thereafter, staples are typically deployed from the staple cartridge by a driver which traverses a channel in the staple cartridge and causes the staples to be deformed against the anvil and secure layers of the soft tissue together. Often, as known in the art, the staples are deployed in several staple lines, or rows, in order to more reliably secure the layers of tissue together. The end effector may also include a cutting member, such as a knife, for example, which is advanced between two rows of the staples to resect the soft tissue after the layers of the soft tissue have been stapled together.


Such surgical staplers and effectors may be sized and configured to be inserted into a body cavity through a trocar or other access opening. The end effector is typically coupled to an elongated shaft that is sized to pass through the trocar or opening. The elongated shaft assembly is often operably coupled to a handle that supports control systems and/or triggers for controlling the operation of the end effector. To facilitate proper location and orientation of the end effector within the body, many surgical instruments are configured to facilitate articulation of the end effector relative to a portion of the elongated shaft.


Powered surgical instruments are disclosed in U.S. Patent Application Publication No. US 2009/0090763, entitled POWERED SURGICAL STAPLING DEVICE to Zemlok et al. (hereinafter “Zemlok '763”), the entire disclosure of which is hereby incorporated by reference herein. Powered surgical instruments are also disclosed in U.S. Patent Application Publication No. US 2011/0278344, entitled POWERED SURGICAL INSTRUMENT to Zemlok et al. (hereinafter “Zemlok '344”), now U.S. Pat. No. 8,201,721, the entire disclosure of which is hereby incorporated by reference herein.


The foregoing discussion is intended only to illustrate various aspects of the related art in the field of the invention at the time, and should not be taken as a disavowal of claim scope.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a perspective view of a surgical instrument employing one form of retraction arrangement;



FIG. 2 is a perspective view of an exemplary loading unit that may be employed in connection with various surgical instruments disclosed herein;



FIG. 3 is an exploded perspective view of a portion of the loading unit depicted in FIG. 2;



FIG. 4 is a top view of a portion of the surgical instrument of FIG. 1;



FIG. 5 is a partial side view of a portion of the surgical instrument depicted in FIG. 4 with the clutch assembly in a disengaged position;



FIG. 6 is a top view of a portion of a retraction assembly embodiment and retraction lever arrangement thereof;



FIG. 7 is a partial exploded view of one form of a drive unit with portions thereof shown in cross-section;



FIG. 8 is another top view of a portion of the surgical instrument with the drive unit locking system in the locked position;



FIG. 9 is a top view of one form of a locking pawl assembly;



FIG. 10 is a side elevational view of the locking pawl assembly of FIG. 9;



FIG. 11 is a bottom view of the locking pawl assembly of FIGS. 9 and 10;



FIG. 12 is a front view of a gear box housing embodiment;



FIG. 13 is a partial side cross-sectional view of a surgical instrument embodiment with portions thereof shown in cross-section and with the drive unit locking system in a locked orientation;



FIG. 14 is another partial side cross-sectional view of the surgical instrument of FIG. 13 with the drive unit locking system in an unlocked orientation;



FIG. 15 is a top view of another surgical instrument embodiment with a portion of the housing removed to expose a portion of the instrument's drive unit locking system arrangement;



FIG. 16 is a partial side cross-sectional view of the surgical instrument embodiment of FIG. 15 with portions thereof shown in cross-section and with solid lines illustrating the drive unit locking system in a locked orientation and with broken lines illustrating the drive unit locking system in an unlocked orientation;



FIG. 17 is another partial top view of the surgical instrument embodiment of FIGS. 15 and 16 with solid lines illustrating the position of the retraction lever prior to actuation and broken lines illustrating the position of the retraction lever after initial actuation;



FIG. 18 is another partial top view of the surgical instrument embodiment of FIGS. 15-17 with broken lines illustrating the retraction lever in a fully actuated position;



FIG. 19 is a partial top view of a portion of another surgical instrument embodiment with a portion of the housing omitted to expose the instrument's drive unit locking system and with solid lines depicting the retraction lever in an un-actuated position and broken lines illustrating the retraction lever after initial actuation;



FIG. 20 is a partial top view of another surgical instrument embodiment with a portion of the housing omitted to expose the drive unit locking system thereof in a locked orientation;



FIG. 21 is another partial top view of the surgical instrument embodiment of FIG. 20 with the drive unit locking system in an unlocked orientation;



FIG. 22 is a partial cross-sectional side view of a portion of a surgical instrument and end effector with the retraction assembly thereof in an unactuated orientation;



FIG. 23 is another partial cross-sectional side view of the surgical instrument and end effector of FIG. 22 after the firing rod assembly has been fired;



FIG. 24 is another partial cross-sectional side view of the surgical instrument and end effector of FIG. 23 and after the retraction assembly has been actuated to retract the drive beam back to its starting position within the end effector;



FIG. 25 is a partial cross-sectional side view of a portion of another surgical instrument and end effector in a prefire condition and with the retraction assembly thereof in an unactuated orientation;



FIG. 26 is another partial cross-sectional side view of the surgical instrument and end effector of FIG. 25 after firing;



FIG. 27 is another partial cross-sectional side view of the surgical instrument and end effector of FIG. 26 with the latch of the retraction assembly thereof in an unlatched orientation;



FIG. 28 is another partial cross-sectional side view of the surgical instrument and end effector of FIG. 27 with the distal firing rod portion in a retracted orientation;



FIG. 29 is a partial cross-sectional view of a portion of another surgical instrument embodiment with the drive coupler assembly thereof in an articulation orientation;



FIG. 30 is a partial cross-sectional view of a portion of the surgical instrument embodiment of FIG. 29 with the drive coupler assembly thereof in a firing orientation;



FIG. 31 is an enlarged cross-sectional view of the drive coupler assembly of the surgical instrument of FIGS. 29 and 30 with the coupler selector member shown in solid lines in the articulation orientation and with the coupler selector member shown in broken lines in a firing orientation;



FIG. 32 is a partial cross-sectional view of a portion of another surgical instrument embodiment;



FIG. 33 is an enlarged partial cross-sectional view of a portion of the surgical instrument of FIG. 32;



FIG. 34 is another enlarged partial cross-sectional view of a portion of the surgical instrument of FIGS. 32 and 33 with the travel limiter thereof in its distal-most orientation;



FIG. 35 is another enlarged partial cross-sectional view of a portion of the surgical instrument of FIGS. 32-34 with the travel limiter thereof in its proximal-most orientation;



FIG. 36 is a partial cross-sectional view of the surgical instrument of FIG. 33 taken along line 36-36 in FIG. 33;



FIG. 37 is a partial perspective view of a portion of the surgical instrument of FIGS. 32-36;



FIG. 38 is a partial perspective view of a shaft of a surgical instrument, a collar, and a disposable loading unit unattached to the shaft according to various embodiments of the present disclosure;



FIG. 39 is a partial perspective view of the shaft, the collar and the disposable loading unit of FIG. 38, depicting the disposable loading unit attached to the shaft;



FIG. 40 is a partial exploded perspective view of the shaft, the collar, and the disposable loading unit of FIG. 38;



FIG. 41 is another partial exploded perspective view of the shaft, the collar, and the disposable loading unit of FIG. 38;



FIG. 42 is a perspective view of a distal attachment portion of the disposable loading unit of FIG. 38;



FIG. 43 is another perspective view of the distal attachment portion of the disposable loading unit of FIG. 38;



FIG. 44 is a perspective view of a proximal attachment portion of the shaft of FIG. 38;



FIG. 45 is another perspective view of the proximal attachment portion of the shaft of FIG. 38;



FIG. 46 is a perspective view of the collar and a firing shaft of the surgical instrument of FIG. 38;



FIG. 47 is a partial perspective, cross-section view of the disposable loading unit, the collar, and the shaft of FIG. 38, depicting the disposable loading unit attached to the shaft;



FIG. 48 is a partial elevation, cross-section view of the disposable loading unit, the collar, and the shaft of FIG. 38, depicting the disposable loading unit unattached to the shaft;



FIG. 49 is a partial elevation, cross-section view of the disposable loading unit, the collar and the shaft of FIG. 38, depicting the disposable loading unit attached to the shaft;



FIG. 50 is an elevation view of the collar and the shaft of FIG. 38 taken along the plane indicated in FIG. 48;



FIG. 51 is a perspective, partial cross-section view of the disposable loading unit, the collar, and the shaft of FIG. 38, depicting the disposable loading unit unattached to the shaft, and further depicting the collar in an initial orientation relative to the shaft;



FIG. 52 is a perspective, partial cross-section view of the disposable loading unit, the collar, and the shaft of FIG. 38, depicting the disposable loading unit unattached to the shaft, and further depicting the collar in the initial orientation relative to the shaft;



FIG. 53 is a perspective, partial cross-section view of the disposable loading unit, the collar, and the shaft of FIG. 38, depicting the disposable loading unit entering the shaft, and further depicting the collar in the initial orientation relative to the shaft;



FIG. 54 is a perspective, partial cross-section view of the disposable loading unit, the collar, and the shaft of FIG. 38, depicting the disposable loading unit entering the shaft, and further depicting the collar in a secondary, rotated orientation relative to the shaft;



FIG. 55 is a perspective, partial cross-section view of the disposable loading unit, the collar, and the shaft of FIG. 38, depicting the disposable loading unit entering the shaft, and further depicting the collar in the secondary, rotated orientation relative to the shaft;



FIG. 56 is a perspective, partial cross-section view of the disposable loading unit, the collar, and the shaft of FIG. 38, depicting the disposable loading unit fully inserted into the shaft, and further depicting the collar in the secondary, rotated orientation relative to the shaft;



FIG. 57 is a perspective, partial cross-section view of the disposable loading unit, the collar, and the shaft of FIG. 38, depicting the disposable loading unit fully inserted into the shaft, and further depicting the collar in the initial orientation relative to the shaft;



FIG. 58 is a perspective, partial cross-section view of the disposable loading unit, the collar, and the shaft of FIG. 38, depicting the disposable loading unit fully inserted into the shaft, and further depicting the collar in the initial orientation relative to the shaft;



FIG. 59 is a partial, perspective, cross-section view of a shaft of a surgical instrument and a disposable loading unit unattached to the shaft according to various embodiments of the present disclosure;



FIG. 60 is a partial, perspective, cross-section view of the shaft and the disposable loading unit of FIG. 59, depicting the disposable loading unit partially-inserted into the shaft, and further depicting a latch in an unlatched position;



FIG. 61 is a partial, perspective, cross-section view of the shaft and the disposable loading unit of FIG. 59, depicting the disposable loading unit fully-inserted into the shaft, and further depicting the latch in a latched position;



FIG. 62 is a partial, elevation, cross-section view of the shaft and the disposable loading unit of FIG. 59, depicting the disposable loading unit fully-inserted into the shaft, and further depicting the latch in the latched position;



FIG. 63 is a schematic of a torque-voltage curve according to various embodiments of the present disclosure;



FIG. 64(a) is a schematic of high duty cycle pulses delivered by a pulse width modulation circuit according to various embodiments of the present disclosure;



FIG. 64(b) is a schematic of low duty cycle pulses delivered by a pulse width modulation circuit according to various embodiments of the present disclosure;



FIG. 65(a) is a schematic of a firing element driven by the high duty cycle pulses of the pulse width modulation circuit of FIG. 64(a);



FIG. 65(b) is a schematic of a firing element driven by the low duty cycle pulses of the pulse width modulation circuit of FIG. 64(b);



FIGS. 66(a)-66(c) are schematics of pulse width modulation circuits having a primary set of coils and a secondary set of coils according to various embodiments of the present disclosure;



FIG. 67 is a graph depicting speed and torque throughout a firing stroke according to various embodiments of the present disclosure;



FIG. 68 is a graph depicting a speed limiting trial segment during a firing stroke according to various embodiments of the present disclosure;



FIGS. 69 and 70 are schematics of a simplified stepper motor according to various embodiments of the present disclosure;



FIGS. 71-73 are schematics of a hybrid stepper motor according to various embodiments of the present disclosure;



FIGS. 74(a)-74(c) are schematics of the hybrid stepper motor of FIGS. 71-73 illustrating the changing polarities;



FIG. 75 is a perspective view of a display that includes a touch screen for use with an endoscope according to various embodiments of the present disclosure;



FIG. 76 is an elevation view of a first layer of information for depiction on the display of FIG. 75, wherein the first layer of information includes video feedback of a disposable loading unit (DLU) attached to a surgical instrument as viewed by the endoscope;



FIG. 77 is an elevation view of a second layer of information for depiction on the display of FIG. 75, wherein the second layer of information includes a control panel for accepting input via the touch screen;



FIG. 78 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76;



FIG. 79 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76, wherein the second layer of information includes numerical data related to the progression of the knife and a visual representation of the progression of the knife when the knife is near the beginning of a firing stroke;



FIG. 80 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76, wherein the second layer of information includes numerical data related to the progression of the knife and a visual representation of the progression of the knife when the knife is near the distal end of the firing stroke;



FIG. 81 is an elevation view of the second layer of information FIG. 77 overlaying the first layer of information of FIG. 76, wherein the second layer of information includes a symbolic representation of the knife overlapping the detected position of the knife in the DLU depicted in the first layer of information;



FIG. 82 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76, wherein the second layer of information includes a graphical representation of the speed of the distally advancing knife during a firing stroke;



FIG. 83 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76, wherein the second layer of information includes a graphical representation of the clamping force exerted by the DLU jaws on the tissue along the length of the DLU jaws;



FIG. 84 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76, wherein the second layer of information includes numerical data related to the orientation of the DLU, and wherein the DLU depicted in the first layer of information is in an unarticulated orientation;



FIG. 85 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76, wherein the second layer of information includes numerical data related to the orientation of the DLU and a visual representation of the orientation of the DLU, and wherein the DLU depicted in the first layer of information is in an articulated orientation;



FIG. 86 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76 illustrating input from a user for adjusting the articulation of the DLU via the touch screen of FIG. 75;



FIG. 87 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76 illustrating a schematic for controlling the DLU and further illustrating input from a user for adjusting the articulation of the DLU by manipulating the schematic via the touch screen of FIG. 75;



FIG. 88 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76 illustrating the DLU in an articulated orientation in the first layer of information in response to the user input illustrated in FIGS. 86 and 87;



FIG. 89 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76 illustrating input from a user for controlling the closure of the moveable jaw via the touch screen of FIG. 75;



FIG. 90 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76 illustrating the moveable jaw of the DLU in a clamped orientation in the first layer of information in response to the user input depicted in FIG. 89;



FIG. 91 is an elevation view of a controller interface for the secondary layer of information of FIG. 77;



FIG. 92 is an elevation view of the second layer of information of FIG. 77 overlaying the first layer of information of FIG. 76, wherein the second layer of information includes the controller interface of FIG. 91 and a progression bar;



FIG. 93 is a schematic illustrating a communication system for a feedback controller and the endoscope, the surgical instrument, and the display of FIG. 75;



FIG. 94 is an exploded view of a surgical instrument system including a handle and an end effector including a plurality of indicators in accordance with at least one embodiment;



FIG. 95 is a partial elevational view of a handle of a surgical instrument system including a plurality of indicators in accordance with at least one embodiment;



FIG. 96 is a partial cross-sectional view of a handle of a surgical instrument system including a trigger lock in accordance with at least one embodiment illustrated with the trigger lock in an unlocked condition;



FIG. 97 is a partial cross-sectional view of the handle of FIG. 96 illustrating the trigger lock in a locked condition;



FIG. 98 is a cross-sectional view of the trigger lock of FIG. 96 illustrating the trigger lock in its unlocked condition;



FIG. 99 is a cross-sectional view of the trigger lock of FIG. 96 illustrating the trigger lock in its locked condition;



FIG. 99A is a flow chart outlining an operating program of a controller of a surgical instrument for assessing whether the surgical instrument has been exposed to a temperature which exceeds its threshold temperature and determining the manner in which to notify the user of the surgical instrument that the threshold temperature has been exceeded;



FIG. 100 is a cross-sectional view of a handle of a surgical instrument system including a trigger lock in a locked condition in accordance with at least one embodiment;



FIG. 101 is a cross-sectional detail view of the handle of FIG. 100 illustrating the trigger lock in its locked condition;



FIG. 102 is another cross-sectional detail view of the handle of FIG. 100 illustrating the trigger lock in an unlocked condition;



FIG. 103 is a perspective view of the trigger lock of FIG. 100 illustrated in its locked condition;



FIG. 104 is a partial cross-sectional perspective view of a handle of a surgical instrument including a trigger lock in a locked condition in accordance with at least one embodiment;



FIG. 105 is a partial cross-sectional perspective view of the handle of FIG. 104 illustrated in an unlocked condition;



FIG. 106 is a partial cross-sectional left side view of the handle of FIG. 104 illustrated in its locked condition;



FIG. 107 is a partial cross-sectional right side view of the handle of FIG. 104 illustrated in its locked condition;



FIG. 108 is a partial cross-sectional left side view of the handle of FIG. 104 illustrated in its unlocked condition;



FIG. 109 is a partial cross-sectional right side view of the handle of FIG. 104 illustrated in its unlocked condition;



FIG. 110 is a process flow diagram illustrating the steps that a controller of a surgical instrument can utilize to process a signal received from an end effector attached to the surgical instrument;



FIG. 110A is a schematic depicting an array of parameters which can be supplied from an end effector to a surgical instrument;



FIG. 111 is a process flow diagram illustrating the steps for using the end effector and surgical instrument of FIG. 110;



FIG. 112 is a schematic illustrating an interconnection between an end effector and a shaft of a surgical instrument in accordance with at least one embodiment;



FIG. 113 is a plan view of a printed circuit board of the interconnection of FIG. 112;



FIG. 114 is a partial perspective view of an end effector of a surgical instrument in accordance with at least one embodiment;



FIG. 115 is a partial perspective view of the end effector of FIG. 114 and a shaft of a surgical instrument;



FIG. 116 is a cross-sectional view of the end effector of FIG. 114 attached to the shaft of FIG. 115;



FIG. 117 is a cross-sectional view of an interconnection between an end effector and a shaft in accordance with at least one embodiment;



FIG. 118 is a cross-sectional view of an interconnection between an end effector and a shaft in accordance with at least one embodiment;



FIG. 119 is a cross-sectional view of an interconnection between an end effector and a shaft in accordance with at least one embodiment;



FIG. 120 is a detail view of the interconnection of FIG. 119;



FIG. 121 is a side view of an end effector comprising an anvil and an anvil position indicator in accordance with at least one embodiment illustrating the anvil in an open position;



FIG. 122 is a side view of the end effector of FIG. 121 illustrating the anvil in a partially-closed position;



FIG. 123 is another side view of the end effector of FIG. 121 illustrating the anvil in a partially-closed position;



FIG. 124 is another side view of the end effector of FIG. 121 illustrating the anvil in a partially-closed position;



FIG. 125 is a detail view of the anvil position indicator of FIG. 121 depicting the anvil in the position illustrated in FIG. 121;



FIG. 126 is a detail view of the anvil position indicator of FIG. 121 depicting the anvil in the position illustrated in FIG. 122;



FIG. 127 is a detail view of the anvil position indicator of FIG. 121 depicting the anvil in the position illustrated in FIG. 123;



FIG. 128 is a detail view of the anvil position indicator of FIG. 121 depicting the anvil in the position illustrated in FIG. 124;



FIG. 129 illustrates a cross-sectional side of view of a surgical instrument according to certain embodiments described herein;



FIG. 130 illustrates a power system for powering the surgical instrument of FIG. 129, wherein the power system is in communication with a control system of the surgical instrument of FIG. 129;



FIG. 131 illustrates a battery pack of the power system of FIG. 130 connected to a charger base;



FIG. 132 illustrates a power management circuit of the power system of FIG. 130;



FIG. 133 illustrates a schematic block diagram exemplifying operation parameters of the power system of FIG. 130;



FIG. 134 illustrates a perspective view of a power source of a surgical instrument according to various embodiments described herein;



FIG. 135 illustrates a perspective view of the power source of FIG. 134 disassembled according to various embodiments described herein;



FIG. 136 illustrates a circuit diagram of a circuit of the power source of FIG. 134 including an intact breakable portion according to various embodiments described herein;



FIG. 137 illustrates the circuit diagram of the circuit of FIG. 136 with the breakable portion broken according to various embodiments described herein;



FIG. 138 illustrates a block diagram of a system for protecting data stored in a memory from unauthorized access according to various embodiments described herein;



FIG. 139 illustrates a perspective view of a power source of a surgical instrument including a covered data access portal;



FIG. 140 illustrates the data access portal of FIG. 139 in an uncovered configuration;



FIG. 141 illustrates a perspective view of a power source of a surgical instrument including an internal data access portal;



FIG. 142 illustrates a block diagram of a system for protecting data stored in a memory from unauthorized access according to various embodiments described herein;



FIG. 143 illustrates a perspective view of a power source of a surgical instrument according to various embodiments described herein;



FIG. 144 illustrates a perspective view of the power source of FIG. 143 coupled to the surgical instrument;



FIG. 145 illustrates LEDs of the power source of FIG. 143 in different configurations according to various embodiments described herein;



FIG. 146 illustrates a side view of a surgical instrument including a housing in accordance with various embodiments described herein;



FIG. 147 illustrates a side view of the housing of FIG. 146 with an outer shell removed to expose detachable components secured to the housing by securing members;



FIG. 148 illustrates a side view of the housing in FIG. 147 with the detachable components removed from the housing;



FIG. 149 is a schematic depicting detectable indentations, notches, or impressions of a barcode defined in a surface of an end effector;



FIG. 150 is a schematic of an exemplary bar code usable with a bar code reader;



FIG. 151 is a partial side view of a shaft of an end effector including a bar code in accordance with at least one embodiment;



FIG. 152 is a partial elevational view of an end effector of a surgical instrument including a bar code in accordance with at least one embodiment;



FIG. 153 is a partial perspective view of a handle of a surgical instrument including a bar code reader in accordance with at least one embodiment;



FIG. 154 is a cross-sectional view of the bar code reader of FIG. 153 illustrated with an end effector positioned therein;



FIG. 155 is an exploded perspective view of an end effector and a shaft of a surgical instrument in accordance with at least one embodiment;



FIG. 156 is an exploded perspective view of an end effector and a shaft of a surgical instrument in accordance with at least one embodiment wherein the end effector comprises portions of a firing member releasably locked together;



FIG. 157 is a partial perspective view of the firing member portions of FIG. 156 locked together by a lock member;



FIG. 158 is a partial perspective view of the firing member portions and the lock member of FIG. 156 illustrated with a portion of the firing member removed to illustrate the lock member releasably locking the firing member portions together;



FIG. 159 is an exploded view of the firing member of FIG. 156 and a release actuator configured to move the lock member into an unlocked condition and unlock the firing member portions;



FIG. 160 is a partial exploded view of an interconnection between the release actuator of FIG. 159 and a corresponding shaft release actuator;



FIG. 161 is a cross-sectional view of the interconnection of FIG. 160;



FIG. 162 is an exploded perspective view of an assembly comprising a motor, a drive shaft, and a slip clutch configured to selectively transmit rotation between the motor and the drive shaft;



FIG. 163 is a cross-sectional view of the assembly of FIG. 162;



FIG. 164 is a perspective view of a biasing element of the slip clutch of FIG. 162;



FIG. 165 is a cross-sectional view of the assembly of FIG. 162 illustrating a clutch element of the slip clutch in a neutral position;



FIG. 166 is a cross-sectional view of the assembly of FIG. 162 illustrating the clutch element of FIG. 165 in a forward position;



FIG. 167 is a cross-sectional view of the assembly of FIG. 162 illustrating the clutch element of FIG. 165 in a reverse position;



FIG. 168 is a perspective view of a motor and a gear assembly according to various embodiments of the present disclosure;



FIG. 169 is a perspective view of a motor, a gear assembly, and an audio feedback generator according to various embodiments of the present disclosure;



FIG. 170 is an elevational view of a pick on a disk of the gear assembly of FIG. 169, depicting the disk rotating in a clockwise direction and the pick engaging a clicker of the audio feedback generator of FIG. 169 according to various embodiments of the present disclosure;



FIG. 171 is an elevational view of a pick on a disk of the gear assembly of FIG. 169, depicting the disk rotating in a counterclockwise direction and the pick engaging a clicker of the audio feedback generator of FIG. 169 according to various embodiments of the present disclosure;



FIG. 172 is a perspective view of a motor, a gear assembly having multiple disks, and an audio feedback generator according to various embodiments of the present disclosure;



FIG. 173 is a graphical depiction of feedback generated near the end of a firing stroke by the audio feedback generator of FIG. 172 according to various embodiments of the present disclosure;



FIGS. 174 and 175 are graphical depictions of feedback generated near the articulation limit of a loading unit by the audio feedback generator of FIG. 172 according to various embodiments of the present disclosure;



FIG. 176 is a schematic depicting an algorithm for operating a surgical instrument;



FIG. 177 is another schematic depicting an algorithm for operating a surgical instrument;



FIG. 178 is a schematic depicting an algorithm for operating a surgical instrument;



FIG. 179 is a circuit configured to indicate the voltage of a battery;



FIG. 180 is a flasher schematic configured to indicate that a battery is charged;



FIG. 181 is a schematic of a diagnostic check for use with a surgical instrument in accordance with at least one embodiment;



FIG. 182 is a schematic illustrating the discharge of a battery and a power cutoff once the charge of the battery is below a minimum charge level;



FIG. 183 is a table of information that can be maintained which records the operation and/or performance of a battery;



FIG. 184 is a schematic of a battery diagnostic circuit;



FIG. 185 is a perspective view of a sealed motor and gear assembly for use with a surgical instrument according to various embodiments of the present disclosure; and



FIG. 186 is an exploded, elevational, cross-sectional view of the sealed motor and gear assembly of FIG. 185 according to various embodiments of the present disclosure.





DETAILED DESCRIPTION

Applicant of the present application also owns the following patent applications that were filed on Aug. 23, 2013 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 13/974,166, entitled FIRING MEMBER RETRACTION DEVICES FOR POWERED SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,700,310.


U.S. patent application Ser. No. 13/974,215, entitled SECONDARY BATTERY ARRANGEMENTS FOR POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0053748.


U.S. patent application Ser. No. 13/974,202, entitled ERROR DETECTION ARRANGEMENTS FOR SURGICAL INSTRUMENT ASSEMBLIES, now U.S. Patent Application Publication No. 2015/0053743.


U.S. patent application Ser. No. 13/974,205, entitled ATTACHMENT PORTIONS FOR SURGICAL INSTRUMENT ASSEMBLIES, now U.S. Pat. No. 9,808,249.


U.S. patent application Ser. No. 13/974,169, entitled CLOSURE INDICATOR SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,445,813.


U.S. patent application Ser. No. 13/974,206, entitled TORQUE OPTIMIZATION FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0053746.


U.S. patent application Ser. No. 13/974,227, entitled SHROUD RETENTION ARRANGEMENT FOR STERILIZABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,987,006.


U.S. patent application Ser. No. 13/974,174, entitled CONDUCTOR ARRANGEMENTS FOR ELECTRICALLY POWERED SURGICAL INSTRUMENTS WITH ROTATABLE END EFFECTORS, now U.S. Pat. No. 9,510,828.


U.S. patent application Ser. No. 13/974,177, entitled END EFFECTOR DETECTION SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0053737.


U.S. patent application Ser. No. 13/974,182, entitled FIRING TRIGGER LOCKOUT ARRANGEMENTS FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,624,634.


Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.


The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.


The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” referring to the portion closest to the clinician and the term “distal” referring to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.


Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the person of ordinary skill in the art will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, those of ordinary skill in the art will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongated shaft of a surgical instrument can be advanced.



FIG. 1 illustrates a powered surgical instrument 10 that, in many ways, may be similar to those surgical instruments (including various features, components and subcomponents thereof) disclosed in, for example, Zemlok '763 and/or Zemlok '344, which have each been incorporated by reference herein in their respective entireties. The surgical instrument 10 depicted in FIG. 1 includes a housing 12 that has a handle portion 14 for facilitating manual manipulation and operation of the instrument. Thus, the term “housing” as used herein may encompass a handheld or otherwise hand-manipulatable arrangement. However, the term “housing” may also encompass portions of an automated surgical instrument system such as a robotically-controlled system that is not intended to be handheld but is otherwise manipulated and actuatable by various components, portions, and/or actuators of the system.


An elongated shaft assembly 16 in the form of an endoscopic portion protrudes from the housing 12 and is configured for operable attachment to a surgical end effector that is constructed to perform at least one surgical procedure in response to applications of firing motions thereto. Such surgical end effectors may comprise, for example, endocutters, graspers or other devices that may include a pair of jaws wherein one jaw is selectively movable relative to the other jaw or in some configurations, both jaws are movable relative to each other. By way of further example, the surgical end effector may comprise a device configured to cut and staple tissue such as a “loading unit” 20 as shown in FIGS. 2 and 3. Surgical end effectors, such as loading unit 20, for example, can be releasably attached to the elongated shaft assembly 16 of the powered surgical instrument 10, as described in greater detail herein.



FIGS. 2 and 3 illustrate one exemplary form of a loading unit 20 that may be employed with the surgical instrument 10. Such loading unit 20 may be similar to those loading units disclosed in the aforementioned U.S. Patent Application Publications, which have been each herein incorporated by reference in their entireties as well as those loading units disclosed in, for example, U.S. Patent Application Publication No. US 2012-0298719, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, the disclosure of which is hereby incorporated by reference in its entirety herein.


As can be seen in FIG. 2, the loading unit 20 includes an anvil assembly 22 that is supported for pivotal travel relative to a carrier 24 that operably supports a staple cartridge 26 therein. A mounting assembly 28 is pivotally coupled to the cartridge carrier 24 to form an articulation joint 27 that enables the carrier 24 to pivot about an articulation axis “AA-AA” that is transverse to a longitudinal tool axis “LA-LA”. Referring to FIG. 3, mounting assembly 28 may include, for example, upper and lower mounting portions 30 and 32. Each mounting portion 30, 32 may include a threaded bore 34 on each side thereof that is dimensioned to receive threaded bolts (not shown) for securing the proximal end of carrier 24 thereto. A pair of centrally located pivot members 36 may extend between upper and lower mounting portions via a pair of coupling members 38 which engage a distal end of a housing portion 40. Coupling members 38 may each include an interlocking proximal portion 39 that is configured to be received in grooves 42 that are formed in the proximal end of housing portion 40 to retain mounting assembly 30 and housing portion 40 in a longitudinally fixed position.


As can be further seen in FIG. 3, housing portion 40 of loading unit 20 may include an upper housing half 44 and a lower housing half 46 that are each configured to be received within an outer casing 50. The proximal end of housing half 44 may include engagement nubs 48 for releasably engaging a distal end of an elongated shaft assembly 16. The nubs 48 may form a “bayonet-type” coupling with the distal end of the elongated shaft assembly 16, for example. Various coupling arrangements are described in greater detail herein. Housing halves 44, 46 may define a channel 47 for slidably receiving an axially-movable drive beam 60. A second articulation link 70 may be dimensioned to be slidably positioned within a slot 72 formed between housing halves 44, 46. A pair of “blowout” plates 74 may be positioned adjacent the distal end of housing portion 40 adjacent the distal end of axial drive beam 60 to prevent outward bulging of the drive beam 60 during articulation of carrier 24.


The drive beam 60 may include a distal working head 62 and a proximal engagement section 64. Drive beam 60 may be constructed from a single sheet of material or, preferably, from multiple stacked sheets. Engagement section 64 may include a pair of engagement fingers which are dimensioned and configured to mountingly engage a pair of corresponding retention slots formed in drive member 66. Drive member 66 may include a proximal porthole 67 that is configured to receive a distal end of a firing rod when the proximal end of loading unit 20 is engaged with elongated shaft assembly of the surgical instrument 10. The distal working head 62 may have a tissue cutting portion 63 formed thereon. The distal working head 62 may further include a pair of pins 65 that are configured to engage the anvil assembly 22 to pivot it to a closed position to clamp tissue between the anvil 22 and the staple cartridge 26 as the distal working head 62 is distally driven through the staple cartridge 26. A tissue cutting portion 63 on the distal working head 62 serves to cut through the clamped tissue as the surgical staples (not shown) that are supported in the staple cartridge 26 are driven into forming contact with the anvil 22 in a known manner. For example, the distal working head 62 is configured to axially engage and advance a sled (not shown) that is movably supported in the staple cartridge 26. As the sled is driven in the distal direction by the drive member 66, the sled contacts pushers (not shown) that are associated with the staples and causes the pushers to drive the staples out of the cartridge 26 into forming engagement with anvil 22 on the loading unit 20.


As can be seen in FIG. 1, the surgical instrument 10 includes a motor 100 that is configured to generate rotary actuation motions that may be employed, for example, to apply firing motions to the loading unit 20 as will be discussed in further detail below. In at least one form, for example, the motor 100 is configured to apply rotary actuation motions to a firing member assembly, generally designated as 82. In one arrangement, for example, the firing member assembly 82 includes a drive tube 102 that is rotatably supported within the housing 12 and has an internal thread (not shown) formed therein. A proximal threaded portion of a firing rod 104 is supported in threaded engagement with the drive tube 102 such that rotation of the drive tube 102 results in the axial movement of the firing rod 104. The firing rod 104 may threadably interface with the interior of the drive beam 60 in the loading unit 20. As discussed in further detail in the aforementioned incorporated Zemlok '763 and Zemlok '344, rotation of drive tube 102 in a first direction (e.g., counter-clockwise) causes the firing rod 104 to advance the drive member 60 in the distal direction. Initial advancement of the drive member 60 in the distal direction within the loading unit 20 causes the anvil 22 to pivot toward the staple cartridge 26. The anvil 22 is actuated by pins 65 on the drive member 60 which serve to cam the anvil 22 to a closed position as the drive member 60 is initially driven in the distal direction “DD”. Additional distal translation of firing rod 104 and ultimately of the drive member 60 through the loading unit 20 causes the staples to be driven into forming contact with the staple forming undersurface on the anvil 22.


As can be further seen in FIG. 1, the surgical instrument 10 may include an articulation system generally designated as 109. However, surgical instrument 10 may include various other articulation system arrangements disclosed in detail herein. In at least one form, the articulation system 109 may include an articulation mechanism 110 that includes an articulation motor 112 and a manual articulation knob 114. The articulation motor 112 may be actuated by a powered articulation switch 116 or by pivoting the manual articulation knob 114. Actuation of the articulation motor 112 serves to rotate an articulation gear 118 of the articulation mechanism 110. Actuation of articulation mechanism 110 may cause the end effector (e.g., the cartridge/anvil portion of the loading unit 20) to move from its first position, wherein its axis is substantially aligned with longitudinal tool axis “LA-LA” of the elongated shaft assembly 16 to a position in which the axis of the end effector is disposed at an angle relative to the longitudinal tool axis “LA-LA” of the elongated shaft assembly about, for example, articulation axis “AA-AA”. Further discussion regarding various aspects of the articulation mechanism 110 may be found in Zemlok '763 which was previously incorporated by reference herein in its entirety. In addition, U.S. Pat. No. 7,431,188 entitled SURGICAL STAPLING APPARATUS WITH POWERED ARTICULATION, the entire disclosure of which is hereby incorporated by reference herein, discloses motor-powered articulatable end effectors which may be employed in connection with surgical instrument 10.


In various embodiments, the surgical instrument can include at least one motor, which can apply firing motions to the loading unit 20 and/or articulation motions to the articulation system 109, as described elsewhere in greater detail. The motor 100 may, for example, be powered by a power source 200 of the type described in further detail in Zemlok '763. For example, the power source 200 may comprise a rechargeable battery (e.g., lead-based, nickel-based, lithium-ion based, etc.). It is also envisioned that the power source 200 may include at least one disposable battery. The disposable battery may, for example, be between about 9 volts and about 30 volts. However, other power sources may be employed. FIG. 1 illustrates one example wherein the power source 200 includes a plurality of battery cells 202. The number of battery cells 202 employed may depend upon the current load requirements of the instrument 10.


In certain embodiments, the surgical instrument 10 can include a secondary power source for powering the at least one motor of the surgical instrument 10. For example, referring now to FIG. 129, the surgical instrument 10 may include a power system 2000 which can be configured to provide energy for operation of the surgical instrument 10. The power system 2000, as illustrated in FIG. 129, can be placed, for example, in the handle portion 14 of the housing 12 and may include a primary power source 2002 and a secondary or backup power source 2004. The primary power source 2002 can be configured to provide energy for operation of the surgical instrument 10 during normal operation and the secondary power source 2004 can be configured to provide energy for operation of the surgical instrument 10, at least in a limited capacity, when the primary power source 2002 is not available to provide energy for the operation of the surgical instrument 10, for example, when the primary power source 2002 is depleted, and/or when disconnected from the surgical instrument 10. For example, the secondary power source 2002 can be configured to provide energy to restore the surgical instrument 10 to a default status in the event the primary power source 2002 is depleted and/or disconnected from the surgical instrument 10 during a surgical procedure.


Referring to FIG. 1, as described elsewhere in greater detail, a power source such as, for example, the power source 200 can supply power for operation of the surgical instrument 10. For example, the power source 200 can supply power for a motor such as, for example, motor 100 to cause rotation of the drive tube 102 in a first direction and ultimately the axial advancement of the firing rod 104 which drives the drive beam 60 distally through the loading unit 20. Alternatively, the power source 200 can supply power for the motor 100 to cause rotation of the drive tube 102 in a second direction opposite the first direction and ultimately the axial retraction of the firing rod 104 which can move the drive beam 60 proximally to its starting and/or default position. Similarly, the primary power source 2002 can be configured to supply power for the motor 100 to advance and/or retract the firing rod 104 during normal operation of the surgical instrument 10. In addition, the secondary power source 2004 can be configured to supply power needed to retract the firing rod 104 to the default position in the event the primary power source 2002 becomes unavailable to provide the needed power such as, for example, when the primary power source 2002 is depleted and/or disconnected from the surgical instrument 10.


Further to the above, as described elsewhere in greater detail, the surgical instrument 10 can be configured to record and store a variety of information about the operation of the surgical instrument 10 during a surgical procedure such as, for example, an articulation angle of end effector 20 (See FIG. 2), an actuation status of the end effector 20, sensor readings, number of firings, tissue thickness, and/or position of the firing rod 104. In certain examples, such information can be recorded and stored in a volatile or temporary memory such as, for example, a random access memory (RAM) unit which may require power to maintain the stored information. During normal operation of the surgical instrument 10, the primary power source 2002, similar to other power sources described elsewhere in greater detail, may supply the power needed to maintain the stored information within the volatile or temporary memory units of the surgical instrument 10. In addition, the secondary power source 2004 can supply the power needed to temporarily maintain the stored information in the event the primary power source 2002 becomes unavailable to supply the needed power such as, for example, when the primary power source 2002 is depleted and/or disconnected from the surgical instrument 10.


In certain aspects, the surgical instrument 10 may include a control system 2005 of the type and construction disclosed in Zemlok '763, which has been herein incorporated by reference in its entirety. Further details regarding the construction and operation of such control system 2005 may be obtained from that publication. For example, the control system 2005 may be configured to generate or provide information, such as a warning or instrument state, to a user via a user interface, such as a visual or audio display. Signals or inputs generated by the control system 2005 may be, for example, in response to other signals or inputs provided by the user, instrument components, or may be a function of one or more measurements associated with the instrument 10. During normal operation of the surgical instrument 10, as described elsewhere in greater detail, a power source such as, for example, the primary power source 2002 (See FIG. 129) can supply power needed to permit the control system 2005 to perform its functions including interactions with a user through the user interface. In addition, the secondary power source 2004 can supply, in at least a limited capacity, the power needed to temporarily interact with a user through the user interface in the event the primary power source 2002 becomes unavailable to supply the needed power such as, for example, when the primary power source 2002 is depleted and/or disconnected from the surgical instrument 10.


Referring now to FIG. 130, the power system 2000 may comprise power management circuit 2006 which may be connected to the primary power source 2002 and the secondary power source 2004. The power management circuit 2006 may include or may be selectively associated with a semiconductor, computer chip, or memory. The power management circuit 2006 may be configured to send or receive analog or digital inputs or signals to or from various components of the surgical instrument 10 including but not limited to the control system 2005, the primary power source 2002, and/or the secondary power source 2004. In various aspects, the power management circuit 2006 may use software that may employ one or more algorithms to further formulate input signals to control and monitor various components of the surgical instrument 10 including the primary power source 2002 and/or the secondary power source 2004. Such formulated input signals may be a function of criteria measured and/or calculated by the power management circuit 2006 or, in some instances, provided to the power management circuit 2006 by another instrument component, a user, or a separate system in operative communication with the power management circuit 2006.


Referring again to FIG. 129, the primary power source 2002 may comprise one or more battery cells depending on the current load needs of the instrument 10. In various aspects, as illustrated in FIG. 129, the primary power source 2002 may include a battery pack 2008 which may include a plurality of battery cells 2010 which may be connected in series with each other, for example. The battery pack 2008 can be replaceable. In other words, the battery pack 2008 can be disconnected and removed from the surgical instrument 10 and replaced with another similar battery pack. In certain aspects, the primary power source 2002 may comprise a rechargeable battery (e.g., lead-based, nickel-based, lithium-ion based, etc.). The battery cells 2008 may be, for example, 3-volt lithium battery cells, such as CR 123A battery cells, although, for example, in other embodiments, different types of battery cells could be used such as battery cells with different voltage levels and/or different chemistries, for example. A user may disconnect and remove a depleted or used battery pack 2008 from the surgical instrument 10 and connect a charged battery pack 2008 to power the surgical instrument 10. The depleted battery pack 2008 can then be charged and reused. It is also envisioned that the primary power source 2002 may include at least one disposable battery. In various aspects, the disposable battery may be between about 9 volts and about 30 volts, for example. A user may disconnect and remove a depleted disposable battery pack 2008 and connect a new disposable battery pack 2008 to power the surgical instrument 10.


As described above, the battery pack 2008 may include rechargeable battery cells and can be removably placed within the handle portion 14 of the housing 12, for example. In such circumstances, the battery pack 2008 can be charged using a charger base. For example, as illustrated in FIG. 131, charger base 2012 can be connected to battery pack 2008 by removing the battery pack 2008 from its location in the handle portion 14 and connecting it to the charger base 2012. As shown in FIG. 131, the charger base 2012 may comprise a power source 2014 for charging the battery pack 2008. The power source 2014 of the charger base 2012 may be, for example, a battery (or a number of series-connected batteries), or an AC/DC converter that converters AC power, such as from electrical power mains, to DC, or any other suitable power source for charging the battery pack 2008. The charger base 2012 may also comprise indicator devices, such as LEDs, a LCD display, etc., to show the charge status of the battery pack 2008.


In addition, as shown in FIG. 131, the charger base 2012 may comprise one or more processors 2016, one or more memory units 2018, and i/o interfaces 2020, 2022, for example. Through the first i/o interface 2020, the charger base 2012 may communicate with the power pack 2008 (via a power pack's i/o interface) to allow, for example, data stored in a memory of the power pack 2008 to be downloaded to the memory 2020 of the charger base 2012. In various circumstances, the downloaded data can then be downloaded to another computer device via the second i/o interface 2022 for evaluation and analysis, such as by the hospital system in which the operation involving the instrument 10 is performed, by the office of the surgeon, by the distributor of the instrument, by the manufacturer of the instrument, etc.


The charger base 2012 may also comprise a charge meter 2024 for measuring the charge across the battery cells of the battery pack 2008. The charge meter 2024 may be in communication with the processor 2016, so that the processor 2016 can determine in real-time the suitability of the battery pack 2008 for use to ensure that the battery would perform as expected.


Referring again to FIG. 129, the secondary power source 2004 may comprise one or more battery cells 2026 which can be disposed, for example, within the handle portion 14. The battery cell 2026 can be rechargeable (e.g., lead-based, nickel-based, lithium-ion based, etc.). For example, the battery cell 2026 may be a 3-volt lithium battery cell, such as CR 123A battery cell. In addition, the battery cell 2026 can be configured to be recharged without being removed from the instrument 10. For example, the primary power source 2002 can be utilized to charge the battery cell 2026 when the primary power source 2002 is connected to the instrument 10.


Referring to FIG. 132, an exemplary embodiment of the power management circuit 2006 is illustrated. Among other things, the power management circuit 2006 can be configured to monitor electrical parameters associated with the operation of the primary power source 2002 and/or the secondary power source 2004. For example, the power management circuit 2006 can be configured to monitor power levels in the primary power source 2002 and/or the secondary power source 2004. The power management circuit 2006, as shown in FIG. 132, may comprise a charge meter 2028 which may be configured to measure the charge across the primary power source 2002 and/or the secondary power source 2004. The power management circuit 2006 also may comprise a non-volatile memory 2030, such as flash or ROM memory, for example, and one or more processors 2032. The processor 2032 may be connected to and may control the memory 2030. In addition, the processor 2032 may be connected to the charge meter 2028 to read the readings of and otherwise control the charge meter 2028. Additionally, the processor 2032 may control output devices of the power management circuit 2006 such as, for example, LEDs.


The reader will appreciate that charge meters 2024 and/or 2028 may be configured to measure voltage, charge, resistance and/or current. In certain examples, the charge meters 2024 and/or 2028 may comprise a battery capacity measurement circuit which may be configured to measure state of voltage under a predetermined load.


Further to the above, the processor 2032 can store information about the primary power source 2002 and/or the secondary power source 2004 in the memory 2030. The information may include among other things total charge available, number of uses, and/or performance. Additionally, the information stored in the memory 2030 may comprise ID values for the primary power source 2002 that the power management circuit 2006 may read and store. Such IDs may be, for example, RFIDs that the power management circuit 2006 read via a RFID transponder 2034. The RFID transponder 2034 may read RFIDs from the power sources that include RFID tags. The ID values may be read, stored in the memory 2030, and compared by the processor 2032 to a list of acceptable ID values stored in the memory 2030 or another suitable location associated with the power management circuit 2006, to determine, for example, if the removable/replaceable primary power source 2002 associated with the read ID value is authentic and/or proper. In such circumstances, if the processor 2032 determines that the removable/replaceable component associated with the read ID value is not authentic, the power management circuit 2006 may be configured to prevent use of the instrument 10, such as by opening a switch (not shown) that would prevent power from being delivered to the instrument 10. Various parameters that the processor 2032 may evaluate to determine whether the component is authentic and/or proper include date code, component model/type, manufacturer, regional information, and/or previous error codes, for example.


Further to the above, the power management circuit 2006 may also comprise an i/o interface 2036 for communicating with another device, for example a computer, to permit the data stored in the memory 2030 to be downloaded to the other device for evaluation and analysis, such as by the hospital system in which the operation involving the instrument 10 is performed, by the office of the surgeon, by the distributor of the instrument, and/or by the manufacturer of the instrument, for example. The i/o interface 2036 may be, for example, a wired or wireless interface.


Referring to the block diagram illustrated in FIG. 133, the power management circuit 2006 may selectively transmit power to the surgical instrument 10 from the primary power source 2002 and the secondary power source 2004. For example, the processor 2032 may be programmed to permit power to be transmitted to the instrument 10 from the primary power source 2002 when the primary power source 2002 is available to power the instrument 10 and from the secondary power source 2004 when the primary power source 2002 is not available to power the instrument 10.


During normal operation of the instrument 10, the processor 2032 upon detection and authentication of the primary battery source 2002, as described above, may permit the primary power source 2002 to power the instrument 10. The primary power source 2002 may continue to power the instrument 10 until the primary power source 2002 reaches or falls below a predetermined minimum charge level such as, for example, when the primary power source 2002 is disconnected and/or depleted. The power management circuit 2006 could be employed to determine when the primary power source 2002 reaches or falls below the predetermined minimum charge level. For example, the processor 2032 can be configured to employ the charge meter 2028 or another similar charge meter to monitor the charge level of the primary power source 2002 and detect when the charge level reaches or falls below a predetermined minimum level that can be stored in the memory 2030 of the power management circuit 2006. At such point, the processor 2032 may alert the user to replace the primary power source 2002. The power management circuit 2006 may include an indicator, such as one or more LEDs, an LCD display, for example, that is activated to alert a user of the instrument 10 replace the primary power source 2002. Furthermore, the processor 2032 may be configured to switch the powering of the instrument 10 from the primary power source 2002 to the secondary power source 2004 upon detecting that the charge level of the primary power source 2002 has reached or fallen below the predetermined minimum level. The reader will appreciate that additional indicators can be utilized to provide a user with additional feedback. For example, an indicator can be utilized to alert the user that instrument 10 is switching from the primary power source 2002 to the secondary power source 2004, and vice versa.


Further to the above, the processor 2032 may be programmed to permit the primary power source 2002 to charge the secondary power source 2004 when the primary power source 2002 is connected to the surgical instrument 10. In certain examples, the secondary power source 2004 may remain idle once fully charged by the primary power source 2002 to a predetermined maximum power level for as long as the primary power source 2002 remains available to power the instrument 10. In addition, the power management circuit 2006 could be employed to determine when the secondary power source 2004 is sufficiently charged. For example, the processor 2032 can be configured to employ the charge meter 2028 to monitor the charge level of the secondary power source 2004 until the charge level reaches a predetermined maximum level that can be stored in the memory 2030 of the power management circuit 2006 at which point the processor 2032 may stop the primary power source 2002 from charging the secondary power source 2004. The power management circuit 2006 may include an indicator, such as one or more LEDs, an LCD display, etc., that can be activated to alert a user of the instrument 10 when the secondary power source 2004 is sufficiently charged.


Referring again to FIG. 129, the primary power source 2002 can be housed within a chamber 2038 of the handle portion 14 of the instrument 10. To replace the primary power source 2002, an outer shell of the handle portion 14 can be removed to expose the chamber 2038. In certain examples, a trigger or a switch can be associated with the outer shell of the handle portion 14 such that attempting to remove the outer shell of the handle portion 14 may be understood by the processor 2032 as a triggering event to switch from the primary power source 2002 to the secondary power source 2004.


Upon replacing the primary power source 2002 of the surgical instrument 10 with a new primary power source 2002, the power management circuit 2006 may check the authenticity of new primary power source 2002, as described above, and upon confirming such authenticity, the power management circuit 2006 may permit the new primary power source 2002 to transmit power to the instrument 10. In addition, the primary power source 2002 may charge the secondary power source 2004, as described above.


Surgical end effectors, such as loading unit 20 (FIGS. 2 and 3), for example, can be operably coupled to the elongated shaft assembly 16 of the powered surgical instrument 10 (FIG. 1). For example, referring now to FIGS. 38-58, a surgical end effector, such as disposable loading unit (DLU) 5502, for example, can be releasably attached to a surgical instrument, such as powered surgical instrument 10 (FIG. 1), for example. In various embodiments, the surgical instrument can include a shaft 5520, which can engage the DLU 5502, for example. In various embodiments, a collar, such as rotatable collar 5580, for example, can releasably lock the DLU 5502 relative to the shaft 5520. Furthermore, in various embodiments, rotation of the collar 5580 can facilitate attachment and/or alignment of a firing assembly and/or an articulation assembly, as described herein.


In various embodiments, the DLU 5502 can include a distal attachment portion 5504 and the shaft 5520 can include an outer tube 5554 and a proximal attachment portion 5522. The distal attachment portion 5504 of the DLU 5502 can receive the proximal attachment portion 5522 of the shaft 5520 when the DLU 5502 is secured to the shaft 5520 (FIG. 39). Furthermore, the rotatable collar 5580 can be positioned around the proximal attachment portion 5522 of the shaft 5520, such that the distal attachment portion 5504 of the DLU 5502 can also be positioned within the rotatable collar 5580. The rotatable collar 5580 can be secured to the shaft 5502 and/or the proximal attachment portion 5504, and, in certain embodiments, can be rotatably fixed to the proximal attachment portion 5504 of the shaft 5502, for example. In certain embodiments, a proximal attachment portion of the shaft 5520 can receive a distal attachment portion of the DLU 5502 when the DLU 5502 is secured to the shaft 5520. Furthermore, in certain embodiments, a collar 5580 can be rotatably fixed to the DLU 5502.


Referring still to FIGS. 38-58, as the DLU 5502 moves between a non-attached position and an attached position relative to the shaft 5520 of the surgical instrument, the DLU 5502 can translate along a longitudinal axis defined by the shaft 5520. The distal attachment portion 5504 of the DLU 5502 can be inserted into the proximal attachment portion 5522 of the shaft 5520 as the DLU 5502 moves from the non-attached position to the attached position. For example, the DLU 5502 can translate in direction A (FIG. 39) when the DLU 5502 is moved between the non-attached position and the attached position. In certain embodiments, a groove-and-slot engagement between the distal attachment portion 5504 and the proximal attachment portion 5522 can guide the DLU 5502 along the longitudinal axis defined by the shaft 5520. Referring primarily to FIG. 42, the distal attachment portion 5504 can include a guide rail 5514. Furthermore, referring primarily to FIG. 44, the proximal attachment portion 5522 can include a guide slot 5534. The guide slot 5534 can be dimensioned and structured to receive and guide the guide rail 5514 as the proximal attachment portion 5504 of the DLU 5502 is inserted into the distal attachment portion 5522 of the shaft 5520. For example, the guide slot 5534 can comprise a longitudinal slot, and the guide rail 5514 can comprise a longitudinal ridge, for example. In certain embodiments, the guide slot 5534 and guide rail 5514 can prevent twisting and/or rotating of the DLU 5502 relative to the longitudinal axis defined by the shaft 5520.


Referring primarily to FIG. 38, the distal attachment portion 5504 can include a first alignment indicia 5510, such as a first arrow, for example, and the shaft 5520 and/or the collar 5580 can include a second alignment indicia 5590, such as a second arrow, for example. Alignment of the first and second alignment indicia 5510, 5590 can align the guide rail 5514 and the guide slot 5534, which can facilitate attachment of the distal attachment portion 5504 to the proximal attachment portion 5522. As described herein, translation of the DLU 5502 along a longitudinal path toward the shaft 5520 can releasably lock the DLU 5502 relative to the shaft 5520. In such embodiments, rotation of the DLU 5502 relative to the shaft 5520 may not be required to attach the DLU 5502 relative to the shaft 5520. In fact, rotation the DLU 5502 relative to the shaft 5520 can be restrained and/or prevented by a groove-and-slot engagement between the proximal attachment portion 5522 and the distal attachment portion 5504, as described herein. In various embodiments, the collar 5580 can rotate relative to the DLU 5502 and/or the shaft 5520 to releasably lock the DLU 5502 to the shaft 5520. For example, as described herein, the collar 5580 can rotate from an initial orientation (FIG. 53) toward a secondary orientation (FIG. 54) and then return toward the initial orientation (FIG. 57) to lock the DLU 5502 to the shaft 5520.


Referring primarily to FIGS. 42 and 43, the proximal portion 5504 of the DLU 5502 can include a rotation key or rib 5506. As the DLU 5502 is moved in direction A (FIG. 39) between a non-attached position (FIG. 38) and an attached position (FIG. 39), the rotation key 5506 can affect rotation of the collar 5580. For example, the rotation key 5506 can rotate and/or bias the collar 5580 in direction B (FIG. 39) from the initial orientation to the secondary orientation. The distal attachment portion 5504 can be inserted into the proximal attachment portion 5522 when the collar 5580 is biased into the secondary orientation. Furthermore, when the distal attachment portion 5504 is fully inserted into the proximal attachment portion 5522, the rotation key 5506 can permit the collar 5580 to rotate in direction C (FIG. 39) from the secondary orientation toward the initial orientation. Direction C can be opposite to direction B, for example. As described herein, when the collar 5580 returns to the initial orientation, the collar 5580 can lock the distal attachment portion 5504 relative to the proximal attachment portion 5522. Referring still to FIGS. 42 and 43, the rotation key 5506 can include a rotation ramp 5508 at the proximal end thereof. The rotation ramp 5508 can engage an element of the shaft 5520 to effect rotation of the rotation collar 5580, for example.


In various embodiments, the rotation ramp 5508 can affect rotation of a firing shaft 5540 positioned within the shaft 5520. For example, referring primarily to FIGS. 47-50, the firing shaft 5540 can include a firing shaft rotator 5544 which can extend radially outward from the firing shaft 5540. The rotation ramp 5508 of the rotation key 5506 can engage the firing shaft rotator 5544 when the DLU 5502 is inserted into the shaft 5520. In various embodiments, the rotation ramp 5508 can rotate the firing shaft rotator 5544, which can rotate the firing shaft 5540. For example, the firing shaft 5540 and the firing shaft rotator 5544 can rotate in direction B (FIG. 54) between a first orientation (FIG. 53) and a second orientation (FIG. 54). Referring still to FIGS. 47-50, the firing shaft 5540 can be engaged with the rotatable collar 5580. For example, the rotatable collar 5580 can include a rotator groove 5584, which can be structured and dimensioned to receive and/or hold the firing shaft rotator 5544. The firing shaft rotator 5544 can be held by the rotator groove 5584, such that the rotation of the firing shaft rotator 5544 rotates the rotatable collar 5580. In such embodiments, insertion of the DLU 5502 into the shaft 5520, can affect rotation of the rotatable collar 5580 in direction B (FIG. 54) via rotation of the firing shaft rotator 5544 in direction B, for example.


Referring primarily to FIGS. 44 and 45, the proximal attachment portion 5522 can include a rotation key slot 5524, which can receive the rotation key 5506 when the distal attachment portion 5504 is inserted into the proximal attachment portion 5522. In various embodiments, the rotation key slot 5524 can include a clearance notch 5526 for receiving the firing shaft rotator 5544. For example, the rotation ramp 5508 at the proximal end of the rotation key 5506 can rotate the firing shaft rotator 5544 to the second orientation and into the clearance notch 5526 (FIG. 54). The rotation key 5506 can continue to move along the rotation key slot 5524 as the DLU 5502 is inserted into the shaft 5520. Furthermore, when the distal end 5509 of the rotation key 5506 moves past the firing shaft rotator 5544, the firing shaft rotator 5544 can rotate back toward the first orientation (FIG. 58), which can corresponding rotate the rotatable collar 5580 back toward the initial orientation thereof.


In various embodiments, the rotatable collar 5580 can be biased into the initial orientation relative to the shaft 5520 and/or the proximal attachment portion 5522. For example, a spring 5592 can bias the lock collar 5580 into the initial orientation. The spring 5592 can include a proximal end 5594 that can be secured relative to the shaft 5520, and a distal end 5596 that can be secured relative to the collar 5580. For example, the proximal end 5594 of the spring 5592 can be retained in a proximal spring slot 5538 (FIG. 51) of the shaft 5520, and the distal end 5596 of the spring 5592 can be retained in a distal spring slot 5588 (FIG. 46) of the rotatable collar 5580, for example. In such embodiments, rotation of the collar 5580 can displace the distal end 5596 of the spring 5592 relative to the proximal end 5594 of the spring 5592, which can generate a torsional force. Accordingly, the collar 5580 can resist rotation from the initial orientation to the secondary orientation, and, when the collar is rotated to the secondary orientation, the spring 5592 can bias the collar 5580 back toward the initial orientation. Because the firing shaft rotator 5544 is engaged with the collar 5580, the spring 5592 can also bias the firing shaft 5540 toward the first orientation thereof.


In various embodiments, the rotatable collar 5580 can include a locking detent 5582 that releasably locks the DLU 5502 to the shaft 5520. Referring primarily to FIG. 46, the locking detent 5582 can extend radially inward from the inner perimeter of the rotatable collar 5580. In various embodiments, the locking detent 5582 can extend into a detent slot 5536 (FIG. 44) in the proximal attachment portion 5522. Referring primarily to FIG. 44, the detent slot 5536 can form a notch in the guide slot 5534. In various embodiments, the detent slot 5536 can extend from the guide slot 5534, and can be perpendicular or substantially perpendicular to the guide slot 5534, for example. Further, the locking detent 5582 can move along the detent slot 5536 when the rotatable collar 5580 rotates between the initial orientation and the secondary orientation relative to the shaft 5520.


In various embodiments, the locking detent 5582 can engage the distal attachment portion 5504 of the DLU 5502 to lock the DLU 5502 relative to the shaft 5520. For example, referring again to FIG. 42, the distal attachment portion 5504 can include the guide rail 5514, which can have a lock notch 5516 defined therein. The lock notch 5516 can be structured and dimensioned to receive the locking detent 5582 of the rotatable collar 5580 when the DLU 5502 is fully inserted into the proximal attachment portion 5522. For example, when the distal attachment portion 5504 is fully inserted into the proximal attachment portion 5522, the lock notch 5516 of the distal attachment portion 5504 can be aligned with the detent slot 5536 of the proximal attachment portion 5522. Accordingly, the locking detent 5582 can slide along the detent slot 5536 in the proximal attachment portion 5522 and into the lock notch 5516 in the distal attachment portion. Furthermore, the locking detent 5582 can be biased toward engagement with the lock notch 5516 by the torsion spring 5592. For example, after the firing shaft rotator 5544 clears the distal end 5509 of the rotation key 5506, the firing shaft 5540 can be biased back toward the first orientation and the rotatable collar 5580 can be biased back toward the initial orientation by the torsion spring 5592. Furthermore, when the collar 5580 is rotated from the secondary orientation back to the initial orientation, the locking detent 5582 thereof can be aligned and engaged with the lock notch 5516 in the guide rail 5514.


In various embodiments, rotation of the collar 5580 can facilitate attachment and/or alignment of a firing assembly. For example, the firing shaft 5540 can extend between a proximal end 5546 and a distal end 5542. The proximal end 5546 can have a rotation joint, which can permit rotation of the firing shaft 5540 between the first configuration and the second configuration. Furthermore, the distal end 5542 can have a coupler for attaching a cutting element of the DLU 5502. Rotation of the firing shaft 5540 can facilitate attachment of the cutting element. For example, as the coupler at the distal end 5542 of the firing shaft 5540 rotates, the coupler can engage and connect to the cutting element in the DLU 5502. In certain embodiments, the coupler can include a bayonet mount, which can engage a corresponding bayonet receiver of the cutting element in the DLU 5502. Referring primarily to FIGS. 40 and 41, the firing assembly can further include a sleeve 5550 positioned around the firing shaft 5540 between the proximal end 5546 and the distal end 5542, for example.


In various embodiments, when the firing shaft 5540 rotates within the shaft 5520, the firing shaft 5540 can rotate into alignment with a firing shaft slot 5518 in the DLU 5502. For example, the firing shaft rotator 5544 can be aligned with the firing shaft slot 5518 when the DLU 5502 is fully inserted and attached to the shaft 5520. However, in various embodiments, when the DLU 5502 is only partially inserted into the shaft 5520, the firing shaft rotator 5544 can be rotated, via the rotation key 5506, out of alignment with the firing shaft slot 5518. In other words, the firing shaft rotator 5544 can be aligned with the firing shaft slot 5514 when the firing shaft 5540 is in the first orientation, and can be misaligned with the firing shaft slot 5514 when the firing shaft 5540 rotates toward the second orientation. In such embodiments, when the DLU 5502 is only partially inserted into the shaft 5520 and/or before the DLU 5502 is releasably locked to the shaft 5520 by the rotatable collar 5580, the firing path of the firing shaft rotator 5544 can be blocked by the distal attachment portion 5504. Integration of the firing shaft 5540 and the collar 5580 can ensure the DLU 5502 is securely attached to the shaft 5520 before the firing shaft 5540 can fire and/or advance. For example, the surgical instrument may be unable to fire until the cutting element in the DLU 5502 is coupled to the firing shaft 5540, and/or until the firing shaft 5540 is properly aligned within the shaft 5520, for example.


In certain embodiments, rotation of the collar 5580 can facilitate attachment and/or alignment of an articulation assembly 5559. Referring primarily to FIGS. 40 and 41, the articulation assembly 5559 can include a proximal articulation bar 5560, a distal articulation bar 5562, and an articulation connector 5566. Furthermore, the shaft 5520 can include a proximal articulation bar slot 5528, and the DLU 5502 can include a distal articulation bar slot 5512, for example. In certain embodiments, the proximal articulation bar 5560 can be aligned with the proximal articulation bar slot 5528, and the distal articulation bar 5562 can be aligned with the distal articulation bar slot 5512. Referring now to FIG. 46, the articulation connector 5566 can be housed in the rotatable collar 5580. For example, the rotatable collar 5580 can include an articulation connector slot 5586, and the articulation connector 5566 can be moveably positioned therein.


In various embodiments, referring again to FIGS. 40 and 41, the proximal articulation bar 5560 can have a proximal notch 5572, and the distal articulation bar 5562 can have a distal notch 5574. Furthermore, the articulation connector 5566 can include a proximal articulation lug 5568 and a distal articulation lug 5572. The proximal articulation lug 5568 can be retained in the proximal notch 5572 of the proximal articulation bar 5560. In certain embodiments, the distal articulation lug 5570 can operably engage the distal notch 5574 of the distal articulation bar 5562. As described herein, the rotatable collar 5580 can rotate between the initial configuration and the secondary configuration. As the collar 5580 rotates, the articulation connector 5566 housed therein can also rotate relative to the longitudinal axis defined by the shaft 5520. In various embodiments, the proximal articulation lug 5568 of the articulation connector 5566 can remain positioned in the proximal notch 5572 of the proximal articulation bar 5560 as the articulation connector 5566 rotates. Furthermore, the distal articulation lug 5570 of the articulation connector 5566 can move into engagement with the distal notch 5574 of the distal articulation bar 5562 as the articulation connector 5566 rotates with the collar 5580 from the secondary orientation toward the initial orientation. For example, when the DLU 5502 is fully inserted into the shaft 5508, the distal notch 5574 of the distal articulation bar 5562 can be aligned with the distal articulation lug 5568 of the articulation connector 5566. In such embodiments, when the rotatable collar 5580 rotates back to the initial configuration, the distal articulation lug 5568 can slide into the distal notch 5574 of the distal articulation bar 5562. When the distal articulation lug 5568 is positioned in the distal notch 5574, the articulation assembly 5559 can be fully assembled.


Referring primarily to FIG. 45, in various embodiments, the proximal articulation bar slot 5528 can include a first clearance 5530 and a second clearance 5532. The proximal and distal articulation lugs 5568, 5570 of the articulation connector 5566 can extend into the first and second clearances 5530, 5532, respectively. In certain embodiments, the first and second clearances 5530, 5532 can provide a space for the proximal and distal articulation lugs 5568, 5570 to move as the collar 5580 rotates and/or as the articulation assembly 5559 articulates, for example.


Referring now to FIGS. 51-58, to connect the DLU 5502 to the shaft 5520 of the surgical instrument, a user can align the alignment indicia 5510 of the DLU 5502 with the alignment indicia 5590 of the shaft 5520 and/or the collar 5580 (FIG. 51). While maintaining alignment of the alignment indicia 5510, 5590, the user can move the DLU 5502 relative to the shaft 5520 along the longitudinal axis defined by the shaft 5520. The user can move the DLU 5502 along a straight or substantially straight path, and, in various embodiments, need not rotate the DLU relative to the shaft 5520, for example. Referring primarily to FIG. 53, the DLU 5502 can continue to translate relative to the shaft 5520, and the guide rail 5514 of the distal attachment portion 5504 can fit into the guide slot 5534 (FIG. 44) in the proximal attachment portion 5522 of the shaft 5520. As the distal attachment portion 5504 moves into the proximal attachment portion 5522, the guide slot 5534 can guide the guide rail 5514, and can maintain alignment of the alignment indicia 5510, 5590, for example. In other words, the guide slot 5534 and the guide rail 5514 can prevent rotation of the DLU 5502 relative to the longitudinal axis of the shaft 5520. Referring primarily to FIG. 52, the proximal articulation lug 5568 of the articulation connector 5522 can extend into the first clearance 5530 and can be positioned in the proximal notch 5572 of the proximal articulation bar 5562, and the distal articulation lug 5570 of the articulation connector 5522 can extend through the second clearance 5532, for example.


Referring primarily to FIG. 54, as the distal attachment portion 5504 is inserted into the proximal attachment portion 5522, the rotation key ramp 5508 of the rotation key 5506 can abut the firing shaft rotator 5544. The rotation key ramp 5508 can guide and/or direct the firing shaft rotator 5544 into the clearance notch 5526 extending from the rotation key slot 5524. Furthermore, as the firing shaft rotator 5544 moves into the clearance notch 5526, the firing shaft 5540 can rotate in the direction B. The firing shaft 5540 can rotate from the first orientation to the second orientation. Such rotation of the firing shaft 5540 can facilitate attachment of the distal end 5542 of the firing shaft 5540 with a cutting element in the DLU 5502. Furthermore, rotation of the firing shaft rotator 5544 can rotate the collar 5580 in the direction B via the engagement between the firing shaft rotator 5544 and the firing shaft rotator groove 5584 (FIG. 46) in the collar 5580. The collar 5580 can rotate from the initial orientation to the secondary orientation, for example. Additionally, the locking detent 5582 can move along the detent slot 5536 in the shaft 5520 as the collar 5580 rotates. Additionally, rotation of the collar 5580 can rotate the distal end 5596 of the spring 5592 because the distal end 5596 of the spring 5592 can be retained in the distal spring slot 5588 (FIG. 46) in the collar 5580. Displacement of the distal end 5596 relative to the proximal end 5594 can generate a torsional springback force, which can bias the collar 5580 from the secondary orientation toward the initial orientation, for example, and can bias the firing shaft 5540 from the second orientation toward the first orientation, for example.


Referring primarily to FIG. 55, as the collar 5580 rotates toward the secondary orientation, the proximal articulation lug 5568 can remain engaged with the proximal notch 5572 in the proximal articulation bar 5560. Furthermore, the distal articulation lug 5570 can rotate such that the distal articulation lug 5570 provides a clearance for the distal articulation bar 5562 of the DLU 5502. Referring to FIG. 56, the DLU 5502 can be fully inserted into the shaft 5520 when the collar 5580 and the articulation connector 5566 positioned therein are rotated to the secondary orientation. In various embodiments, the distal articulation bar 5562 can clear the distal articulation lug 5570 of the articulation connector 5566 when the articulation connector 5566 is rotated to the secondary orientation. Furthermore, the distal articulation lug 5570 can be rotatably aligned with the distal notch 5574 in the articulation connector 5566. Referring still to FIG. 56, when the DLU 5502 is fully inserted into the shaft 5520, the firing rod rotator 5544 can clear the distal end 5509 of the rotation key 5506.


Referring now to the FIG. 57, the firing shaft rotator 5544 can rotate in the direction C when the distal end 5509 of the rotation key 5506 passes the firing shaft rotator 5544. For example, the firing shaft rotator 5544 can rotate in direction C from the second orientation toward the first orientation. Furthermore, rotation of the firing shaft rotator 5544 can affect rotation of the collar 5580 in the direction C from the secondary orientation toward the initial orientation. In various embodiments, the spring 5592 can bias the firing rod 5540 toward the first orientation thereof and the collar 5580 toward the initial orientation thereof. For example, the firing shaft rotator 5544 can be positioned in the firing shaft rotator groove 5584 (FIG. 46) in the collar 5580 such that rotation of the firing shaft rotator 5544 rotates the collar 5580. Due to the alignment of the distal articulation lug 5570 of the articulation connector 5566 and the distal notch 5574 of the distal articulation bar 5562, the articulation connector 5566 can rotate as the collar 5580 rotates, and the distal articulation lug 5570 can rotate into engagement with the distal notch 5574. The articulation assembly 5559 can be assembled when the distal articulation lug 5570 engages the distal notch 5574. Furthermore, as the firing shaft rotator 5544 rotates in direction C, the distal end 5542 of the firing shaft 5540 can rotate in direction C, which can facilitate attachment of a cutting element in the DLU 5502 to the distal end 5542 of the firing shaft 5540.


Referring now to FIG. 58, rotation of the collar 5580 can also rotate the locking detent 5582 of the collar 5580 into the lock notch 5516 in the guide rail 5514 of the distal attachment portion 5504. For example, when the DLU 5502 is fully inserted into the shaft 5520, the lock notch 5516 can be aligned with the detent slot 5536 such that the locking detent 5582 can rotate through the detent slot 5536 and into the lock notch 5516. As described herein, the spring 5592 can bias the collar 5580 to rotate in the direction C (FIG. 57) after the firing shaft rotator 5544 clears the distal end 5509 of the rotation key 5506. Referring still to FIG. 58, when the firing shaft rotator 5544 rotates in direction C, the firing shaft rotator 5544 can move into alignment with the firing shaft slot 5518 in the DLU 5502. Alignment of the firing shaft rotator 5544 with the firing shaft slot 5518 can permit the firing shaft 5540 to be advanced distally to fire the DLU 5502, for example.


As described herein, the rotatable collar 5580 can releasably lock the DLU 5502 relative to the shaft 5520. Furthermore, rotation of the collar 5580 can facilitate attachment and/or alignment of the articulation assembly 5559, as well as attachment and/or alignment of the firing shaft 5540 with a cutting element in the DLU 5502, for example. Furthermore, rotation of the collar can also unlock the DLU 5502 from the shaft, disconnect the articulation assembly 5559, and/or disconnect the firing shaft 5540 from the cutting element in the DLU 5502. For example, when the collar 5580 is again rotated from the initial orientation toward the secondary orientation, the locking detent 5582 can disengage the lock notch 5516 in the distal attachment portion 5504. Accordingly, the distal attachment portion 5504 can be withdrawn from the proximal attachment portion 5522 along the longitudinal axis defined by the shaft 5520, for example. In various embodiments, the DLU 5502 can be unattached from the shaft 5520 without rotating the DLU 5502 relative to the shaft 5520. However, the collar 5580 can rotate relative to the shaft 5520, which can disconnect the distal articulation bar 5562 from the articulation connector 5566 in the collar 5580, and can disconnect the firing shaft 5540 from the cutting element in the DLU 5502, for example.


Referring now to FIGS. 59-62, a disposable loading unit (DLU) or end effector 5602 can be releasably attached to a shaft 5620 of a surgical instrument. In various embodiments, a spring or a plurality of springs, for example, can bias the DLU 5602 into a locked positioned relative to the shaft 5620. For example, the DLU 5602 can be releasably attached to the shaft 5620 by a bayonet mount, and a spring can rotate the DLU 5602 to connect the DLU 5602 to the shaft 5620 at the bayonet connection. The DLU 5602 can include a distal attachment portion 5604, and the shaft 5620 can include a proximal attachment portion 5622, for example. The distal attachment portion 5604 of the DLU 5602 can receive the proximal attachment portion 5622 of the shaft 5620 when the DLU 5602 is secured to the shaft 5620. In other embodiments, a proximal attachment portion of the shaft 5620 can receive a distal attachment portion of the DLU 5602 when the DLU 5602 is secured to the shaft 5620.


In various embodiments, the distal attachment portion 5604 of the DLU 5602 can include a detent 5606, which can extend radially outward from a portion of the distal attachment portion 5604. Furthermore, the detent 5606 can include a ramped surface 5608. As described herein, the ramped surface 5608 of the detent 5606 can engage a spring, such as spring 5636b, for example, and can deform the spring 5636b when the distal attachment portion 5604 is inserted into the proximal attachment portion 5622. Furthermore, the detent 5606 can be held by the proximal attachment portion 5622 to releasably lock the DLU 5602 to the shaft 5622. Referring primarily to FIG. 59, the proximal attachment portion 5622 of the shaft 5620 can define a cavity 5624. In various embodiments, the cavity 5624 can be structured and dimensioned to receive the distal attachment portion 5604 of the DLU 5602. Furthermore, a spring 5636a, 5636b can be positioned within the cavity 5624. For example, a first spring 5636a can be positioned on a first side of the cavity 5624, and a second spring 5636b can be positioned on a second side of the cavity 5624. The springs 5636a, 5636b can be symmetrical or non-symmetrical relative to the cavity 5624. In various embodiments, at least a portion of a spring 5636a, 5636b can extend into the cavity 5624. For example, a leg 5637 of the second spring 5636b can extend into the cavity 5624, and another leg 5637 of the second spring 5636 can be retained in the proximal attachment portion 5622, for example.


Referring still to FIG. 59, the proximal attachment portion 5622 can also include a lock slot 5638, which can be defined in the cavity 5624 and/or can be accessible via the cavity 5624, for example. The lock slot 5638 can be structured and dimensioned to receive the detent 5606, for example. In various embodiments, the lock slot 5638 can hold the detent 5606 to releasably lock the DLU 5602 relative to the shaft 5620. Furthermore, in various embodiments, the proximal attachment portion 5622 can include a latch 5630. The latch 5630 can be moveable between an unlatched position (FIGS. 59 and 60) and a latched position (FIGS. 61 and 62). In various embodiments, the latch 5630 can be spring-loaded, and the spring 5634 can bias the latch 5630 into the latched position. For example, the latch 5630 can include a latch spring 5634, which can bias the latch 5630 toward and/or into the latched position. The latched position can be distal to the unlatched position, for example. In certain embodiments, the latch 5630 can include a thumb grip and/or ridges 5632 to facilitate movement of the latch 5630 from the latched position to the unlatched position. For example, a user can engage the thumb grip 5632 and draw the latch 5630 proximally to unlatch the latch 5630.


In various embodiments, the latch 5630 can operably block or at least partially block the lock slot 5638. For example, when the latch 5630 is in the latched position (FIGS. 61 and 62), an arm 5635 of the latch 5630 can extend over at least a portion of the lock slot 5638. The latch 5630 can cover or partially cover the lock slot 5638, and can prevent and/or limit access to the lock slot 5638. In certain embodiments, the arm 5635 of the latch 5630 can prevent the detent 5606 from moving and/or sliding into the lock slot 5638. Moreover, when the latch 5630 is in the latched position, the latch 5630 can engage the spring 5636a, 5636b. For example, referring to FIGS. 61 and 62, the latch 5630 can support the spring 5636b, such that deformation of the spring 5636b is limited and/or prevented. Furthermore, the latch 5630 can support the spring 5636b such that the cavity 5624 cannot receive the distal attachment portion 5604 of the DLU 5602. For example, at least a portion of the spring 5636b can block the cavity 5624, which can prevent complete insertion of the distal attachment portion 5604 into the proximal attachment portion 5622. In certain embodiments, the proximal attachment portion 5622 can include a plurality of springs, which can exert a rotational force on the distal attachment portion 5604 to rotate the distal attachment portion 5604 relative to the proximal attachment portion 5622. For example, the proximal attachment portion 5622 can include a pair of springs or more than three springs. In other embodiments, a single spring in the proximal attachment portion 5622 can seek to rotate the distal attachment portion 5604 relative to the proximal attachment portion 5622. Additionally or alternatively, in various embodiments, the distal attachment portion 5602 of the DLU 5602 can include at least one spring, which can rotate the distal attachment portion 5602 relative to the proximal attachment portion 5622, for example.


In various embodiments, when the latch 5630 is in the unlatched position (FIGS. 59 and 60), the lock slot 5638 can be unblocked and/or less blocked by the arm 5635 of the latch 5630. For example, the detent 5606 can fit past the unlatched latch 5630 to fit into the lock slot 5638. Furthermore, the detent 5606 can be biased past the unlatched latch 5630 and into the lock slot 5638, as described herein. Moreover, in various embodiments, when the latch 5630 is in the unlatched position, the latch 5630 can disengage the spring 5636a, 5636b. For example, the latch 5630 may not protect and/or limit deformation of the spring 5636a, 5636b when the latch 5630 is unlatched.


Referring primarily to FIG. 59, when the latch 5630 is moved and held in a proximal and/or unlatched position, for example, the spring 5636b can be unsupported by the latch 5630. In such embodiments, the DLU 5602 can be moved in the direction A such that the distal attachment portion 5604 is moved relative to the proximal attachment portion 5622. Referring primarily to FIG. 60, the detent 5606 of the distal attachment portion 5604 can engage the spring 5636b, and can compress and/or deform the spring 5636b, for example. In certain embodiments, the ramped surface 5608 of the detent 5606 can slide along the spring 5636b, and can move the free leg 5637 of the spring 5636b. Deformation of the spring 5636b can generate a springback force, which the spring 5636b can exert on the detent 5606. Referring now to FIG. 61, the springback force can affect rotation of the detent 5606. For example, the detent 5606 can rotate in direction B into the lock slot 5638 defined in the cavity 5624. In various embodiments, the latch spring 5634 can return the latch 5630 to the unlatched position when the user releases the latch 5630. Furthermore, when the latch 5630 returns to the unlatched position, the arm 5635 of the latch 5630 can block or partially block the lock slot 5638. In such embodiments, the detent 5606 of the distal attachment portion 5604 can be releasably locked relative to the proximal attachment portion 5622 when the detent 5606 is held in the lock slot 5638. Furthermore, in certain embodiments, the latch 5630 can hold and/or support the spring 5636b against the detent 5606 until the latch is again moved to the unlatched position. In various embodiments, to release the DLU 5602 from the shaft 5620, a user can again move the latch 5630 from the latched position to the unlatched position, such that the detent 5606 can be rotated out of the lock slot 5638. In such embodiments, the rotation of the detent 5606 again compresses and/or deforms the spring 5636b until the distal attachment portion 5604 is withdrawn from the proximal attachment portion 5622.


Further to the above, the surgical instrument can be configured to identify, or at least attempt to identify, the end effector that has been assembled to the surgical instrument. In certain embodiments, as described in greater detail further below, the end effector can include electrical contacts which can engage corresponding electrical contacts on the shaft of the surgical instrument when the end effector is assembled to the shaft. In such embodiments, the controller of the surgical instrument can establish a wired connection with the end effector and signal communication between the controller and the end effector can occur through the electrical contacts. As described in greater detail below, the end effector can include at least one datum stored thereon which can be accessed by the controller to identify the end effector. The at least one datum can include a bit, more than one bit, a byte, or more than one byte of information, for example. In certain other embodiments, the end effector can include a transmitter which can be in wireless signal communication with the controller of the surgical instrument. Similar to the above, the end effector can include at least one datum stored thereon which can be transmitted to the controller to identify the end effector. In such embodiments, the controller of the surgical instrument can include a receiver, or utilize a receiver, which can receive the transmission from the end effector. Such a receiver can be positioned in the shaft and/or the handle of the surgical instrument, for example.


As the reader will appreciate, an end effector which communicates wirelessly with the controller, for example, can be configured to emit a wireless signal. In various circumstances, the end effector can be configured to emit this signal once or more than once. In certain circumstances, the end effector can be prompted to emit the signal at a desired moment and/or repeatedly emit the signal in a continuous manner. In some circumstances, the end effector can include a switch which can be operated by the user of the surgical instrument before, during, and/or after the end effector of the surgical instrument is assembled to the surgical instrument. In various embodiments, the end effector switch can comprise an on/off, or power, switch which can be closed, or operated, to activate the end effector. In at least one such embodiment, the end effector can include at least one power source, such as a battery, for example, which can be utilized by the transmitter to emit the signal when the on/off switch is closed. Upon activation of the end effector, in various circumstances, the controller of the end effector can be configured to generate the signal and emit the signal via the transmitter. In some circumstances, the end effector may not emit the signal until the end effector is activated. Such an arrangement can conserve the power of the battery, for example. In certain embodiments, the surgical instrument can be placed in an operating mode where it can await the signal from the end effector before the end effector switch is actuated. In various circumstances, the surgical instrument can be in a standby, or low-power, operating mode wherein, once the signal has been received by the controller, the controller can place the surgical instrument in a fully-powered operating mode. In some embodiments, the end effector switch can instruct an end effector controller to emit the signal to the surgical instrument controller. Such a switch may or may not comprise a power switch; however, such a switch could be selectively actuated by the user to prompt the end effector to emit the signal at a desired moment and/or continuously from a desired moment forward.


Turning now to FIG. 114, an end effector, such as end effector 9560, for example, can include one or more electrical contacts, such as contacts 9561, for example, which can be utilized to activate the end effector 9560. For instance, turning now to FIG. 112, the shaft 9040 of the surgical instrument can include a contact bridge 9562 which can be configured to short, or electrically connect, two or more of the contacts 9561 when the end effector 9560 is assembled to the shaft 9040. The bridge 9562 can complete a circuit including two contacts 9561, a battery 9564, and at least one integrated circuit 9566 defined on a printed circuit board 9565. Once the circuit is completed, further to the above, the battery 9564 can power the integrated circuit, or circuits, 9566 and the end effector 9560 can be activated. In various circumstances, the integrated circuit, or circuits, 9566 and an antenna 9567 defined on the printed circuit board 9565 can comprise the controller and transmitter discussed above. In certain embodiments, the shaft 9040 can include a biasing member, such as a spring 9563, for example, which can be configured to bias the bridge 9562 into contact with the electrical contacts 9561. Prior to the bridge 9562 connecting the electrical contacts 9561 and/or after the end effector 9560 has been detached from the shaft 9040, the circuit can be open, power from the battery 9564 may not be supplied to the integrated circuit 9566, and/or the power supplied to the integrated circuit 9566 may be reduced, and the end effector 9560 can be in an inactivated condition. As a result of the above, in such embodiments, the assembly of the end effector can be activated as a result of assembling the end effector to the surgical instrument. In various instances, further to the above, the end effector and the surgical instrument can be constructed and arranged such that only the complete and proper assembly of the end effector to the surgical instrument will activate the end effector.


As discussed above, referring now to FIG. 111, an end effector can be attached to the surgical instrument, indicated by step 9600, activated, indicated by step 9602, and then evaluated by the surgical instrument, indicated by step 9604. When the surgical instrument is attempting evaluate a wireless signal from an activated end effector, further to the above, the surgical instrument can be configured to assess whether the signal is complete. In various embodiments, asynchronous serial communication between the end effector and the surgical instrument can be utilized to assess whether the signal received by the surgical instrument is complete. For instance, the end effector can emit a signal comprising a start bit which precedes a frame of data, such as a byte of information, for example, and/or a stop bit which follows the frame of data. In such instances, the start bit, the byte of data, and the stop bit can comprise a 10-bit character frame, or bit pattern, for example. When the controller of the surgical instrument can identify the start bit and the stop bit of a bit pattern, in such instances, the controller can assume that the byte of data, or the bits of data, received between the start bit and the stop bit is correct and/or otherwise complete. In various circumstances, the start bit and/or the stop bit can comprise a stop period before the next byte of information is transmitted and/or before the previous byte of information is communicated once again.


Further to the above, turning now to FIG. 110, the controller of the surgical instrument can compare the bit pattern, or certain bits of the data, to determine whether the data that it has received is correct and/or otherwise complete. In various circumstances, the data can be transmitted in such a way that the controller can evaluate the data and compare the data to a bit pattern template, or templates, in which it was expecting to receive the data. For instance, such a template can be configured and arranged such that the most significant bit of data, such as the left-most bit of data, for example, comprises a 1, for example. In the event that the controller is able to identify that the most significant bit of data equals a 1, referring to step 9700 in FIG. 110, the controller can perform a XOR operation on the data and compare the data to the bit pattern template, or templates, available to the controller, as indicated in step 9702. An XOR operation is known and a detailed discussion of the same is not provided herein for the sake of brevity. In the event that the bit pattern received by the surgical instrument matches a bit pattern template available to the controller, the controller will have identified the end effector. Upon identifying the end effector, the controller can access stored information regarding the end effector in a memory chip accessible by the controller, for example. In the event that the controller determines that the most significant bit of data in the received bit pattern does not equal a 1, referring again to step 9700, the controller can perform a bit shift operation. Many bit shift operations are known, such as arithmetic shifts, logic shifts, and/or circular shifts, for example, which can be utilized to eliminate bad data bits which were received prior to the desired bit pattern. In various circumstances, the leading, or left-most, 0 data bits can be eliminated, referring now to step 9704 in FIG. 110, and the bit pattern can be shifted to the left, for example, until the leading bit is a 1. At such point, further to the above, the shifted bit pattern can be compared to the bit pattern templates in order to identify the end effector. In the event that shifted bit pattern does not match a bit pattern template, the controller can shift the bit pattern once again until the next 1 in the bit pattern becomes the leading bit and the new shifted bit pattern can be compared to the bit pattern templates. Such a shifting and comparing operation can be performed any suitable number of times until the end effector is identified and/or the surgical instrument deems that the end effector is unidentified.


As the reader will appreciate, a surgical instrument can include information regarding any suitable number of end effectors. When an end effector has been identified by the surgical instrument, further to the above, the surgical instrument can access stored information relating to the end effector. For instance, such stored information can instruct the surgical instrument as to, one, the distance in which a firing member in the end effector must be advanced to complete a firing stroke and/or, two, the maximum amount of power or torque that the motor of the surgical instrument should apply to the firing member, for example. Such information, or a set of information, may be unique to each end effector and, accordingly, identifying the end effector in some way is what allows the surgical instrument to operate in a desired manner. Without such information, the surgical instrument may not be able to discern the stroke length required to fully utilize the end effector and/or appropriately limit the power that it applies to the firing member. In various circumstances, the surgical instrument may rely on sensors configured to detect when the firing stroke has been completed and/or whether the power being applied to the firing member is excessive. Such sensors may prevent the motor of the surgical instrument from overpowering and damaging the firing member, for example, of the end effector.


Further to the above, certain end effectors may be more robust than other end effectors and, as a result, certain end effectors may be able to withstand larger forces from the motor of the surgical instrument. Correspondingly, other end effectors may be less robust and, as a result, may be only able to withstand smaller forces from the motor. In order for the surgical instrument to determine the appropriate forces to apply to any specific end effector, further to the above, the surgical instrument must identify the end effector attached to the surgical instrument. In the event that the end effector cannot identify the end effector, the surgical instrument can utilize a default operating program, or mode. In the default operating mode, the controller of the surgical instrument may limit the power that the motor can apply to the firing member of the end effector, for example, to a minimum, or default, power. The minimum power can be selected such that the motor will not damage an end effector regardless of the end effector that is being used. In some circumstances, the parameters for utilizing the weakest, or least robust, end effector that can be used with the surgical instrument can be utilized by the default operating mode such that the surgical instrument will not overpower the end effector regardless of the end effector being used. In various instances, it is the advent of motor-powered surgical instruments that may cause an end effector to be overpowered. Stated another way, end effectors that were previously used by hand-driven surgical instruments, and essentially unbreakable by such hand-driven surgical instruments, may be easily breakable by a motor-powered surgical instrument. Moreover, such previous end effectors may not include the technology to be identified by the motor-driven surgical instruments and, as a result of the default operating program described herein, such previous end effectors may still be used even with the motor-driven surgical instruments. That said, the default operating program can also utilize other default parameters. For instance, the default operating program can utilize a minimum, or default, firing stroke length. In various instances, the default operating program can utilize the shortest stroke length of the end effector that can be used with the surgical instrument. In such instances, the firing member will not collide, or crash, with the distal end of the end effector regardless of the end effector being used.


As the reader will appreciate, a surgical instrument which includes stored information regarding the end effectors that can be used with the surgical instrument, the information available to the surgical instrument may need to be updated. For instance, if the preferred operating parameters with regard to a certain end effector change over time, the information stored within each surgical instrument may need to be updated. Furthermore, for instance, the surgical instruments may need to be updated when a new end effector is developed for use with the surgical instruments. To the extent that the surgical instrument is not updated in a timely manner, the surgical instrument may not be able to identify the end effector and, as a result, may use the default operating program described herein. In various embodiments, a surgical instrument may not include stored information regarding the end effectors, or at least certain end effectors, that can be used with the surgical instrument. In such embodiments, an end effector can include stored information, or parameters, related to the end effector. Such parameters can be accessed by and/or communicated to the surgical instrument. In various circumstances, further to the above, the assembly of an end effector to the surgical instrument can cause the end effector to emit a signal which can be received by the surgical instrument. Also similar to the above, the end effector can be prompted to emit the signal. This signal, in various circumstances, can be transmitted to the surgical instrument via a wired and/or a wireless connection. In certain embodiments, the surgical instrument can prompt the end effector to transmit the signal.


Further to the above, an end effector can include one or more parameters regarding the end effector stored therein. Such parameters can be stored on one or more memory devices, for example. In various instances, such parameters can include the desired firing speed of the firing member, the desired retraction speed of the firing member, the distance or stroke in which the firing member is to travel, the maximum torque to be applied to the firing member by the motor of the surgical instrument, and/or the maximum angle in which the end effector is to be articulated if the end effector is, in fact, an articulating end effector, for example. Certain articulating end effectors are disclosed in U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, the entire disclosure of which is incorporated by reference herein. With regard to the parameter related to the maximum articulation angle, the controller can utilize this parameter to limit the degree in which the articulatable portion of the end effector is articulated. In some instances, the maximum articulation angle can be 45 degrees, for example, as measured from the longitudinal axis of the surgical instrument shaft. With regard to the parameter related to the firing speed and/or the retraction speed of the firing member, for example, the parameter can communicate a desired speed for the firing member and/or a percentage or fraction of the maximum speed of the motor, for example. For instance, a value of 3 for the firing speed could communicate that the controller should operate the motor at 30% of its maximum speed, for example, when advancing the firing member. Also, for instance, a value of 5 for the retraction speed could communicate that the controller should operate the motor at 50% of its maximum speed, for example, when retracting the firing member. With regard to the parameter related to the maximum torque of the motor, for example, the parameter can communicate a maximum value of the torque and/or a percentage or fraction of the maximum torque of the motor, for example. Furthermore, with regard to the parameter related to the stroke length of the firing member, for example, the parameter can communicate the desired distance in which the firing member is to be advanced and/or retracted and/or a percentage or fraction of the maximum stroke length of the surgical instrument. For instance, a value of 60 could indicate that the firing stroke should be 60 mm, for example. In various instances, the values of the parameters can be communicated in any suitable format, including a binary format comprising bits and/or bytes of data, for example. An exemplary embodiment of a parameter array is depicted in FIG. 110A.


In various embodiments, further to the above, the surgical instrument can be configured to obtain the parameters from the end effector in a specific order. For instance, a signal emitted from the end effector can comprise a start bit, a first bit pattern for a first parameter, such as the maximum articulation angle, a second bit pattern for a second parameter, such as the firing speed, a third bit pattern for a third parameter, such as the retraction speed, a fourth bit pattern for a fourth parameter, such as the maximum motor torque, a fifth bit pattern for a fifth parameter, such as the stroke length, and a stop bit, for example. This is but one example. Any suitable number of parameters may be communicated as part of the signal. Furthermore, any suitable number of start bits and/or stop bits may be utilized. For instance, a start bit may precede each parameter bit pattern and/or a stop bit may follow each parameter bit pattern. As discussed above, the utilization of at least one start bit and/or at least one stop bit can facilitate the controller of the surgical instrument in analyzing whether the signal from the end effector is complete. In certain embodiments, a start bit and/or a stop bit may not be utilized. Moreover, a plurality of signals can be emitted from the end effector in order to communicate parameters of the end effector to the surgical instrument.


In various circumstances, further to the above, the controller of the surgical instrument can utilize a checksum to assess whether the signal it has received from an end effector is complete, and/or whether the signal it has received is authentic, i.e., from a recognized end effector. A checksum can comprise a value used to ensure data are stored, transmitted, and/or received without error. It can be created by calculating the binary values, for example, of data and combining the binary values together using some algorithm. For instance, the binary values of the data can be added together, although various other algorithms could be utilized. In embodiments where parameters regarding certain end effectors are stored in the surgical instrument, as discussed above, a checksum value can also be stored for each such end effector. In use, the controller of the surgical instrument can access the parameter data and the checksum value and, after computing a checksum value from the parameter data, i.e., computing a calculated checksum value, the controller can compare the calculated checksum value to the stored checksum value. In the event that the calculated checksum value equals the stored checksum value, the controller can assume that all of the data retrieved from the memory of the surgical instrument is correct. At such point, the controller can then operate the surgical instrument in accordance with the data uploaded from the memory. In the event that the calculated checksum value does not equal the stored checksum value, the controller can assume that at least one datum of the retrieved data is incorrect. In various instances, the controller can then operate the surgical instrument under the default operating program, further to the above, lockout the firing trigger of the surgical instrument, and/or otherwise communicate the event to the user of the surgical instrument, for example. In certain instances, the controller can re-attempt to upload the data from the memory of the surgical instrument and re-perform the checksum computation and comparison discussed above. In the event that the re-calculated checksum value and the stored checksum value match, the controller can then operate the surgical instrument in accordance with the data uploaded from the memory. In the event that re-calculated checksum value and the stored checksum value are not equal, the controller can then operate the surgical instrument under the default operating program, further to the above, lockout the firing trigger of the surgical instrument, and/or otherwise communicate the event to the user of the surgical instrument, for example.


In embodiments where parameters regarding an end effector is stored in the memory of the end effector, as discussed above, a checksum value can also be stored in the memory of the end effector, for example. In use, the controller of the surgical instrument can access the parameter data and the stored checksum value. In various instances, further to the above, the end effector can emit one or more signals that communicates the parameters and the checksum value to the surgical instrument. As a result of the above, the stored checksum value and the parameters can be transmitted together and, for the purposes of discussion herein, the checksum value received by the surgical instrument can be referred to as the received checksum value. Once the parameter data has been received, similar to the above, the controller can compute a checksum value from the parameter data, i.e., compute a calculated checksum value, and compare the calculated checksum value to the received checksum value. In the event that the calculated checksum value equals the received checksum value, the controller can assume that all of the parameter data retrieved from the end effector is correct. At such point, the controller can then operate the surgical instrument in accordance with the data uploaded from the end effector. In the event that the calculated checksum value does not equal the received checksum value, the controller can assume that at least one datum of the retrieved data is incorrect. In various instances, the controller can then operate the surgical instrument under the default operating program, further to the above, lockout the firing trigger of the surgical instrument, and/or otherwise communicate the event to the user of the surgical instrument, for example. Such occurrences may be more frequent when the parameter data is communicated from the end effector to the surgical instrument via one or more wireless transmissions, for example. In any event, in certain instances, the controller can re-attempt to upload the data from the end effector and re-perform the checksum computation and comparison discussed above. In the event that the re-calculated checksum value and the received checksum value match, the controller can then operate the surgical instrument in accordance with the data uploaded from the end effector. In the event that the re-calculated checksum value and the received checksum value are not equal, the controller can then, further to the above, operate the surgical instrument under the default operating program, lockout the firing trigger of the surgical instrument, and/or otherwise communicate the event to the user of the surgical instrument, for example. In various instances, as a result of the above, the surgical instrument does not need to store any information regarding the end effectors that are used to operate the surgical instrument when using the end effector. In such instances, the data regarding the parameters of an end effector, and the checksum value used to confirm the integrity of the data, can be entirely stored on the end effector. The surgical instrument can include an operating program that only requires sufficient input from the end effector in order to use the end effector. A specific operating program for each end effector that can be used with the surgical instrument may not be required. A single operating program can be used with every end effector. As such, the surgical instrument may not need to be updated to include operating programs for additional end effectors and/or modified programs for existing end effectors, for example.


In addition to or in lieu of the wireless communication systems utilized to identify the end effector attached to the surgical instrument discussed herein, turning now to FIGS. 149-154, a surgical instrument, in accordance with at least one embodiment, can include means for scanning and identifying an end effector. FIG. 153 illustrates a handle 11020 including a bar code reader 11022 which can be configured to scan a bar code, illustrated in FIGS. 149 and 150, on an end effector 11060, illustrated in FIGS. 151, 152, and 154. Similar to other embodiments disclosed herein, the end effector 11060 can include a shaft portion, an anvil 11062, and/or a staple cartridge 11064, for example, wherein one or more portions of the end effector 11060 can include a bar code thereon. In some embodiments, the end effector 11060 can include a removable component 11063 positioned intermediate the anvil 11062 and the staple cartridge 11064 which can be removed prior to or after the end effector 11060 has been assembled to the surgical instrument. In FIG. 151, a bar code 11065 is depicted as being positioned on the shaft portion of the end effector 11060. In FIG. 152, a bar code 11065 is depicted as being positioned on the removable component 11063. In various embodiments, the handle 11020 of the surgical instrument can include a bar code reader, such as bar code reader 11024, for example, configured to read a bar code on an end effector. For instance, referring primarily to FIG. 154, the handle 11020 can include an internal bar code reader portion 11022 configured to read the bar code 11065 defined on the shaft of end effector 11060. In at least one such instance, the bar code reader portion 11022 can include a trough 11026 sized and configured to receive the shaft of the end effector 11060 wherein the bar code reader 11024 can be mounted within and/or relative to an opening 11027 defined in the trough 11026 such that the bar code reader 11024 can read the bar code 11065. As the reader will appreciate, a multitude of bar code readers and bar code protocols are known, and any suitable ones can be utilized. In some instances, a bar code can include bi-directional information which allows the bar code to be read in two different directions, for example. In some instances, a bar code can utilize multiple layers of information. In some instances, the bar code protocol can include preamble information preceding information which will identify the end effector and/or otherwise supply information to the surgical instrument which will allow the surgical instrument to operate, or operate using a specific operating program. In some instances, a bar code reader can emit one or more light beams which can contact a plurality of peaks and valleys which comprise the bar code. In some instances, the valleys of the bar code can extend into, and/or be defined within, the shaft housing of the end effector. The emitted light beams can be reflected back to the bar code reader where they can be interpreted. That said, the bar code reader 11024 of the handle 11020 is positioned and arranged within the trough 11026 such that the emitted and reflected light beams are confined, or at least substantially confined, within the bar code reader portion 11022. In this way, the bar code reader 11024 may not accidentally or unintentionally scan a different end effector, i.e., an end effector other than the one that is going to be assembled to the surgical instrument, which may be present in the surgical suite.


In various instances, further to the above, an end effector can be passed through the bar code reader of a surgical instrument before the end effector is assembled to the surgical instrument. In various alternative embodiments, the surgical instrument can include a movable bar code reader which can be utilized to scan the bar code of the end effector after the end effector has been assembled to the surgical instrument. In any event, once the end effector has been identified, in at least some circumstances, the controller can access an operating program configured to use the identified end effector. In a way, the bar code can comprise a boot loader. In other circumstances, as outlined elsewhere herein, the bar code can supply the controller with the necessary information, or parameters, to utilize a common operating system. In some circumstances, each end effector can be identified with a serialized number such that any two end effectors, even though they may be the same type of end effector, may have two different bar codes thereon. In such circumstances, the controller can be configured to refuse to use an end effector that has been previously scanned by the surgical instrument. Such a system could prevent an at least partially expended end effector from being used again, for instance.


As discussed above, an end effector can be configured to communicate with a surgical instrument through a wired connection and/or a wireless connection. With regard to a wired connection, turning now to FIG. 115, the proximal end of an end effector, such as proximal end 9969 of end effector 9960, for example, can comprise a plurality of electrical contacts 9968 which can be placed in electrical communication with a plurality of electrical contacts 9948 arranged on and/or within a distal end 9942 of a shaft 9940 of a surgical instrument. Referring primarily to FIG. 116, each electrical contact 9968 can include a contact element 9967 at least partially positioned within an element cavity 9965. Each electrical contact 9968 can further include a biasing member, such as a spring 9966, for example, positioned intermediate the contact element 9967 and an interior sidewall of the element cavity 9965. The spring 9966 can be configured to bias the contact element radially outwardly. The contact element 9967 can comprise a stop 9964 protruding therefrom which can be movably biased into engagement with another interior sidewall of the element cavity 9965 by the spring 9966, at least prior to the end effector 9960 being assembled to the shaft 9940. The interaction between the stop 9964 and the sidewall of the element cavity 9965 can arrest the outward movement of the contact element 9967. When the end effector 9960 is assembled to the shaft 9940, the contact elements 9967 of the electrical contacts 9968 can be pushed inwardly by the shaft electrical contacts 9948 against the biasing force applied by the springs 9966, as illustrated in FIG. 116. In various circumstances, each pair of contacts 9948 and 9968 can complete a circuit, or communication channel 9950. While three pairs of contacts are illustrated, any suitable number of contacts and/or communication channels could be utilized. In various embodiments, referring to FIG. 117, shaft contacts 10048 can each comprise a movable element 10047 and a biasing spring 10046 configured to push the movable elements 10047 against the corresponding end effector contacts 10068. In certain embodiments, turning now to FIG. 118, one or both of the end effector contacts and the shaft contacts can comprise a flexible portion. For instance, an end effector can comprise flexible contacts 10168 which can resiliently engage the corresponding shaft contacts 9948.


With regard to the embodiments described above, in various circumstances, the end effector can be assembled to the shaft along a longitudinal axis. In such circumstances, referring primarily to FIG. 115, the proximal-most end effector contact 9968 will first come into electrical contact with the distal-most shaft contact 9948. As the reader will appreciate, the end effector 9960 has not been completely attached to the shaft 9940 when such contacts come into engagement. While such an engagement between these contacts may be temporary, i.e., until the end effector 9960 is seated deeper into the shaft 9940, the surgical instrument controller can become confused and misinterpret one or more signals from the end effector 9960. Similar confusion may arise as the longitudinal array of end effector contacts 9968 progressively comes into contact with the longitudinal array of shaft contacts 9948 until the end effector 9940 is fully seated. In various embodiments, the controller of the surgical instrument can be configured to ignore the signals transmitted through the contacts until the proximal-most end effector contact 9968 is engaged with the proximal-most shaft contact 9948. Turning now to FIGS. 119 and 120, one of the contact pairs may be different than the other contact pairs such that the controller can identify when that pair of contacts has been mated and, as a result, the end effector has been completely seated. For instance, an end effector and a shaft of a surgical instrument can include a first pair of contacts 10248a, 10268a, a second pair of contacts 10248b, 10268b, and a third pair of contacts 10248c, 10268c wherein the third pair of contacts can be different than the first pair of contacts and the second pair of contacts. When the first pair of contacts 10248a, 10268a have been mated, a contact element 10267a can be pushed inwardly such that a first connection portion 10263a of the contact element 10267a comes into contact with a first path portion 9951a of a communication path 9950a and a second connection portion 10264a of the contact element 10267a comes into contact with a second path portion 9952a of the communication path 9950a. In such a position of the contact element 10267a, the first path portion 9951a and the second path portion 9952a can both transmit a signal through the contact element 10267a. When the second pair of contacts 10248b, 10268b have been mated, a contact element 10267b can be pushed inwardly such that a first connection portion 10263b of the contact element 10267b comes into contact with a first path portion 9951b of a communication path 9950b and a second connection portion 10264b of the contact element 10267b comes into contact with a second path portion 9952b of the communication path 9950b. In such a position of the contact element 10267b, the first path portion 9951b and the second path portion 9952b can both transmit a signal through the contact element 10267b. When the third pair of contacts 10248c, 10268c have been mated, a contact element 10267c can be pushed inwardly such that a first connection portion 10263c of the contact element 10467c is out of contact with a first path portion 9951c of a communication path 9950c and a second connection portion 10264c of the contact element 10267c comes out of contact with a second path portion 9952c of the communication path 9950c and into contact with the first path portion 9951c. In such a position of the contact element 10267a, the first path portion 9951c can transmit a signal through the contact element 10267c. As a result of the above, the first, second, and third sets can have a specific arrangement of connectivity with their respective channel paths when the end effector has been fully seated and the controller can be configured to evaluate whether this fully-engaged arrangement is in place. For instance, when the end effector is initially inserted into the shaft, the third contact 10264c may initially come into contact with the first shaft contact 10248a. In such a position, only two path portions, i.e., 9951a and 9952a, may be able to communicate a signal from the end effector to the controller and, as a such, the controller can be configured to detect a different voltage drop across the interconnection as compared to the voltage drop that occurs when five path portions, i.e., 9951a, 9952a, 9951b, 9952b, and 9951c, are able to communicate the signal when the end effector is fully seated. Similarly, the end effector can be further inserted into the shaft until the third contact element 10267c comes into contact with the second shaft contact 10248b and the second contact element 10267b comes into contact with the first shaft contact 10248a. In such a position, only four path portions, i.e., 9951a, 9952a, 9951b, and 9952b may be able to communicate a signal from the end effector to the controller and, as a such, the controller can be configured to detect a different voltage drop across the interconnection as compared to the voltage drop that occurs when five path portions, i.e., 9951a, 9952a, 9951b, 9952b, and 9951c, are able to communicate the signal when the end effector is fully seated.


In certain instances, when an end effector is assembled to an elongate shaft of a surgical instrument, the operator can engage the drive system and/or the articulation system of the end effector to initiate closure, firing, and/or articulating of the end effector, for example. An end effector can include a first jaw, a second jaw, and one or more sensors configured to detect the position of the first jaw relative to the second jaw. Referring now to FIGS. 121-124, an end effector 10360 can comprise a first jaw, or anvil, 10362 and a second jaw, or staple cartridge, 10364, wherein the anvil 10362 is movable toward and away from the staple cartridge 10364. Oftentimes, the end effector 10360 is inserted through a trocar into a patient where the end effector 10360 may not be readily visible even with the assistance of an endoscope. As a result, the user of the surgical instrument may not be able to readily assess the position of the anvil 10362 relative to the second jaw 10364. To facilitate the use of the end effector, as mentioned above, the end effector 10360 can include a sensor for detecting the position of the anvil 10362. In various circumstances, such a sensor can be configured to detect the gap between the anvil 10362 and the staple cartridge 10364. Certain sensors can be configured to detect the rotational position of the anvil 10362 relative to the staple cartridge 10364. Sensors are disclosed in U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which was filed on Mar. 13, 2013, and U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which was filed on Mar. 13, 2013. The entire disclosures of U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which was filed on Mar. 13, 2013, and U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which was filed on Mar. 13, 2013, are incorporated by reference herein. Regardless of the sensor, or sensors, used, the position of the anvil 10362 can be communicated to the user of the surgical instrument through a display. Such a display can be located on the end effector 10360 and/or a shaft of the surgical instrument, such as shaft 10340, for example. When the display is located on the end effector, the display may be viewable utilizing an endoscope, for example. In such instances, the display may be positioned on the end effector such that it is not obscured by the trocar which allowed the end effector to enter the surgical site. Stated another way, the display can be located such that it is distal with respect to the distal end of the trocar when in use. When the display is located on the shaft, the display may be positioned on the shaft such that it is not obscured by the trocar. Stated another way, the display can be located such that it is proximal with respect to the proximal end of the trocar when in use. With reference to the embodiment depicted in FIGS. 121-124, a display 10390 is located on the shaft 10340.


With continued reference to FIG. 121, the anvil 10362 of the end effector 10360 is depicted in a fully-open position. In this position of the anvil 10362, a firing member 10330 of the end effector 10360 is in a proximal position and has not yet been advanced distally. As will be discussed in greater detail below, the firing member 10330 is advanced distally to move the anvil 10362 toward the staple cartridge 10364. The position of the firing member 10330 illustrated in FIG. 121 can represent an unfired, proximal-most position of the firing member 10300. When the anvil 10362 is in its fully-open position, referring primarily to FIG. 125, the anvil display 10390 may not be illuminated. As the reader will appreciate, the anvil display 10390 can depict the position of the anvil 10362 in one of several different positions. Anvil display 10390 happens to be capable of depicting five potential positions of the anvil 10362; however, other embodiments are envisioned which can include an anvil display utilizing more than five indicators or less than five indicators. As the anvil 10362 is moved from its open position to its closed position, the display 10390 can sequentially depict the position of the anvil 10362 utilizing indicators 10391-10395. Indicator 10391 depicts the anvil 10362 in a slightly-closed position. Indicators 10392, 10393, and 10394 depict the anvil 10362 in partially closed positions. Indicator 10395 depicts the anvil 10362 in a fully-closed, or parallel, position. Upon comparing FIG. 121 with FIG. 122, the reader will appreciate that the firing member 10330 has been advanced distally to at least partially close the anvil 10362. When the anvil 10362 is in the position depicted in FIG. 122, the anvil position sensor can detect the new position of the anvil 10362 and the indicator 10391 of the anvil display 10390 can be illuminated, as illustrated in FIG. 126. Upon comparing FIG. 122 with FIG. 123, the firing member 10330 has been advanced distally to further close, although not completely close, the anvil 10362. When the anvil 10362 is in the position depicted in FIG. 123, the anvil position sensor can detect the new position of the anvil 10362 and the indicator 10393 can be illuminated, as illustrated in FIG. 127. Upon further comparing FIG. 122 and FIG. 123, the reader will appreciate that the anvil 10362 has been rotated about 10 degrees, for example, and that, if the anvil 10362 had been rotated only about 5 degrees, for example, the indicator 10392 of the anvil display 10390 would have been illuminated. Upon comparing FIG. 123 with FIG. 124, the firing member 10330 has been advanced distally to completely close the anvil 10362. When the anvil 10362 is in the position depicted in FIG. 124, the anvil position sensor can detect the new position of the anvil 10362 and the indicator 10395 can be illuminated, as illustrated in FIG. 128. Upon further comparing FIG. 123 and FIG. 124, the reader will appreciate that the anvil 10362 has been rotated about 10 degrees, for example, and that, if the anvil 10362 had been rotated only about 5 degrees, for example, the indicator 10394 of the anvil display 10390 would have been illuminated.


Further to the above, the end effector and/or the surgical instrument can include a controller which can be configured to control the anvil display 10390. For instance, when the end effector includes the anvil display 10390, the controller can be positioned within the end effector. When the shaft of the surgical instrument includes the anvil display 10390, and/or any other portion of the surgical instrument includes the anvil display 10390, the surgical instrument can include the controller. In other instances, one of the end effector and the surgical instrument can include the anvil display 10390 while the other of the end effector and the surgical instrument can include the controller. In any event, the anvil position sensor, or sensors, can be in signal communication with the controller. The controller can be configured to interpret one or more signals from the sensor, or sensors, to determine the position of the anvil 10362. The controller can be in communication with the anvil display 10390 in order to illuminate the indicators 10391-10395 as outlined above. In various circumstances, each indicator 10391-10395 can comprise a light emitting diode, for example. In such circumstances, each light emitting diode can be placed in electrical communication with an output channel of a microprocessor of the controller such that the controller can selectively illuminate a light emitting diode independently of the other light emitting diodes. In various instances, the controller can continuously evaluate the position of the anvil 10362 based on data from the anvil sensor and, utilizing this data, continuously update which indicator is illuminated. For instance, when the anvil 10362 is being closed or opened, the controller may track the position of the anvil 10362 and promptly display this information to the user of the surgical instrument through the indicators 10391-10395. Such instances may provide the user with real-time, or nearly real-time, feedback as to the position of the anvil 10362. In other instances, the controller may wait to display the position of the anvil 10362 until after the anvil 10362 has stopped moving, or at least substantially stopped moving, for a certain period of time, for example. As the reader will appreciate, the indicators 10391-10395 can represent discrete positions of the anvil 10362; however, it is likely that the anvil 10362 may only momentarily pass through each of these discrete positions when it is closed, for example. In various circumstances, the controller may utilize an algorithm in order to decide which indicator to illuminate. For instance, the controller can apply an algorithm which determines which indicator more accurately represents the position of the anvil 10362 even though the anvil 10362 may not be aligned with any of the discrete positions that can be represented by the indicator display 10390. In various circumstances, the controller can illuminate two adjacent indicators in the indicator display 10390 when the anvil 10362 is positioned intermediate the two discrete positions represented by the two adjacent indicators.


In various instances, further to the above, the indicators 10391-10395 can each comprise a light emitting diode which emits the same color light, or at least substantially the same color light. In other instances, one or more of the indicators 10391-10395 can emit a color which is different than the other indicators 10391-10395. For instance, indicator 10391 could be configured to emit a yellow color while indicators 10392-10395 can be configured to emit a green color, for example. As the reader will appreciate, referring to FIG. 122, the tissue T positioned between the anvil 10362 and the cartridge 10364 may not be adequately clamped by the anvil 10362 when the anvil 10362 is in the partially-closed position illustrated in FIG. 122 and, when the indicator 10391 associated with this position of the anvil 10362 is illuminated yellow, the user of the surgical instrument may be reminded to take caution before moving the end effector 10360 and/or continuing the firing process. In some instances, one or more of the indicators 10361-10365 can each be configured to emit more than one color. For instance, each indicator 10361-10365 can comprise a light emitting diode configured to emit a green color and a red color. In such instances, the indicators 10361-10365 can emit a green color when indicating the position of the anvil 10362 as outlined above or, alternatively, emit a red color when an error exists with the end effector 10360 and/or the surgical instrument.


As discussed above, an anvil of an end effector can be movable relative to a staple cartridge between an open position and a closed position and the surgical instrument system can be configured to detect the movement of the anvil and communicate the movement of the anvil to the user. That said, embodiments are envisioned in which the staple cartridge is movable relative to the anvil. In at least one such embodiment, the anvil may be fixed or non-pivotable. When fixed or non-pivotable, the anvil may extend rigidly from a portion of the end effector frame; however, that portion of the end effector frame, the anvil extending therefrom, and the staple cartridge may be articulatable relative to another portion of the end effector or the shaft of the surgical instrument. Whether or not the end effector is articulatable, in such embodiments, the staple cartridge can be pivotable relative to the anvil. The systems and methods described herein for detecting the movement of the anvil can be adapted to detecting the movement of the staple cartridge. Moreover, the systems and methods described herein for displaying the movement of the anvil can be adapted to displaying the movement of the staple cartridge.


In various instances, an operator may desire to retract the drive member during a firing stroke. The surgical instrument disclosed in Zemlok '763 employs a retraction assembly that comprises a manually-driven mechanical interface with the drive tube that is activated by ratcheting a retraction lever mounted on the handle. Such arrangement purports to enable the clinician to retract the firing rod and ultimately the loading unit drive member should the power source become interrupted or the motor or control system fail during firing. However, such retraction assembly can be difficult to effectively operate due to the fact that the motor and the motor gear box remained engaged during the ratcheting (activation) process. Thus, the retraction assembly of that device must be able to develop enough torque to rotate the gears in the gear box and motor shaft to enable the drive tube to be manually rotated. The generation of such forces may place extreme stress on the retraction assembly components which may lead to catastrophic failure of the retraction assembly. The surgical instruments 10 depicted in FIGS. 1-28 may be configured with unique and novel retraction assembly arrangements which may avoid this problem and others.


For example, the surgical instrument 10 may include a retraction assembly 120 that includes a retraction chassis 124 that has a top portion 126 and a bottom portion 128. In various forms, the retraction assembly 120 interfaces mechanically with the drive tube 102 via a drive gear 130 and a retraction gear 132. See FIG. 5. The drive gear 130 is non-rotatably attached to the drive tube 102 such that rotation of the drive gear 130 imparts rotation on the drive tube 102. The drive gear 130 and the retraction gear 132 may comprise bevel gears or the like to permit intermeshing engagement therebetween as shown in FIG. 5. The retraction gear 132 may be coupled to a first spindle 134 (FIGS. 4 and 5) which is substantially perpendicular to the top and bottom portions 126 and 128 of the retraction chassis 124 and extends therebetween. The spindle 134 may be supported for rotational travel about a spindle axis “SA-SA” that is substantially perpendicular to the longitudinal axis “LA-LA” of the surgical instrument 10. See FIG. 5. In various forms, the retraction gear 132 may have a first spur gear 136 attached thereto. The first spur gear 136 interfaces with a second spur gear 138 that is operably supported on a second spindle 137 which is also disposed in a substantially perpendicular manner between the top and bottom portions 126 and 128 of the retraction chassis 124 and is rotatable around a second shaft axis “SA′-SA” defined thereby. The second spur gear 138 is supported for meshing engagement with a third spur gear 140 which is disposed on the first spindle 134. The third spur gear 140 is attached to a first clutch portion 144 of a unidirectional clutch assembly 142. The clutch assembly 142 further includes a second clutch portion 146 that is rotatably disposed on the first spindle 134 above the first clutch portion 144. A spring or springs (not shown) may be disposed between the first and second clutch portions 144 and 146 thereby maintaining the first and second clutch portions 144 and 146 in a raised “non-interlocking” orientation as illustrated in FIG. 5.


It will be appreciated that as the drive tube 102 is rotated, the drive gear 130 will impart rotation to the first, second and third spur gears 136, 138, 140 as well as to the first clutch portion 144 and the respective spindles 134, 137. Because the second clutch portion 146 can rotate about the spindle 134 and is biased out of engagement with the first clutch portion 144 by the spring arrangement disposed therebetween (not shown), the rotation of the first clutch portion 144 is not translated to the second clutch portion 146. As can be seen in FIG. 5, the first and second clutch portions 144 and 146 include a plurality of interlocking teeth 148 that each have a flat interlocking surface and a sloping slip surface. As will be discussed in further detail below, the second clutch portion 146 may be biased into meshing engagement with the first clutch portion 144 by the retraction lever 150. The slip surfaces on the teeth 148 allow for the interlocking surfaces to come in contact with each such that rotation of the second clutch portion 146 causes the first clutch portion 144 to rotate. Rotation of the first clutch portion 144 also causes all of the interfacing gears to rotate as well to ultimately impart rotational motion to the drive tube 102 about the longitudinal tool axis LA-LA.


Referring now to FIG. 6, the retraction lever 150 may include an elongated handle portion 152 that includes a camming portion 154. The camming portion 154 may include an opening which may house a unidirectional needle clutch (not shown) which is supported in mechanical cooperation with a fitting (not shown) that may be attached to the first spindle 134 to enable the retraction lever 150 to rotate about the first spindle 134. Zemlok '763 further describes an operation of such a unidirectional needle clutch and fitting arrangement and was incorporated by reference herein in its entirety. In various forms, the retraction lever 150 includes a one or more camming members 156 that each have a camming surface 158 thereon. In a first orientation, the retraction lever 150 is disposed along a lever pocket 14 of the housing 12 as shown in FIG. 1. The spring disposed between the first and second clutch portions 144, 146 serves to bias the retraction lever 150 against the top portion 126 of the retraction chassis 124. As can be seen in FIG. 6, the camming members 156 are disposed within corresponding cam slots or pockets 160 in the top portion 126 of the retraction chassis 124. The retraction lever 150 is maintained in a first orientation by a return spring 162 that is mounted between the top portion 126 of the retraction chassis 124 and the camming portion 154 of the retraction lever 150. The camming members 156 and the cam slots 160 prevent further rotation of the retraction lever 150.


In use, when the retraction lever 150 is moved out of the lever pocket 14 (FIG. 1) in the housing 12, the camming members 156 interface with the corresponding cam slots 160 to bias the camming portion 154 of the retraction lever 150 in a downward direction against the biasing force of the spring(s) positioned between the first and second clutch portions 144, 146. Such downward movement compresses the spring(s) and pushes the first and second clutch portions 144, 146 into interlocking engagement. Rotation of the camming portion 154 in a counterclockwise direction actuates the needle clutch which interfaces with the fitting and the first spindle 134. Continual actuation of the retraction lever 150 rotates the clutch assembly 142 which in turn rotates the spur gears 136, 138, 140 and the retraction and drive gears 132 and 130. This in turn rotates drive tube 102 about the longitudinal tool axis “LA-LA”. Because the firing rod 104 is in threaded engagement with the drive tube 102, rotation of the drive tube 102 in the above-described manner results in the retraction (or proximal axial travel) of the firing rod 104 into the drive tube 102.


In operation, the drive tube 102 may be configured to be rotated in a direction that is opposite to the retraction direction (e.g., in a clockwise direction, for example) about the longitudinal tool axis “LA-LA” by the motor 100. Such rotation of the drive tube 102 causes the firing rod 104 to move axially in the distal direction “DD”. This advancement of the firing rod 104 and the drive member 60 of the loading unit 20 may be referred to herein as a “firing” action. As can be seen in FIG. 5, for example, a gear assembly 170 is employed to establish an amount of driving torque required to drive the firing rod 104 in the distal direction “DD” to actuate the loading unit 20. The gear assembly 170 may include a gear box housing 172 that is coupled to the motor 100. For example, the gear box housing 172 may be coupled to the motor housing 101 by screws 103 or other mechanical fasteners and/or fastener arrangements. The gear assembly 170 and motor 100 may be collectively referred to as “drive unit”, generally designated as 186.


The gear box housing 172 may be rotatably supported in a motor retainer portion 190 that is integrally formed or otherwise non-rotatably supported by the housing 12. Such arrangement permits the drive unit 186 to rotate within the housing 12 about the longitudinal tool axis “LA-LA”, but prevents axial movement thereof within the housing 12. The motor 100 may, for example, be powered by the power source 200 of the type described in further detail in Zemlok '763 and/or the power system 2000 (FIG. 129).


To facilitate supply of electrical current to the drive unit 180 and, more particularly, to the motor 100, a unique contact arrangement 210 may be employed. For example, the contact arrangement 210 may include an annular negative motor contact 212 and an annular positive motor contact 114 supported on the motor housing 101 as can be seen in FIG. 4. A fixed negative contact 216 may be supported within the housing 12 for sliding contact with the negative motor contact 112. Similarly a fixed positive contact 218 may be supported for sliding contact with the positive motor contact 214 as the drive unit 180 rotates within the housing 12. The fixed negative and positive contacts 216, 218 may comprise flexible spring-like contacts to facilitate assembly and adjustment of the drive unit 186 within the housing 12. The fixed negative contact 216 may be electrically coupled to the power source 200 by a negative lead 220 and the fixed positive contact 218 may be electrically coupled to the power source 200 by a positive lead 222. Such contact arrangement enables electrical power to be supplied from the power source 200 to the motor 100 while facilitating rotation of the drive unit 186 within the handle housing about the longitudinal tool axis “LA-LA”.


Referring to FIG. 5, the gear assembly 170 may comprise a planetary gear arrangement that is operably coupled to the motor shaft 107. In one arrangement for example, a ring gear 173 may be formed on the inner surface of the gear box housing 172. A primary sun gear 171 may be coupled to the motor shaft 107. The primary sun gear 171 may be supported in meshing engagement with a plurality of first planetary gears 175 that are supported on a first planetary gear carrier 174 such that they are also in meshing engagement with the ring gear 173. A first sun gear 176 may be formed on or otherwise attached to the first planetary gear carrier 174 and may be supported in meshing engagement with a plurality of second planetary gears 178 that are supported on a second planetary gear carrier 177. The second planetary gears 178 may also be supported in meshing engagement with the ring gear 173. A second sun gear 179 may be formed on or otherwise attached to the second planetary gear carrier 177 and may be supported in meshing engagement with a plurality of third planetary gears 181. The third planetary gears 181 may be supported on a third planetary gear carrier 180 in meshing engagement with the ring gear 173. A third sun gear 183 may be formed on or is otherwise attached to the third planetary gear carrier 180 and is in meshing engagement with a plurality of fourth planetary gears 187 that may be attached to an output shaft unit 184 that is rotatably supported within the gear box housing 172 by a bearing 185. The fourth planetary gears 187 may also be supported in meshing engagement with the ring gear 173.



FIG. 7 illustrates one arrangement for rotatably supporting the drive unit 186 within the housing 12. As can be seen in that Figure, a motor mount boss 192 of the motor retainer 190 may include a gear box housing segment 196 that is rotatably supported therein. In one arrangement, for example, the gear assembly 170 is rotatably supported in the gear box housing segment 196 by bearing 185. Similarly, the motor 100 is rotatably supported within a motor mount housing portion 13 by a bearing 198. Other methods of rotatably supporting the drive unit 186 within the housing 12 may also be employed.


The output shaft unit 184 may be operably coupled to a clutch 230 (FIG. 5) of the type and construction disclosed in Zemlok '763 which has been herein incorporated by reference in its entirety. Further details regarding the construction and operation of such clutch 230 may be obtained from that publication. In an alternative embodiment, however, the clutch 230 may be replaced with a shaft-to-shaft coupler or sleeve arrangement that serves to facilitate the coupling of the output shaft unit 184 directly to the drive tube 102.


When the axially movable drive beam of the surgical instrument disclosed in Zemlok '763 became jammed or power was lost to the instrument, the user had to employ the retraction assembly to retract the drive beam back to a starting position to facilitate removal of the loading unit. However, effective retraction was difficult because the retraction system had to generate a sufficient amount of torque necessary to reverse the plurality of gear arrangements in the gear assembly. Thus, such retraction system could be extremely difficult to operate effectively.


At least one surgical instrument embodiment disclosed herein employs a unique and novel releasable drive unit locking system, generally designated as 240, to address such problem. As will be discussed in further detail below, for example, when the releasable drive unit locking system 240 is in a “locked” position, the drive unit 186 is prevented from rotating within the handle housing 12. The drive unit 186 is retained in the locked position when the surgical instrument is “fired” to facilitate transfer of the motor torque from the motor 100 through the gear assembly 170 and ultimately to the drive tube 102. When it is desirable to activate the retraction assembly 120, the drive unit locking system 240 is moved to an “unlocked” position to enable the drive unit 186 to freely rotate within the housing 12 to thereby avoid the need to generate sufficient retraction torque to reverse the gear arrangements in the gear assembly 170. The gear assembly 170 can remain operably coupled between the motor 100 and the drive tube 102 during operation of the retraction assembly 120. In such embodiments, though the gear assembly 170 remains operably coupled to the motor 100 and the drive tube 102, free rotation of the drive unit 186 can reduce the torque required to drive the gear assembly 170 as the gear arrangements reverse to retract the drive tube 102. Such a reduction in required torque can improve the effectiveness of the retraction system.


As can be seen in FIG. 8 for example, the third spur gear 140 of the retraction assembly 120 may include an unlocking cam 141 that is configured to actuate a locking pawl assembly 250 of the drive unit locking system 240. One form of locking pawl assembly 250 is illustrated in FIGS. 9-11. As can be seen in FIG. 10 for example, the locking pawl assembly 250 may include a pawl member 252 that has a locking notch 254 formed therein. The locking notch 254 is sized to permit a series of spaced, first lock wedges 256 formed around the outer circumference of the gear box housing 172 to freely pass therethrough. See, e.g., FIGS. 12 and 13. A pawl lock wedge 258 is formed on the locking pawl 252 for locking engagement with any of the first lock wedges 256 as will be discussed in further detail below. As can also be seen in FIGS. 8-11, the locking pawl assembly 250 may further include a pawl guide rod 260 that is configured to be slidably received within a passage 194 in the motor mount boss 192. A pawl spring 262 is journaled on the pawl guide rod 260 and is positioned between the pawl member 252 and the motor mount boss 192 to bias a cam engagement portion 264 of the pawl member 252 into engagement with the third spur gear 140.


One method of operating the retraction assembly 120 and the drive unit locking system 240 will now be described with reference to FIGS. 8, 13 and 14. FIG. 13 illustrates the drive unit locking system 240 in the locked position. As can be seen in that Figure, the pawl member 252 is biased into the distal locking position by the pawl spring 262. When in that locked position, the pawl lock wedge 258 on the pawl member 252 is in locking engagement with a corresponding one of the first locking wedges 256 on the gear box housing 172. When in that position, the retraction assembly 120 has not been activated and the gear assembly 170 is prevented from rotating within the housing 12. Operation of the motor 100 by depressing the main power switch 80 (FIG. 1) results in the rotation of the drive tube 102 and ultimately the axial advancement of the firing rod 104 which drives the drive beam 60 distally through the loading unit 20.


If, for example, the drive beam 60 becomes jammed in the tissue clamped in the loading unit 20 or power is lost to the motor 100 or for some other reason the motor 100 is unable to reverse the rotation of the drive tube 102 to ultimately retract the firing rod 104, the clinician may employ the retraction assembly 120 to manually retract the firing rod 104 and drive beam 60. FIG. 8 illustrates the retraction assembly 120 in the unactuated position (e.g., when the drive unit locking system 240 is in the locked position). To commence the manual retraction process, the clinician pulls the retraction lever 150 out of the lever pocket 14 in the handle housing 12 (in the “R” direction—see FIG. 6). Movement of the retraction lever 150 in the “R” direction results in the rotation of the camming portion 154 of the retraction lever 150 within the retraction chassis 124. Such initial rotation of the retraction lever 150 in the “R” direction causes the unlocking cam 141 to engage the cam engagement portion 264 of the pawl member 252 to bias the pawl member 252 to the unlocked position thereby enabling the drive unit 186 to freely rotate within the handle housing 12. The cam slots 160 in the retraction chassis are located and have a sufficient length to facilitate this rotational travel of the camming portion 154 of the retraction lever 150 without initially disengaging the clutch assembly 142. Thus, the cam slots 160 may be longer than the cam slots located in prior retraction chassis arrangements to facilitate the unlocking of the drive unit assembly 186 prior to applying the actuation motions which result in the rotation of the drive tube 102. For example, in at least one arrangement, the cam slots 160 may be elongated to facilitate rotation of the retraction lever 150 approximately fifteen degrees. As the clinician continues to rotate the retraction lever 150 in the “R” direction, the cam engagement portion 264 will ride along the outer circumference of the unlocking cam 141 on the third spur gear 140. Continued rotation of the retraction lever 150 in the “R” direction results in the engagement of the camming members 156 on the camming portion 154 with the ends of their respective cam slots 160 to bias the camming portion 154 in the downward direction. This downward movement compresses the spring(s) positioned between the first and second clutch portions 144 and 146 to bring the teeth 148 thereon into meshing engagement with each other. Continued rotation of the camming portion 154 in a counterclockwise direction may actuate the needle clutch which interfaces with the fitting and the first spindle. Continual actuation of the retraction lever 150 rotates the clutch assembly 142 which in turn rotates the spur gears 136, 138, 140 and the retraction and drive gears 132 and 130. This in turn rotates drive tube 102 and retracts the firing rod 104.


The retraction lever 150 can be actuated for a predetermined amount of travel until a portion of the retraction lever 150 abuts a portion of the housing 12. Thereafter, the retraction lever 150 is returned to its first position by the return spring 162. This action raises the camming portion 152 allowing the second clutch portion 146 to also move upward and disengage the first clutch portion 144. The needle clutch may release the fitting to thereby allow the retraction lever 150 to return to the first position without affecting the movement of the drive tube 102. Once the retraction lever 150 is returned to the first position, the drive unit 186 is once again retained in a locked position. The ratcheting or rotation of the retraction lever 150 may be repeated over and over until the firing rod 104 has been returned to a desired position.


Because the gear box housing 172 is free to rotate during the application of this rotational motion, the amount of torque required to rotate the drive tube 102 and the gears within the gear assembly 170 is greatly reduced as compared to the torque required to operate prior retraction assemblies. Such arrangement also advantageously serves to prevent the transfer of the torque forces generated by the retraction assembly to the motor shaft 107 while the gear assembly 170 remains drivingly coupled to the motor shaft 107. In other words, the gear assembly 170 can remain drivingly coupled between the motor shaft 107 and the drive tube 102 during operation of the retraction assembly 120. Such arrangement differs from retraction arrangements disclosed in, for example, U.S. Pat. No. 7,959,050, which is incorporated by reference in its entirety herein, but which result in the physical decoupling or physical interruption of portions of the transmission during activation of the retraction system.



FIGS. 15-18 illustrate another surgical instrument 310 that is substantially similar to surgical instrument 10 described above, except for the differences discussed below. As can be seen in FIG. 16, the instrument 310 includes a gear assembly 470 that comprises a gear box housing 472 that may be coupled to the motor 100 in the manner described above, for example. The gear box assembly 470 and motor 100 may be collectively referred to as “drive unit”, generally designated as 486. The gear assembly 470 may be identical to gear assembly 170 described above except for the differences discussed below.


In at least one arrangement, the gear box housing 472 may be non-rotatably supported in or integrally formed with a motor retainer portion 190 that is integrally formed or otherwise non-rotatably attached within the housing 12 in the various manners discussed herein. Because the drive unit 486 does not rotate in this arrangement, it may be directly wired to the power source. For example, the motor 100 may be powered in the manner described in Zemlok '763 or other suitable manners. As can be seen in FIG. 16, the gear assembly 470 may comprise a planetary gear arrangement that is operably coupled to the motor shaft 107. In one arrangement for example, a fixed ring gear 473 may be formed on the inner surface of the gear box housing 472. A primary sun gear 471 may be attached to the motor shaft 107. The primary sun gear 471 may be supported in meshing engagement with a plurality of first planetary gears 475 that are supported on a first planetary gear carrier 474. The first planetary gears 475 may also be in meshing engagement with the fixed ring gear 473. A first sun gear 476 may be formed on the first planetary gear carrier 474 and be in meshing engagement with a plurality of second planetary gears 478 that are supported on a second planetary gear carrier 477. The second planetary gears 478 may also be supported in meshing engagement with the fixed ring gear 473. A second sun gear 479 may be formed on or attached to the second planetary gear carrier 477 and be supported in meshing engagement with a plurality of third planetary gears 481 supported on a third planetary gear carrier 480. The third planetary gears 481 are in meshing engagement with the fixed ring gear 473. A third sun gear 483 may be formed on or otherwise be attached to the third planetary gear carrier 480. The third sun gear 483 may be supported in meshing engagement with a plurality of fourth planetary gears 487 that are attached to an output shaft unit 484 that is rotatably supported within the gear box housing 472 by a bearing 185. The plurality of fourth planetary gears 487 may be in meshing engagement with a lockable ring gear 485 that is rotatably mounted in the gear box housing 472. The gears 471, 473, 475, 476, 478, 479, 481 and 483 may be collectively referred to herein as gear train assembly 460.


The lockable ring gear 485 may be rotatably mounted within an annular cavity 490 in the motor retainer portion 190 (FIG. 16). Cavity 490 is sized to permit the free rotation of the lockable ring gear 485 therein about the longitudinal tool axis “LA-LA”. The lockable ring gear 485 may be installed in the annular passage 490 and then retained in position by a plug member 492 that is pressed into or otherwise retained in the annular passage 490.


The surgical instrument 310 may further include a drive unit locking system 540 that includes a movable shift ring assembly 542. In at least one form, the shift ring assembly 542 may include, for example, a shift ring 543 that has at least one, and preferably a plurality of, locking members in the form of, for example, pins 544. Pins 544 protrude from the shift ring 543 and are configured for selective locking engagement with the lockable ring gear 485. Each of the locking pins 544 may be slidably received within a corresponding passage 546 in the plug member 492. The shift ring 542 is supported for axial movement by a reversing link 550 that is attached to a clutch clamp 560. As can be seen in FIG. 15, the clutch clamp 560 may comprise a spring clamp that is clamped about a portion of the outer circumference of the third spur gear 140. The clutch clamp 560 may have a lug 562 thereon that is attached to a shifter rod 564. The shifter rod 564 may be somewhat flexible and be pivotally coupled to the shift ring 542. During normal use (i.e., when the motor 100 is driving the firing rod 104), the locking pins 544 are in locking engagement with the lockable ring gear 475 to prevent the lockable ring gear 475 from rotating such that the rotational torque is transferred to the output shaft unit 484 and ultimately to the drive tube 102.


When the clinician desires to employ the retraction assembly 120 to retract the firing rod 104, the retraction lever 150 is rotated from the starting position shown in FIG. 15 in “R” direction. As the retraction lever 150 is rotated, the clutch clamp 560 rotates with the third spur gear 140 to thereby cause the shifter rod 564 to move the shift ring 542 in the distal direction “DD”. As the shift ring 542 moves in the distal direction “DD”, the locking pins 544 move out of locking engagement with the lockable ring gear 485 to permit the lockable ring gear 485 to rotate relative to the gear box housing 472. The clinician continues to ratchet the retraction lever 150 to the end position shown in FIG. 18. In at least one arrangement for example, the retraction lever 150 need only be rotated approximately fifteen degrees to disengage the locking pins 544 from the lockable ring gear 485. After the clinician releases the retraction lever 150, the return spring 162 will return the retraction lever 150 to the starting position and the clinician can repeat the procedure until the firing rod 104 is retracted to a desired position. Because the lockable ring gear 485 is free to rotate within the bearing housing 472, rotation of the drive tube 102 and the output shaft unit 484 will not be resisted by the other gear arrangements in the gear assembly 470. As such, the amount of ratcheting torque required to retract the firing rod 104 is reduced when compared to retraction arrangements that remain operably engaged with the gear arrangements in the gear assembly during the retraction process. Furthermore, though the required torque is reduced, the firing rod 104 can remain operably engaged with the gear assembly 470. In other words, the firing rod 104 can remain operably coupled to the motor 100. When the shift ring 542 contacts the bearing 185 in the motor mount boss 192, the locking pins 544 lockingly engage the lockable ring gear 485. The clutch clamp 560 may be configured to slip relative to the third spur gear 140 after the shift ring contacts the bearing 185 or other portion of motor mounting boss 192. Thus, the drive unit locking system 540 serves to facilitate rotation of at least a portion of the drive unit within the handle housing during the application of retraction motions to the drive tube 102 to reduce the amount of retraction torque required to retract the firing rod 104.


The surgical instrument 610 in FIG. 19 is substantially identical to the surgical instrument 310 except that the clutch clamp 560 is attached to the third spur gear 140 in such a way as to eliminate the reversing link 550 employed in the surgical instrument 310. As can be seen in FIG. 18 for example, the shifter rod 564 is directly connected to the shift ring 542. Ratcheting of the retraction lever 150 in the above-mentioned manner results in the movement of the shift ring 542 and the engagement and disengagement of the locking pins 544 with the lockable ring gear 485.



FIGS. 20 and 21 illustrates another surgical instrument 610′ that is substantially identical to surgical instrument 610 except for the following differences. In this arrangement, for example, at least two “leaf-type” lock springs 620 and ring gear lock members 622 are supported on the gear box housing 472′ of the gear assembly 470′. As can be seen in FIG. 20, each lock spring 620 and corresponding lock member 622 is supported in a slot 624 in the gear box housing 472′. In this arrangement, the locking pins 544′ that are attached to the shift ring 542 are configured to contact and depress the corresponding locking spring 620 inwardly to press the corresponding ring gear lock member 622 into locking engagement with the lockable ring gear 485. When in that position (shown in FIG. 20), the lockable ring gear 485 is prevented from rotating in relative to the gear box housing 472′. When the shifter rod 564 pulls the shift ring 542 in the distal direction “DD”, the locking pins 544′ disengage their corresponding locking spring 620 which enables the spring 620 to flex to a starting position to enable the ring gear lock members 622 to disengage the lockable ring gear 485 to permit it to rotate relative to the gear box housing 472′. Thus, when the retraction assembly 120 is activated, the lockable ring gear 485 is free to rotate relative to the gear box housing 472′ to thereby reduce the amount of retraction torque needed to cause the firing rod 104 to be retracted in the proximal direction “PD”.



FIGS. 22-24 illustrate another retraction assembly arrangement for selectively manually retracting a distal portion of the firing rod of a surgical instrument 710 should the distal portion of the firing rod or other component of the surgical instrument to which it is operably attached become jammed during operation or operational power for advancing the firing rod assembly is interrupted. Except for the differences discussed below, the surgical instrument 710 may be similar in design and operation to the surgical instruments described above and/or disclosed in Zemlok '763, which has been incorporated by reference herein in its entirety.


As can be seen in FIGS. 22-24, the surgical instrument 710 includes a housing 712 that operably supports a firing rod assembly 720. The housing 712 may, for example, operably support a motor and gear assembly (not shown) for applying rotary motions to a drive tube which may result in the axial movement of the firing rod assembly 720 in the various manners described herein. In at least one arrangement, the firing rod assembly 720 may include a proximal firing member or rod portion 722 that operably interfaces with the drive tube in the various manners disclosed herein. In still other surgical instrument arrangements, the proximal firing rod portion 722 may operably interface with other drive arrangements and systems that are configured to apply axial motions to the proximal firing rod portion 722.


As can be further seen in FIGS. 22-24, the firing rod assembly 720 may further include a distal firing member or rod portion 724 that is operably coupled to a proximal end of the axially movable drive beam 60 of a loading unit 20 coupled thereto in the various manners described herein. A retraction assembly 730 in the form of a retraction linkage assembly 732 may be pivotally coupled between the proximal firing rod portion 722 and the distal firing rod portion 724. In the illustrated arrangement, the retraction linkage assembly 732 includes an actuator link 734 that has a link handle portion 736 that is pinned to the proximal firing rod portion 722. The retraction linkage assembly 732 further includes a distal retraction link 738 that is pinned to the actuator link 734 and the distal firing rod portion 724 as shown. In the illustrated embodiment, the housing 712 includes a distally-extending articulation housing portion 714 that may also include a distally-extending, shaft housing segment 716. The shaft housing segment 716 may serve to axially support the retraction linkage assembly 732 as it axially moves in the distal and proximal directions in response to the axial movement of the firing rod assembly 720. To facilitate axial movement of the retraction linkage assembly 732 relative to the shaft housing segment 716, the actuator link 734 extends out through a slot 718 formed in the shaft housing segment 716 as shown.



FIG. 22 illustrates the position of the firing rod assembly 720 and the retraction assembly 730 prior to firing. FIG. 23 illustrates the position of the firing rod assembly 720 and the retraction assembly 730 after being fired in the distal direction “DD”. If during the firing process, the clinician desires to retract the drive beam 60 back to a starting position, the clinician can simply grasp the link handle portion 736 of the actuator link 734 and pivot it in the “R” direction as shown in FIG. 24 which draws the distal firing rod portion 724 and the drive beam 60 in the proximal “PD” direction. As illustrated in FIGS. 22 and 23, during firing, the proximal end 725 of the distal firing rod portion 724 may be normally axially spaced from the distal end 735 of the proximal firing rod portion 734 a distance designated as “RD”. The distance “RD” may remain, for example, unchanged during firing and normal retraction of the firing rod assembly 720 by the drive unit. However, when the clinician activates the retraction assembly, the distance between the proximal end 725 of the distal firing rod portion 724 and the distal end 735 of the proximal firing rod portion 734 (distance “RD′”) will be less than distance “RD”. In addition, as can be seen in FIG. 22, the distance between the starting position of the distal working head 62 of the drive beam 60 and the ending position of the distal working head 62 (i.e., after a complete firing stroke) is represented as distance “FD”. If desired, the distance “RD” may be sufficiently large enough to enable the distal firing rod portion 724 to be sufficiently retracted (i.e., moved closer to the distal end 735 of the proximal firing rod portion 722) to return the working head 62 from the ending position back to its starting position. Stated another way, the distal firing rod portion 724 may be retracted a retraction distance that is at least equal to or greater than the firing distance “FD”. In such arrangement, for example, if the working head 65 becomes jammed or otherwise stopped in its ending position, activation of the retraction assembly can fully retract the drive beam 60 to bring the distal working head 62 to its starting position wherein the distal working head 62 can permit the anvil 22 to pivot open and release the tissue.



FIGS. 25-28 illustrate an alternative firing rod assembly 720′ that may be selectively manually retractable. The firing rod assembly 720′ as shown includes a proximal firing rod portion 722′ that may operably interface with the drive tube in the various manners disclosed herein. In still other surgical instrument arrangements, the proximal firing rod portion 722′ may operably interface with other drive arrangements and systems configured to apply control motions to the proximal firing rod portion 722′. The firing rod assembly 720′ may further include distal firing rod portion 724′ that is at least partially hollow and operably coupled to the end of the axially movable drive beam 60 of a loading unit 20 coupled thereto in the various manners described herein. For example, the distal firing rod portion 724′ may have a passage 725 therein that is sized to enable the distal firing rod portion 724′ to axially slide on the proximal firing rod portion 722′ a retraction distance “RDD”. The retraction distance may be equal to or greater than the firing distance “FD” to enable a retraction assembly 730′ to retract the drive beam 60 a sufficient distance so as to move the working head 62 thereof from the ending position “EP” to the starting position “SP”. See FIG. 25. The retraction assembly 730′ may comprise a retraction latch 732′. The retraction latch 732′ may include a latch handle 735 that is movable between a latched position (FIGS. 25 and 26) and an unlatched position (FIGS. 27 and 28). When in the latched position, the retraction latch 732′ affixes the distal firing rod portion 724′ such that it is prevented from axial sliding over the proximal firing rod portion 722′ and the distal firing rod portion 724′. When in that orientation, the proximal firing rod portion 722′ essentially moves as a unit. Thus, when in the latched orientation, the firing rod assembly 720′ may be fired in the distal direction “DD” to its ending position “EP” as shown in FIG. 26. Should the drive beam 60 become jammed or power be interrupted or lost to the instrument during the firing stroke (or for other reasons), the clinician can simply move the retraction latch handle 735 to the unlatched position (FIG. 27) and then manually pull the retraction latch 732′ in the proximal direction “PD” as shown in FIG. 28.


The various retraction systems and arrangements disclosed herein may address certain shortcomings commonly encountered by prior retraction arrangements used to retract motor-powered drive members employed by surgical end effectors. For example, various retraction arrangements disclosed herein may facilitate the manual application of retraction motions to the drive member and/or associated drive arrangements without encountering resistance normally provided by the gear/transmission arrangements associated with the motor, while enabling the gearing/transmission arrangements to remain “drivingly” or physically coupled to the motor.


Thus, at least one example comprises a surgical instrument that may include a firing member assembly that may comprise a portion that is supported for selective axial movement in a distal direction and a proximal direction. The instrument may further include a drive unit that comprises a motor that includes a motor shaft. A gear assembly may be drivingly coupled to the motor shaft and include an output shaft assembly that is configured to interface with the firing member assembly such that when the motor shaft is rotated in a first rotary direction, the portion of the firing member assembly is axially driven in the distal direction and when the motor shaft is rotated in a second rotary direction, the portion of the firing member is axially driven in the proximal direction. The surgical instrument may further comprise a retraction assembly that interfaces with the firing member assembly for manually applying other rotary motions to the firing member assembly in the second rotary direction when the motor is deactivated. The surgical instrument may further comprise locking means that interfaces with the retraction assembly and the drive unit for preventing transfer of the other rotary motions to the motor shaft while the gear assembly remains drivingly coupled to the motor shaft.


In accordance with yet another example, the surgical instrument may comprise a drive unit for generating firing and retraction motions. The instrument may further comprise a surgical end effector that is configured to perform at least one surgical function in response to an application of at least one of the firing and retraction motions thereto. The surgical instrument may further comprise a firing member assembly that may include a proximal firing member portion that operably interfaces with the drive unit and is configured to operably receive rotary actuation motions therefrom. The firing member assembly may further comprise a distal firing member portion that is supported distal to the proximal firing member portion and is configured to transmit the firing and retraction motions to the surgical end effector. A retraction assembly may be operably coupled to the proximal firing member portion and the distal firing member portion. The retraction assembly may be selectively movable between an unactuated position wherein the retraction assembly is configured to transfer the firing and retraction motions from the proximal firing member portion to the distal firing member portion and an actuated position wherein the distal firing member portion is axially moved relative to the proximal firing member portion.


Another surgical instrument example may comprise a handle housing that includes an elongated shaft assembly that is operably coupled thereto. The elongated shaft assembly may support an axially movable firing rod therein. A loading unit may be operably coupled to the elongated shaft and be configured to interface with the firing rod. A drive tube may be rotatably supported within the handle housing and operably interface with the firing rod. The surgical instrument may further comprise a motor that has a motor shaft. The motor may be operably supported within the handle housing and be operably coupled to a power source. A gear assembly may be drivingly coupled to the motor shaft and include an output shaft assembly that is configured to interface with the drive tube such that when the motor shaft is rotated in the first rotary direction, the drive tube drives the firing rod in a distal direction and when the motor shaft is rotated in a second rotary direction, the drive tube drives the firing rod in a proximal direction. A retraction assembly may interface with the drive tube for manually applying other rotary motions thereto in the second rotary direction when the motor is deactivated. A locking means may interface with the retraction assembly and the gear assembly for preventing transfer of the other rotary motions to the motor shaft while the gear assembly remains drivingly coupled to the motor shaft.


Referring again to FIGS. 1-3, in various embodiments, the motor 100 of the surgical instrument 10 can be operably coupled to a firing element, such as firing element 60, and can drive the firing element 60 through the end effector or DLU 20 during a firing stroke. For example, the firing element 60 can cut tissue and/or fire staples into tissue during the firing stroke. A battery can supply current to the motor 100, for example, and the current supplied to the motor 100 can relate to the torque generated by the motor 100. Furthermore, the torque generated by the motor 100 can relate to the firing force exerted by the firing element 60. The voltage across the motor can relate to the angular velocity of the motor 100, for example, which can relate to the speed of the firing element 60. Referring now to FIG. 63, the motor can define a torque-voltage curve 5802. In various embodiments, the torque-voltage curve 5802 can have a maximum torque T1 at optimized voltage V. At voltages greater than and/or less than the optimized voltage V, for example, the torque generated by the motor can be less than the maximum torque T1. For example, at a voltage of ½V, the torque-voltage curve 5802 can have a torque T2, which can be less than T1, for example.


In various embodiments, a control system in signal communication with the motor can supply current from the battery to the motor. In some embodiments, the control system can include speed management control, which can control the speed of the firing element, for example. The control system can include a variable resistance circuit and/or a voltage regulation circuit, for example, which can control the current supplied to and/or the voltage across the motor. In such embodiments, the control system can control the torque and/or the angular velocity of the motor, and thus, the firing force and/or the speed of the firing element coupled to the motor. For example, a voltage regulation circuit can regulate the voltage across the motor to affect the speed of the firing element. Referring to FIG. 63, if the voltage regulation circuit reduces the voltage from the ideal voltage V to ½V, for example, the torque can be reduced to T2, which can be less than the maximum torque T1, and the speed can be adjusted to speed S2, for example.


In various embodiments, the control system can include a pulse width modulation circuit, and the control system can supply pulses of current to the motor. Referring primarily to FIGS. 64(a)-65(b), the current can be pulsed at a constant voltage. In various embodiments, the duty cycle of the pulses, i.e., the duration of the pulses per interval or period, can affect the velocity of a firing element 5804. When the duty cycle is higher (FIG. 64(a)), each pulse can be a longer portion of the interval, and, as a result, the motor can drive the firing element 5804 at a faster speed S1, for example. When the duty cycle is lower (FIG. 64(b)), each pulse can be a shorter portion of the interval, and, as a result, the motor can drive the firing element 5804 at the slower speed S3, for example. In various embodiments, the pulse width modulation circuit can provide current pulses to the motor at the optimized voltage V (FIG. 63) of the motor. In such embodiments, the speed of the firing element 5804 can be controlled without reducing the torque generated by the motor. For example, the motor can operate at the optimized voltage V, to generate the maximum torque T1, for example, and the firing element 5804 can be driven through the end effector at a reduced speed, such as speed S3, for example, and/or any suitable speed by altering the width of the voltages pulses.


In various embodiments, the battery can have a volt-ampere limit or power threshold. In other words, the battery can supply a limited amount of energy per unit time. The power threshold of the battery can be related to the battery and/or circuit design. For example, thermal limits on the battery and/or the circuit, such as heat capacity and/or wire insulation, for example, can affect the power threshold. Furthermore, the power threshold of the battery can limit the amount of current supplied to the motor. In various embodiments, a motor utilizing speed management control, such as pulse width modulation, for example, may not require the maximum volt-amperes of the battery. For example, when the battery supplies current pulses at the maximum or optimized voltage to drive the firing element at the desired speed and maximum or optimized torque, surplus current may not be utilized to drive the firing element. In such embodiments, the surplus current can be used to produce additional torque. Referring to FIGS. 66(a)-66(c), a motor can include an additional or secondary set of coils, for example, and the surplus current can be selectively directed to the additional set of coils to generate additional torque. In such embodiments, the motor can produce more torque at lower speeds, for example. In various embodiments, the control system can maximize the surplus current supplied to the secondary set of coils based on the volt-ampere limit of the battery, for example. Furthermore, in certain embodiments, the control system can optimize the torque generated by the motor during at least a portion of the firing stroke.


Referring still to FIGS. 66(a)-66(c), a battery 6002 can selectively supply current to a motor 6004. The motor 6004 can include a primary set of coils 6006, and a secondary set of coils 6008, for example. In various embodiments, a control system 6020 in signal communication with the motor 6004 can selectively direct current to the primary set of coils 6006 and/or the secondary set of coils 6008. For example, the control system 6020 can supply current to the primary set of coils 6006 during a first operating state, and can supply current to the primary set of coils 6006 and the secondary set of coils 6008 during a second operating state, for example. In various embodiments, a switch, such as switch 6010, for example, can move between an open position and a closed position to selectively supply current to the secondary set of coils 6008, for example. In various embodiments, the sets of coils 6006, 6008 can be separately activatable. Furthermore, the control system 6020 can include a pulse width modulation circuit 6022, and the battery 6002 can supply current pulses to at least one of the sets of coils 6006, 6008, for example. In various embodiments, the primary set of coils 6006 can be coupled to a first circuit 6030 (FIG. 66(a)), and the second set of coils can be coupled to a second circuit 6032 (FIG. 66(a)) that is independent of the first circuit 6030. In other embodiments, the primary and secondary set of coils 6006, 6008 can be arranged in parallel (FIG. 66(b)) or in series (FIG. 66(c)), for example. In certain embodiments, the motor 6004 can include at least one additional set of primary coils and/or at least one additional set of secondary coils, for example.


In various embodiments, the motor can generate a first amount of torque during the first operating state and a second amount of torque during the second operating state. The second amount of torque can be greater than the first amount of torque, for example. Furthermore, the additional torque generated by the secondary set of coils 6006 during the second operating state may prevent and/or limit lock-out of the firing element during a firing stroke. For example, referring to FIG. 67, the motor can drive the firing element distally during the first operating state and can drive the firing element proximally during the second operating state. In various embodiments, the motor can generate greater torque when retracting the firing element than when advancing the firing element. In such embodiments, retraction of the firing element may be improved. If the firing element becomes jammed, e.g., the tissue is too thick and/or tough for the firing element to cut and/or staple, the additional torque may be utilized to retract the firing element, for example. Referring still to FIG. 66, the torque generated by the motor can be gradually increased during a “soft” start phase 5902 of the firing stroke, and/or can be gradually decreased during a “soft” stop 5904, 5906 phase of the firing stroke. For example, when advancing the firing element, the motor can incrementally, or slowly, increase the firing speed at the beginning of the firing stroke, and can incrementally, or slowly, decrease the firing speed as the firing element completes the forward portion of the firing stroke. Furthermore, in various embodiments, the motor can immediately or substantially immediately generate the maximum torque and/or speed when retracting the firing element. The motor can utilize the additional set of coils 6008 (FIGS. 65(a)-(c)) to max-out the torque generated at the beginning of retraction, for example.


Referring to FIG. 68, the control system can control the firing element to move at a slower speed during a trial segment 5912 of the firing stroke. For example, when advancing the firing element, the firing element can initially move at a slower speed to ensure the selection and/or the placement of the end effector is appropriate for the targeted tissue. Furthermore, as described in greater detail herein, a surgeon can engage an actuator, such as a switch or a button, for example, to actuate the motor and initiate opening and closing of the end effector jaws, movement of the firing element, and/or articulation of the loading unit, for example. Initiation of a trial segment, such as the trial segment 5912 indicated in FIG. 68, for example, when the actuator is engaged and at the beginning of a motor-driven action can allow the surgeon to “trial” the surgical action, to ensure that the intended and/or appropriate surgical action has been initiated. For example, in certain embodiments, a first button can initiate motor-driven articulation in a first direction, and a second button can initiate motor-driven articulation in a second direction. When the surgical instrument is rotated and/or oriented “upside down” the placement of the first and second buttons can rotate and/or become reversed from the standard placements as viewed from the operator's perspective. If the first direction is the intended articulation direction, it may be desirable to ensure the loading unit is being articulated in the first direction, i.e., that the first button was in fact actuated, during a trial segment. Similarly, if the second direction is the intended articulation direction, it may be desirable to ensure the loading unit is being articulated in the second direction, i.e., that the second button was actuated, during a trial segment. In certain embodiments, a trial segment during the initial portion of a surgical action can provide time for the surgeon to change and/or modify the surgical action if a non-intended surgical action has been initiated. As described in greater detail herein, a pulse width modulation circuit, such as pulse width modulation circuit 6022, for example, can accomplish the trial segment during an initial portion of a surgical action.


As discussed above, the motor controller can be configured to utilize pulse width modulation to operate the motor 6004. In various instances, the motor controller can utilize the same pulse width modulation for the primary set of coils 6006 and the secondary set of coils 6008, for example. In other instances, the motor controller can utilize a first pulse width modulation signal for the primary set of coils 6006, and a second, or different, pulse width modulation signal for the secondary set of coils 6008. In some instances, the motor controller can utilize a pulse width modulation signal for one of the sets of coils 6006, 6008, but not the other. Moreover, the teachings discussed herein can be adapted to motors having more than two sets of coils. For instance, the motor controller can utilize a plurality of pulse width modulation signals to operate a plurality of coil sets.


In various embodiments, the motor can be a brushed DC motor or a brushless DC motor, for example. In certain embodiments, the motor can be a stepper motor, such as a hybrid stepper motor, for example. Stepper motors can provide rotation control, such that an encoder is not necessary. Elimination of the encoder can reduce cost and/or complexity to the motor, for example. Referring to FIGS. 69 and 70, the motor can be a simplified stepper motor. For example, the motor can comprise four electromagnetic poles spaced around the perimeter. Referring now to FIGS. 71-74(c), the motor can be a hybrid stepper motor. The hybrid stepper motor can comprise permanent magnets and electromagnets, for example.


Prior surgical instrument arrangements disclosed in, for example, Zemlok '763 and Zemlok '344 employ two separate motors. One motor is employed, for example, to advance the drive member distally through the loading unit which results in the closing of the anvil, cutting of tissue and firing of staples from the staple cartridge supported in the loading unit. The other motor is employed to articulate the loading unit about an articulation joint. Further details relating to motors used for articulating loading unit arrangements are also disclosed in U.S. Pat. No. 7,431,188, the entire disclosure of which is incorporated by reference herein. The use of two motors in such devices may increase the complexity and add to the overall expense of the surgical instrument. For example, such arrangements may double the number of retraction systems and other mechanisms that could fail during use. The surgical instrument 810 depicted in FIGS. 29-31 employs a single motor which may be selectively employed to fire and articulate a surgical end effector configured to perform at least one surgical procedure in response to firing motions applied thereto.


In at least one form, for example, the surgical instrument 810 may employ many of the same components employed in the various surgical instruments described in detail herein. For example, the surgical instrument 810 includes a housing 12 that operably supports a motor 100 therein that is configured to generate rotary actuation motions. The motor 100 is operably coupled to a gear assembly 820 that has a selectively positionable drive coupler assembly 840 associated therewith which will be described in further detail below. The surgical instrument 810 may further include an articulation system, generally designated as 859 that operably interfaces with the elongated shaft assembly for applying articulation motions to the surgical end effector. In one form, for example, the articulation system 859 may include an articulation actuation mechanism, generally designated as 860 which may be substantially similar to those articulation actuation mechanisms disclosed in Zemlok '763 and/or Zemlok '344 and/or U.S. Pat. No. 7,431,188 except for those differences discussed below. For example, the housing 12 may include a barrel portion 90 that has a rotatable member 92 mounted thereon. The rotatable member 92 may interface with a proximal end of the elongated shaft assembly to facilitate rotation of the elongated shaft assembly relative to the housing 12. The rotatable member 92 may operably support an articulation knob and slip clutch arrangement as disclosed in U.S. Pat. No. 7,431,188. A main articulation gear 94 of that arrangement is represented by broken lines in FIGS. 29 and 30. The main articulation gear 94 may be connected to a main shaft 95 by a slip clutch as described in the aforementioned U.S. Pat. No. 7,431,188 such that rotation of the main articulation gear 94 will cause corresponding rotation of main shaft 95. As further described therein, the articulation knob may serve as an articulation position indicator. The main shaft 95 operably interfaces with a J-channel member 96 that operably interfaces with the proximal end of an articulation link assembly 97. In one form, the articulation link assembly 97 may comprise a proximal articulation link 98 that interfaces with the articulation link 70 (FIG. 3) in the loading unit 20.


The articulation mechanism 860 may further include an articulation drive train arrangement 870 that operably interfaces with the main articulation gear 94 and the drive coupler assembly 840. As can be seen in FIGS. 29 and 30, the articulation drive train arrangement 870 may include an articulation drive shaft 872 that is attached to an output of the drive coupler assembly 840 as will be discussed in further detail below. A first articulation drive gear 873 is attached to the articulation drive shaft and is in meshing engagement with a central gear race 875 on a second articulation transfer gear 874 that is rotatably supported within the rotatable member 92. Thus, rotation of the first articulation drive gear 873 results in rotation of the second central articulation transfer gear 874. As can be further seen in FIGS. 29 and 30, a “third” articulation shaft gear 877 is mounted to a second articulation shaft 876 that has a “fourth” articulation worm gear 878 thereon. The third articulation shaft gear 877 is in meshing engagement with the second central articulation transfer gear 875 such that rotation of the first articulation drive gear 873 ultimately results in the rotation of the third articulation shaft gear 877 and the second articulation shaft 876. The fourth articulation worm gear 878 is in meshing engagement with the main articulation gear 94 such that rotation of the fourth articulation worm gear 878 results in rotation of the main articulation drive gear 94 and ultimately application of articulation motions to the articulation link assembly 97. As will be discussed in further detail below, the articulation drive shaft 872 is rotated by the motor 100 when the drive coupler assembly 840 is in an articulation control orientation.


As can be seen in FIG. 31, the motor 100 is operably coupled to the gear assembly 820. The gear assembly 820 may include a gear box housing 822 that is coupled to the motor 100. For example, the gear box housing 822 may be coupled to the motor housing 101 by screws 103 or other mechanical fasteners and/or fastener arrangements. The gear assembly 820 may comprise a planetary gear arrangement 821 that is operably coupled to the motor shaft 107. In one arrangement for example, a ring gear 823 may be formed on the inner surface of the gear box housing 822. A primary sun gear 821 is coupled to the motor shaft 107. The primary sun gear 821 is in meshing engagement with a plurality of first planetary gears 825 that are supported on a first planetary gear carrier 824 such that they are also in meshing engagement with the ring gear 823. A first sun gear 826 is formed on or otherwise attached to the first planetary gear carrier 824 and is in meshing engagement with a plurality of second planetary gears 828 that are supported on a second planetary gear carrier 827. The second planetary gears 828 are also supported in meshing engagement with the ring gear 823. A second sun gear 829 is formed on or otherwise attached to the second planetary gear carrier 827 and is in meshing engagement with a plurality of third planetary gears 831. The third planetary gears 831 are supported on a third planetary gear carrier 830 and are supported in meshing engagement with the ring gear 823. A third sun gear 833 is formed on or is otherwise attached to a shaft extension 832 on the third planetary gear carrier 830 and is in meshing engagement with a plurality of fourth planetary gears 835 that are attached to a coupler gear that comprises a fourth planetary gear carrier 834 that is rotatably supported on the shaft extension 832. In addition, a thrust bearing 836 may be journaled on the shaft extension 832 between the fourth planetary gear carrier 834. The fourth planetary gears 835 are in meshing engagement with an output shaft unit 850 that is rotatably supported by the gear box housing 822. A second thrust bearing 836 may be supported between the fourth planetary gears and the output shaft unit 850 as can be seen in FIG. 30. The fourth planetary gears 835 are supported in meshing engagement with an inner gear race 854.


In the illustrated embodiment, the output shaft unit 850 is operably coupled to a clutch 230 of the type and construction disclosed in Zemlok '763 which has been herein incorporated by reference in its entirety. Further details regarding the construction and operation of such clutch 230 may be obtained from that publication. In an alternative embodiment, however, the clutch 230 may be replaced with a shaft-to-shaft coupler or sleeve arrangement that serves to facilitate the coupling of the output shaft unit 850 directly to the drive tube 102.


Referring again to FIG. 31, a primary articulation drive gear 837 is attached to the articulation drive shaft 872 and is in meshing engagement with an external gear ring 838 on the fourth planetary gear carrier 834. In various forms, the drive coupler assembly 840 may further include a coupler selector member 842 that is movably coupled to or otherwise movably supported by the gear box housing 822 or other portion of housing 812. In at least one arrangement, the coupler selector member 842 may be formed with a first drive shaft retainer portion 844 and a first articulation shaft retainer portion 846. The first drive shaft retainer portion 844 comprises a grooved, roughened, etc. area that is configured to non-movably engage a second drive shaft retainer portion 845 on the output shaft unit 850. Similarly, the first articulation shaft retainer portion 846 comprises a grooved, roughened, etc. area that is configured to non-movably engage a second articulation shaft retainer portion 847 on the fourth planetary gear carrier 834.


Operation of the coupler assembly 840 may be understood from reference to FIGS. 29 and 30. As can be seen in FIG. 29, the coupler selector member 842 is pivoted to the articulation position wherein the first articulation shaft retainer portion 846 is in non-movable engagement with the second articulation shaft retainer portion 847 on the output shaft unit 850. When in that position, the output shaft unit 850 is prevented from rotating about the longitudinal axis LA-LA. Thus, when in that position, operation of motor 100 will result in the rotation of the third sun gear 833 which is in meshing engagement with the fourth planetary gears 835. Rotation of the fourth planetary gears 835 will result in the rotation of fourth planetary gear carrier 834 which can freely rotate. Such rotation of the fourth planetary gear carrier 834 will also result in the rotation of the primary articulation gear 837 that is coupled to the articulation drive shaft 872. Rotation of articulation drive shaft 872 will cause the first articulation drive gear 873 to rotate and drive the second articulation transfer gear 874. Rotation of the second articulation transfer gear 874 results in rotation of the third articulation transfer gear and the fourth articulation worm gear 878. Rotation of the fourth articulation worm gear 878 will drive the main articulation gear 94 which will result in the application of axial articulation motions to the articulation links 97, 70 which ultimately results in the articulation of the loading unit 20 about the articulation joint. Rotation of the motor drive shaft 107 in a first rotary direction will result in articulation of the loading unit in a first articulation direction and rotation of the motor drive shaft 107 in an opposite rotary direction will result in articulation of the loading unit in a second articulation direction that is opposite to the first articulation direction.


Referring next to FIG. 30, the coupler selector member 842 is pivoted to the drive or firing position wherein the first drive shaft retainer portion 844 is in non-movable engagement with the second drive shaft retainer portion 845 on the fourth planetary gear carrier 834. When in that position, the fourth planetary gear carrier 834 is prevented from rotating about the longitudinal axis “LA-LA”. Thus, when in that position, operation of motor 100 will result in the rotation of the third sun gear 833. Third sun gear 833 is in meshing engagement with the fourth planetary gears 835 supported on the fourth planetary gear carrier 834. Because the fourth planetary gear carrier 834 is prevented from rotating by virtue of the non-movable engagement between the first articulation shaft retainer portion 846 and the second articulation shaft retainer portion 847 on the fourth planetary gear carrier 834, rotation of the fourth planetary gears 835 will result in rotation of the output shaft unit 850. Output shaft unit 850 may be coupled to the drive tube 102 by the clutch assembly 230 or by a direct coupling. Thus rotation of the output shaft unit 850 results in rotation of the drive tube 102. As discussed above, rotation of the drive tube 102 results in the axial movement of the firing rod (not shown in FIG. 31). Rotation of the motor drive shaft 107 in a first rotary direction will result in the distal advancement of the firing rod and rotation of the motor drive shaft 107 in an opposite rotary direction will result in the proximal movement of the firing rod. In various embodiments, closure of the loading unit 20 jaws, e.g., pivoting of the anvil assembly 22 relative to the carrier 24, can couple and/or decouple the motor 100 to the articulation system and/or the firing system of the surgical instrument 10. For example, closure of the anvil assembly 22 relative to the carrier 24 can decouple the motor 100 from the articulation system, e.g. from the articulation drive shaft 872, and can couple the motor 100 to the firing system, e.g., to the output shaft unit 850. Furthermore, opening of the anvil assembly 22 relative to the carrier 24 can decouple the motor 100 from the firing system, and can couple the motor 100 to the articulation system. In such embodiments, the motor 100 can affect articulation of the loading unit 20 when the loading unit 20 is open, and the motor 100 can affect firing of the firing rod when the loading unit 20 is closed. The surgical instrument 10 can include a sensor and/or a selector, for example. In certain embodiments the sensor can detect closure of the loading unit 20 jaws. Furthermore, the sensor can be in signal communication with the selector, such as coupler selector member 842. The selector can couple and/or decouple the motor 100 to the articulation system and/or the firing system when the anvil assembly 22 opens and/or closes relative to the carrier 24, for example. Various powered surgical instruments that employ the various drive coupler arrangements disclosed herein may represent vast improvements over prior powered surgical instruments that employ multiple motors to articulate the end effector and fire the end effector drive member.


For example, at least one surgical instrument comprises an elongated shaft assembly that defines a longitudinal tool axis. A surgical end effector may be operably coupled to the elongated shaft assembly for selective articulation relative thereto. The surgical end effector may be configured to perform at least one surgical procedure in response to firing motions applied thereto. An articulation system may operably interface with the elongated shaft assembly for applying articulation motions to the surgical end effector. A firing member assembly may operably interface with the elongated shaft assembly to apply the firing motions to the surgical end effector. The surgical instrument may further comprise a motor that is configured to generate rotary actuation motions. A drive coupler assembly may interface with the motor and the articulation system such that when the drive coupler assembly is in a first configuration, operation of the motor will result in the application of the actuation motions to the articulation system resulting in articulation of the surgical end effector relative to the longitudinal tool axis and when the drive coupler assembly is in a second configuration, operation of the motor will result in the application of actuation motions to the firing member assembly causing the firing member assembly to apply at least one of the firing motions to the surgical end effector.


Another surgical instrument example may comprise a handle that has an elongated shaft assembly operably coupled thereto that defines a longitudinal tool axis. A loading unit may be operably coupled to the elongated shaft assembly and be configured to sever and staple tissue in response to firing motions applied thereto. The loading unit may be configured to be selectively articulated relative to the longitudinal tool axis about an articulation joint. The surgical instrument may further comprise an articulation system that includes an articulation link assembly that is supported by the elongated shaft assembly and is configured to operably interface with an articulation joint portion in one of the elongated shaft assembly and the loading unit. An articulation actuation mechanism may be supported by the handle and interface with the articulation link assembly to apply articulation actuation motions thereto. The surgical instrument may further comprise a firing member assembly that operably interfaces with the loading unit to apply the firing motions thereto. A motor may be operably supported by the handle and be configured to generate rotary actuation motions. A drive coupler assembly may interface with the motor and the articulation actuation mechanism such that when the drive coupler assembly is in a first configuration, operation of the motor will result in the application of the actuation motions to the articulation system resulting in articulation of the loading unit relative to the longitudinal tool axis and when the drive coupler assembly is in a second configuration, operation of the motor will result in the application of actuation motions to the firing member assembly causing the firing member assembly to apply at least one of the firing motions to the loading unit.


Still another surgical instrument example may comprise an elongated shaft assembly that defines a longitudinal tool axis. A surgical end effector may be operably coupled to the elongated shaft assembly for selective articulation relative thereto. The surgical end effector may be configured to perform at least one surgical procedure in response to firing motions applied thereto. An articulation system may operably interface with the elongated shaft assembly for applying articulation motions to the surgical end effector. A firing member assembly may operably interface with the elongated shaft assembly to apply the firing motions to the surgical end effector. A motor may be configured to generate rotary actuation motions. The surgical instrument may further comprise means for selectively applying an output motion from the motor to each of the articulation system and the firing member assembly.


In certain motor-driven surgical instruments, a motor can provide haptic feedback to the operator of the surgical instrument. For example, rotation of the motor can generate vibratory motion or noise, which can depend on the direction and/or speed of the motor's rotation, for example. However, various motors may generate minimal noise, and thus, haptic feedback to the surgeon can be limited and/or may be unappreciated by the surgeon. For example, various modification and/or improvements in motor and/or transmission design may reduce the haptic noise generated by the motor and/or the transmission. In such embodiments, it may be advantageous to modify the motor and/or gear assembly operably coupled to the motor to generate artificial, or intentional, haptic feedback and/or other sensory feedback. In certain embodiments, the surgical instrument can communicate the feedback to the surgeon without requiring the surgeon to look away from the operating site. For example, the motor and/or gears can generate haptic and/or audible feedback to communicate with the surgeon. In such embodiments, the operator need not look at a display screen, for example, to ascertain an operating state or condition of the surgical instrument. As described in greater detail herein, the surgical instrument can communicate the rotational direction of the motor, for example, which can correspond to the firing direction of the firing member and/or the articulation direction of the loading unit, for example. Additionally or alternatively, the surgical instrument can communicate the speed and/or the position of the firing member during a firing stroke, for example, and/or the speed and/or degree of articulation of the loading unit, for example.


In various embodiments, as described in greater detail herein, a motor can be operably coupled to a firing assembly and/or an articulation assembly. Referring to FIG. 168, the motor 7010 can drive a motor shaft 7014, which can engage a gear assembly 7020, for example. In various embodiments, a key, such as key 7016 on the motor shaft 7014, can engage a portion of the gear assembly 7020. In certain embodiments, the gear assembly 7020 can include disks 7022, 7024, for example, which can be structured to rotate or spin along with the motor shaft 7014 when engaged therewith via a key. For example, the first disk 7022 can include a groove (not shown). Furthermore, a first key (not shown) extending from the motor shaft 7014 can engage the groove in the first disk 7022 such that the first disk 7022 rotates clockwise (CW) when the motor shaft 7014 rotates CW and rotates counterclockwise (CCW) when the motor shaft 7014 rotates CCW. In at least one embodiment, the first key can remain engaged with the groove in the first disk 7022 throughout the operation of the surgical instrument and/or motor thereof.


In certain embodiments, the first disk 7022 can be balanced relative to its axis of rotation along the motor shaft 7014. Referring still to FIG. 168, a mass, such as mass 7026, for example, can extend from the first disk 7022 and may shift the center of mass of the first disk 7022 off of the axis of rotation of the first disk 7022. For example, the mass 7026 can extend away from the motor shaft 7014 and/or away from the outer perimeter of the first disk 7022. In other words, the mass 7026 can upset the balance of the first disk 7022, result in a rotational unbalance of the first disk 7022, and thus, generate a centrifugal force when the first disk 7022 rotates with the motor shaft 7014. Consequently, rotation of the first disk 7022 and mass 7026 can generate haptic feedback, such as a vibration or wobble of the surgical instrument housing and/or handle, for example. The haptic feedback can correspond to an operating state or condition of the surgical instrument. Furthermore, the haptic feedback generated by the rotation of the first disk 7022 and the mass 7026 can depend on the rotational speed of the motor shaft 7014. In such embodiments, the firing speed and/or the articulation speed can also be communicated to the surgeon, for example. For instance, the first disk 7022 can generate haptic feedback having a higher frequency when the motor shaft 7014 is rotated faster and a lower frequency when the motor shaft 7014 is rotated slower.


Similar to the first disk 7022, in certain embodiments, the second disk 7024 can be balanced relative to its axis of rotation on the motor shaft 7014. Referring still to FIG. 168, however, a mass, such as mass 7028, for example, can extend from the second disk 7024 and may shift the center of mass thereof. For example, the mass 7028 can extend away from the motor shaft 7014 and/or away from the outer perimeter of the second disk 7024. In other words, the mass 7028 can upset the balance of the second disk 7024, result in a rotational unbalance of the second disk 7024, and thus, generate a centrifugal force when the second disk 7024 rotates with the motor shaft 7014. Consequently, rotation of the second disk 7024 and mass 7028 can generate haptic feedback, such as a vibration or wobble of the surgical instrument housing and/or handle, for example. The haptic feedback can correspond to an operating state or condition of the surgical instrument. Furthermore, the haptic feedback generated by the rotation of the second disk 7024 and mass 7028 can depend on the rotational speed of the motor shaft 7014. In such embodiments, the firing speed and/or the articulation speed can also be communicated to the surgeon, for example. In various embodiments, the first and/or second disks 7022, 7024 can include additional masses, similar to masses 7026 and/or 7028, for example, which can further contribute to a haptic response of the surgical instrument housing and/or handle, for example. Furthermore, in some embodiments, the motor shaft 7014 can operably engage additional and/or different disks of the gear assembly 7120 to selectively generate additional and/or different haptic feedback.


Referring still to FIG. 168, the second disk 7024 can include an inner perimeter 7026. In various embodiments, a second key 7016 can extend from the motor shaft 7014, and can operably engage the second disk 7024 via the inner perimeter 7030. The inner perimeter 7030 can include a plurality of planar surfaces 7032 and a plurality of arcuate surfaces 7034 between adjacent planar surfaces 7032, for example. Each pair of planar and arcuate surfaces 7032, 7034 can define a groove, which can be structured to receive the second key 7016. In certain embodiments, when the key 7016 rotates in a first direction, the key 7016 can abut a planar surface 7032 and become held and/or retained in a groove of the second disk 7024. In such an arrangement, the second disk 7024 can rotate in the first direction along with the motor shaft 7014. Furthermore, in certain embodiments, when the key 7016 rotates in a second direction opposite to the first direction, the key 7016 can rotate past the arcuate surfaces 7034 and may become held and/or retained in the grooves in the inner perimeter 7030. In other words, the key 7016 can rotate relative to the second disk 7024. In such an arrangement, the motor shaft 7014 can rotate in the second direction relative to the second disk 7024. Accordingly, the key 7016 may only engage the second disk 7024 and cause the second disk 7024 to rotate when the motor shaft 7014 rotates in the first direction. In certain embodiments, the first direction can correspond to a CW rotation, and in other embodiments, the first direction can correspond to a CCW rotation.


As described herein, because engagement of the second disk 7024 can depend on the rotational direction of the motor shaft 7014, the second disk 7024 may only rotate when the motor shaft 7014 rotates in one direction, such as when the motor 7010 drives the firing member in one direction and/or rotates the loading unit in one direction. For example, the second disk 7024 may only rotate when the motor 7010 retracts the firing member or rotates the loading unit CW, for example. Such selective engagement of the second disk 7024 can affect the haptic feedback generated by the surgical instrument. In other words, different and/or greater haptic feedback can result based on the selective engagement of the second disk 7024. For example, in embodiments where the second disk 7024 only rotates when the motor 7010 rotates to retract the firing member, a greater haptic feedback can be generated during retraction than during advancement of the firing member. During retraction, the second disk 7024 can also contribute to the generation of haptic feedback, which can result in a greater or larger summation of feedback forces. In such embodiments, the greater haptic feedback generated by the first and second disks 7022, 7024 can communicate to the surgeon that the firing member is being retracted by the motor 7010. In various embodiments, in view of the above, only the first disk 7022 may be rotated when the motor shaft 7014 is rotated in one direction and both disks 7022, 7024 may be rotated when the motor shaft 7014 is rotated in the opposite direction. As such, the disks 7022, 7024 may generate different feedback when the motor shaft 7014 is rotated in different directions.


Referring now to FIG. 169, in certain embodiments, the motor 7010 can drive the motor shaft 7014, which can engage a gear assembly 7120. In various embodiments, a key, such as the key 7016 on the motor shaft 7014, for example, can engage the gear assembly 7120. Similar to the gear assembly 7020, the gear assembly 7120 can include a plurality of disks, such as a first disk 7122 and a second disk 7124. The first and second disks 7122, 7124 can be structured to rotate or spin with the motor shaft 7014 when selectively engaged therewith via a key. For example, the first disk 7122 can include a groove (not shown). Further, a first key (not shown) extending from the motor shaft 7014 can engage the groove of the first disk 7122 such that the first disk 7122 rotates with the motor shaft 7014. In certain embodiments, the first key can be non-disengageable from the groove of the first disk 7122 during use. The second disk 7124 can include an inner perimeter 7130, similar to the inner perimeter 7030 of second disk 7024, for example. The inner perimeter 7130 can comprise a plurality of planar surfaces 7132 and a plurality of arcuate surfaces 7134. As described herein with respect to FIG. 168, the key 7016 can selectively engage and disengage the inner perimeter 7130 of the second disk 7124 depending on the rotational direction of the motor shaft 7014. For example, when the motor shaft 7014 rotates in a first direction, the key 7016 can engage the second disk 7124 causing the second disk 7124 to rotate with the motor shaft 7014. Furthermore, when the motor shaft 7014 rotates in a second direction, the key 7016 can remain disengaged from the second disk such that the key 7016 can rotate relative to the second disk 7024 within the inner perimeter 7130 thereof.


In various embodiments, the first disk 7122 can include at least one pick 7126, and the second disk 7124 can also include at least one pick 7128. When the disks 7122, 7124 rotate, the picks 7126, 7128 can strike elements of an audio feedback generator 7140. For example, the picks 7126, 7128 can strike clickers 7142, 7144 of the audio feedback generator 7140. In various embodiments, the pick or picks 7126 of the first disk 7122 can strike and deflect the first clicker 7142 when the first disk 7122 rotates, and the pick or picks 7128 of the second disk 7124 can strike and deflect the second clicker 7144 when the second disk 7124 rotates. Impact and deflection of the clickers 7142, 7144 can cause the clickers 7142, 7144 to resonate and generate an auditory signal. In other words, the rotation of the first and second disks 7122 can generate audio feedback. Furthermore, the rotational speed of the rotating disks 7122, 7124 and/or the number and arrangement of picks extending from the first and second disks 7122, 7124 can affect the frequency of the auditory signals. In such embodiments, the speed of the motor and corresponding firing speed of the firing element and/or articulation of the speed of the loading unit can be communicated to the surgeon, for example.


Referring primarily to FIGS. 170 and 171, in various embodiments, the geometry of the picks 7126, 7128 can affect the auditory signals generated by the audio feedback generator 7140. For example, the picks 7126, 7128 can each include a non-dampening surface 7150 and a dampening surface 7152. The non-dampening surface 7152 can include a planar surface, for example, and the dampening surface 7152 can include an arcuate surface, for example. In various embodiments, where the non-dampening surface 7150 of the pick 7126 rotationally leads the dampening surface 7152 of the pick 7126 (FIG. 170), resonance of the clicker 7142 can be dampened and/or stopped by the trailing dampening surface 7152 of the pick 7126. For example, the arcuate geometry of the dampening surface 7152 may contact the deflected clicker 7126 to prevent and/or restrain vibration or resonance of the clicker 7126. Conversely, where the dampening surface 7152 of the pick 7126 rotationally leads the non-dampening surface 7150 of the pick 7126 (FIG. 171), resonance of the clicker 7142 may not be dampened by the non-dampening surface 7150 of the pick 7126. For example, the planar geometry of the non-dampening surface 7150 can avoid and/or limit contact with the deflected clicker 7126 such that resonance of the clicker 7126 is permitted and/or less restrained. In other words, the rotational direction of the disks 7122, 1724 and associated picks 7126, 7128 can affect the auditory feedback generated by the surgical instrument. Accordingly, the operator of the surgical instrument can be informed of the operating state of the surgical instrument during its use, and without requiring the surgeon to look away from the surgical site. For example, the audio signals can be dampened when the firing member is retracted, and may not be dampened when the firing member is advanced. In other embodiments, the audio signals can be dampened when the firing member is advanced, and may not be dampened when the firing member is retracted. Furthermore, in some embodiments, the dampened auditory signals can correspond with articulation of the loading unit in one direction, and the un-dampened auditory signals can correspond with articulation of the loading unit in another direction, for example. In various embodiments, at least one audio feedback generator can be used alone and/or in combination with at least one haptic feedback system. Furthermore, in some embodiments, at least one haptic feedback system can be used alone and/or in combination with at least one audio feedback generator. Audio feedback and haptic feedback can communicate different operating conditions to the surgeon and/or can provide duplicative feedback to the surgeon regarding the same operating conditions, for example.


In various embodiments, the surgical instrument can generate feedback when the firing element approaches and/or reaches the end of the firing stroke and/or when the loading unit approaches and/or reaches the articulation limit. In various embodiments, such feedback can be different and/or additional to the feedback generated throughout a firing stroke and/or when the loading unit is articulated. Accordingly, the surgical instrument can notify the operator that the firing stroke is near completed and/or completed, for example, and/or can notify the operator that the loading unit is near the articulation limit and/or has reached the articulation limit.


Referring now to FIG. 172, the motor 7010 and the motor shaft 7014 can be operably engaged with the gear assembly 7120, as described in greater detail above. Furthermore, the disks 7122, 7124 of the gear assembly 7120 can contact an audio feedback generator 7240, which can be similar to audio feedback generator 7140, for example. For example, the picks 7126, 7128 on the disks 7122, 7124 can deflect the clickers 7242, 7244 of the audio feedback generator 7240 causing the clickers 7242, 7244 to resonate and generate auditory feedback. Furthermore, the audio feedback generator 7240 can move or translate relative to the gear assembly 7120. As described in greater detail below, the audio feedback generator 7240 can selectively move into and/or out of engagement with the clickers 7242, 7244 on the disks 7122, 7124 to selectively generate auditory signals. In other embodiments, the motor, gear assembly, and/or the disks thereof can move, such that the picks of the disks are selectively moved into and/or out of engagement with the clickers of an audio feedback generator to selectively generate auditory signals.


In various embodiments, the audio feedback generator 7240 can translate in the surgical instrument as the firing member moves during a firing stroke. For example, at the beginning of the firing stroke, the audio feedback generator 7240 can be misaligned with the picks 7126, 7128 of the disks 7122, 7124. Furthermore, as the firing member moves distally and/or approaches the end of the firing stroke, the audio feedback generator 7240 can move toward and/or into alignment with the picks 7126, 7128 of the disks 7122, 7124. In such embodiments, the audio feedback generator 7240 can generate auditory feedback when the firing member is near and/or at the end of the firing stroke. Referring to FIG. 173, for example, the feedback generator can generate feedback when the firing member is within a range of positions near and/or at the end of the firing stroke, for example, to communicate the position of the firing member to the surgeon. In such embodiments, the surgical instrument can communicate the end of the firing stroke to the operator. For example, referring again to FIG. 172, at least one pick 7126, 7128 can be aligned with at least one clicker 7242, 7244 as the firing member approaches the distal end of the firing stroke. At that time, the surgical instrument can generate a feedback to communicate the position of the firing member to the surgeon. When each pick 7126, 7128 is aligned with one of the clickers 7242, 7242, a greater and/or different feedback can be communicated to the surgeon. Furthermore, as the firing member is retracted, at least one pick 7126, 7128 can again become misaligned with a clicker 7242, 7244 such that a reduced and/or different feedback is communicated to the surgeon. Accordingly, as the feedback generator moves through the firing stroke, the feedback generator can communicate varying feedback to the operator based on the position of the firing member. Furthermore, the gear assembly 7120 can include additional disks and/or picks, which can move into and/or out of engagement with the audio feedback generator 7240, and/or the audio feedback generator 7240 can include additional clickers, which can move into and/or out of engagement with the picks. In various embodiments, an audio feedback generator can communicate alternative and/or additional positions of the firing member to the surgeon. For example, an audio feedback generator can communicate auditory feedback at the midpoint and/or incremental points along the length of the firing and/or retraction path.


Referring now to FIGS. 174 and 175, a movable feedback generator can also be utilized to communicate the articulation limit of the loading unit to the surgeon. For example, the audio feedback generator 7240 depicted in FIG. 172, for example, can translate as the loading unit articulates. For example, when the loading unit is in an unarticulated configuration, the audio feedback generator 7240 can be misaligned with the picks 7126, 7128 of the disks 7122, 7124. Furthermore, as the loading unit articulates, the audio feedback generator 7240 can move toward and/or into alignment with the picks 7126, 7128 of the disks 7122, 7124. In such embodiments, the audio feedback generator 7240 can generate auditory feedback when the loading unit is near and/or at the articulation limit. For example, referring again to FIGS. 174 and 175, the feedback generator can generate feedback when the firing member is within a range of positions near and/or at the end of the firing stroke to communicate the position of the firing member to the surgeon. In such embodiments, the surgical instrument can communicate the articulation limit to the operator. For example, referring again to FIG. 172, at least one pick 7126, 7128 can be aligned with at least one clicker 7242, 7244 as the loading unit approaches its articulation limit, for example, approaches forty-five degrees. At that time, the surgical instrument can generate a feedback to communicate the position of the firing member to the surgeon. When the loading unit is nearer and/or at the articulation limit, each pick 7126, 7128 can be aligned with one of the clickers 7242, 7244, and a greater and/or different feedback can be communicated to the surgeon. Furthermore, as the loading unit is articulated back toward the unarticulated, neutral position, at least one pick 7126, 7128 can again become misaligned with a clicker 7242, 7244 such that a reduced and/or different feedback is communicated to the surgeon. Accordingly, as the feedback generator moves through the firing stroke, the feedback generator can communicate varying feedback to the operator based on the configuration of the loading unit.


In various embodiments, it may be advantageous to protect certain components of a surgical instrument from fluid contact. For example, unintentional contact with a bodily fluid during use can damage the surgical instrument, and may limit and/or shorten the lifespan of the surgical instrument. Furthermore, it may be advantageous to protect certain components of a surgical instrument from fluid contact during sterilization. For example, unintentional contact with a sterilizing and/or cleaning fluid can damage the surgical instrument, and may prevent and/or limit the reusability of a surgical instrument. In various embodiments, certain components of a surgical instrument can be sealed and/or protected from fluid contact. For example, electronics in the surgical instrument can be sealed in epoxy for protection from fluids. Moving components of the surgical instrument, such as portions of the motor and/or the gear assembly, for example, can also be sealed and/or protected from fluid contact. Such a seal can accommodate the rotation of the various moving components, for example. Furthermore, in various embodiments, such a seal can also facilitate heat transfer such that the heat generated during the operation of the surgical instrument is more effectively dissipated.


Referring now to FIGS. 185 and 186, in certain embodiments, a motor 7510 and/or a gear assembly 7520 can be sealed and/or protected from fluids during use and/or during sterilization treatments. The motor 7510 can be similar to the motor 100, for example, and the gear assembly 7520 can be similar to the gear assembly 170, for example. To seal and protect the motor 7510, a motor housing, such as a rubber sleeve, for example, may be positioned around the motor 7510 within the housing 12 (FIG. 1) of the surgical instrument 10 (FIG. 1). Such a rubber sleeve may limit heat transfer from the motor 7510, and the motor 7510 may be prone to overheating. In other embodiments, referring again to FIGS. 185 and 186, the motor housing can comprise a clam-shell cover 7516, for example, which can be positioned around the motor 7510. In various embodiments, the clam-shell cover 7516 can include at least two portions, which can be hinged and/or clasped together, for example. The clam-shell cover 7516 can permit rotation of the motor 7510 and/or a motor shaft. Additionally, in certain embodiments, the clam-shell cover 7516 can facilitate heat transfer from the motor 7510 held herein. A contact arrangement 7512 (FIG. 186), similar to the contact arrangement 210, for example, can be employed to supply electrical current to the motor 7510. The contact arrangement 7512 can include positive and negative annular contacts 7514a, 7514b (FIG. 186), for example, which can operably connect to fixed positive and negative contacts 7518a, 7518b (FIG. 186) held by the clam-shell cover 7516, for example. Furthermore, the clam-shell cover 7516 can include an annular seal or gasket 7519, which can abut the perimeter of the motor 7510, and seal the motor 7510 and contact arrangement 7512 within the clam-shell cover 7516, for example. In certain embodiments, the clam-shell cover 7516 can comprise a metallic material, which can facilitate heat transfer from the motor 7510, for example, and may prevent overheating and/or damage to the motor 7410.


Referring still to FIGS. 185 and 186, the gear assembly 7520 can also be sealed and/or protected from fluids during use and/or sterilization. For example, a gasket 7522 can be positioned between the motor 7510 and the housing of the gear assembly 7520, such that the motor 7510 and gear assembly 7520 form a fluid-tight seal. Furthermore, a sealing sleeve 7530 can be positioned around the housing of the gear assembly 7520. The sealing sleeve 7530 can include a rim 7536, which can abut the clam-shell cover 7516 and/or the motor 7510 to provide a fluid-tight seal therebetween. The sealing sleeve 7530 can also include an opening 7532 for an output shaft 7524. For example, the output shaft 7524 of the gear assembly 7520 can extend through the opening 7532, and fins 7534 can extend toward the output shaft 7524 to provide a fluid-tight seal while permitting rotation of the output shaft 7524 within the opening 7532. In various embodiments, the sealing sleeve 7530 and/or the rims 7536, gaskets, and/or fins 7534 thereof can comprise rubber and/or another suitable material for forming a fluid-tight seal. In various embodiments, a mounting bracket or motor retainer 7540, similar to the retainer 190, for example, can hold the sealed gear assembly 7520 and the motor 7510 within the housing 12 (FIG. 1) of the surgical instrument 10 (FIG. 1).



FIGS. 32-37 illustrate another surgical instrument 910 that may include many of the features of the other surgical instruments disclosed herein. In at least one form, the surgical instrument 910 may include an articulation actuation mechanism, generally designated as 860, which may be substantially similar to those articulation mechanisms disclosed in Zemlok '763, Zemlok '344 and/or U.S. Pat. No. 7,431,188 except for those differences discussed below. In other arrangements, the surgical instrument may include various forms of other articulation actuation mechanisms as described herein. As can be seen in FIG. 32, the instrument 910 includes a housing 12 that may include a barrel-shaped mounting portion 90 that has rotatable member 92 mounted thereon. The rotatable member 92 interfaces with a proximal end of the elongated shaft assembly 16 to facilitate rotation of the elongated shaft assembly 16 relative to the housing 12. Such arrangement permits the clinician to selectively rotate the elongated shaft assembly 16 and the loading unit 20 (or other form of surgical end effector) coupled thereto about the longitudinal tool axis “LA-LA”. The rotatable member 92 may be non-removably mounted on the barrel portion 90 or it may be designed to be selectively detached therefrom.


As disclosed herein, depending upon the type and/or construction of the surgical end effector employed, it may be desirable to supply electric current to the end effector. For example, the end effector may employ sensor(s), light(s), actuators(s), etc. that require electricity for activation. In such arrangements, however, the ability to rotate the surgical end effector about the longitudinal tool axis “LA-LA” can be severely limited because the conductor system transporting power to the surgical end effector or loading unit through the elongated shaft from a source of electrical power may become wound up and severely damaged—particularly in instances where the elongated shaft has been rotated for more than one revolution. Various surgical instruments disclosed herein may employ a conductor management system generally designated as 930 that may avoid those problems.


Referring again to FIG. 32, the surgical instrument 910 may be powered by an electrical power source 200. The electrical power source may, for example, be of the type described in further detail in Zemlok '763. For example, the electrical power source 200 may comprise a rechargeable battery (e.g., lead-based, nickel-based, lithium-ion based, etc.). It is also envisioned that the electrical power source 200 may include at least one disposable battery. In at least one arrangement, for example, the disposable battery may be between about 9 volts and about 30 volts. FIG. 32 illustrates one example wherein the electrical power source 200 includes a plurality of battery cells 202. The number of battery cells employed may depend upon the current load requirements of the instrument 910. It is also conceivable that the electrical power source may comprise a source of alternating current available in the surgical suite. For example, an external power cord and plug (not shown) may be employed to transport alternating current from an outlet in the surgical suite to various components, conductors, sensors, switches, circuits, etc. in the surgical instrument housing and/or end effector. In other applications, the surgical instrument 910 may obtain power from, for example, a robotic system to which it is attached or otherwise associated with.


As can be further seen in FIG. 32, the conductor management system 930 may include a primary conductor member or wire 932 that is coupled to or otherwise interfaces with the electrical power source 200 for receiving power therefrom. The primary conductor member 932 is coupled to a spiral, spool, and/or windable conductor assembly 934 that is supported within the rotatable member 92. In one arrangement, for example, the spiral conductor assembly 934 may be formed or otherwise comprise a ribbon-like conductor 936 that is wound in a spiral fashion in the manner depicted, for example, in FIGS. 36 and 37. For example, the spiral conductor assembly 934 may be fabricated from a spirally wound conductor that may have similar attributes to that of a spirally wound spring such as, for example, a torsion spring. In one form, for example, the conductor 936 may be wound in successive revolutions or wraps as shown in FIGS. 36 and 37. In various arrangements, the conductor 936 may be wrapped for one or more complete revolutions. For example, the conductor 936 illustrated in FIGS. 36 and 37 is configured in more than four complete revolutions.


In various forms, the conductor 936 has a first end 938 that may be fixed, for example, to the barrel portion 90 of the housing 12. In addition, the conductor 936 further has a second end 940 that is attached to or otherwise supported by the rotatable member 92 for rotational travel therewith. Thus, when the rotatable member 92 is rotated in a first rotatable direction about the barrel portion 90, the spirally wound conductor 936 is wound up in a tighter fashion. Conversely, when the rotatable member 92 is rotated in a second rotatable direction, the degree of tightness of the spirally wound conductor 936 may be lessened. In those configurations wherein the rotatable member 92 is removably supported on the barrel portion 90, the first end 938 of the spirally wound conductor 936 may be removably supported in a slot or other mounting cavity 942 in the barrel portion 90. See, e.g., FIGS. 36 and 37. In addition, the primary conductor member 932 may be detachably coupled to the spiral conductor assembly 934 by a connector assembly 933. In particular, a detachable connector assembly 933 may be employed to couple the primary conductor member 932 to the first end of 938 of the spirally wound conductor 936 to facilitate removal of the rotatable member 92 from the barrel portion 90. In other arrangements wherein the rotatable portion 92 is not intended to be removed from the barrel portion, the first end 938 of the spirally wound conductor 936 may be non-removably affixed to the barrel portion 90 and the primary conductor member 932 may be permanently affixed (e.g., soldered) to the first end of the spirally wound conductor 936.


The second end 940 of the spirally wound conductor 936 may be non-removably affixed to the rotatable member 92 by adhesive, mechanical retainers, snap features, etc. In alternative arrangements, the second end 940 of the spirally wound conductor 936 may be removably supported in a slot or other mounting feature provided in the rotatable member 92 to facilitate detachment of the spirally wound conductor 936 from the rotatable portion 92. As can be seen in FIGS. 32 and 33, a secondary shaft conductor member 944 is attached to the second end 940 of the spiral cable assembly 934. The secondary shaft conductor member 944 may be supported within the rotatable member 92 and extend through the hollow elongated shaft assembly 16. For example, the secondary shaft conductor member 944 may extend through the elongated shaft assembly 16 to its distal end to interface with other conductors, sensors, powered components, etc. associated with the surgical end effector, loading unit, etc. attached thereto. Thus, when the clinician rotates the rotatable member 92 relative to the housing 12, the spiral conductor assembly 934 and more particularly, the spirally wound conductor 936 will wind into a somewhat tighter spiral while facilitating the application of power from the power source 200 to the surgical end effector, loading unit, etc. If the clinician rotates the rotatable member 92 relative to the housing 12 in an opposite direction, the spirally wound cable 936 will somewhat unwind while still facilitating the application of power from the electrical power source 200 to the various components, sensors, etc. on the surgical end effector, loading unit, etc.


As can be further seen in FIGS. 34 and 35, the conductor management system 930 may further include a rotation limiter assembly generally designated as 950. In at least one arrangement, for example, the rotation limiter assembly 950 includes a limiter member 952 that is movably attached to the rotatable member 92 and is configured to threadably engage a threaded portion 99 on the barrel 90 of the housing 12. The limiter 952 may include a pair of opposing tabs 954 that are on each side of an axial fin portion 958 formed on the rotatable member 92 as shown in FIG. 33. Such arrangement permits the limiter 952 to move axially within the rotatable member 92 as the rotatable member 92 is rotated on the barrel portion 90 of the housing 12. The opposite end 960 of the limiter member 952 is configured to threadably engage the threaded portion 99 of the barrel 90. An inwardly extending proximal stop wall 962 of the rotatable member 92 and an inwardly extending distal stop wall 964 serve to define a travel distance “TD” that the limiter 942 may axially travel as the rotatable member 92 is rotated on the barrel 90.



FIG. 33 illustrates the limiter 952 approximately midway between the proximal stop wall 952 and the distal stop wall 954. When in that position, rotation of the rotatable member 92 in a first direction relative to the barrel portion 90 will result in the axial travel of the limiter in the distal direction “DD” until the limiter 952 contacts the distal stop wall 964 as shown in FIG. 34. Likewise, rotation of the rotatable member 92 in an opposite direction relative to the barrel portion 90 results in the axial travel of the limiter 952 in the proximal direction “PD” until it contacts the proximal stop wall 962 of the rotatable member 92. Such arrangement thereby limits the number of times that the rotatable member 92 can be rotated completely around the barrel portion 90 to prevent inadvertent damage of the spiral conductor assembly 934. For example, the limiter assembly 950 may enable the clinician to rotate the elongated shaft assembly and, more particularly the rotatable member 92 for at least one full revolution but not more than, for example, three full revolutions about the barrel portion 90 in either direction. However, the number of revolutions, or more particularly, the amount of rotatable travel of the rotatable member 92 on the barrel 90 may be adjusted by adjusting the magnitude of the travel distance “TD”.



FIG. 33 illustrates the limiter 952 in a “neutral” or “central” position wherein the limiter is centrally disposed between the distal stop wall 954 and the proximal stop wall 952. In at least one form, biasing members 980 may be employed to bias the limiter 952 into the neutral position when the elongated shaft assembly 16 and rotatable member 92 are in a corresponding neutral position. When the clinician applies a rotary motion to the rotatable portion 92, the elongated shaft assembly 16 will rotate in the manner described above. However, when the application of the rotary motion to the rotatable member 92 and elongated shaft assembly 16 is discontinued, the biasing members 980 will return the limiter 952 to the neutral position.


For example, at least one surgical instrument may comprise a housing that may include a rotatable member that is supported on a mounting portion of the housing for rotation therearound through a range of rotation. An elongated shaft assembly that defines a longitudinal tool axis may be operably coupled to the rotatable member for rotational travel therewith about the longitudinal tool axis. The surgical instrument may further comprise a source of electrical power and include a conductor management system. The conductor management system may comprise a spool conductor assembly that may be supported in the rotatable member and may include a first conductor end that is fixed to the mounting portion of the housing and a second conductor end that is fixed to the rotatable member for rotation therewith through the range of rotation. The conductor management system may further comprise a primary conductor that may be supported within the housing and be configured to transmit electrical power from the source of electrical power to the spool conductor assembly. A shaft conductor may be coupled to the spool conductor assembly for transmitting electrical power to a distal end of the elongated shaft assembly.


Another surgical instrument example may comprise a housing that includes a rotatable member that is supported on a mounting portion of the housing. The surgical instrument may further comprise an elongated shaft assembly that defines a longitudinal tool axis and which may be operably coupled to the rotatable member for rotational travel therewith about the longitudinal tool axis. The surgical instrument may further comprise a source of electrical power and means for transferring power from the source of electrical power through a conductor that extends through the elongated shaft assembly. The surgical instrument may further comprise means for limiting an amount of rotary travel of the rotatable member about the mounting portion to a range of rotary travel comprising at least one full revolution and not more than three full revolutions about the mounting portion.


As outlined herein, an end effector can be attached to a surgical instrument. As also outlined herein, the surgical instrument can comprise a firing drive configured to fire staples from an end effector including a staple cartridge. Turning now to the exemplary embodiment depicted in FIG. 94, for example, a surgical instrument 9000 can comprise a handle 9010 including a housing, a gripping portion 9012, a firing actuator 9014, and a motor positioned within the housing. The surgical instrument 9000 can further comprise a shaft 9040 including a firing rod 9020 which can be advanced distally and/or retracted proximally by the motor. In certain circumstances, an end effector can comprise a distal portion which can articulate relative to a proximal portion about an articulation joint. In other circumstances, an end effector may not have an articulation joint. The surgical instrument can further comprise an articulation drive configured to articulate at least a portion of the end effector. Referring again to the exemplary embodiment depicted in FIG. 94, for example, the surgical instrument 9000 can comprise an articulation actuator 9070 which can be configured to drive a distal portion of an end effector about an articulation joint. The end effector depicted in FIG. 94, i.e., end effector 9060, does not happen to be an articulatable end effector; however, an articulatable end effector could be utilized with the surgical instrument 9000. In the event that a non-articulatable end effector, such as the end effector 9060, for example, is used with the surgical instrument 9000, the operation of the articulation actuator 9070 may not affect the operation of the end effector 9060.


Further to the above, an end effector can include drive systems which correspond to the drive systems of the surgical instrument. For instance, the end effector 9060 can include a firing member which can be operably engaged with the firing rod 9020 of the surgical instrument 9000 when the end effector 9060 is assembled to the surgical instrument. Similarly, an end effector can comprise an articulation driver which can be operably engaged with an articulation rod of the surgical instrument when the end effector is assembled to the surgical instrument. Furthermore, the end effector 9060, for example, can comprise a proximal connection portion 9069 which can be mounted to a distal connection portion 9042 of the shaft 9040 of the surgical instrument 9000 when the end effector 9060 is attached to the surgical instrument 9000. In various circumstances, the proper assembly of the connection portions, the drive system, and the articulation system of an end effector and a surgical instrument may be required before the end effector can be properly used.


Referring again to FIG. 94, the handle 9010 can comprise a firing trigger 9014 which, when actuated by the user of the surgical instrument 9000, can be configured to operate the motor in the handle 9010. In various circumstances, the handle 9010 can include a controller which can be configured to detect the actuation of the firing trigger 9014. In some instances, the actuation of the firing trigger 9014 can close an electrical circuit in signal communication with the controller. In such instances, the controller can be configured to then operate the motor to advance the firing rod 9020 distally and move a jaw 9062 of the end effector 9060 toward a jaw 9064. In some circumstances, the handle 9010 can include at least one sensor which can be configured to detect the force applied to the firing trigger 9014 and/or the degree to which the firing trigger 9014 is moved. The sensor, or sensors, can be in signal communication with the controller, wherein the controller can be configured to adjust the speed of the motor based on one or more input signals from the sensors. The handle 9010 can comprise a safety switch 9015 which may need to be depressed before the controller will operate the motor in response to input from the firing trigger 9014. In various circumstances, the safety switch 9015 can be in signal communication with the controller wherein the controller can electronically lockout the use of the motor until the safety switch 9015 is depressed. The handle 9010 may also comprise a retraction actuator 9074 which, when actuated, can cause the motor to be operated in an opposite direction to retract the firing rod 9020 and permit the jaw 9062 to move away from the jaw 9064. In various circumstances, the actuation of the retraction actuator 9074 can close an electrical circuit in signal communication with the controller. In some instances, the safety switch 9015 may need to be depressed before the controller will operate the motor in its reverse direction in response to input from the retraction actuator 9074.


Prior to and/or during the use of the surgical instrument 9000, the surgical instrument 9000 and/or certain systems of the surgical instrument 9000 may become inoperative, maloperative, and/or defective. In certain circumstances, such deficiencies, and/or the manner by which to resolve them, may not be readily apparent to the user of the surgical instrument which can cause the user to become frustrated. Moreover, such uncertainties can increase the time needed to address the deficiency, or “error”. The surgical instrument 9000 is an improvement over the foregoing. Referring again to FIG. 94, the controller of the surgical instrument 9000 can be configured to detect an error of the surgical instrument 9000 and communicate that error to the user of the surgical instrument 9000 via one or more indicators. The surgical instrument 9000 can comprise one or more indicators which, when activated by the controller, can indicate the nature of the error and/or otherwise direct their attention to the system of the surgical instrument 9000 that is deficient in some way. For instance, the surgical instrument 9000 can comprise an end effector indicator 9086 which can be, for example, configured to indicate that an end effector has not been assembled to the shaft 9040 of the surgical instrument 9010. In various circumstances, the surgical instrument 9000 can comprise a sensor which can be configured to detect when an end effector has been assembled to the shaft 9040 and/or, correspondingly, when an end effector has not been assembled to the shaft 9040. The sensor can be in signal communication with the controller such that the controller can receive a signal from the sensor and ascertain whether or not an end effector has been assembled to the shaft 9040. In the event that the controller ascertains that an end effector has not been assembled to the shaft 9040, the controller can actuate the end effector indicator 9086. In various circumstances, the end effector indicator 9086 can comprise a light, such as a red light, for example. In some circumstances, the end effector indicator 9086 can comprise a light emitting diode, such as a red light emitting diode, for example. In addition to or in lieu of the above, the surgical instrument 9000 can comprise a sensor in signal communication with the controller which can be configured to detect when the end effector attached to the shaft 9040 has been previously used. For instance, such a sensor could be configured to ascertain that at least some of the staples stored within the end effector have been fired and/or that a staple firing member within the end effector has been previously advanced. In such instances, the controller can actuate the end effector indicator 9086. Thus, the activation of the end effector indicator 9086 can signal to the user of the surgical instrument 9000 that some error exists with regard to the end effector and that such error should be, or must be, addressed prior to operating the surgical instrument 9000. The reader will appreciate from FIG. 94 that the end effector indicator 9086 is adjacent to the distal end of the shaft 9040 and, in various circumstances, can be located on, or near, the distal connection portion 9042 of the shaft 9040. In various circumstances, the end effector indicator 9086 could be located on the end effector 9060. In any event, when the end effector indicator 9086 is illuminated, as a result of the above, the user of the surgical instrument 9000 can quickly ascertain that an error exists and that error pertains to the end effector in some way. The illumination of the end effector indicator 9086 can indicate to the user that the assembly of the end effector to the shaft 9040 may be incomplete and/or that the end effector may need to be replaced.


In addition to or in lieu of the end effector indicator 9086, a surgical instrument can comprise one or more indicators. For instance, the surgical instrument 9000 can comprise a firing trigger indicator 9081. The firing trigger indicator 9081 can be in signal communication with the controller of the surgical instrument 9000 such that, when the controller detects an error related to the firing drive of the surgical instrument 9000, for example, the controller can activate the firing trigger indicator 9081. As illustrated in FIG. 94, the firing trigger indicator 9081 can be positioned adjacent to the firing trigger 9014. In such circumstances, the user of the surgical instrument 9000, upon observing the actuation of the firing trigger indicator 9081, may deduce that an error has occurred related to the firing drive and may begin to diagnose the source of the error. In some circumstances, the controller may activate the firing trigger indicator 9081 when the battery of the surgical instrument 9000 has become defective in some way, for example. For instance, if the voltage of the battery is below a desirable level, the battery may not be able to operate the motor in a desired manner and the firing trigger indicator 9081 may indicate the need to replace the battery, for example. In various circumstances, the controller can currently render one or more operating systems of the surgical instrument 9000 inoperative when the controller illuminates an indicator, such as the end effector indicator 9086 and/or the firing trigger indicator 9081, for example. For instance, the controller can be configured to operably decouple the firing trigger 9014 from the motor such that the actuation of the firing trigger 9014 does not operate the motor when the end effector indicator 9086 and/or the firing trigger indicator 9081 is illuminated, for example. Such an operative decoupling of the firing trigger 9014 from the motor can also indicate to the user of the surgical instrument 9000 that the surgical instrument may have experienced an error and that the user should review the indicators of the surgical instrument 9000 to ascertain the nature of that error.


Referring again to the exemplary embodiment of FIG. 94, the surgical instrument 9000 can comprise a retraction actuator indicator 9085 positioned adjacent to the retraction actuator 9074. Similar to the above, the retraction actuator indicator 9085 can be in signal communication with the controller wherein, in the event the controller detects an error in connection with the retraction drive, for example, the controller can illuminate the retraction actuator indicator 9085. In various circumstances, the controller can illuminate the retraction actuator indicator 9085 in the event that the safety switch 9015 is not depressed prior to actuating the retraction actuator 9074. In such circumstances, the retraction actuator indicator 9085 can serve as a reminder to depress the safety switch 9015. In certain circumstances, the surgical instrument 9000 can comprise a safety switch indicator 9082 positioned adjacent to the safety switch 9015. In some circumstances, the controller of the surgical instrument 9000 can illuminate the safety switch indicator 9082 when the user actuates the retraction actuator 9074 before actuating the safety switch 9015. The safety switch indicator 9082 can be in signal communication with the controller wherein, in the event that the controller detects that the firing system cannot be switched between a firing mode and a retraction mode, for example, the controller can illuminate the safety switch indicator 9082. The surgical instrument 9000 can comprise an articulation actuator indicator 9084 positioned adjacent to the articulation actuator 9070. Similar to the above, the articulation actuator indicator 9084 can be in signal communication with the controller wherein, in the event the controller detects an error in connection with the articulation drive, for example, the controller can illuminate the articulation actuator indicator 9084. The surgical instrument 9000 can comprise a shaft indicator 9083 positioned adjacent to a shaft connection configured to attach the shaft 9040 to the handle 9010. Similar to the above, the shaft indicator 9083 can be in signal communication with the controller wherein, in the event the controller detects an error in connection with the shaft 9040, for example, the controller can illuminate the shaft indicator 9083.


Turning now to FIG. 95, a surgical instrument 9100 can include a handle 9110 including an array of indicators 9190 configured and operated to indicate to the user of the surgical instrument 9100 that one or more errors may exist with regard to the surgical instrument 9100 and/or the end effector attached thereto. The array of indicators 9190 can be arranged in any suitable manner. In various circumstances, the array of indicators 9190 can be arranged in the shape of, or the approximate shape of, the surgical instrument 9100 and/or an end effector attached thereto, for example. In at least one instance, the outer surface of the handle 9110, for example, can include a representation of the surgical instrument 9100 and/or the end effector attached to the surgical instrument. The array of indicators 9190 can be arranged relative to an outline of the surgical instrument and the end effector in a manner configured to convey the portion of the surgical instrument 9100 and/or end effector which is experiencing an error, has experienced an error, and/or may need to be evaluated to address an error, for example. For instance, the outline can be demarcated to depict the end effector 9060, the shaft 9040, the handle 9010, the firing trigger 9014, the safety switch 9015, the reverse actuator 9074, and/or the articulation actuator 9070. In various circumstances, an end effector indicator 9192 can be positioned adjacent the depiction of the end effector 9060, a shaft indicator 9193 can be positioned adjacent the depiction of the shaft 9040, a firing trigger indicator 9191 can be positioned adjacent the depiction of the firing trigger 9014, a safety switch indicator 9195 can be positioned adjacent the depiction of the safety switch 9015, a reverse actuator indicator 9196 can be positioned adjacent the depiction of the reverse actuator 9074, and/or an articulation actuator indicator 9194 can be positioned adjacent the depiction of the articulation actuator 9070, for example. In various circumstances, each of the indicators 9191, 9192, 9193, 9194, 9195, and/or 9196 can comprise a light emitting diode. In some circumstances, each light emitting diode can comprise a red light emitting diode which can be illuminated by the controller to indicate the presence of an error. In various circumstances, the controller can be configured to pulse the illumination of a light emitting diode which may decrease the time needed for the user to realize that an indicator has been illuminated. In certain circumstances, each indicator can include a light emitting diode which can emit more than one color. In some circumstances, each such light emitting diode can be configured to selectively emit a red color and a green color, for example. The controller can be configured to illuminate the light emitting diode with the green color if no error is not detected with regard to the associated portion of the surgical instrument 9100 and/or end effector attached thereto or, alternatively, with the red color if an error is detected with regard to the associated portion of the surgical instrument 9100 and/or the end effector attached thereto.


In some circumstances, as described in greater detail further below, the controller of the surgical instrument 9000 can lock out one or more of the actuators of the surgical instrument, such as firing trigger 9014, retraction actuator 9074, and/or articulation actuator 9070, for example, when the controller illuminates an indicator associated with that actuator. For instance, the controller can lock out the firing trigger 9014 when it illuminates the firing trigger indicator 9081, the retraction actuator 9074 when it illuminates the retraction actuator indicator 9085, and/or the articulation actuator 9070 when it illuminates the articulation actuator indicator 9084. The handle 9010 of the surgical instrument 9000, for example, can comprise a firing trigger lock which can be configured to selectively ‘lock out’ the firing trigger 9014 and prevent the firing trigger 9014 from being actuated. The firing trigger lock can prevent the firing trigger 9014 from being sufficiently actuated to operate the motor of the surgical instrument. In at least one such circumstance, the firing trigger 9014 can be prevented from closing a firing trigger switch. In certain circumstances, the controller of the surgical instrument 9000 can be configured such that it electronically locks out the firing trigger 9014, i.e., prevents battery power from being supplied to the motor, in addition to actuating the firing trigger lock. In such circumstances, the electronic lock out and the mechanical lock out may be redundant; however, the mechanical lock out can provide feedback to the user of the surgical instrument 9000 that the firing drive has been operably deactivated. As mentioned above, the controller of the surgical instrument 9000 can also provide feedback via the firing trigger indicator 9081, for example. In such a way, a user of the surgical instrument 9000 can be provided with tactile feedback and/or visual feedback that an error has occurred. In some circumstances, the tactile feedback may prompt the user of the surgical instrument 9000 to begin searching for the visual feedback. For instance, the user may attempt to actuate the firing trigger 9014 and, upon being unable to actuate the firing trigger 9014, the user may then review the instrument for illuminated indicators. In any event, once the error has been resolved, the controller can unlock the firing trigger 9014 by deactivating the firing trigger lock.


Turning now to FIG. 100, the surgical instrument 9000 can include a firing trigger lock 9390 which can be configured to lock out the firing trigger 9014. The firing trigger lock 9390 can be movable between a locked condition, illustrated in FIGS. 100, 101, and 103, and an unlocked condition, illustrated in FIG. 102. When an end effector is not assembled to the shaft 9040 of the surgical instrument 9000, the firing trigger lock 9390 can be biased into its locked condition. In this locked condition, the firing trigger lock 9330 can block, or at least substantially block, the actuation of the firing trigger 9014. More particularly, the firing trigger lock 9390 can include a shaft rack 9391, a pinion 9392, and a handle rack 9393, and a biasing member, such as a spring, for example, which can be configured to bias the shaft rack 9391 into a proximal position and the handle rack 9393 into a downward position. The proximal position of the shaft rack 9391 and the downward position of the handle rack 9393 are illustrated in FIG. 101. Referring primarily to FIG. 101, the handle rack 9393 can include apertures 9396 and the firing trigger 9014 can include projections 9395 which, when the handle rack is in its downward position, are not aligned with the apertures 9396. More specifically, the firing trigger 9014 can comprise a rocker switch including a fulcrum 9397 wherein, when the handle rack 9393 is in its downward position, rocking of the firing trigger 9014 will cause at least one of the projections 9395 extending from the firing trigger 9014 to abut the handle rack 9393 and prevent the firing trigger 9014 from being completely actuated.


When an end effector is attached to the shaft 9040, further to the above, the firing trigger lock 9390 can be moved between its locked configuration and its unlocked configuration. In the unlocked configuration of the firing trigger lock 9390, referring primarily to FIG. 102, the handle rack 9393 can be in its upward position. In the upward position of the handle rack 9393, the apertures 9396 defined in the handle rack 9393 are aligned with the projections 9395 extending from the firing trigger 9014. In such circumstances, the firing trigger 9014 can be rocked to actuate the firing trigger 9014. More specifically, the projections 9395 can pass through the apertures 9396 to permit the rocking of the firing trigger 9014 about the fulcrum 9397. Thus, in view of the above, the movement of the handle rack 9393 between its downward and upward positions respectively locks and unlocks the firing trigger 9014. Various mechanisms can be utilized to move the handle rack 9393 between its downward position and its upward position. In at least one such embodiment, referring again to FIG. 100, the shaft 9040 can include a firing lock actuator 9399 which can be displaced proximally by an end effector when the end effector is assembled to the shaft 9040. The shaft rack 9391 can be mounted and/or extend proximally from the firing lock actuator 9399 and can include teeth 9391a defined thereon. The teeth 9391a can be meshingly engaged with teeth 9392a defined on pinion gear 9392 such that, when the firing lock actuator 9399 and the shaft rack 9391 are displaced proximally, the pinion gear 9392 can be rotated about an axis. Correspondingly, the handle rack 9393 can comprise rack teeth 9393a defined thereon which are also meshingly engaged with the pinion gear teeth 9392a and, thus, when the shaft rack 9391 is driven proximally, the handle rack 9393 can be driven from its downward position into its upward position thereby unlocking the firing trigger 9014. In order to return the handle rack 9393 to its downward position, the shaft rack 9391 can be moved distally to rotate the pinion gear 9392 in the opposite direction. In various circumstances, the shaft rack 9391 can move distally as a result of an end effector being disassembled from the shaft 9040.


Turning now to FIGS. 96-97, handle 9010, for example, can include a trigger lock 9290. The trigger lock 9290 can comprise a housing 9291, a deployable lock pin 9292, a retainer 9293, and a biasing member 9294 configured to move the lock pin 9294 between an undeployed position, illustrated in FIGS. 96 and 98 and a deployed position, illustrated in FIGS. 97 and 99. In various instances, the retainer 9293 can be comprised of a temperature sensitive material which is affected by heat. In at least one such instance, the temperature sensitive material can be configured to transition between a solid and a fluid, such as a liquid, suspension, and/or gas, for example, and/or between a solid material and semi-solid material, for example. When the temperature sensitive material transitions, or at least partially transitions, between a solid and a fluid, the retainer 9293 can release the lock pin 9294 to lock the firing trigger, and/or any other suitable trigger, of the handle 9010. In various instances, the lock pin 9294, when deployed, can slide behind and/or otherwise engage the firing trigger. A handle can include any suitable number of trigger locks 9290, or the like, to selectively lock out any suitable number of triggers and/or buttons, for example. As the reader will appreciate, the trigger lock 9290 may not be resettable. In such instances, an actuated trigger lock 9290 may permanently lock out the firing trigger, for example, of the handle such that the instrument may no longer be used. A permanent lock out of the firing trigger, and/or any other trigger, of the instrument may mean that the instrument may no longer be usable whatsoever while, in other circumstances, the permanent lock out may not be readily resettable and may require the instrument to be sent to a qualified technician, or facility, for example, who can assess whether the instrument should be reconditioned and reused or whether the instrument should be disposed of. When the heat sensitive material of the retainer 9293 has been at least partially converted to a fluid, it may be assumed by the technician that the instrument was exposed to a temperature which exceeded the transition temperature of the heat sensitive material. In various instances, the transition temperature of the heat sensitive material can be the temperature in which the solid material, for example, liquefies, evaporates, and/or sublimates, for instance. In any event, the heat sensitive material, and, hence, the transition temperature, of the retainer 9293 can be selected such that the release of the lock pin 9294 can indicate that the surgical instrument has been exposed to a temperature which exceeds a certain, or threshold, temperature. In various instances, a surgical instrument can be damaged if it is exposed to an excessive temperature. For instance, the surgical instrument can include solid state electronics, for example, which can be damaged when exposed to such an excessive temperature. In such instances, the threshold temperature of the instrument and the transition temperature of the retainer 9293 can be equal, or at least substantially equal, wherein, as a result, it can be assumed that the instrument has not been exposed to a temperature which exceeds the threshold temperature when the trigger lock 9290 has not been actuated and, correspondingly, that the instrument has been exposed to a temperature which exceeds the threshold temperature when the trigger lock 9290 has been actuated and, as such, the surgical instrument may have been damaged, or may at least require an evaluation as to whether it has been damaged.


Further to the above, a surgical instrument may be exposed to temperatures which exceed the threshold temperature and/or the transition temperature when the surgical instrument is sterilized. Many sterilization procedures are known, several of which include the step of exposing the surgical instrument to heat. In addition to or in lieu of the trigger lock 3290, a surgical instrument can include at least one temperature sensor which can evaluate the temperature in which the surgical instrument is exposed to. In various instances, the temperature sensor, or sensors, can be in signal communication with a controller of the surgical instrument which can be configured to assess whether the surgical instrument has been exposed to a temperature which exceeds the threshold temperature. In at least one such instance, the controller can include a microprocessor and an algorithm which can evaluate the signals received from the temperature sensor, or sensors. In the event that the controller determines that the threshold temperature has been reached and/or exceeded, the controller can permanently prevent the instrument from being operated. Stated another way, the controller can apply an electronic lock out to the surgical instrument. Similar to the above, a permanent lock out of the instrument may mean that the instrument may no longer be usable whatsoever while, in other circumstances, the permanent lock out may not be readily resettable and may require the instrument to be sent to a qualified technician, or facility, for example, who can assess whether the instrument should be reconditioned and reused or whether the instrument should be disposed of. As the reader will appreciate, a power source may be needed to operate the controller and/or sensors of the surgical instrument while the surgical instrument is being sterilized. Several embodiments of surgical instruments include a removable battery, or power source, which is removed prior to sterilizing the surgical instrument wherein, in such instances, the removable battery is sterilized and/or reprocessed separately. Once the removable power source has been removed from these previous instruments, as the reader will appreciate, the controller and/or sensors may not have sufficient power to monitor the temperature of the surgical instrument. Embodiments of surgical instruments disclosed herein can include a battery, or power source, which is not removed from the surgical instrument when it is reprocessed. Such a battery may be referred to as a permanent battery as it may supply power to the controller and/or temperature sensors while the instrument is being sterilized. In various instances, an instrument including a permanent battery may also include a removable and/or rechargeable battery. In any event, the instrument may have sufficient power to detect and record the temperature that the instrument is exposed to. In at least one instance, the controller of the instrument can include a memory chip configured to store the temperature readings, such as in a temperature register, for instance. In various circumstances, the controller can record readings from the sensors intermittently, i.e., at an appropriate sampling rate. In some instances, the controller can be configured such that, when it records a temperature reading above a certain temperature, albeit below the threshold temperature, the controller can increase the sampling rate. Correspondingly, the controller can be configured such that, when it subsequently records a temperature reading below the certain temperature, the controller can decrease the sampling rate, such as back to its original sampling rate, for instance.


Turning now to FIG. 99A, an algorithm for the controller is depicted. In certain instances, this algorithm can comprise a start-up procedure for the surgical instrument such as when the surgical instrument is first used after it has undergone a sterilization process, for instance. The start-up procedure can commence after the instrument has been turned on. The instrument can be automatically turned on when an end effector is assembled to the instrument. In at least one such instance, the assembly of the end effector to the surgical instrument can close a switch in signal communication with the controller. In addition to or in lieu of the above, the instrument can be turned on when a button and/or switch is depressed on the handle, for example. In any event, the controller can then evaluate temperature readings stored in the memory chip, discussed above. For instance, the controller can evaluate whether any of the stored temperature readings are equal to or greater than the threshold temperature. If the controller determines that all of the stored temperature readings are below the threshold temperature, the controller can proceed with its normal startup procedure. If the controller determines that one or more stored temperature readings are equal to or exceed the threshold temperature, the controller can proceed with an alternate procedure. In at least one instance, the controller can permanently disable the instrument such as by implementing an electronic lockout and/or a mechanical lockout, as discussed elsewhere in this application. In certain other instances, the controller can permit the instrument to be used even though the controller has determined that one or more stored temperature readings is equal to or exceeds the threshold temperature. The controller can store that determination in its memory and/or indicate to the user through a display, such as a light emitting diode, for example, that the threshold temperature had been previously exceeded and then proceed with its normal startup procedure. In various instances, the controller can treat the threshold temperature as an absolute maximum, i.e., a single temperature reading at or above the threshold temperature is sufficient to trigger an alternative startup program or permanently lockout the instrument. In other instances, the controller can be configured to evaluate whether a pattern of temperature readings at or above the threshold temperature is sufficient to trigger an alternative startup program or permanently lockout the instrument as both time and temperature may be factors to consider whether an instrument has been compromised from a sterilization procedure, for example.


Turning now to FIGS. 104-109, a surgical instrument, such as the surgical instrument 9000, for example, can include a handle 9410 including a firing trigger lock system 9490. The handle 9410 can be similar to the handle 9110 in many respects and such respects are not repeated herein for the sake of brevity. Similar to the above, the firing trigger lock system 9490 can be configured to lock and unlock a firing trigger 9414. Also similar to the above, the firing trigger lock system 9490 can be biased into a locked condition when an end effector is not assembled to the shaft 9040 of the surgical instrument, as illustrated in FIGS. 104-107, and moved into an unlocked condition when an end effector is fully assembled to the shaft 9040, as illustrated in FIGS. 108 and 109. When an end effector is assembled to the shaft 9040, further to the above, referring primarily to FIGS. 108 and 109, the end effector can push the sensing member 9499 proximally. The sensing member 9499 can extend through the shaft 9040 from a distal end of the shaft 9040 to a proximal end thereof. In use, the end effector can abut the distal end of the sensing member 9499 when the end effector is assembled to the shaft 9040 and push the sensing member 9499 proximally, as outlined above. When the sensing member 9499 is pushed proximally, as illustrated in FIGS. 108 and 109, the sensing member 9499 can contact a swing arm 9486 of the firing trigger lock system 9490 and rotate the swing arm 9486 upwardly. The swing arm 9486 can comprise an end pivotably mounted to the handle housing via a pin 9487 which is configured to permit the swing arm 9486 to rotate about an axis. The swing arm 9486 can further comprise a cam follower portion 9488 which can be contacted by the sensing member 9499. In use, the sensing member 9499 can move the swing arm 9486 between a downward position and an upward position in order to move the firing trigger lock system 9490 between a locked position and an unlocked position, respectively. The firing trigger lock system 9490 can further include a lock pin 9485 mounted to the swing arm 9486 which can be pulled upwardly when the swing arm 9486 is rotated upwardly and, correspondingly, pushed downwardly when the swing arm 9486 is rotated downwardly. The lock pin 9485 can comprise an upper end pivotably mounted to the swing arm 9486 and a lower end that extends through an aperture 9483 defined in the firing trigger 9481 when the lock pin 9485 is in its downward position. In various circumstances, the aperture 9483 can be defined in an arm 9482 extending from the firing trigger 9414. When the lock pin 9485 is positioned within the aperture 9483, the firing trigger 9414 may not be pivoted about its fulcrum 9484 and, as a result, the firing trigger 9414 may not be actuated by the user. When the lock pin 9485 is in its upward position, the lock pin 9485 may not be positioned within the aperture 9483 and, as a result, the firing trigger 9414 may be actuated by the user. When the end effector is disassembled from the shaft 9040, the sensing member 9499 can be moved from its proximal position to its distal position. Stated another way, without an end effector attached to the shaft 9040, a biasing member, such as spring 9489, for example, can bias the swing arm 9486 downwardly and, accordingly, bias the firing trigger lock system 9490 into its locked condition. Moreover, the spring 9489 can apply a biasing force to the sensing member 9499 through the arm 9482 and push the sensing member 9499 distally when an end effector is not assembled to the shaft 9040.


Further to the above, the operation of the sensing member 9499 and the firing trigger lock system 9490 can serve to communicate with the user of the surgical instrument. For instance, when an end effector is not assembled to the shaft 9040, the sensing member 9499 is biased distally and the firing trigger 9414 will be locked out wherein, if the user were to attempt to actuate the firing trigger 9414, the user would quickly realize that something may be wrong with the firing system of the surgical instrument. In this example, the user would quickly realize that an end effector needs to be assembled to the shaft 9040 in order to use the surgical instrument. In various circumstances, the firing trigger could be locked out if an end effector, although attached to the shaft 9040, had been used. In at least one such circumstance, the end effector could include a firing member which, when positioned in its proximal-most position, could push a sensing member proximally when the end effector is assembled to the shaft 9040; however, if such a firing member has already been at least partially advanced when the end effector is assembled to the shaft 9040, the sensing member may not be pushed proximally and, as a result, the firing trigger may remain locked out. Again, such a firing trigger lock out can communicate to the user that a problem exists with the firing drive; namely, in this circumstance, that the end effector has already been used. Absent such a tactile lockout, the user would experience circumstances in which they are able to depress an actuator without the surgical instrument responding to the depressed actuator thereby possibly leading to the confusion of the user.


As discussed above, the assembly of a previously-unfired end effector to the shaft 9040 can push a sensing member proximally to unlock the firing trigger. In various circumstances, the sensing member and the firing trigger lock system can be configured such that the firing trigger is not unlocked until the end effector is completely assembled to the shaft 9040. In the event that the end effector is only partially assembled to the shaft 9040, the sensing member may not be sufficiently displaced to unlock the firing trigger. Again, such a firing trigger lockout can communicate to the user that a problem exists with the firing drive; namely, in this circumstance, that the end effector has not been completely assembled to the shaft 9040.


As described herein, an end effector can be assembled to surgical instrument which can include a controller configured to identify the end effector. In some instances, the controller can be configured to assess the identity of the end effector when the controller is activated. In certain instances, turning now to FIG. 176, the controller can be activated when a battery is inserted into the handle. In addition to or in lieu of the above, the controller can be configured to assess the condition of the surgical instrument when the controller is activated. For example, the controller can be configured to assess the position of the closure member of the closing system, the position of the firing member of the firing system, and/or the position of the articulation member of the articulation system. In certain instances, the surgical instrument can include an absolute positioning sensor to detect the position of the firing member. Such a sensor is disclosed in U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, which was filed on Mar. 14, 2013, the entire disclosure of which is incorporated by reference herein. In some instances, the surgical instrument can include an end of stroke register. Such an end of stroke register can comprise a mechanical switch, counter, and/or toggle and/or an electronic switch, counter, and/or toggle including data stored in nonvolatile memory. In such an embodiment, the controller can assess whether the previous firing stroke had been completed. Such embodiments can be helpful in a multitude of situations. For instance, the controller may be accidentally shut off or otherwise lose power during a surgical procedure and, when the controller is reactivated, the controller may not be able to assess whether the instrument is being initialized for the first time or whether the instrument was in the middle of a previous firing stroke. The end of stroke register can assist the controller in discerning between these two events. Moreover, an end of stroke of register that is not lost or reset by a power loss or interruption to the instrument can allow the controller to assess whether the surgical instrument had lost power during a firing stroke. If the controller determines that the previous firing stroke had not been completed, the controller can be configured to, one, permit power to be supplied to the motor to finish the firing stroke and/or, two, permit power to be supplied to the motor to retract the firing member, the closure member, and/or the articulation member to their home, or unactuated, positions. In various instances, the controller can provide the user of the surgical instrument with the option of proceeding with the firing stroke or returning the mechanical systems and/or electrical systems of the instrument to their original, or unactuated, positions. In such embodiments, the surgical instrument may not automatically return these systems to their original, or unactuated, positions. In any event, once the surgical instrument is in its home, or unactuated, condition, a previously fired end effector can be disassembled from the surgical instrument and/or an unfired end effector can be assembled to the surgical instrument. In various instances, as outlined herein, the surgical instrument can then identify, or at least attempt to identify, the unfired end effector.


Turning now to FIG. 177, a controller of a surgical instrument can perform a diagnostic check of the instrument and/or battery. For instance, upon activation of the controller, the surgical instrument can evaluate whether the surgical instrument had been exposed to a temperature beyond the threshold temperature of the surgical instrument, as described herein. Also, for instance, the surgical instrument can evaluate the available power, voltage, and/or current of the battery, as also described herein. If the instrument fails one or more of these diagnostic tests, the controller may not supply power to the motor, physically lockout the instrument, and/or indicate such failure to the user of the surgical instrument. In such circumstances, the instrument may record such failures in its memory so that the test data may assist a technician in later evaluating the instrument. Assuming that the instrument passes these diagnostic tests, the instrument, similar to the above, may also record the test data associated with passing the diagnostic tests. In any event, the instrument may then proceed to evaluate whether the instrument is in a home, or unactuated, condition and assess the identity of the end effector. As outlined herein, a procedure for identifying the end effector is disclosed. Also disclosed herein is a procedure for assessing whether a ‘smart’ end effector or a ‘dumb’ end effector is attached to the surgical instrument. In various instances, a ‘smart’ end effector can be an end effector which can supply parameters and/or at least a portion of an operating program to the surgical instrument as part of the identification process. A ‘smart’ end effector can be an end effector which somehow identifies the manner in which the end effector is to be used by the surgical instrument. In certain instances, a ‘dumb’ end effector is an end effector which does not identify the manner in which it is to be used with the surgical instrument in any way. An exemplary operating procedure in accordance with the above is outlined in FIG. 178.


As discussed herein, a battery can be utilized to power a surgical instrument. In various instances, the surgical instrument and/or battery can be configured to assess whether the battery can supply sufficient power to the surgical instrument to perform one or more functions. In certain instances, the surgical instrument and/or the battery can be configured to indicate to the user of the surgical instrument that the battery has sufficient power to perform one or more functions. FIG. 179 depicts a circuit configured to indicate the voltage of a battery. Such a circuit can be present in the surgical instrument and/or the battery. In either event, a circuit can include a plurality of indicators which can be indicative of the charge, voltage, and/or power that can be supplied by the battery. For instance, the circuit can include three indicators including a first indicator configured to indicate that the battery includes at least a first voltage, a second indicator configured to indicate that the battery includes at least a second voltage, and a third indicator configured to indicate that the battery includes at least a third voltage. As illustrated in FIG. 179, a circuit 12100 can include a first indicator circuit 12110, a second indicator circuit 12120, and a third indicator circuit 12130 which are arranged in parallel with one another. When switch 12101 is closed, a voltage potential from the battery can be applied across the indicator circuits 12110, 12120, and 12130. The first indicator circuit 12110 can include a Zener diode 12111, a light emitting diode 12112, and a resistor R112113. Similarly, the second indicator circuit 12120 can include a Zener diode 12121, a light emitting diode 12122, and a resistor R212123 and the third indicator circuit 12130 can include a Zener diode 12131, a light emitting diode 12132, and a resistor R312133. The Zener diodes 12111, 12121, and 12131 can each have a different breakdown voltage. For instance, the first Zener diode 12111 can have a breakdown voltage of 11.5V, for example, the second Zener diode 12121 can have a breakdown voltage of 10V, for example, and the third Zener diode 12131 can have a breakdown voltage of 8V, for example. In such an embodiment, if the voltage of the battery is greater than or equal to 11.5V, the LEDs 12112, 12122, and 12132 will be illuminated. The illumination of all of the LEDs can indicate to the user of the surgical instrument that the battery has a full charge and/or at least a sufficient charge to perform any function required by the surgical instrument. If the voltage of the battery is greater than or equal to 10V, but less than 11.5V, the LEDs 12112 and 12122 will be illuminated; however, LED 12132 will not be illuminated. The illumination of LEDs 12112 and 12122, but not LED 12132, can indicate to the user of the surgical instrument that the battery has less than a full charge, but at least a sufficient charge to perform any function required by the surgical instrument. If the voltage of the battery is greater than or equal to 8V, but less than 10V, the LED 12112 will be illuminated; however, LEDs 12122 and 12132 will not be illuminated. The illumination of LED 12112, but not LEDs 12122 and 12132, can indicate to the user of the surgical instrument that the battery is nearing the end of its charge and may or may not have a sufficient charge to perform certain functions required by the surgical instrument. Such a display of the LEDs can indicate that the battery may need to be replaced. If the voltage of the battery is less than 8V, none of the LEDs 12112, 12122, and 12132 will be illuminated. Such a display of the LEDs can indicate that the battery may not be usable to reliably perform any function of the surgical instrument. While circuit 12100 utilizes three indicator circuits 12110, 12120, and 12130, a circuit can include more than three indicator circuits having Zener diodes with different breakdown voltages. Such an embodiment can provide a more finely graduated indication of the voltage of the battery, for instance. Other embodiments are envisioned which utilize only two indicator circuits.


In various instances, a battery can include a circuit configured to indicate that the battery is charged and/or has a charge sufficient enough that it can be used with a surgical instrument. In certain instances, a surgical instrument can include a circuit configured to indicate that a battery attached thereto is charged and/or has a charge sufficient enough that it can be used with the surgical instrument. In either event, turning now to FIG. 180, a circuit 12200 can include a microprocessor 12201 which includes one or more gates in communication with the battery, which can be a 9V battery, for example. The circuit 12200 can further comprise a capacitor 12202, such as a 10 microFarad capacitor, for example, which can receive power from a circuit including diode 12203 and resistor 12204. The circuit 12200 can further comprise a LED 12205 and a resistor 12206 in the discharge path of capacitor 12202. Such a circuit can cause the LED 12205 to pulse intermittently so long as the battery can supply sufficient power to the circuit 12200. In such instances, a user could identify the pulsing LED 12205 and would know that the battery had at least some power, if not sufficient power, to be used with the surgical instrument. If the user does not identify that the LED 12205 is pulsing, the user can assume that the battery lacks sufficient power to be used.


In various circumstances, as discussed herein and referring to FIG. 284, a battery and/or a surgical instrument configured to be used with the battery can include a diagnostic circuit configured to evaluate the power, voltage, and/or current that the battery can supply. Turning now to FIG. 184, a battery diagnostic circuit 12300 is disclosed. Such a circuit can be configured to evaluate the battery before it has been used with a surgical instrument, while it is being used with a surgical instrument, and/or after it has been used with a surgical instrument. In various instances, the battery can be used more than once and, in various instances, the battery may be rechargeable or non-rechargeable. The uses of the battery, and the information obtained during the diagnostic evaluation of the battery, can be stored in a memory chip in the battery and/or the surgical instrument. FIG. 183 depicts a table of information 12400 which is representative of the type of information that could be recorded on the memory chip. For instance, the number of uses can be recorded. For each use, the maximum voltage and/or the maximum current that the battery is charged with, or re-charged with, can be recorded, for instance. For each use, the current capacity, the current used in mA, the current used in Ah, and/or the minimum voltage experienced during use can be recorded, for instance. For each use, the time in which the battery is charged, the time in which the battery is used, the temperature of the battery while being charged, and/or the temperature of the battery while being used can be recorded, for instance. These are merely a few examples of the information that can be stored. In various instances, such information can be utilized by the surgical instrument and/or a technician to evaluate the previous performance of the battery and/or the suitability of the battery for further use, for example.


In various instances, turning now to FIG. 182, a battery and/or a surgical instrument used with the battery can include a circuit for turning off the battery once the charge of the battery has fallen below a minimum charge level. In some instances, a lithium ion battery cell may have a thermal incident if it is used below the minimum charge level and a shut-off circuit inhibiting the use of the battery below this minimum charge level may inhibit such a thermal incident from occurring.


In various instances, turning now to FIG. 181, a surgical instrument can include a controller configured to perform a diagnostic check of the instrument and/or the battery assembled thereto. For instance, the controller can include a clock and a memory chip configured to evaluate and record when the instrument and/or battery has been used. In certain instances, the controller can be configured to disable the instrument and/or battery if it has been too long since the last time that the instrument and/or battery had been used. In certain instances, the instrument and/or battery can include one or more sensors which can be configured to evaluate various conditions of the instrument and/or battery, such as the temperature, the humidity, and/or the time in which the instrument and/or battery are exposed to the temperature and/or humidity, for example. The controller can be configured to evaluate whether the sensors are operating correctly and, if not, the controller can disable the instrument and/or battery. The controller can also be configured to evaluate the number of times that the instrument and/or battery have been used and, if the uses exceed a certain amount, disable the instrument and/or battery. The controller can also be configured to evaluate the power that the battery can supply, as outlined herein, and, if the available power is insufficient, disable the instrument and/or battery.


As described herein, a surgical instrument can include various sensors for gathering feedback and/or other instrument status information. Furthermore, the surgical instrument can include sensory indicators for providing feedback and/or instrument status information to the user. In certain instances, an endoscope can be used in connection with the surgical instrument to provide additional feedback and/or instrument status information to the user. As described herein, the endoscope and the surgical instrument can be in signal communication with a display, which can depict the feedback from the endoscope and/or from the sensors of the surgical instrument, for example. Referring now to FIGS. 75-93, an endoscope 5018 (FIG. 93) can be in signal communication with a display 5002 (FIG. 75). In certain embodiments, the display 5002 can comprise a heads-up display (HUD) and/or a video monitor, for example. Furthermore, the display 5002 can be a plasma screen, an LCD screen, or an electroluminescent screen, for example. In various embodiments, the display 5002 can broadcast a first layer of information 5010, which can include video feedback, for example. The video feedback can be feedback of images viewed by an endoscope 5018 (FIG. 93) at a surgical site, for example, and can depict at least a portion of a surgical instrument 5020 as viewed by the endoscope 5018, for example.


In various embodiments, the display 5002 can include a touch screen 5004. Referring primarily to FIG. 75, a user can interact with the touch screen 5004 to interface with the display 5002 and/or the surgical instrument 5020. For example, the touch screen 5004 can communicate with the display 5002, and inputs to the touch screen 5004 can adjust and/or modify the information depicted on the display 5002. In such embodiments, the user can communicate with the display 5002 without utilizing an additional input to the display, such as a keyboard and/or computer mouse, for example. In other words, additional input tools and/or parts may not be required to adjust and/or modify the information depicted on the display 5002. Furthermore, in various embodiments, the touch screen 5004 can be easily cleaned and/or sterilized. For example, the touch screen 5004 can include a flat surface that can be easily wiped clean within a surgical suite and/or operating room. Additionally or alternatively, the touch screen 5004 can directly and/or indirectly communicate with the surgical instrument 5020, such that input to the touch screen 5004 provides input to the surgical instrument 5020. The user may be a surgeon, operator, and/or assistant, for example.


In various embodiments, the touch screen 5004 can be positioned over at least a portion of the display 5002, and may be removably secured to the display 5002, for example. For example, the touch screen 5004 can be compatible with multiple displays, and can be releasably attached and unattached from at least one display. Furthermore, in certain embodiments, the touch screen 5004 can be an independent display, which can operate independently of the display 5002. For example, a detachable LCD screen can comprise the touch screen 5004, and the detachable LCD screen can overlay at least a portion of the display 5002. In other embodiments, the touch screen 5004 can be integrated into the display 5002. The touch screen 5004 can utilize resistive technology, capacitive technology, ultrasonic sound beam technology, and/or near field imaging technology, for example.


Referring primarily to FIG. 93, in various embodiments, a feedback controller 5016 can be in signal communication with the surgical instrument 5020, the endoscope 5018, and/or the display 5002. In certain embodiments, a wired and/or wireless connection 5017 between the feedback controller 5016 and the endoscope 5018 can provide video feedback from the endoscope 5018 to the feedback controller 5016. Furthermore, a wired and/or wireless connection 5019 between the feedback controller 5016 and the surgical instrument 5020 and/or the microcontroller of the surgical instrument 5020 can provide the feedback data measured and/or detected by the surgical instrument 5020 to the feedback controller 5016. For example, various sensors are described herein, as well as in Zemlock '263 and Zemlock '344, the entire disclosures of which have been incorporated herein, and the various sensors can detect feedback and/or instrument status information. Additionally, a wired and/or wireless connection 5015 between the feedback controller 5016 and the display 5002 can provide the feedback data from the surgical instrument 5020 and/or the video feedback from the endoscope 5018 to the display 5002. In at least one embodiment, the video feedback can be depicted in the first layer of information 5010 on the display 5002, and the feedback data can be depicted in a second layer of information 5012 on the display 5004. In embodiments where a detachable LCD display comprising the touch screen 5004 is positioned over the display 5002, a wired and/or wireless connection between the feedback controller 5016 and the detachable LCD display can provide the feedback data to the detachable LCD display and/or from the LCD display to the feedback controller 5010, for example.


Referring primarily to FIG. 76, the display 5002 can broadcast the first layer of information 5010, which can comprise the video feedback from the endoscope 5018 (FIG. 93), for example. In various instances, the video feedback 5010 can include a depiction of the surgical instrument 5020 affecting tissue T. In various embodiments, surgical instrument 5020 can be similar to surgical instrument 10 (FIG. 1), for example, and the disposable loading unit (DLU) and/or an end effector 5022 coupled to the surgical instrument can be similar to loading unit 20 (FIG. 2), for example. The DLU 5022 of the surgical instrument 5020 can articulate relative to the tissue T, grasp and/or clamp the tissue T between a pair of jaws, staple the tissue T, and/or cut the tissue T with a cutting element, as described herein. Furthermore, the endoscope 5018, which can be positioned at and/or near the surgical site, can view the DLU 5022 and can transmit the video feed and/or recording to the feedback controller 5016 (FIG. 93). In various embodiments, the video feedback in the first layer of information 5010 on the display 5002 can provide live, visual feedback of the surgical site to the operator of the surgical instrument 5020.


Referring primarily to FIG. 77, the display 5002 can display a second layer of information 5012. Furthermore, a user can select, move, resize, minimize, expand, modify, and/or otherwise manipulate the second layer of information 5012. For example, the user can manipulate the second layer of information 5012 by interfacing with the touch screen 5004. As described herein, the second layer of information 5012 can include feedback data from the surgical instrument 5020 and/or controls for controlling the surgical instrument 5020. In various embodiments, the second layer of information 5012 can include a control panel 5030, and the touch screen 5004 can be used to select and/or utilize features of the control panel 5030. The control panel 5030 can be collapsible, resizable, moveable, and/or otherwise manipulatable by way of the touch screen 5004. For example, a user can minimize or collapse the control panel 5030 by selecting the minimize/maximize icon 5032, and can maximize or un-collapse the control panel 5030 by re-selecting the minimize/maximize icon 5032. Furthermore, a user can move the control panel 5030 on the display 5002 by “dragging and dropping” the control panel 5030 across the display 5002, for example. Additionally, a user can resize the control panel 5030 relative to the display 5002 by “zooming in” and/or “zooming out” multiple contact points on the touch screen 5004. A person having ordinary skill in the art will appreciate that various conventional and/or intuitive contacts to the touch screen 5004 can be utilized to modify and/or manipulate the second layer of information 5012 and/or the control panel 5030 thereof, for example.


Referring still to FIG. 77, the control panel 5030 can include a plurality of menus, categories, and/or classifications. For example, the control panel 5030 can include an instrument feedback menu 5036, a display menu 5060, and/or an instrument controller menu 5070. A user can utilize the control panel 5030 to select a menu and/or to switch between operational states of the touch screen 5004. For example, the touch screen 5004 can communicate directives and/or controls to the instrument controller 5016 (FIG. 93) and/or the microcontroller when a user selects the instrument controller menu 5070 of the control panel 5030. In such embodiments, as described herein, the touch screen 5004 may operate in an instrument-control state. Furthermore, the settings related to the secondary layer of information 5012 and/or the display 5002, for example, can be modified by a user when the display menu 5060 is selected from the control panel 5030. In such embodiments, the touch screen 5004 may operate in a setting-modification state. Additionally or alternatively, the feedback data included in the secondary layer of information 5012 can be modified by a user when the instrument feedback menu 5036 is selected. In such embodiments, the touch screen 5004 may operate in a feedback-manipulation state. In various embodiments, the control panel 5030 can include additional and/or fewer menus, categories, and/or classifications. Furthermore, the various menus, categories, and/or classifications of the control panel 5030 can be modified according to the user's preferences, for example. The menus, categories, and/or classifications can be verbally and/or symbolically indicated in the second layer of information 5012. In various embodiments, the categories under each menu 5036, 5060, 5070 may be selectively depicted in the second layer of information 5012. For example, the categories under each menu 5036, 5060, 5070 may only be depicted in the second layer of information 5012 when the respective overlying menu 5036, 5060, 5070 is selected by the user. In other embodiments, the user can manually minimize and/or maximize categories and/or subcategories corresponding to each menu 5036, 5060, and/or 5070, for example.


Still referring to FIG. 77, the instrument feedback menu 5036 can include a plurality of feedback categories, and can relate to the feedback data measured and/or detected by the surgical instrument 5020 (FIG. 93) during a surgical procedure. As described herein, the surgical instrument 5020 can detect and/or measure the position of a moveable jaw between an open orientation and a closed orientation, the thickness of clamped tissue, the clamping force on the clamped tissue, the articulation of the DLU 5022, and/or the position, velocity, and/or force of the firing element, for example. Furthermore, the feedback controller 5016 (FIG. 93) in signal communication with the surgical instrument 5020 can provide the sensed feedback to the display 5002, which can display the feedback in the second layer of information 5012. As described herein, the selection, placement, and/or form of the feedback data displayed in the second layer of information 5012 can be modified based on the user's input to the touch screen 5004, for example.


In various embodiments, the display menu 5060 of the control panel 5030 can relate to a plurality of categories, such as unit systems 5062 and/or data modes 5064, for example. In certain embodiments, a user can select the unit systems category 5062 to switch between unit systems, such as between metric and U.S. customary units, for example. Additionally, a user can select the data mode category 5064 to switch between types of numerical representations (FIGS. 79-81) of the feedback data and/or types of graphical representations (FIGS. 82-83) of the feedback data, for example. The numerical representations of the feedback data can be displayed as numerical values and/or percentages, for example. Furthermore, the graphical representations of the feedback data can be displayed as a function of time (FIG. 82) and/or distance (FIG. 83), for example. As described herein, a user can select the instrument controller menu 5070 from the control panel 5030 to input directives for the surgical instrument 5020 (FIG. 93), which can be implemented via the instrument controller 5016 (FIG. 93) and/or the microcontroller, for example.


Referring now to FIG. 78, the second layer of information 5012 can overlay at least a portion of the first layer of information 5010 on the display 5002. Furthermore, the touch screen 5004 can allow a user to manipulate the second layer of information 5012 relative to the video feedback in the underlying first layer of information 5010 on the display 5002. For example, a user can operate the touch screen 5004 to select, manipulate, reformat, resize, and/or otherwise modify the information displayed in the second layer of information 5012. In certain embodiments, the user can use the touch screen 5004 to manipulate the second layer of information 5012 relative to the surgical instrument 5020 depicted in the first layer of information 5010 on the display 5002. A user can select a menu, category and/or classification of the control panel 5030 thereof, for example, and the second layer of information 5012 and/or the control panel 5030 can be adjusted to reflect the user's selection. In various embodiments, a user may select a category from the instrument feedback category 5036 that corresponds to a specific feature or features of the surgical instrument 5020 depicted in the first layer of information 5010. Feedback corresponding to the user-selected category can move, locate itself, and/or “snap” to a position on the display 5002 relative to the specific feature or features of the surgical instrument 5020. For example, the selected feedback can move to a position near and/or overlapping the specific feature or features of the surgical instrument 5020 depicted in the first layer of information 5010.


Referring to FIGS. 79 and 80, if a user selects the knife progression category 5040 from the instrument feedback menu 5036, for example, the sensed data and/or information related to the progression of the knife can move and/or “snap” to a position in the second layer of information 5012 relative to the knife of the DLU 5022 depicted in the first layer of information 5010, for example. Furthermore, the control panel 5030 can be collapsed and/or minimized after the user selects the desired category or categories from the instrument feedback menu 5036. Feedback data 5052 related to the progression of the knife can be depicted on the display 5002 near the detected knife of the DLU 5022 depicted in the first layer of information 5010, and can move between a first position (FIG. 79) when the knife is near the beginning of the firing stroke and a second position (FIG. 80) when the knife is near the distal end of the firing stroke, for example, as the knife translates and/or moves through the DLU 5022. For example, when the knife has translated a distance X mm, the data 5052 related to the knife's progression can be positioned in the first position (FIG. 79), and, when the knife has translated a distance Y mm, the data 5052 related to the knife's progression can be positioned in the second position (FIG. 80). In such embodiments, the operator may track the progression of the knife during the firing stroke by viewing the feedback data 5052 on the screen 5002. For example, when the knife of the DLU 5022 is blocked from view by the end effector jaws 5024 and/or tissue T, for example, the operator can track and/or approximate the position of the knife in the DLU 5020 based on the changing value of the feedback data 5052 and/or the shifting position of the feedback data 5052 relative to the DLU 5022 depicted in the underlying first layer of information 5010. Furthermore, the display 5002 can incorporate a numerical representation of the knife's progression, as well as a pictorial and/or symbolic representation of the knife's progression. For example, a symbol 5054, such as an arrow, for example, can move and/or extend relative to the DLU 5022 depicted in the underlying first layer of information 5010 to show the progression of the knife through the DLU 5022. Referring still to FIGS. 79 and 80, for example, the symbol 5054 can extend distally as the knife advances distally from a position near the beginning of the firing stroke (FIG. 79) to a position near the distal end of the firing stroke (FIG. 80), for example.


In various embodiments, a user can select one or more different categories of feedback data from the instrument feedback menu 5036, and the different categories of feedback data can be displayed in the second layer of information 5012 on the display 5002. In such embodiments, when a user selects a different category of feedback data from the instrument feedback menu 5036, a numerical and/or symbolic representation of the feedback data can move to an appropriate position on the display 5002 relative to the DLU 5022 depicted in the underlying first layer of information 5010. For example, if a user selects the jaw position category 5038 from the instrument feedback menu 5036, feedback data related to the position of a moveable jaw between an open position and a clamped position can be displayed in the second layer of information 5012, and can move to a position near the moveable jaw(s) 5024 of the surgical instrument 5020 on the display 5002, for example. Furthermore, if the knife speed category 5042 is selected, feedback data 5058 (FIG. 82) related to the velocity of the knife can be displayed in the second layer of information 5012, and can move to a position near the knife in the DLU 5022 on the display 5002, similar to the numerical data 5052 and/or the symbol 5054 discussed above. If the tissue thickness category 5044 is selected by a user, feedback data related to the detected tissue thickness can be displayed in the second layer of information 5012, and can move to a position near the measured tissue T on the display 5002, for example. Furthermore, in at least one embodiment, the second layer of information 5012 can include a scale and/or a ruler, which can illustrate the detected tissue thickness. The user can move the ruler via the touch screen 5004 relative to the underlying tissue T depicted in the first layer of information 5010, which may facilitate the user's appreciation of the tissue thickness variations, for example. If a user selects the end effector articulation category 5046, feedback data 5252 (FIGS. 84-88) related to the articulation of the DLU 5022 can be displayed in the second layer of information 5012, and can move to a position near the articulation joint 5026 (FIGS. 84 and 85) of the DLU 5022 on the display 5002, for example. If a user selects the firing force category 5048, the feedback data related to the firing force exerted on the tissue by the knife can be displayed in the second layer of information 5012, and can be positioned near the knife of the DLU 5022 on the display 5002, for example. Additionally, the feedback data related to the firing force exerted by the knife can move in the second layer of information 5012 as the knife moves relative to the DLU 5022, for example, during a firing stroke. Furthermore, if the clamping force category 5050 is selected, feedback data 5158 (FIG. 83) related to the clamping force on the tissue T can be depicted in the second layer of information 5012, and can move near the DLU 5022 depicted in the underlying first layer of information 5010. In such embodiments, the feedback data 5158 related to the clamping force can show variations in the clamping pressure along the length and/or width of the DLU 5022, during clamping, and/or throughout a firing stroke, for example.


In various embodiments, the feedback depicted in the second layer of information 5012 can move with the corresponding feature of the surgical instrument 5020 in the first layer of information 5010. For example, as the DLU 5022 is manipulated around the surgical site, the DLU 5022 may move around the display 5002. In such embodiments, the feedback related to the DLU 5022, such as the jaw position and/or the articulation data, for example, can move along with the DLU 5022. Movement of the relevant feedback may ensure the feedback remains in the operator's field of vision without requiring the operator to move their eyes away from the corresponding feature of the surgical instrument 5020 depicted in the first layer of information 5010 on the display 5002. Furthermore, the movement of the relevant feedback may ensure the feedback does not block the feature(s) of the surgical instrument 5020 depicted in the first layer of information 5010 that the operator desires to view on the display 5002.


In certain embodiments, a user can select multiple feedback categories to view on the display 5002 simultaneously. Furthermore, the selected feedback(s) can be automatically arranged on the display 5002 to display the relevant data in a non-overlapping arrangement in the second layer of information 5012. In other words, feedback displayed in the second layer of information 5012 may not overlap other feedback displayed in the second layer of information 5012; however, such feedback may overlap the video feedback of the first layer of information 5010 displayed on the display 5002, for example. In various embodiments, when the feedback data moves and/or “snaps” to a position on the screen relative to the surgical instrument 5020 depicted in the underlying first layer of information 5010, the user can override the default position by “dragging and dropping” the feedback data elsewhere in the second layer of information 5012.


Referring now to FIG. 81, a symbolic representation 5056 of the progression of the knife, such as a cross, bulls-eye, and/or pictorial representation of the knife and/or knife edge, for example, can move to a position in the second layer of information 5012 that overlaps the position of the knife depicted in the first layer of information 5010. In certain embodiments, even when the knife is not visible on the display 5002, for example, if the view of the knife is obstructed, the symbolic representation 5056 of the knife can move and/or follow the detected position of the knife in the DLU 5022 on the screen 5002. For example, the symbolic representation 5056 can be in a first position relative to the DLU 5022 near the beginning of the firing stroke, and the symbolic representation 5056 move to a second position relative to the DLU 5022 near the end of the firing stroke.


In various embodiments, feedback selected by the user via the touch screen 5004, can “snap” to a corner, edge and/or other predetermined location on the display 5002. For example, referring still to FIG. 81, numerical data 5052 related to the knife's progression can move to a corner of the display 5002. Additionally or alternatively, a user can interface with the touch screen 5004 to move the numerical data 5052 to a different position on the touch screen 5004. Based on the position of the underlying surgical instrument 5020 in the first layer of information 5010, the user may move the numerical data 5052 to a position in the second layer of information 5012 such that a corresponding and/or specific feature of the DLU 5022 is not blocked and/or obstructed by the numerical data 5052. Additionally or alternatively, the user may move the numerical data 5052 to a position near the corresponding feature of the DLU 5022, such that the user can easily view the corresponding DLU 5022 feature and the numerical data 5052 simultaneously.


Referring to FIGS. 84 and 85, a symbolic representation 5254 (FIG. 85) of feedback data from the feedback controller 5016 (FIG. 93) can be included I the second layer of information 5012. For example, a symbolic representation 5254 of the articulation of the DLU 5022, such as a subtended angle and/or arc, for example can be depicted in the second layer of information 5012, and can move to a position on the display 5002 near and/or overlapping the articulation joint 5026 of the surgical instrument 5020 depicted in the first layer of information 5010. For example, a subtended arc can extend between an axis A defined by the non-articulated DLU 5022 (FIG. 84) and an axis A′ defined by the articulated DLU 5022 (FIG. 85). In certain embodiments, even when the articulation joint 5026 is not visible on the screen, the symbolic representation 5254 of the articulation angle can be visible in the second layer of information 5012. For example, if the articulation joint 5026 is not positioned within the endoscope's field of view and/or is obstructed or blocked, the symbolic representation 5254 of the articulation angle can provide a visible indication of articulation to the user. In various embodiments, the symbolic representation 5252 can adjust and/or change as the DLU 5022 moves and/or articulates. For example, the symbolic representation 5254 can be an arrowed arc or line, which can extend from the initial and/or non-articulated position of the DLU 5022 (FIG. 84) toward the articulated position of the DLU 5022 (FIG. 85) as detected by the instrument 5020. Furthermore, in various embodiments, the symbolic representation 5254 can “snap” to a position relative to the DLU 5022 depicted in the first layer of information, such that the symbolic representation 5254 overlaps and/or is aligned with the DLU 5022. For example, referring primarily to FIG. 85, the symbolic representation 5254 of the articulation angle can move at and/or near the articulation joint 5026 depicted in the first layer of information 5010 on the display 5002, and can lengthen between the axis A defined by the DLU 5022 in the initial and/or non-articulated position and the axis A′ defined by the DLU 5022 as the DLU 5022 articulates.


Furthermore, in various embodiments, numerical data 5252 related to the articulation of the DLU 5022 can be displayed in the second layer of information 5012 on the display 5002. Furthermore, the data 5252 can change as the DLU 5022 articulates. For example, the second layer of information 5012 can depict an articulation of X° before the DLU 5022 articulates (FIG. 84), and can depict an articulation of Y° after the DLU 5022 articulates (FIG. 85). In various embodiments, the feedback data 5252 related to the articulation of the DLU 5022 can be displayed in the second layer of information 5012 at and/or near the articulation joint 5026 of the surgical instrument 5020 depicted in the first layer of information 5010, for example. A user can utilize the touch screen 5004 to move, resize, minimize, and/or otherwise manipulate the articulation data 5252 displayed in the second layer of information 5012 relative to the video feedback displayed in the first layer of information 5010, for example. Additionally or alternatively, a user can interface with the touch screen 5004 to move the symbolic representation 5254 and/or the numerical data 5252 to a different position on the touch screen 5004. Based on the position of the underlying surgical instrument 5020 in the first layer of information 5010, the user may move the numerical data 5252 to a position in the second layer of information 5012 such that specific feature(s) of the DLU 5022 are not blocked and/or obstructed by the numerical data 5252. Additionally or alternatively, the user may move the numerical data 5252 to a position near the corresponding feature(s) of the DLU 5022, such that the user can easily view the corresponding DLU 5022 feature(s) and the numerical data 5252 simultaneously.


Referring now to FIG. 82, a graphical representation can be selected from the display menu 5060 of the control panel 5030 by way of the touch screen 5004, for example. In such embodiments, a graphical representation of feedback 5058 can be displayed in the second layer of information 5012 on the display 5002. A user may select the graphical representation to view measured and/or sensed data from the surgical instrument 5020 and/or the controller thereof relative to time and/or space. For example, a user may desire to observe the velocity of the firing element throughout the firing stroke, and thus, may select the knife speed category 5042 (FIG. 78) from the instrument feedback menu 5036 (FIG. 78). In such embodiments, the graphical representation 5058 of the speed of the knife can continue to gain data points and grow during the firing stroke, for example. In various embodiments, at the completion of the firing stroke, the graphical representation 5058 can depict a “soft” start period 5057 and/or a “soft” stop period 5059 of the knife. Furthermore, the graphical representation 5058 can be positioned on the display 5002 such that the velocity of the knife at a specific location along the length of the end effector jaws 5024 corresponds to that specific location along the length of the end effector jaws 5022 depicted in the first layer of information 5010. For example, the graphical representation 5058 can begin at and/or near the beginning of the knife's path through the DLU 5022 depicted in the first layer of information 5010, and can end at and/or near the end of the knife's path through the DLU 5022 depicted in the first layer of information 5010, for example. Furthermore, as described herein, the graphical representation 5058 can “snap” to an appropriate position on the screen, and a user can utilize the touch screen 5004 to move and/or resize the graphical representation 5058 as desired. In certain embodiments, a numerical representation of the firing speed can be depicted in the second layer of information 5012 along with the graphical representation 5058.


Referring now to FIG. 83, in various embodiments, a user may desire to observe the clamping force exerted on the tissue T along the length and/or width of the end effector jaws 5024, and thus, may select the clamping force category 5050 (FIG. 78) from the instrument feedback menu 5036 (FIG. 78). In such embodiments, a graphical representation 5158 of the clamping force can be depicted in the second layer of information 5012. In some embodiments, the graphical representation 5158 can be arranged in the second layer of information 5012 relative to the clamped tissue depicted in the first layer of information 5010. For example, the graphical representation 5158 can begin at and/or near the proximal end of the jaws 5024 depicted in first layer of information 5010, and can end at and/or near the distal end of the jaws 5024 depicted in the first layer of information 5010, for example. Furthermore, as described herein, the graphical representation 5158 can “snap” to an appropriate position on the screen, and a user can utilize the touch screen 5004 to move and/or resize the graphical representation 5158, for example. In certain embodiments, the graphical representation can change during use to reflect variations in clamping pressure during a firing stroke, for example.


Referring to FIGS. 86-88, in various embodiments, a user can interface with the touch screen 5004 to input controls and/or directives to the surgical instrument 5020 via the instrument controller 5016 and/or microcontroller. For example, a user can input controls directed to articulating the DLU 5022, clamping the end effector jaws 5024, advancing and/or retracting the cutting element, and/or ejecting staples from the DLU 5022. In various embodiments, a user can select the instrument controller category 5070 from the control panel 5030 via the touch screen 5004 to activate the instrument-control state, such that the user can control the surgical instrument 5020 via the touch screen 5004. When the touch screen 5004 is activated for instrument control, a user can interface with the touch screen 5004 to control the surgical instrument 5020. For example, a user can interface with control buttons and/or icons in the second layer of information 5012 and/or can interface with locations on the touch screen 5004 corresponding to the underlying surgical instrument 5020 to input directives to the surgical instrument 5020, for example.


For example, referring to FIG. 86, a user can interface with the touch screen 5004 to indicate the desired articulation direction and degree of the DLU 5022, for example. In certain embodiments, a user can drag a contact point across the touch screen 5004 from at and/or near the DLU 5022 toward the desired articulated location of the end effector 5002. Referring to FIG. 86, a user can trace a line or arc 5352 from at and/or near the DLU 5022 depicted in the first layer of information 5010 toward the desired articulation location of the DLU 5022. For example, the arc 5352 can extend from and/or approximately from the axis A defined by the DLU 5022, and the arc 5352 can extend to the axis A′ defined by the desired articulated position of the DLU 5022. Furthermore, the arc 5352 can extend in the direction indicated by the arrow 5354, for example. In certain embodiments, an arc 5352 may not appear in the second layer of information 5010 when the user inputs the desired articulation via the touch screen 5004. In various embodiments, the touch screen 5004 can communicate the desired articulation angle to the instrument controller 5016 (FIG. 93) and/or microcontroller, which can effect the articulation of the DLU 5022 to the desired articulation angle. Referring now to FIG. 88, the instrument controller 5016 (FIG. 93) and/or microcontroller can effect articulation of the DLU 5022 to the axis A′ based on the input of the user via the touch screen 5004, for example.


Referring primarily to FIG. 87, in various embodiments, a user can interface with control buttons, schematics, and/or icons in the first layer of information 5012 to input directives to the surgical instrument 5020. For example, the first layer of information 5012 can include a symbol or icon 5356, and the user can move and/or manipulate the icon 5356 to effect articulation of the DLU 5022. In various embodiments, the icon 5356 can include a schematic of the DLU 5022, for example. Furthermore, the user can drag the icon 5356 to an articulated and/or rotated orientation to effect articulation of the DLU 5022. In various embodiments, a line and/or arc 5358 can indicate the direction and/or degree of articulation desired by the user. For example, the arc 5358 can extend from the non-articulated orientation of the icon 5356 to the articulated orientation of the icon 5356′. The articulated icon 5356′ can correspond to the desired articulation of the DLU 5022, for example. Referring now to FIG. 88, the instrument controller 5016 and/or microcontroller can effect articulation of the DLU 5022 to the axis A′ based on the input of the user via the touch screen 5004, for example. For example, the DLU 5022 can be articulated to the subtended angle defined by the arc 5358 between the non-articulated icon 5356 and the articulated icon 5356′ shown in FIG. 87.


Referring primarily to FIGS. 89 and 90, in various embodiments, a user can interface with the touch screen 5004 to input directives to the surgical instrument 5020 related to the closure of the jaws 5024. In certain embodiments, a user can drag a contact point across the touch screen 5004 from at and/or near the moveable jaw 5024 toward the closed orientation of the moveable jaw 5024 to initiate closure of the jaw 5024. For example, a user can trace a line or arc 5362 (FIG. 89) from at and/or near the moveable jaw 5024 depicted in the first layer of information 5010 toward the desired closed orientation of the moveable jaw 5024. In various embodiments, the touch screen 5004 can communicate the closure motion to the instrument controller 5016 and/or microcontroller, which can affect the closure of the moveable jaw(s) 5024. In certain embodiments, the arc 5362 traced by the user on the touch screen 5004 can extend from and/or approximately from the axis A defined by the moveable jaw 5024, and the arc 5362 can extend to the axis A′ (FIG. 90) defined by the desired clamped orientation of the moveable jaw 5024. Furthermore, the arc 5362 can extend in the direction indicated by the arrow 5364, for example. Referring now to FIG. 90, the instrument controller 5016 and/or microcontroller can affect closure of the moveable jaw 5024 to the axis A′ based on the input of the user via the touch screen 5004, for example.


Referring now to FIGS. 91 and 92, in various embodiments, a user can interface with control buttons and/or icons in the first layer of information 5012 to input directives to the surgical instrument 5020. For example, the first layer of information 5012 can include a control interface 5072, which can include buttons 5074, 5075, 5076, 5077, 5078 for inputting directives to the instrument controller 5016 and/or microcontroller, for example. Buttons for inputting directives to the instrument controller 5016 (FIG. 93) and/or microcontroller can relate to articulating the DLU 5022, closing and/or clamping the jaws 5024, firing and/or retracting the cutting element, and/or ejecting staples from the DLU 5022, for example. The user can interface with the touch screen 5004 to select a button or buttons from the control interface 5072. Referring primarily to FIG. 91, the control interface 5072 can include a stop/retract button 5474, a pause button 5475, a start button 5476, a speed-up button 5477, and/or a speed-down button 5478, for example. The user can contact the start button 5476 to initiate the firing stroke and/or advance the firing element, the pause button 5475 to pause the firing stroke, and/or the stop/retract button 5474 to stop the firing stroke and retract the firing element, for example. Furthermore, the user can interface with the control interface 5072 to adjust the speed of the firing element throughout the firing stroke. For example, the user can contact the speed-up button 5477 to increase the velocity of the firing element, and the user can contact the speed-down button 5478 to decrease the velocity of the firing element. A user may increase the velocity of the firing element after and/or during a “soft” start phase of the firing stroke, for example, and/or may decrease the velocity of the firing element for a “soft” stop phase of the firing stroke toward an end of the firing stroke, for example. In other embodiments, the control interface 5072 can include buttons and/or controls for modifying the closure of the jaws 5024, and/or the articulation of the DLU 5022, for example. In various embodiments, the control interface 5072 can “snap” to a position in the second layer of information 5012 when the instrument controller 5070 menu is selected from the control panel 5030 and/or when the instrument-control state is otherwise selected by the user. The user can move, adjust and/or manipulate the control interface 5072 relative to the first layer of information 5010 and/or the display 5002, for example.


In various embodiments, referring to FIG. 92, the secondary layer of information 5012 can include a progression bar 5480, which can indicate the position of the firing element in the DLU 5022, for example. The progression bar 5480 can extend between a proximal end 5482 and a distal end 5488, and can define a proximal-most position and a distal-most position of the firing element during a firing stroke. In various embodiments, the position of the firing element can be indicated along the progression bar 5480, for example. In certain embodiments, the user can use the controls in the control interface 5072 to adjust the firing stroke. For example, the user can interface with the control interface 5072 to initiate and/or terminate the “soft” start and/or “soft” stop phases of the firing stroke based on the indicated position of the firing element along the progression bar 5480. Furthermore, the progression bar 5480 can include measurement indicia and/or guides 5484, 5486, which can be set to positions along the progression bar 5480 where “soft” start and/or “soft” stop phases may begin and/or end, for example. The guides 5484, 5486 can provide a visual suggestion to the user to initiate and/or terminate the “soft” start period with the speed-up button 5077 and/or the “soft” stop phase with the speed-down button 5078 during the firing stroke, for example. In various embodiments, the position of the guides 5484, 5486 can be preset by the user.


Referring still to FIG. 92, in various embodiments, the instrument controller 5016 and/or microcontroller can automatically affect variations in the speed of the firing element based on the position of the guides 5484, 5486 along the progression bar 5480. Furthermore, the user can interface with the touch screen 5004 to move and/or manipulate the progression bar 5480, and thus, to modify the “soft” start and “soft” stop phases of the firing stroke. For example, the “soft” start and/or “soft” stop phases can be set at predetermined positions along the progression bar 5480 between the proximal end 5482 and the distal end 5488. In certain embodiments, the user can interface with the touch screen 5004 to move and/or adjust the position of the guides 5484, 5486 along the length of the progression bar 5480. For example, the user can toggle the guides 5484, 5486 between a plurality of positions on the progression bar 5480 by dragging and releasing the guides 5484, 5486 to lengthen and/or shorten the “soft” start and/or “soft” stop phases of the firing stroke. In certain embodiments, the user can interface with the touch screen 5004 to move and/or adjust the position of the distal end 5488 of the progression bar 5480 to lengthen and/or shorten a firing stroke. For example, the user can drag the distal end 5488 proximally to shorten the firing stroke and/or can drag the distal end 5488 distally to lengthen the firing stroke, for example. In various embodiments, the instrument controller 5016 and/or microcontroller can adjust the speed of the firing element and/or firing stroke length based on the modified positions of the guides 5484, 5486 and/or the distal end 5488 along the progression bar 5480, for example.


In various embodiments, the surgical instrument 10 can include at least one deactivation mechanism. As described in greater detail herein, such a deactivation mechanism can discourage an end user from tampering with the surgical instrument. For example, referring now to FIG. 134, a power source 2500 is illustrated. The power source 2500 can be used to supply power to a surgical instrument such as, for example, the surgical instrument 10 (See FIG. 1) and is similar in many respects to other power sources described elsewhere in this document such as, for example, the power source 200 (See FIG. 1), and other power sources of the type described in further detail Zemlok '763, which has been herein incorporated by reference in its entirety. To protect the power source 2500 from tampering, the power source 2500 can be configured to become inoperable or inactive in the event it is tampered with. For example, the power source 2500 can become inactive by ceasing to receive, store, and/or transmit energy, for example. Protection from tampering may ensure proper operation of the power source 2500 during use with the surgical instrument 10.


Referring to FIGS. 134 and 135, the power source 2500 may include an outer casing 2502 which may enclose various components of the power source 2500 such as, for example, a battery pack 2510. The casing 2502 may include a first shell 2504 and a second shell 2506 which can be separably coupled to the first shell 2504, as illustrated in FIG. 135. In certain examples, the shells 2504 and 2506 can be formed from a thermoplastic material such as, for example, polycarbonate. Alternately, other materials having appropriate characteristics may be used. Furthermore, the shells 2504 and 2506 can be coupled to each other by one or more fastening techniques such as, for example, adhesives, welding, interlocking structures, and/or screws. In one example, the shells 2504 and 2506 can be secured together via a snap fit type engagement. In another example, the shells 2504 and 2506 can be secured together by fastening members 2508, as illustrated in FIG. 135.


Referring to FIGS. 135-137, the power source 2500 may include a deactivation mechanism 2512 which may render the power source 2500 inoperable if the power source 2500 is compromised. For example, the deactivation mechanism 2512 may render the power source 2500 inoperable if the casing 2502 is tampered with. As illustrated in FIGS. 135-137, the deactivation mechanism 2512 may comprise a circuit 2514 which may include a breakable portion 2516 (See FIG. 136). In certain examples, the breakable portion 2516 may be comprised of a conductive material that can be easily ruptured. As illustrated in FIG. 136, the circuit 2514 may be coupled to the battery pack 2510 and may allow current to flow for as long as the breakable portion 2516 remains intact. Breaking the breakable portion 2516, as illustrated in FIG. 137, may interrupt the circuit 2514 thereby terminating the flow of current through it. Further to the above, as illustrated in FIG. 135, the circuit 2514 can be positioned such that the breakable portion 2516 may be ruptured when the first shell 2504 and the second shell 2506 are separated from each other which may render the power source 2500 unable to receive, store, and/or supply power to the surgical instrument 10 without a significant effort to repair the ruptured circuit 2514.


Referring to FIG. 135, the power source 2500 may comprise one or more battery cells depending on the current load needs of the instrument 10. In various aspects, the power source 2500 may include a battery pack such as, for example, the battery pack 2510 which may include a plurality of battery cells which may be connected in series with each other. The power source 2500 can be replaceable. In certain aspects, the power source 2500 may comprise a rechargeable battery (e.g., lead-based, nickel-based, lithium-ion based, etc.). The battery cells may be, for example, 3-volt lithium battery cells, such as CR 123A battery cells, although in other embodiments, different types of battery cells could be used (including battery cells with different voltage levels and/or different chemistries). A user may disconnect and remove a depleted power source 2500 from the surgical instrument 10 and connect a charged power source 2500 in its place. The depleted power source 2500 can then be charged and reused. It is also envisioned that the power source 2500 may include at least one disposable battery. In various aspects, the disposable battery may be between about 9 volts and about 30 volts. A user may disconnect and remove a depleted disposable power source 2500 and connect a new disposable power source 2500 to power the surgical instrument 10.


As described above, the power source 2500 may include rechargeable battery cells and can be removably placed within the handle portion 14 of the housing 12, for example (see FIG. 1). In such circumstances, the power source 2500 can be charged using a charger base which may comprise a power source for charging the power source 2500. A deactivation mechanism such as, for example, the deactivation mechanism 2512 can be utilized to prevent the power source 2500 from being recharged by the charger base if the power source 2500 is tampered with as described above. For example, the circuit 2514 may be coupled to the battery pack 2510 and may be couplable to the charger base to permit the charger base to recharge the battery pack 2510. As described above, the breakable portion 2516 (See FIG. 135) may be broken when the first shell 2504 is separated from the second shell 2506 thereby interrupting current flow through the circuit 2514 which may prevent the charger base from recharging the battery pack 2510. This may be advantageous in discouraging an end user from tampering with the power source 2500 because tampering with the power source 2500 may render it incapable of being recharged for subsequent use with the surgical instrument 10.


Referring now to FIGS. 138-141, the power source 2500 may include a data storage unit such as, for example, memory 2552 which may store data including information about the power source 2500 such as, for example, total charge available, number of uses, and/or performance. Additionally, the memory 2552 may store data about the surgical instrument 10 including a variety of information about the operation of the surgical instrument 10 during a surgical procedure such as, for example, various sensor readings, number of firings, number of cartridges utilized, and/or information about treated patients. The memory 2552 may include any means for storing software, including but not limited to ROM (read only memory), RAM (random access memory), PROM (programmable ROM), EEPROM (electrically erasable PROM), and/or other computer-readable media.


Further to the above, referring again to FIGS. 138-141, the power source 2500 may include a data access portal such as, for example, I/O interface 2550 to provide access to data stored in the memory 2552. For example, the I/O interface 2550 may allow data stored in the memory 2552 of the power source 2500 to be downloaded to an external computer device for evaluation and analysis. In certain circumstances, the I/O interface 2550 may be a wired interface and may be operably coupled to a deactivation mechanism 2512 which may include a rupturable connection that can be severed to prevent data transmission through the I/O interface 2550. Similar to the breakable portion 2516 of the deactivation mechanism 2512, the rupturable connection of the deactivation mechanism 2554 can be positioned such that it may be severed when the casing 2502 is breached such as, for example, when the first shell 2504 and the second shell 2506 are separated from each other.


Further to the above, as illustrated in FIGS. 139-141, the I/O interface 2550 may include a connector 2555 which may be configured to receive a corresponding connector 2556 from the external computer device, for example, to permit data transfer between the memory 2552 and the computer device. In addition, the connector 2554 can be protected by a cover such as, for example, pivoting cover 2559 which may be configured to move between a locked position (See FIG. 139), wherein the connector 2554 is unexposed and an unlocked position (See FIG. 140), wherein the connector 2554 is exposed to receive the corresponding connector 2556. In one example, a helical screw 2558 may be used to secure the pivoting cover 2559 to the casing 2502. Other means for reversibly covering the connector 2556 is contemplated by the present disclosure. Further to the above, in certain examples, the connectors 2554 and 2556 may include a key and lock type engagement wherein the connectors 2554 and 2556 may comprise, for example, unique complimenting geometries that prevent the connector 2554 from receiving other connectors in order to prevent or at least limit unauthorized access to data stored within the memory 2552. In certain examples, the connector 2554 can be positioned within the casing 2502, as illustrated in FIG. 141, to further limit unauthorized access to the data stored in the memory 2552. In such circumstances, the connector 2554 can be accessed by separating the first shell 2504 from the second shell 2506 of the casing 2502. However, as described above in greater detail, the deactivation mechanism 2512 may render the power source 2500 inoperable upon breach of the casing 2502 which may further discourage from attempting to expose the connector 2554 to gain access to the data stored in the memory 2552.


Referring to FIG. 142, the power source 2500 may include a processor 2560 which may manage the data stored in the memory 2552. To protect such data from unauthorized access, the processor 2560 may be coupled to a breach sensing mechanism 2562. For example, the processor 2560 may coupled to the circuit 2514 and may be configured to detect rupture of the breakable portion 2516. In one example, the breach sensing mechanism 2562 may include one or more sensors configured to detect a breach in the casing 2502. In any event, upon detecting a breach, the processor 2560 can be programmed to prevent unauthorized access to the data stored in the memory 2552, for example, by deleting or encrypting the data.


Referring to FIGS. 143-145, a surgical instrument 2600 is depicted. The surgical instrument 2600 is similar to the surgical instrument 10 (See FIG. 1) and/or the surgical instrument 2100 (See FIG. 146) in many respects. For example, the surgical instrument 2600 may include a housing assembly 2602 which is similar to the housing assembly 2102 of the surgical instrument 2100 and/or the housing 12 of the surgical instrument 10. Furthermore, the surgical instrument 2600 may include a power source 2500′ which can be used to supply power to the surgical instrument 2600 and is similar in many respects to other power sources described elsewhere in this document such as, for example, the power source 2500 (See FIG. 134), and other power sources of the type described in further detail in Zemlok '763, which has been herein incorporated by reference in its entirety. In addition, as illustrated in FIG. 143, the power source 2500′ may include a charge level indicator 2660 which can be configured to provide feedback to a user about the charge level of the power source 2500′. The feedback can be in the form of sound and/or light, for example. The power source 2500′ may include one or more light emitting diodes (LED). The processor 2560, for example, can be programmed to control the LEDs to provide feedback to a user about the charge level of the power source 2500′ as can be measured by a charge meter, for example.


As illustrated in FIGS. 143-145, the power source 2500′ may include a first LED 2662 and a second LED 2664. The processor 2560 can be coupled to the LEDs 2662 and 2664 and may be programmed to illuminate both of the LEDs 2662 and 2664 upon receiving a signal from the charge meter that the power source is fully charged. In addition, the processor 2560 may be programmed turn off both of the LEDS 2662 and 2664 upon receiving a signal from the charge meter that the power source is empty. Furthermore, the processor 2560 may be programmed to illuminate only the first LED 2662 but not the second LED 2664 upon receiving a signal from the charge meter that the power source includes sufficient charge for only one complete operation of the surgical instrument 2600. Other means for alerting a user as to the charge level of the power source 2500′ are contemplated by the present disclosure.


In certain embodiments, various components of the surgical instrument 10 can be reusable and various components can be replaceable, for example. Furthermore, the surgical instrument 10 can be at least partially assembled, disassembled, and/or reassembled. For example, the surgical instrument 10 can be at least partially disassembled and reassembled with reusable components and replacement components, for example. Additionally, the surgical instrument 10 can be at least partially disassembled for cleaning, disinfecting, and/or reprocessing between surgical procedures. Subsequently, the surgical instrument 10 can be reassembled, for example. As described in greater detail herein, various features, assemblies and/or systems of the surgical instrument 10 can facilitate disassembly and assembly thereof. For example, referring now to FIGS. 146-148, a surgical instrument 2100 is depicted. The surgical instrument 2100 is similar to the surgical instrument 10 (See FIG. 1) in many respects. For example, the surgical instrument 2100 may include a housing assembly 2102 which is similar to the housing 12 of the surgical instrument 10. In addition, the housing assembly 2102 may include several detachable components 2103 which can be detachably secured to a housing body 2104 such as, for example, a working assembly 2106. Other components of the housing assembly 2102 can be detachably secured to the housing body 2104. For example, the housing assembly 2102 may include a replaceable power source 2108 which can be detachably secured to a handle portion 2110 of the housing body 2104. The power source 2108 is similar in many respects to other power sources described elsewhere in this document such as, for example, the power source 200 (See FIG. 1).


Referring again to FIG. 147, the housing assembly 2102, or some or all of its components can be reusable. In other words, the housing assembly 2102, or some or all of its components can be utilized in multiple surgical procedures which may require for the housing assembly 2102 to be cleaned, disinfected, and/or reprocessed between surgical procedures. The ability to reversibly disassemble the housing assembly 2102, or remove some or all of its components such as, for example, the working assembly 2106 in a simple and reproducible manner may simplify the steps of cleaning, disinfecting, and/or reprocessing of the housing assembly 2012 and/or may reduce cost.


Referring to FIG. 147, the housing assembly 2102 may be disassembled following a surgical procedure and the components of the disassembled housing assembly 2102 such as, for example, the housing body 2104, the working assembly 2106 and/or the power source 2110 can be cleaned, disinfected, and/or reprocessed each separately or in combination with other components depending on the characteristics and internal parts of each component. In certain examples, the housing body 2104 can be disposable. Said another way, the housing assembly 2102 may be disassembled following a surgical procedure and the housing body 2104 can be replaced with a new housing body 2104. The remaining components, however, can be cleaned, disinfected, and/or reprocessed then attached to the new housing body 2104. The reader will appreciate that other components of the housing assembly 2102 can also be disposable and can be replaced with new like components.


Referring again to FIGS. 146-148, the housing body 2104 can be configured to permit assembly and disassembly of the housing assembly 2102 in a simple, predictable, and reproducible manner. For example, the housing body 2104 can include a first shroud portion 2112 (See FIG. 147) and a second shroud portion 2114 (See FIG. 146) which can be releasably attached to the first shroud portion 2112. In one example, the shroud portions 2112 and 2114 can include a snap fit type engagement. The shroud portions 2112 and 2114 can be adapted for matting engagement with each other. In one example, the shroud portion 2112 can include a plurality of female members 2116 (See FIG. 147) which may be cylindrical in shape and configured to receive corresponding male members (not shown) disposed on the shroud portion 2114 in a snap fit engagement when the shroud portions 2112 and 2114 are assembled together.


Further to the above, the working assembly 2106 can be nested in the first shroud portion 2112. As illustrated in FIG. 147, the second shroud portion 2114 can be removed to expose the working assembly 2106 nested in the first shroud portion 2112 in order to permit a user to remove the working assembly 2106 from the housing body 2104. The working assembly 2106, as illustrated in FIG. 147, may include a motor 2118 which may generate rotational motions to effectuate an end effector (e.g., the cartridge/anvil portion of the loading unit 20 illustrated in FIG. 2). The motor 2118 is similar in many respects to other motors described elsewhere in this document such as, for example, the motor 100 (See FIG. 1). In addition, the working assembly 2106 may also include a transmission assembly 2120 which can be operably coupled to the motor 2118 and is similar in many respects to other transmission assemblies described elsewhere in this document such as, for example, the gear assembly 170 (See FIG. 5). Furthermore, the working assembly 2106 may also include a firing member assembly 2122 which may transform the rotational motions generated by the motor 2118 into axial motions which can be transmitted to the end effector through a firing rod 2124. The firing member assembly 2122 is similar in many respects to other drive assemblies described elsewhere in this document such as, for example, the firing member assembly 82.


Referring to FIGS. 147 and 148, the first shroud portion 2112 may include a plurality of compartments designed and spaced to receive the working assembly 2106. For example, the shroud portion 2112, as illustrated in FIG. 147, may include a motor nesting compartment 2126 which can be spaced to accommodate the motor 2118. In certain examples, the motor nesting compartment 2126 can be designed to fit the motor 2118 in a specific arrangement to ensure accurate assembly. In addition, the motor nesting compartment 2126 may include assembly instructions which can be, for example, molded onto a wall of the motor nesting compartment 2126 to ensure correct assembly. For instance, the side walls of the motor nesting compartment 2126 can be configured to closely receive the motor 2118. Moreover, the sideways can be asymmetrically configured, at least in some respects, to receive the motor 2118 in only one orientation, i.e. the correct orientation.


Similarly, the shroud portion 2112, as illustrated in FIG. 147, may include a transmission assembly nesting compartment 2128 which can be spaced to accommodate the transmission assembly 2120. Furthermore, in certain examples, the transmission assembly nesting compartment 2128 can be designed to fit the transmission assembly 2120 in a specific arrangement to ensure accurate assembly. For instance, the side walls of the transmission assembly nesting compartment 2128 can be configured to closely receive the transmission assembly 2120. Moreover, the sideways can be asymmetrically configured, at least in some respects, to receive the transmission assembly 2120 in only one orientation, i.e. the correct orientation. In addition, the transmission assembly nesting compartment 2128 may include assembly instructions which can be, for example, molded onto a wall of the transmission assembly nesting compartment 2128 to ensure correct assembly. Similarly, the shroud portion 2112, as illustrated in FIG. 147, may include a firing member assembly nesting compartment 2130 which can be spaced to accommodate the firing member assembly 2122. Furthermore, in certain examples, the firing member assembly nesting compartment 2130 can be designed to fit the firing member assembly 2122 in a specific arrangement to ensure accurate assembly. For instance, the side walls of the firing member assembly nesting compartment 2130 can be configured to closely receive the firing member assembly 2122. Moreover, the sideways can be asymmetrically configured, at least in some respects, to receive the firing member assembly 2122 in only one orientation, i.e. the correct orientation. In addition, the firing member assembly nesting compartment 2130 may include assembly instructions which can be, for example, molded onto a wall of the firing member assembly nesting compartment 2130 to ensure correct assembly. The reader will appreciate that other components of the working assembly 2106 may also be provided with unique designated accommodating compartments within the shroud portion 2112. The reader will also appreciate that electrical contacts for the components of the working assembly 2106 can also be embedded with the compartments of the shroud portion 2112 such that upon correct assembly, electrical connections can be established between the working assembly 2106, other components of the housing assembly 2102 such as, for example, the power source 2108, and/or other components of the surgical instrument 2100.


Further to the above, the working assembly 2106 can be separably coupled to the firing rod 2124, as illustrated in FIG. 147, which may permit a user to remove and reconnect the working assembly 2106 as a single unit to the surgical instrument 2100 to simplify disassembly and reassembly of the working assembly 2106. In one example, as illustrated in FIG. 147, the firing member assembly 2122 may include a hollow tubular distal portion 2132 which may include a distal opening configured to receive and releasably lock onto a proximal portion 2134 of the firing rod 2124 in a snap fit type engagement, for example.


Referring again to FIGS. 147 and 148, other components of the housing assembly 2102 can be nested in dedicated compartments in the shroud portion 2112 in a similar manner to the working assembly 2106. For example, the shroud portion 2112 may include a power source nesting compartment 2136 which can be spaced to accommodate the power source 2108. Furthermore, in certain examples, the power source nesting compartment 2136 can be designed to fit the power source 2108 in a specific arrangement to ensure accurate assembly. For instance, the side walls of power source nesting compartment 2136 can be configured to closely receive the power source 2108. Moreover, the sideways can be asymmetrically configured, at least in some respects, to receive power source 2108 in only one orientation, i.e. the correct orientation. In addition, the power source nesting compartment 2136 may include assembly instructions which can be, for example, molded onto a wall of the power source nesting compartment 2136 to ensure correct assembly.


Further to the above, as illustrated in FIGS. 147 and 148, certain user input mechanisms such as, for example, firing button 2138 and/or closure switch 2140 can also be detachable from the housing body 2104 which may include a firing button nesting compartment 2142 spaced to accommodate the firing button 2138 and/or a closure switch nesting compartment 2144 spaced to accommodate the closure switch 2140. Furthermore, in certain examples, the firing button nesting compartment 2142 can be designed to fit the firing button 2138 in a specific arrangement to ensure accurate assembly. For instance, the side walls of firing button nesting compartment 2142 can be configured to closely receive the firing button 2138. Moreover, the sideways can be asymmetrically configured, at least in some respects, to receive the firing button 2138 in only one orientation, i.e. the correct orientation. Similarly, the closure switch nesting compartment 2144 can be designed to fit the closure switch 2140 in a specific arrangement to ensure accurate assembly. For instance, the side walls of closure switch nesting compartment 2144 can be configured to closely receive the closure switch 2140. Moreover, the sideways can be asymmetrically configured, at least in some respects, to receive the closure switch 2140 in only one orientation, i.e. the correct orientation. In addition, the firing button nesting compartment 2142 and/or the closure switch nesting compartment 2144 may include assembly instructions which can be, for example, molded onto a wall of the firing button nesting compartment 2142 and/or the closure switch nesting compartment 2144 to ensure correct assembly.


Referring again to FIGS. 147 and 148, in addition to the nesting compartments, the shroud portion 2112 can include securing mechanism(s) to secure some or all of the detachable components 2103 of the housing assembly 2102 in their respective compartments to ensure that the detachable components 2103 remain nested in their respective compartments. Such securing mechanisms may include securing members which can be movable between an unlocked configuration (See FIG. 148) and a locked configuration (See FIG. 147) to lock the detachable components 2103 of the housing assembly 2102 to their respective compartments in the shroud portion 2112. The reader will appreciate that a single or multiple securing members can be utilized to secure one or more of the detachable components 2103 to the shroud portion 2112. In addition, the securing mechanisms may also include safety features that may prevent the securing members from moving to the locked configuration in event of incorrect assembly to ensure correct assembly of the detachable components 2103 of the housing assembly 2102. As illustrated in the exemplary embodiment in FIG. 147, the working assembly 2106 can be secured to the shroud portion 2112 by several of the securing members such as, for example, a motor securing member 2148, a transmission assembly securing member 2150, and/or a firing member assembly securing member 2152. In certain examples, as illustrated in FIG. 147, a power source securing member 2154, a firing button securing member 2156, and a closure switch securing member 2158 can be utilized to secure the power source 2108, the firing button 2138, and the closure switch 2140, respectively.


The securing members may clamp onto the detachable components 2103 by moving from the unlocked configuration (See FIG. 148) to the locked configuration (See FIG. 147). For example, the motor securing member 2148 may clamp onto the motor 2118 by moving from the unlocked configuration (See FIG. 148) to the locked configuration (See FIG. 147). In certain examples, some or all of the detachable components 2103 may comprise tracks configured to receive the securing members as they move from the unlocked configuration to the locked configuration. The tracks can be positioned such that they may be aligned to receive the moving securing members only when the detachable components 2103 are correctly nested within their respective compartments in the shroud portion 2112. For example, if the motor 2118 is not correctly nested in the motor nesting compartment 2126, the motor securing member 2148 may not be correctly aligned with its track and as such upon moving the motor securing member 2148 from the unlocked configuration to the locked configuration, the motor securing member 2148 may not enter the track and, for example, may abut against an outer wall of the motor 2118. In certain examples, the motor securing member 2148 can be positioned such that it may prevent the first shroud portion 2112 from mating engagement with the second shroud portion 2114 if a user attempts to assemble the shroud portions 2112 and 2114 while the motor securing member 2148 is not in the locked configuration. This arrangement may alert a user to recheck the assembled components of the housing assembly 2102 for correct assembly.


Similar to the motor securing member 2148, the transmission assembly securing member 2150 may be received in a dedicated track on the transmission assembly 2120 and the transmission assembly securing member 2150 can be positioned such that it aligns with its respective track only if the transmission assembly 2120 is correctly nested in the transmission assembly nesting compartment 2128. In addition, the firing member assembly securing member 2152 may be received in a dedicated track on the firing member assembly 2122, for example, and the firing member assembly securing member 2152 can be positioned such that it aligns with its track only if the firing member assembly 2122 is correctly nested in the firing member assembly nesting compartment 2130. Also similar to the motor securing member 2148, the transmission assembly securing member 2150 and/or the firing member assembly securing member 2152 can be positioned such that either may prevent the first shroud portion 2112 from mating engagement with the second shroud portion 2114 if a user attempts to assemble the shroud portions 2112 and 2114 while the transmission assembly securing member 2150 and/or the firing member assembly securing member 2152 are not in the locked configuration. As described above, some of the detachable components 2103 can be detached and reattached to the shroud member 2112 together as an assembly and can be secured by a plurality of the securing members. For example, the working assembly 2106 can be secured to the shroud portion 2112 by the motor securing member 2148, the transmission assembly securing member 2150 and/or the firing member assembly securing member 2152, as illustrated in FIG. 147. Such arrangement may provide an additional level of insurance of correct assembly as failure to correctly assemble any one of the components of the working assembly 2106 may prevent its corresponding securing member from reaching the locked configuration which may prevent the first shroud portion 2112 from mating engagement with the second shroud portion 2114 if a user attempts to assemble the shroud portions 2112 and 2114 while at least one of the securing members remains short of the locked configuration.


Referring again to FIGS. 147 and 148, some or all of the securing members can be pivotally attached to the first shroud portion 2112 and can be movable relative to the first shroud portion 2112 from the unlocked configuration (See FIG. 148) to the locked configuration (See FIG. 147), and vice versa. In certain examples, the second shroud portion 2114 can include protruding securing members (not shown) configured to be received within corresponding receiving member (not shown) in the detachable components 2103 nested in the first shroud portion 2112 when the shroud portions 2112 and 2114 are aligned for mating engagement during assembly of the housing assembly 2102. The protruding securing members may ensure that the detachable components 2103 remain secured in the first shroud portion 2112. In addition, the protruding securing members may prevent the first shroud portion 2112 from mating engagement with the second shroud portion 2114 if a user attempts to assemble the shroud portions 2112 and 2114 while the protruding securing members are not be properly aligned with their corresponding receiving members, for example due to incorrect assembly of the detachable components 2103, which may alert the user to recheck the assembly of the detachable components 2103 of the housing assembly 2102 for correct assembly. The reader will appreciate that the positions of the protruding securing members and their respective receiving members can be reversed such that the protruding securing members can be configured to protrude from the detachable components 2103 and be received in corresponding receiving member on the second shroud portion 2114. In any event, the protruding securing members and their corresponding receiving members can be releasably attachable to one another in a snap fit type engagement, for example. Other engagement mechanisms are contemplated by the present disclosure.


Further to the above, some or all of the detachable components 2103 may include camming surfaces configured to receive the securing members of the first shroud portion 2112 as they are moved from the unlocked configuration (See FIG. 148) to the locked configuration (See FIG. 147). The camming surfaces can be disposed on an outer surface of some or all of the detachable components 2103 and may allow corresponding securing members to apply pressure onto the detachable components 2103 in the locked configuration. For example, the motor 2118 may include a camming surface along its track. As the motor securing member 2148 is moved from the unlocked configuration (See FIG. 148) to the locked configuration (See FIG. 147), the motor securing member 2148 may travel along the camming surface on the motor 2118 which may allow the motor securing member 2148 to apply an increasing pressure onto the motor 2118 with a maximum pressure, for example, at the locked configuration. The pressure applied onto the motor 2118 may assist in securing the motor in the motor nesting compartment 2126.


As discussed above, an end effector can include a firing member which can be advanced distally to staple and/or incise tissue. Referring now to FIG. 155, an end effector 11260 can comprise a first jaw including an anvil 11262 and a second jaw including a staple cartridge 11264. The end effector 11260 can further comprise, one, a housing and/or frame 11261 extending proximally from the anvil 11262 and the staple cartridge 11264 and, two, a firing member 11266 which can be moved relative to the housing 11261, the anvil 11262, and the cartridge 11264. The end effector 11260 can further comprise an articulation joint 11230 configured to permit the anvil 11262 and the cartridge 11264 to be articulated by an articulation driver 11268. In use, the end effector 11260 can be assembled to a shaft 11240 of a surgical instrument, for example, such that, one, the end effector housing 11261 is coupled to a shaft housing 11241 configured to support the end effector housing 11261, two, the end effector firing member 11266 is coupled to a shaft firing actuator 11246 configured to advance and retract the end effector firing member 11266 and/or, three, the end effector articulation driver 11268 is coupled to a shaft articulation actuator 11248 configured to advance and retract the end effector articulation driver 11268. In use, the firing member 11266 can be advanced distally to move the anvil 11262 from an open position in which tissue can be positioned intermediate the anvil 11262 and the cartridge 11264 to a closed position in which the anvil 11262 compresses the tissue against the cartridge 11264. In various circumstances, the firing member 11266 can include a first engagement member configured to engage the first jaw and a second engagement member configured to engage the second jaw when the firing member 11266 is advanced distally such that the anvil 11262 can be pivoted toward the staple cartridge 11264 by the engagement members. In order to re-open the end effector and allow the anvil 11262 to be returned to its open position, the firing member 11266 must be sufficiently retracted. In various circumstances, the firing member 11266 may become stuck in an at least partially fired position and, as a result, the anvil 11262 may not be reopened thereby making the removal of the surgical instrument from the surgical site difficult.


Turning now to FIGS. 156-161, an end effector, such as end effector 11360, for example, can include a firing member which can permit the anvil 11262 of the end effector 11360 to be re-opened even though the firing member of the end effector 11360 is stuck in an at least partially fired position. More particularly, the end effector 11360 can include a firing member 11366 comprising separable portions 11366a and 11366b which can be configured to permit relative movement between the anvil 11262 and the cartridge 11264 in various instances. Referring primarily to FIGS. 157 and 158, the separable portions 11366a and 11366b can be held together by a lock 11390 when the lock 11390 is in a locked condition, as illustrated in FIG. 158. Correspondingly, when the lock 11390 is in an unlocked condition, the separable portions 11366a and 11366b can move relative to one another. The separable portion 11366a of the firing member 11366 can comprise a first lateral portion 11363a, a second lateral portion 11367a, and a cutting member portion 11365a positioned intermediate the lateral portions 11363a and 11367a. In various circumstances, the lateral portions 11363a and 11367a can be retained to the cutting member portion 11365a via one or more pins, not illustrated in FIGS. 157 and 158, extending through apertures 11396a defined therein. The separable portion 11366b of the firing member 11366 can comprise a first lateral portion 11363b, a second lateral portion 11367b, and a cutting member portion 11365b positioned intermediate the lateral portions 11363b and 11367b. In various circumstances, the lateral portions 11363b and 11367b can be retained to the cutting member portion 11365b via at least one retention member, not illustrated in FIGS. 157 and 158, engaged with a foot 11396b extending therefrom. As the reader will appreciate, the aforementioned retention pins hold the various components of the separable portion 11363a together while the aforementioned retention member holds the various components of the separable portion 11363b together. As the reader will also appreciate, the lock 11390, when in its locked position, holds the separable portions 11363a and 11363b together. In various instances, referring primarily to FIG. 158, the lock 11390 can include a first lock member 11397a configured to engage a first lock portion 11361a of the first cutting member portion 11365a and, in addition, a second lock member 11397b configured to engage a second lock portion 11361b of the second cutting member portion 11365b. The first lock portion 11361a and the second lock portion 11361b can be configured to co-operatively and releasably hold the cutting member portions 11365a and 11365b together. In various instances, the lock portions 11397a, 11397b can hold the cutting member portions 11365a and 11365b together such that cutting surfaces 11395a and 11395b of the cutting member portions 11365a and 11365b, respectively, form a continuous, or at least substantially continuous, cutting surface. Referring once again to FIG. 158, the lock portions 11397a, 11397b of the lock 11390 can be configured to co-operatively engage and hold keys 11361a and 11361b of cutting member portions 11365a and 11365b, respectively. In various instances, the lock portions 11397a, 11397b can define a recess 11398 therebetween which is configured to receive keys 11361a and 11361b when the lock 11390 is in its locked position. When the lock 11390 is pulled proximally, the lock portions 11397a and 11397b can disengage the keys 11361a and 11361b. At such point, the lock 11390 may no longer hold the cutting member portions 11365a and 11365b together. In such circumstances, as a result, the separable portions 11366a and 11366b can move relative to each other. For instance, the separable portion 11366a can move with the jaw 11262 when the jaw 11262 is re-opened and, correspondingly, the separable portion 11366b can remain with the cartridge 11264. In view of the above, the lock 11390 can be pulled proximally to unlock the separable portions 11366a and 11366b when the firing member 11366 becomes stuck in an at least partially fired position, for example.


As discussed above, the lock 11390 can be pulled proximally to unlock the separable portions 11366a and 11366b of the firing member 11366. Turning now to FIG. 159, the lock 11390 can be pulled proximally and/or pushed distally by lock bar 11391. The lock bar 11391 can be positioned within the end effector 11360 and can include a proximal end 11392 and a distal end 11393. The distal end 11393 of the lock bar 11391 can be engaged with the lock 11390. More specifically, in at least one embodiment, the distal end 11393 can include a projection extending therefrom which can be slidably positioned within an elongate slot 11399 defined in the lock 11390. In order to pull the lock 11390 proximally, the lock bar 11391 can be pulled proximally until the projection contacts the proximal end 11394 of the elongate slot 11399 wherein the motion of the lock bar 11391 can be transferred to the lock 11390. Correspondingly, the projection can be configured to contact a distal end 11395 of the elongate slot 11399 in order to push the lock 11390 distally. As the reader will appreciate, referring again to FIG. 156, the firing member 11366 can one or more include longitudinal slots 11369 defined therein which can be configured to permit the lock bar projection to extend therethrough and engage the lock 11390 as described above.


Further to the above, referring primarily to FIGS. 156 and 160, the proximal end 11392 of the lock bar 11391 can comprise an attachment portion configured to be engaged by a lock actuator 11348 of a shaft 11340 of a surgical instrument. Referring primarily to FIG. 160, the lock actuator 11348 can comprise a distal end 11349 including a notch, for example, which can be configured to receive the proximal end 11392 of the lock bar 11391. The lock actuator 11348 can further comprise a proximal end 11347 which can be pulled proximally and/or pushed distally by a user of the surgical instrument in order to move the lock actuator 11348 and the lock bar 11391 proximally and/or distally, respectively. In use, the proximal end 11392 of the lock bar 11391 can be assembled to the distal end 11349 of the lock actuator 11348 when the end effector 11360 is assembled to the shaft 11340.


As outlined above, a motor can be utilized to advance and/or retract a firing member to deploy fasteners from an end effector and/or incise tissue captured within the end effector. In various instances, the motor can include a rotatable drive shaft, the rotation of which can be converted to translational movement and transmitted to a firing member, such as a cutting member and/or staple driver, for example. In at least one such instance, the rotatable drive shaft can include a threaded portion which is threadably engaged with a collar including a threaded aperture defined therein wherein, in use, the collar can be constrained from rotating such that the rotation of the drive shaft advances the collar distally and/or retracts the collar proximally depending on the direction in which the drive shaft is rotated. In certain instances, the firing member may become stuck and/or otherwise experience a force, or torque, which exceeds a desired, or predetermined maximum, force, or torque. Turning now to FIGS. 162-167, a motor assembly 12000 can include a motor 12010, a shaft 12020, and a slip clutch assembly 12030, wherein the slip clutch assembly 12030 can limit the force, or torque, that the motor 12010 can transmit to the shaft 12020. In various instances, referring primarily to FIGS. 162 and 163, the slip clutch assembly 12030 can transmit torque between a rotatable drive output 12012 of the motor 12010 and the shaft 12020. Referring now to FIGS. 165-167, the drive output 12012 can include a substantially circular outer profile portion 12011 and a transition surface 12014, which can be flat, or at least substantially flat, in various instances. The outer profile of the drive output 12012 can further include a first drive shoulder 12016 defined between the circular profile portion 12011 and the flat surface 12014 and, in addition, a second drive shoulder 12018 which is defined between the opposite end of the flat surface 12014 and the circular profile portion 12011.


As also illustrated in FIGS. 165-167, the slip clutch assembly 12030 can include a drive element 12034 which is biased into engagement with the drive output 12012 by a biasing element, or spring, 12036. The drive element 12034 can be at least partially positioned within a retention slot defined in a housing 12037 of the slip clutch assembly 12030 such that the movement of the drive element 12034 relative to the housing 12037 can be defined along an axis. As the reader will appreciate, the housing 12037 of the slip clutch assembly can be mounted to the shaft 12020 such that the housing 12037 and the shaft 12020 rotate together synchronously. As the reader will also appreciate, the drive element 12034 can transmit the rotational motion of the drive output 12012 to the housing 12037, at least in certain circumstances. More specifically, when the drive output 12012 is rotated in a first direction, as indicated by arrow 12017, to advance the firing member distally, the drive output 12012 can rotate relative to the drive element 12034 until the first drive shoulder 12016 comes into contact with the drive element 12034. As the reader will appreciate, the first drive shoulder 12016 can remain in contact with the drive element 12034 so long as the biasing member 12036 is able to resist, or at least sufficiently resist, the radially outward movement of the drive element 12034. So long as the drive element 12034 is in contact with the first drive shoulder 12016, the motor 12010 can rotate the shaft 12020 in a direction which advances the firing member distally. In various instances, the motor 12010 may apply a torque to the drive output 12012 which is large enough to displace the drive element 12034 radially outwardly such that the first drive shoulder 12016 of the drive output 12012 slips by the drive element 12034 and, as a result, the drive output 12012 rotates relative to the drive element 12034, the slip clutch housing 12037, and the shaft 12020. Stated another way, the drive element 12034 can be defeated and operably disengaged from the motor 12010 when the torque applied to the drive output 12012 exceeds a predetermined, or maximum, torque. When the torque applied to the drive output 12012 falls below this predetermined, or maximum, torque, the drive element 12034 can re-engage the first drive shoulder 12016 and, as a result, the shaft 12020 can be operably re-engaged with the motor 12010 such that the shaft 12020 is rotated by the drive output 12012 of the motor 12010.


Further to the above, when the drive output 12012 is rotated in a second direction, as indicated by arrow 12019, to retract the firing member proximally, the drive output 12012 can rotate relative to the drive element 12034 until the second drive shoulder 12018 comes into contact with the drive element 12034. As the reader will appreciate, the second drive shoulder 12018 can remain in contact with the drive element 12034 so long as the biasing member 12036 is able to resist, or at least sufficiently resist, the radially outward movement of the drive element 12034. So long as the drive element 12034 is in contact with the second drive shoulder 12018, the motor 12010 can rotate the shaft 12020 in a direction which retracts the firing member proximally. In various instances, the motor 12010 may apply a torque to the drive output 12012 which is large enough to displace the drive element 12034 radially outwardly such that the second drive shoulder 12018 of the drive output 12012 slips by the drive element 12034 and, as a result, the drive output 12012 rotates relative to the drive element 12034, the slip clutch housing 12037, and the shaft 12020. Stated another way, the drive element 12034 can be defeated and operably disengaged from the motor 12010 when the torque applied to the drive output 12012 exceeds a predetermined, or maximum, torque. When the torque applied to the drive output 12012 falls below this predetermined, or maximum, torque, the drive element 12034 can re-engage the second drive shoulder 12018 and, as a result, the shaft 12020 can be operably re-engaged with the motor 12010 such that the shaft 12020 is rotated by the drive output 12012 of the motor 12010.


In various instances, further to the above, the first drive shoulder 12016 and the second drive shoulder 12018 can comprise the same configuration. In certain instances, the first drive shoulder 12016 can be defined by a first radius of curvature and the second drive shoulder 12018 can be defined by a second radius of curvature. In some instances, the first radius of curvature can be the same as the second radius of curvature. In such instances, the maximum, or slip, torque that the motor 12010 can apply when rotating the drive output 12012 in the first direction 12017 can be the same, or substantially the same, as the maximum, or slip, torque that the motor 12010 can apply when rotating the drive output 12012 in the second direction 12019. In some instances, the first radius of curvature can be different than the second radius of curvature. In such instances, the maximum, or slip, torque that the motor 12010 can apply when rotating the drive output 12012 in the first direction 12017 can be different than the maximum, or slip, torque that the motor 12010 can apply when rotating the drive output 12012 in the second direction 12019. In at least one such instance, the first radius of curvature can be larger than the second radius of curvature wherein, as a result, the maximum, or slip, torque in the first direction 12017 can be less than the maximum, or slip, torque in the second direction 12019. Stated another way, the motor 12010 can apply a larger torque to the shaft 12020 when retracting the firing element than when advancing the firing element. Such instances may be advantageous when it may be desirable to retract the firing element so that the end effector of the surgical instrument can be re-opened and unclamped from the tissue, for example. In at least one instance, the first radius of curvature can be smaller than the second radius of curvature wherein, as a result, the maximum, or slip, torque in the first direction 12017 can be greater than the maximum, or slip, torque in the second direction 12019. Stated another way, the motor 12010 can apply a larger torque to the shaft 12020 when advancing the firing element than when retracting the firing element.


Further to the above, referring primarily to FIGS. 163 and 164, the biasing member 12036 can be resiliently supported by a spring collar 12032 positioned within a circumferential channel 12031 defined in the slip clutch housing 12037. In such instances, the spring collar 12032 and the biasing member 12036 can co-operate to apply a radially inward biasing force and/or to resist the radially outward movement of the drive element 12034. The spring collar 12032, in various instances, can comprise an annular body including a first free end 12033 and a second free end 12034, wherein the annular body can resiliently expand when the radially outward force discussed above is applied thereto and resiliently contract when that radially outward force has ceased or diminished. In such instances, the first free end 12033 of the spring collar 12032 can move relative to the second free end 12034.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Claims
  • 1. A surgical instrument for stapling and cutting patient tissue, wherein said surgical instrument comprises: a firing system configured to perform one or more staple firing strokes, wherein said firing system comprises: a cutting member configured to cut the patient tissue, wherein said cutting member is movable from a proximal unfired position to a distal fired position during a said staple firing stroke; andan electric motor configured to drive said cutting member through each said staple firing stroke, wherein said electric motor is further configured to retract said cutting member to said proximal unfired position after each said staple firing stroke;a power system; anda control system, comprising: a powered operating state in which said power system has enough power to drive said cutting member through a said staple firing stroke;a limited-power operating state for placing said surgical instrument in a default condition that has sufficient functionality to retract said cutting member to said proximal unfired position, wherein said control system enters said limited-power operating state when said power system does not have enough power to complete a said staple firing stroke;a firing system lockout configured to prevent said firing system from performing a staple firing stroke when said control system is in said limited-power operating state; anda display configured to indicate that said surgical instrument is in said limited-power operating state.
  • 2. A surgical instrument for stapling and cutting patient tissue, wherein said surgical instrument comprises: a housing;a shaft extending from said housing;an end effector extending from said shaft;an articulation joint rotatably connecting said end effector to said shaft, wherein said end effector is movable relative to said shaft between an un-articulated position and an articulated position;an articulation system configured to move said end effector between said un-articulated position and said articulated position;a firing system configured to perform one or more staple firing strokes, wherein said firing system comprises a cutting member configured to cut the patient tissue, and wherein the cutting member is movable from a proximal unfired position to a distal fired position during a said staple firing stroke; anda power system configured to drive said cutting member through each said staple firing stroke, retract said cutting member to said proximal unfired position after each said staple firing stroke, and move said articulation system between said un-articulated position and said articulated position; anda control system, comprising: a primary power source;a first operating state in which said power system has sufficient power to drive said cutting member through a said staple firing stroke; anda second operating state where said power system has sufficient power to retract said cutting member to said proximal unfired position and move said articulation system to said un-articulated position, wherein said control system moves from said first operating state to said second operating state when said surgical instrument experiences an interruption in power, and wherein said interruption in power comprises a complete loss of power to said surgical instrument from said primary power source.
  • 3. A surgical instrument for stapling patient tissue, wherein said surgical instrument comprises: an end effector, comprising; a staple cartridge comprising staples removably stored therein; andan anvil;an elongate shaft;an articulation joint rotatably coupling said end effector to said elongate shaft;a firing system configured to advance a firing member to eject said staples from said staple cartridge during a firing stroke, wherein said firing member is movable from a proximal unfired position to a distal fired position during said firing stroke, wherein said firing system is further configured to retract said firing member to said proximal unfired position during a retraction stroke; anda housing, wherein said elongate shaft extends from said housing, and wherein said housing comprises: a motor configured to output rotary motions, wherein said firing system is operably responsive to said rotary motions; anda power system configured to supply power to said motor, wherein said power system comprises: a primary power source;a primary operating state wherein said power system is capable of supplying said motor with enough power to advance said firing member a number of times when said power system is in said primary operating state; anda secondary operating state wherein said power system is configured to supply said motor with enough power to retract said firing member to said proximal unfired position when said power system is in said secondary operating state, and wherein said power system switches from said primary operating state to said secondary operating state when said surgical instrument experiences an interruption in power, wherein said interruption in power comprises a complete loss of power to said motor from said primary power source.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/974,224, entitled TAMPER PROOF CIRCUIT FOR SURGICAL INSTRUMENT BATTERY PACK, filed on Aug. 23, 2013, which issued on Oct. 3, 2017 as U.S. Pat. No. 9,775,609, the entire disclosure of which is hereby incorporated by reference herein.

US Referenced Citations (6529)
Number Name Date Kind
66052 Smith Jun 1867 A
662587 Blake Nov 1900 A
670748 Weddeler Mar 1901 A
719487 Minor Feb 1903 A
804229 Hutchinson Nov 1905 A
951393 Hahn Mar 1910 A
1188721 Bittner Jun 1916 A
1306107 Elliott Jun 1919 A
1314601 McCaskey Sep 1919 A
1677337 Grove Jul 1928 A
1794907 Kelly Mar 1931 A
1849427 Hook Mar 1932 A
1944116 Stratman Jan 1934 A
1954048 Jeffrey et al. Apr 1934 A
2037727 La Chapelle Apr 1936 A
2132295 Hawkins Oct 1938 A
2161632 Nattenheimer Jun 1939 A
D120434 Gold May 1940 S
2211117 Hess Aug 1940 A
2214870 West Sep 1940 A
2224882 Peck Dec 1940 A
2318379 Davis et al. May 1943 A
2329440 La Place Sep 1943 A
2377581 Shaffrey Jun 1945 A
2406389 Lee Aug 1946 A
2441096 Happe May 1948 A
2448741 Scott et al. Sep 1948 A
2450527 Smith Oct 1948 A
2507872 Unsinger May 1950 A
2526902 Rublee Oct 1950 A
2527256 Jackson Oct 1950 A
2578686 Fish Dec 1951 A
2638901 Sugarbaker May 1953 A
2674149 Benson Apr 1954 A
2701489 Osborn Feb 1955 A
2711461 Happe Jun 1955 A
2742955 Dominguez Apr 1956 A
2804848 O'Farrell et al. Sep 1957 A
2808482 Zanichkowsky et al. Oct 1957 A
2853074 Olson Sep 1958 A
2856192 Schuster Oct 1958 A
2887004 Stewart May 1959 A
2957353 Lewis Oct 1960 A
2959974 Emrick Nov 1960 A
3032769 Palmer May 1962 A
3060972 Sheldon Oct 1962 A
3075062 Iaccarino Jan 1963 A
3078465 Bobrov Feb 1963 A
3079606 Bobrov et al. Mar 1963 A
3080564 Strekopitov et al. Mar 1963 A
3166072 Sullivan, Jr. Jan 1965 A
3180236 Beckett Apr 1965 A
3196869 Scholl Jul 1965 A
3204731 Bent et al. Sep 1965 A
3266494 Brownrigg et al. Aug 1966 A
3269630 Fleischer Aug 1966 A
3269631 Takaro Aug 1966 A
3275211 Hirsch et al. Sep 1966 A
3317103 Cullen et al. May 1967 A
3317105 Astafjev et al. May 1967 A
3357296 Lefever Dec 1967 A
3359978 Smith, Jr. Dec 1967 A
3377893 Shorb Apr 1968 A
3480193 Ralston Nov 1969 A
3490675 Green et al. Jan 1970 A
3494533 Green et al. Feb 1970 A
3499591 Green Mar 1970 A
3503396 Pierie et al. Mar 1970 A
3509629 Kidokoro May 1970 A
3551987 Wilkinson Jan 1971 A
3568675 Harvey Mar 1971 A
3572159 Tschanz Mar 1971 A
3583393 Takahashi Jun 1971 A
3589589 Akopov Jun 1971 A
3598943 Barrett Aug 1971 A
3608549 Merrill Sep 1971 A
3618842 Bryan Nov 1971 A
3638652 Kelley Feb 1972 A
3640317 Panfili Feb 1972 A
3643851 Green et al. Feb 1972 A
3650453 Smith, Jr. Mar 1972 A
3661666 Foster et al. May 1972 A
3662939 Bryan May 1972 A
3688966 Perkins et al. Sep 1972 A
3695646 Mommsen Oct 1972 A
3709221 Riely Jan 1973 A
3717294 Green Feb 1973 A
3726755 Shannon Apr 1973 A
3727904 Gabbey Apr 1973 A
3734207 Fishbein May 1973 A
3740994 De Carlo, Jr. Jun 1973 A
3744495 Johnson Jul 1973 A
3746002 Haller Jul 1973 A
3747603 Adler Jul 1973 A
3747692 Davidson Jul 1973 A
3751902 Kingsbury et al. Aug 1973 A
3752161 Bent Aug 1973 A
3799151 Fukaumi et al. Mar 1974 A
3808452 Hutchinson Apr 1974 A
3815476 Green et al. Jun 1974 A
3819100 Noiles et al. Jun 1974 A
3821919 Knohl Jul 1974 A
3826978 Kelly Jul 1974 A
3836171 Hayashi et al. Sep 1974 A
3837555 Green Sep 1974 A
3841474 Maier Oct 1974 A
3851196 Hinds Nov 1974 A
3863639 Kleaveland Feb 1975 A
3863940 Cummings Feb 1975 A
3883624 McKenzie et al. May 1975 A
3885491 Curtis May 1975 A
3892228 Mitsui Jul 1975 A
3894174 Cartun Jul 1975 A
3902247 Fleer et al. Sep 1975 A
3940844 Colby et al. Mar 1976 A
3944163 Hayashi et al. Mar 1976 A
3950686 Randall Apr 1976 A
3952747 Kimmell, Jr. Apr 1976 A
3955581 Spasiano et al. May 1976 A
3959879 Sellers Jun 1976 A
RE28932 Noiles et al. Aug 1976 E
3972734 King Aug 1976 A
3981051 Brumlik Sep 1976 A
4025216 Hives May 1977 A
4027746 Kine Jun 1977 A
4034143 Sweet Jul 1977 A
4038987 Komiya Aug 1977 A
4054108 Gill Oct 1977 A
4060089 Noiles Nov 1977 A
4066133 Voss Jan 1978 A
4085337 Moeller Apr 1978 A
4100820 Evett Jul 1978 A
4106446 Yamada et al. Aug 1978 A
4106620 Brimmer et al. Aug 1978 A
4108211 Tanaka Aug 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4127227 Green Nov 1978 A
4129059 Van Eck Dec 1978 A
4132146 Uhlig Jan 1979 A
4135517 Reale Jan 1979 A
4154122 Severin May 1979 A
4169990 Lerdman Oct 1979 A
4180285 Reneau Dec 1979 A
4185701 Boys Jan 1980 A
4190042 Sinnreich Feb 1980 A
4198734 Brumlik Apr 1980 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4213562 Garrett et al. Jul 1980 A
4226242 Jarvik Oct 1980 A
4239431 Davini Dec 1980 A
4241861 Fleischer Dec 1980 A
4244372 Kapitanov et al. Jan 1981 A
4250436 Weissman Feb 1981 A
4261244 Becht et al. Apr 1981 A
4272002 Moshofsky Jun 1981 A
4272662 Simpson Jun 1981 A
4274304 Curtiss Jun 1981 A
4274398 Scott, Jr. Jun 1981 A
4275813 Noiles Jun 1981 A
4278091 Borzone Jul 1981 A
4289131 Mueller Sep 1981 A
4289133 Rothfuss Sep 1981 A
4290542 Fedotov et al. Sep 1981 A
D261356 Robinson Oct 1981 S
4293604 Campbell Oct 1981 A
4296654 Mercer Oct 1981 A
4296881 Lee Oct 1981 A
4304236 Conta et al. Dec 1981 A
4305539 Korolkov et al. Dec 1981 A
4312363 Rothfuss et al. Jan 1982 A
4312685 Riedl Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4319576 Rothfuss Mar 1982 A
4321002 Froehlich Mar 1982 A
4321746 Grinage Mar 1982 A
4328839 Lyons et al. May 1982 A
4331277 Green May 1982 A
4340331 Savino Jul 1982 A
4347450 Colligan Aug 1982 A
4348603 Huber Sep 1982 A
4349028 Green Sep 1982 A
4350151 Scott Sep 1982 A
4353371 Cosman Oct 1982 A
4357940 Muller Nov 1982 A
4361057 Kochera Nov 1982 A
4366544 Shima et al. Dec 1982 A
4369013 Abildgaard et al. Jan 1983 A
4373147 Carlson, Jr. Feb 1983 A
4376380 Burgess Mar 1983 A
4379457 Gravener et al. Apr 1983 A
4380312 Landrus Apr 1983 A
4382326 Rabuse May 1983 A
4383634 Green May 1983 A
4393728 Larson et al. Jul 1983 A
4394613 Cole Jul 1983 A
4396139 Hall et al. Aug 1983 A
4397311 Kanshin et al. Aug 1983 A
4402445 Green Sep 1983 A
4406621 Bailey Sep 1983 A
4408692 Sigel et al. Oct 1983 A
4409057 Molenda et al. Oct 1983 A
4415112 Green Nov 1983 A
4416276 Newton et al. Nov 1983 A
4417890 Dennehey et al. Nov 1983 A
4423456 Zaidenweber Dec 1983 A
4428376 Mericle Jan 1984 A
4429695 Green Feb 1984 A
4430997 DiGiovanni et al. Feb 1984 A
4434796 Karapetian et al. Mar 1984 A
4438659 Desplats Mar 1984 A
4442964 Becht Apr 1984 A
4448194 DiGiovanni et al. May 1984 A
4451743 Suzuki et al. May 1984 A
4452376 Klieman et al. Jun 1984 A
4454887 Kruger Jun 1984 A
4461305 Cibley Jul 1984 A
4467805 Fukuda Aug 1984 A
4468597 Baumard et al. Aug 1984 A
4469481 Kobayashi Sep 1984 A
4470414 Imagawa et al. Sep 1984 A
4471780 Menges et al. Sep 1984 A
4471781 Di Giovanni et al. Sep 1984 A
4473077 Noiles et al. Sep 1984 A
4475679 Fleury, Jr. Oct 1984 A
4478220 Di Giovanni et al. Oct 1984 A
4480641 Failla et al. Nov 1984 A
4483562 Schoolman Nov 1984 A
4485816 Krumme Dec 1984 A
4485817 Swiggett Dec 1984 A
4486928 Tucker et al. Dec 1984 A
4488523 Shichman Dec 1984 A
4489875 Crawford et al. Dec 1984 A
4493983 Taggert Jan 1985 A
4494057 Hotta Jan 1985 A
4499895 Takayama Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
D278081 Green Mar 1985 S
4503842 Takayama Mar 1985 A
4505272 Utyamyshev et al. Mar 1985 A
4505273 Braun et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4506671 Green Mar 1985 A
4512038 Alexander et al. Apr 1985 A
4520817 Green Jun 1985 A
4522327 Korthoff et al. Jun 1985 A
4526174 Froehlich Jul 1985 A
4527724 Chow et al. Jul 1985 A
4530357 Pawloski et al. Jul 1985 A
4530453 Green Jul 1985 A
4531522 Bedi et al. Jul 1985 A
4532927 Miksza, Jr. Aug 1985 A
4540202 Amphoux et al. Sep 1985 A
4548202 Duncan Oct 1985 A
4556058 Green Dec 1985 A
4560915 Soultanian Dec 1985 A
4565109 Tsay Jan 1986 A
4565189 Mabuchi Jan 1986 A
4566620 Green et al. Jan 1986 A
4569346 Poirier Feb 1986 A
4569469 Mongeon et al. Feb 1986 A
4571213 Ishimoto Feb 1986 A
4573468 Conta et al. Mar 1986 A
4573469 Golden et al. Mar 1986 A
4573622 Green et al. Mar 1986 A
4576165 Green et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4580712 Green Apr 1986 A
4585153 Failla et al. Apr 1986 A
4586501 Claracq May 1986 A
4586502 Bedi et al. May 1986 A
4589416 Green May 1986 A
4589582 Bilotti May 1986 A
4589870 Citrin et al. May 1986 A
4591085 Di Giovanni May 1986 A
RE32214 Schramm Jul 1986 E
4597753 Turley Jul 1986 A
4600037 Hatten Jul 1986 A
4604786 Howie, Jr. Aug 1986 A
4605001 Rothfuss et al. Aug 1986 A
4605004 Di Giovanni et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4607636 Kula et al. Aug 1986 A
4607638 Crainich Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610250 Green Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4612933 Brinkerhoff et al. Sep 1986 A
D286180 Korthoff Oct 1986 S
D286442 Korthoff et al. Oct 1986 S
4617893 Donner et al. Oct 1986 A
4617914 Ueda Oct 1986 A
4619262 Taylor Oct 1986 A
4619391 Sharkany et al. Oct 1986 A
D287278 Spreckelmeier Dec 1986 S
4628459 Shinohara et al. Dec 1986 A
4628636 Folger Dec 1986 A
4629107 Fedotov et al. Dec 1986 A
4632290 Green et al. Dec 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4634419 Kreizman et al. Jan 1987 A
4635638 Weintraub et al. Jan 1987 A
4641076 Linden Feb 1987 A
4642618 Johnson et al. Feb 1987 A
4643173 Bell et al. Feb 1987 A
4643731 Eckenhoff Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4646745 Noiles Mar 1987 A
4652820 Maresca Mar 1987 A
4654028 Suma Mar 1987 A
4655222 Florez et al. Apr 1987 A
4662555 Thornton May 1987 A
4663874 Sano et al. May 1987 A
4664305 Blake, III et al. May 1987 A
4665916 Green May 1987 A
4667674 Korthoff et al. May 1987 A
4669647 Storace Jun 1987 A
4671278 Chin Jun 1987 A
4671280 Dorband et al. Jun 1987 A
4671445 Barker et al. Jun 1987 A
4672964 Dee et al. Jun 1987 A
4675944 Wells Jun 1987 A
4676245 Fukuda Jun 1987 A
4679460 Yoshigai Jul 1987 A
4679719 Kramer Jul 1987 A
4684051 Akopov et al. Aug 1987 A
4688555 Wardle Aug 1987 A
4691703 Auth et al. Sep 1987 A
4693248 Failla Sep 1987 A
4698579 Richter et al. Oct 1987 A
4700703 Resnick et al. Oct 1987 A
4705038 Sjostrom et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4709120 Pearson Nov 1987 A
4715520 Roehr, Jr. et al. Dec 1987 A
4719917 Barrows et al. Jan 1988 A
4721099 Chikama Jan 1988 A
4722340 Takayama et al. Feb 1988 A
4724840 McVay et al. Feb 1988 A
4727308 Huljak et al. Feb 1988 A
4728020 Green et al. Mar 1988 A
4728876 Mongeon et al. Mar 1988 A
4729260 Dudden Mar 1988 A
4730726 Holzwarth Mar 1988 A
4741336 Failla et al. May 1988 A
4743214 Tai-Cheng May 1988 A
4744363 Hasson May 1988 A
4747820 Hornlein et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4761326 Barnes et al. Aug 1988 A
4763669 Jaeger Aug 1988 A
4767044 Green Aug 1988 A
D297764 Hunt et al. Sep 1988 S
4773420 Green Sep 1988 A
4777780 Holzwarth Oct 1988 A
4781186 Simpson et al. Nov 1988 A
4784137 Kulik et al. Nov 1988 A
4787387 Burbank, III et al. Nov 1988 A
4788485 Kawagishi et al. Nov 1988 A
D298967 Hunt Dec 1988 S
4790225 Moody et al. Dec 1988 A
4790314 Weaver Dec 1988 A
4805617 Bedi et al. Feb 1989 A
4805823 Rothfuss Feb 1989 A
4807628 Peters et al. Feb 1989 A
4809695 Gwathmey et al. Mar 1989 A
4815460 Porat et al. Mar 1989 A
4817643 Olson Apr 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4819853 Green Apr 1989 A
4821939 Green Apr 1989 A
4827911 Broadwin et al. May 1989 A
4828542 Hermann May 1989 A
4828944 Yabe et al. May 1989 A
4830855 Stewart May 1989 A
4832158 Farrar et al. May 1989 A
4833937 Nagano May 1989 A
4834720 Blinkhorn May 1989 A
4838859 Strassmann Jun 1989 A
4844068 Arata et al. Jul 1989 A
4848637 Pruitt Jul 1989 A
4856078 Konopka Aug 1989 A
4860644 Kohl et al. Aug 1989 A
4862891 Smith Sep 1989 A
4863423 Wallace Sep 1989 A
4865030 Polyak Sep 1989 A
4868530 Ahs Sep 1989 A
4869414 Green et al. Sep 1989 A
4869415 Fox Sep 1989 A
4873977 Avant et al. Oct 1989 A
4875486 Rapoport Oct 1989 A
4880015 Nierman Nov 1989 A
4890613 Golden et al. Jan 1990 A
4892244 Fox et al. Jan 1990 A
4893622 Green et al. Jan 1990 A
4894051 Shiber Jan 1990 A
4896584 Stoll et al. Jan 1990 A
4896678 Ogawa Jan 1990 A
4900303 Lemelson Feb 1990 A
4903697 Resnick et al. Feb 1990 A
4909789 Taguchi et al. Mar 1990 A
4915100 Green Apr 1990 A
4919679 Averill et al. Apr 1990 A
4921479 Grayzel May 1990 A
4925082 Kim May 1990 A
4928699 Sasai May 1990 A
4930503 Pruitt Jun 1990 A
4930674 Barak Jun 1990 A
4931047 Broadwin et al. Jun 1990 A
4931737 Hishiki Jun 1990 A
4932960 Green et al. Jun 1990 A
4933800 Yang Jun 1990 A
4933843 Scheller et al. Jun 1990 A
D309350 Sutherland et al. Jul 1990 S
4938408 Bedi et al. Jul 1990 A
4941623 Pruitt Jul 1990 A
4943182 Hoblingre Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
4946067 Kelsall Aug 1990 A
4948327 Crupi, Jr. Aug 1990 A
4949707 LeVahn et al. Aug 1990 A
4951860 Peters et al. Aug 1990 A
4951861 Schulze et al. Aug 1990 A
4954960 Lo et al. Sep 1990 A
4955959 Tompkins et al. Sep 1990 A
4957212 Duck et al. Sep 1990 A
4962877 Hervas Oct 1990 A
4964559 Deniega et al. Oct 1990 A
4964863 Kanshin et al. Oct 1990 A
4965709 Ngo Oct 1990 A
4970656 Lo et al. Nov 1990 A
4973274 Hirukawa Nov 1990 A
4973302 Armour et al. Nov 1990 A
4978049 Green Dec 1990 A
4978333 Broadwin et al. Dec 1990 A
4979952 Kubota et al. Dec 1990 A
4984564 Yuen Jan 1991 A
4986808 Broadwin et al. Jan 1991 A
4987049 Komamura et al. Jan 1991 A
4988334 Hornlein et al. Jan 1991 A
4995877 Ams et al. Feb 1991 A
4995959 Metzner Feb 1991 A
4996975 Nakamura Mar 1991 A
5001649 Lo et al. Mar 1991 A
5002543 Bradshaw et al. Mar 1991 A
5002553 Shiber Mar 1991 A
5005754 Van Overloop Apr 1991 A
5009661 Michelson Apr 1991 A
5012411 Policastro et al. Apr 1991 A
5014898 Heidrich May 1991 A
5014899 Presty et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5018515 Gilman May 1991 A
5018657 Pedlick et al. May 1991 A
5024652 Dumenek et al. Jun 1991 A
5024671 Tu et al. Jun 1991 A
5025559 McCullough Jun 1991 A
5027834 Pruitt Jul 1991 A
5030226 Green et al. Jul 1991 A
5031814 Tompkins et al. Jul 1991 A
5035040 Kerrigan et al. Jul 1991 A
5038109 Goble et al. Aug 1991 A
5038247 Kelley et al. Aug 1991 A
5040715 Green et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5060658 Dejter, Jr. Oct 1991 A
5061269 Muller Oct 1991 A
5062491 Takeshima et al. Nov 1991 A
5062563 Green et al. Nov 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5077506 Krause Dec 1991 A
5079006 Urquhart Jan 1992 A
5080556 Carreno Jan 1992 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5089606 Cole et al. Feb 1992 A
5094247 Hernandez et al. Mar 1992 A
5098004 Kerrigan Mar 1992 A
5098360 Hirota Mar 1992 A
5100042 Gravener et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5104397 Vasconcelos et al. Apr 1992 A
5104400 Berguer et al. Apr 1992 A
5106008 Tompkins et al. Apr 1992 A
5108368 Hammerslag et al. Apr 1992 A
5109722 Hufnagle et al. May 1992 A
5111987 Moeinzadeh et al. May 1992 A
5116349 Aranyi May 1992 A
D327323 Hunt Jun 1992 S
5119009 McCaleb et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5124990 Williamson Jun 1992 A
5129570 Schulze et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5141144 Foslien et al. Aug 1992 A
5142932 Moya et al. Sep 1992 A
5155941 Takahashi et al. Oct 1992 A
5156315 Green et al. Oct 1992 A
5156609 Nakao et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5158222 Green et al. Oct 1992 A
5158567 Green Oct 1992 A
D330699 Gill Nov 1992 S
5163598 Peters et al. Nov 1992 A
5168605 Bartlett Dec 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171253 Klieman Dec 1992 A
5173053 Swanson et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5176688 Narayan et al. Jan 1993 A
5187422 Izenbaard et al. Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
5188111 Yates et al. Feb 1993 A
5190517 Zieve et al. Mar 1993 A
5190544 Chapman et al. Mar 1993 A
5190560 Woods et al. Mar 1993 A
5190657 Heagle et al. Mar 1993 A
5192288 Thompson et al. Mar 1993 A
5193731 Aranyi Mar 1993 A
5195505 Josefsen Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5197970 Green et al. Mar 1993 A
5200280 Karasa Apr 1993 A
5201750 Hocherl et al. Apr 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5207672 Roth et al. May 1993 A
5207697 Carusillo et al. May 1993 A
5209747 Knoepfler May 1993 A
5209756 Seedhom et al. May 1993 A
5211649 Kohler et al. May 1993 A
5211655 Hasson May 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217478 Rexroth Jun 1993 A
5219111 Bilotti et al. Jun 1993 A
5220269 Chen et al. Jun 1993 A
5221036 Takase Jun 1993 A
5221281 Klicek Jun 1993 A
5222945 Basnight Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5222975 Crainich Jun 1993 A
5222976 Yoon Jun 1993 A
5223675 Taft Jun 1993 A
D338729 Sprecklemeier et al. Aug 1993 S
5234447 Kaster et al. Aug 1993 A
5236269 Handy Aug 1993 A
5236424 Imran Aug 1993 A
5236440 Hlavacek Aug 1993 A
5239981 Anapliotis Aug 1993 A
5240163 Stein et al. Aug 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5244462 Delahuerga et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5246443 Mai Sep 1993 A
5253793 Green et al. Oct 1993 A
5258007 Spetzler et al. Nov 1993 A
5258008 Wilk Nov 1993 A
5258009 Conners Nov 1993 A
5258010 Green et al. Nov 1993 A
5258012 Luscombe et al. Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5259835 Clark et al. Nov 1993 A
5260637 Pizzi Nov 1993 A
5261135 Mitchell Nov 1993 A
5261877 Fine et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5263937 Shipp Nov 1993 A
5263973 Cook Nov 1993 A
5264218 Rogozinski Nov 1993 A
5268622 Philipp Dec 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
RE34519 Fox et al. Jan 1994 E
5275322 Brinkerhoff et al. Jan 1994 A
5275323 Schulze et al. Jan 1994 A
5275608 Forman et al. Jan 1994 A
5279416 Malec et al. Jan 1994 A
5281216 Klicek Jan 1994 A
5282806 Haber et al. Feb 1994 A
5282829 Hermes Feb 1994 A
5284128 Hart Feb 1994 A
5285381 Iskarous et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5286253 Fucci Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290271 Jernberg Mar 1994 A
5290310 Makower et al. Mar 1994 A
5292053 Bilotti et al. Mar 1994 A
5293024 Sugahara et al. Mar 1994 A
5297714 Kramer Mar 1994 A
5304204 Bregen Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5309387 Mori May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312024 Grant et al. May 1994 A
5312329 Beaty et al. May 1994 A
5313935 Kortenbach et al. May 1994 A
5313967 Lieber et al. May 1994 A
5314424 Nicholas May 1994 A
5314445 Heidmueller nee Degwitz et al. May 1994 A
5314466 Stern et al. May 1994 A
5318221 Green et al. Jun 1994 A
5320627 Sorensen et al. Jun 1994 A
D348930 Olson Jul 1994 S
5326013 Green et al. Jul 1994 A
5329923 Lundquist Jul 1994 A
5330487 Thornton et al. Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5333422 Warren et al. Aug 1994 A
5333772 Rothfuss et al. Aug 1994 A
5333773 Main et al. Aug 1994 A
5334183 Wuchinich Aug 1994 A
5336130 Ray Aug 1994 A
5336229 Noda Aug 1994 A
5336232 Green et al. Aug 1994 A
5339799 Kami et al. Aug 1994 A
5341724 Vatel Aug 1994 A
5341807 Nardella Aug 1994 A
5341810 Dardel Aug 1994 A
5342380 Hood Aug 1994 A
5342381 Tidemand Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5343382 Hale et al. Aug 1994 A
5343391 Mushabac Aug 1994 A
5344059 Green et al. Sep 1994 A
5344060 Gravener et al. Sep 1994 A
5344454 Clarke et al. Sep 1994 A
5346504 Ortiz et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350355 Sklar Sep 1994 A
5350388 Epstein Sep 1994 A
5350391 Iacovelli Sep 1994 A
5350400 Esposito et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5352235 Koros et al. Oct 1994 A
5352238 Green et al. Oct 1994 A
5354250 Christensen Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5356006 Alpern et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5358510 Luscombe et al. Oct 1994 A
5359231 Flowers et al. Oct 1994 A
D352780 Glaeser et al. Nov 1994 S
5359993 Slater et al. Nov 1994 A
5360305 Kerrigan Nov 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5361902 Abidin et al. Nov 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5366134 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5368015 Wilk Nov 1994 A
5368592 Stern et al. Nov 1994 A
5369565 Chen et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5372124 Takayama et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5372602 Burke Dec 1994 A
5374277 Hassler Dec 1994 A
5375588 Yoon Dec 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381649 Webb Jan 1995 A
5381782 DeLaRama et al. Jan 1995 A
5381943 Allen et al. Jan 1995 A
5382247 Cimino et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5383874 Jackson Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5383882 Buess et al. Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5383895 Holmes et al. Jan 1995 A
5388568 van der Heide Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389102 Green et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391180 Tovey et al. Feb 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395384 Duthoit et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5404106 Matsuda Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5404960 Wada et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5405073 Porter Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5407293 Crainich Apr 1995 A
5408409 Glassman et al. Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5409703 McAnalley et al. Apr 1995 A
D357981 Green et al. May 1995 S
5411481 Allen et al. May 1995 A
5411508 Bessler et al. May 1995 A
5413107 Oakley et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5413268 Green et al. May 1995 A
5413272 Green et al. May 1995 A
5413573 Koivukangas May 1995 A
5415334 Williamson et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417203 Tovey et al. May 1995 A
5417361 Williamson, IV May 1995 A
5419766 Chang et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5422567 Matsunaga Jun 1995 A
5423471 Mastri et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423835 Green et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5427298 Tegtmeier Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5431654 Nic Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437681 Meade et al. Aug 1995 A
5438302 Goble Aug 1995 A
5438997 Sieben et al. Aug 1995 A
5439155 Viola Aug 1995 A
5439156 Grant et al. Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5441191 Linden Aug 1995 A
5441193 Gravener Aug 1995 A
5441483 Avitall Aug 1995 A
5441494 Ortiz Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443197 Malis et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5444113 Sinclair et al. Aug 1995 A
5445155 Sieben Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5445604 Lang Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5446646 Miyazaki Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5447417 Kuhl et al. Sep 1995 A
5447513 Davison et al. Sep 1995 A
5449355 Rhum et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5454378 Palmer et al. Oct 1995 A
5454822 Schob et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456401 Green et al. Oct 1995 A
5456917 Wise et al. Oct 1995 A
5458279 Plyley Oct 1995 A
5458579 Chodorow et al. Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464013 Lemelson Nov 1995 A
5464144 Guy et al. Nov 1995 A
5464300 Crainich Nov 1995 A
5465819 Weilant et al. Nov 1995 A
5465894 Clark et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5465896 Allen et al. Nov 1995 A
5466020 Page et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5468253 Bezwada et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470008 Rodak Nov 1995 A
5470009 Rodak Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5471129 Mann Nov 1995 A
5472132 Savage et al. Dec 1995 A
5472442 Klicek Dec 1995 A
5473204 Temple Dec 1995 A
5474057 Makower et al. Dec 1995 A
5474223 Viola et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5474570 Kockerling et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5476481 Schondorf Dec 1995 A
5478003 Green et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5480409 Riza Jan 1996 A
5482197 Green et al. Jan 1996 A
5483952 Aranyi Jan 1996 A
5484095 Green et al. Jan 1996 A
5484398 Stoddard Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5489256 Adair Feb 1996 A
5489290 Furnish Feb 1996 A
5490819 Nicholas et al. Feb 1996 A
5492671 Krafft Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5497933 DeFonzo et al. Mar 1996 A
5498164 Ward et al. Mar 1996 A
5498838 Furman Mar 1996 A
5501654 Failla et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5503635 Sauer et al. Apr 1996 A
5503638 Cooper et al. Apr 1996 A
5505363 Green et al. Apr 1996 A
5507425 Ziglioli Apr 1996 A
5507426 Young et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509916 Taylor Apr 1996 A
5511564 Wilk Apr 1996 A
5514129 Smith May 1996 A
5514149 Green et al. May 1996 A
5514157 Nicholas et al. May 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5520609 Moll et al. May 1996 A
5520634 Fox et al. May 1996 A
5520678 Heckele et al. May 1996 A
5520700 Beyar et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5522831 Sleister et al. Jun 1996 A
5527264 Moll et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
D372086 Grasso et al. Jul 1996 S
5531305 Roberts et al. Jul 1996 A
5531744 Nardella et al. Jul 1996 A
5531856 Moll et al. Jul 1996 A
5533521 Granger Jul 1996 A
5533581 Barth et al. Jul 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540705 Meade et al. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5542594 McKean et al. Aug 1996 A
5542949 Yoon Aug 1996 A
5543119 Sutter et al. Aug 1996 A
5543695 Culp et al. Aug 1996 A
5544802 Crainich Aug 1996 A
5547117 Hamblin et al. Aug 1996 A
5549583 Sanford et al. Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5549627 Kieturakis Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5551622 Yoon Sep 1996 A
5553624 Francese et al. Sep 1996 A
5553675 Pitzen et al. Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554148 Aebischer et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5556020 Hou Sep 1996 A
5556416 Clark et al. Sep 1996 A
5558533 Hashizawa et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5558671 Yates Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5561881 Klinger et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562690 Green et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5563481 Krause Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569161 Ebling et al. Oct 1996 A
5569270 Weng Oct 1996 A
5569284 Young et al. Oct 1996 A
5571090 Sherts Nov 1996 A
5571100 Goble et al. Nov 1996 A
5571116 Bolanos et al. Nov 1996 A
5571285 Chow et al. Nov 1996 A
5571488 Beerstecher et al. Nov 1996 A
5573169 Green et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5574431 McKeown et al. Nov 1996 A
5575054 Klinzing et al. Nov 1996 A
5575789 Bell et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5575805 Li Nov 1996 A
5577654 Bishop Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5582907 Pall Dec 1996 A
5583114 Barrows et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5591170 Spievack et al. Jan 1997 A
5591187 Dekel Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599151 Daum et al. Feb 1997 A
5599279 Slotman et al. Feb 1997 A
5599344 Paterson Feb 1997 A
5599350 Schulze et al. Feb 1997 A
5599852 Scopelianos et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601604 Vincent Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5607095 Smith et al. Mar 1997 A
5607433 Polla et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5607474 Athanasiou et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5611709 McAnulty Mar 1997 A
5613499 Palmer et al. Mar 1997 A
5613937 Garrison et al. Mar 1997 A
5613966 Makower et al. Mar 1997 A
5614887 Buchbinder Mar 1997 A
5615820 Viola Apr 1997 A
5618294 Aust et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5620289 Curry Apr 1997 A
5620326 Younker Apr 1997 A
5620452 Yoon Apr 1997 A
5624398 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628446 Geiste et al. May 1997 A
5628743 Cimino May 1997 A
5628745 Bek May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5630782 Adair May 1997 A
5631973 Green May 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5633374 Humphrey et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5638582 Klatt et al. Jun 1997 A
5639008 Gallagher et al. Jun 1997 A
D381077 Hunt Jul 1997 S
5643291 Pier et al. Jul 1997 A
5643293 Kogasaka et al. Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5643319 Green et al. Jul 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649956 Jensen et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5651762 Bridges Jul 1997 A
5651821 Uchida Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653677 Okada et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5653748 Strecker Aug 1997 A
5655698 Yoon Aug 1997 A
5657417 Di Troia Aug 1997 A
5657429 Wang et al. Aug 1997 A
5657921 Young et al. Aug 1997 A
5658238 Suzuki et al. Aug 1997 A
5658281 Heard Aug 1997 A
5658298 Vincent et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5658307 Exconde Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5667526 Levin Sep 1997 A
5667527 Cook Sep 1997 A
5667864 Landoll Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5669904 Platt, Jr. et al. Sep 1997 A
5669907 Platt, Jr. et al. Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5672945 Krause Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5674286 D'Alessio et al. Oct 1997 A
5678748 Plyley et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5681341 Lunsford et al. Oct 1997 A
5683349 Makower et al. Nov 1997 A
5685474 Seeber Nov 1997 A
5686090 Schilder et al. Nov 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5693020 Rauh Dec 1997 A
5693042 Boiarski et al. Dec 1997 A
5693051 Schulze et al. Dec 1997 A
5695494 Becker Dec 1997 A
5695502 Pier et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700276 Benecke Dec 1997 A
5702387 Arts et al. Dec 1997 A
5702408 Wales et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704087 Strub Jan 1998 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5706998 Plyley et al. Jan 1998 A
5707392 Kortenbach Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5709335 Heck Jan 1998 A
5709680 Yates et al. Jan 1998 A
5709706 Kienzle et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5712460 Carr et al. Jan 1998 A
5713128 Schrenk et al. Feb 1998 A
5713505 Huitema Feb 1998 A
5713895 Lontine et al. Feb 1998 A
5713896 Nardella Feb 1998 A
5713920 Bezwada et al. Feb 1998 A
5715604 Lanzoni Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5718548 Cotellessa Feb 1998 A
5718714 Livneh Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
D393067 Geary et al. Mar 1998 S
5724025 Tavori Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728113 Sherts Mar 1998 A
5728121 Bimbo et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732821 Stone et al. Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5733308 Daugherty et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5735848 Yates et al. Apr 1998 A
5735874 Measamer et al. Apr 1998 A
5738474 Blewett Apr 1998 A
5738629 Moll et al. Apr 1998 A
5738648 Lands et al. Apr 1998 A
5741271 Nakao et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5747953 Philipp May 1998 A
5749889 Bacich et al. May 1998 A
5749893 Vidal et al. May 1998 A
5749896 Cook May 1998 A
5749968 Melanson et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5752965 Francis et al. May 1998 A
5752970 Yoon May 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5765565 Adair Jun 1998 A
5766188 Igaki Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5769748 Eyerly et al. Jun 1998 A
5769791 Benaron et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772379 Evensen Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5773991 Chen Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5778939 Hok-Yin Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782748 Palmer et al. Jul 1998 A
5782749 Riza Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5784934 Izumisawa Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5785647 Tompkins et al. Jul 1998 A
5787897 Kieturakis Aug 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5792162 Jolly et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792573 Pitzen et al. Aug 1998 A
5794834 Hamblin et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797637 Ervin Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5797906 Rhum et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5800379 Edwards Sep 1998 A
5800423 Jensen Sep 1998 A
5804726 Geib et al. Sep 1998 A
5804936 Brodsky et al. Sep 1998 A
5806676 Wasgien Sep 1998 A
5807376 Viola et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5809441 McKee Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810846 Virnich et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5812188 Adair Sep 1998 A
5813813 Daum et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5824333 Scopelianos et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5830598 Patterson Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5839369 Chatterjee et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5841284 Takahashi Nov 1998 A
5843021 Edwards et al. Dec 1998 A
5843096 Igaki et al. Dec 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843122 Riza Dec 1998 A
5843132 Ilvento Dec 1998 A
5843169 Taheri Dec 1998 A
5846254 Schulze et al. Dec 1998 A
5847566 Marritt et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5849020 Long et al. Dec 1998 A
5849023 Mericle Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853366 Dowlatshahi Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5855583 Wang et al. Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5860975 Goble et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5865638 Trafton Feb 1999 A
5868361 Rinderer Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5868790 Vincent et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5873885 Weidenbenner Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878607 Nunes et al. Mar 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5881777 Bassi et al. Mar 1999 A
5891094 Masterson et al. Apr 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5891558 Bell et al. Apr 1999 A
5893506 Powell Apr 1999 A
5893835 Witt et al. Apr 1999 A
5893878 Pierce Apr 1999 A
5894979 Powell Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5899824 Kurtz et al. May 1999 A
5899914 Zirps et al. May 1999 A
5901895 Heaton et al. May 1999 A
5902312 Frater et al. May 1999 A
5903117 Gregory May 1999 A
5904647 Ouchi May 1999 A
5904693 Dicesare et al. May 1999 A
5904702 Ek et al. May 1999 A
5906577 Beane et al. May 1999 A
5906625 Bito et al. May 1999 A
5907211 Hall et al. May 1999 A
5908402 Blythe Jun 1999 A
5908427 McKean et al. Jun 1999 A
5909062 Krietzman Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5921956 Grinberg et al. Jul 1999 A
5924864 Loge et al. Jul 1999 A
5928137 Green Jul 1999 A
5928256 Riza Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5931853 McEwen et al. Aug 1999 A
5937951 Izuchukwu et al. Aug 1999 A
5938667 Peyser et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5944172 Hannula Aug 1999 A
5944715 Goble et al. Aug 1999 A
5946978 Yamashita Sep 1999 A
5947984 Whipple Sep 1999 A
5947996 Logeman Sep 1999 A
5948030 Miller et al. Sep 1999 A
5948429 Bell et al. Sep 1999 A
5951301 Younker Sep 1999 A
5951516 Bunyan Sep 1999 A
5951552 Long et al. Sep 1999 A
5951574 Stefanchik et al. Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5954259 Viola et al. Sep 1999 A
5957831 Adair Sep 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5971916 Koren Oct 1999 A
5973221 Collyer et al. Oct 1999 A
D416089 Barton et al. Nov 1999 S
5976122 Madhani et al. Nov 1999 A
5977746 Hershberger Nov 1999 A
5980248 Kusakabe et al. Nov 1999 A
5984949 Levin Nov 1999 A
5988479 Palmer Nov 1999 A
5990379 Gregory Nov 1999 A
5993466 Yoon Nov 1999 A
5997528 Bisch et al. Dec 1999 A
5997552 Person et al. Dec 1999 A
6001108 Wang et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004319 Goble et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007521 Bidwell et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6010513 Tormala et al. Jan 2000 A
6010520 Pattison Jan 2000 A
6012494 Balazs Jan 2000 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6015417 Reynolds, Jr. Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6018227 Kumar Jan 2000 A
6019745 Gray Feb 2000 A
6022352 Vandewalle Feb 2000 A
6023641 Thompson Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024748 Manzo et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6024764 Schroeppel Feb 2000 A
6027501 Goble et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033105 Barker et al. Mar 2000 A
6033378 Lundquist et al. Mar 2000 A
6033399 Gines Mar 2000 A
6033427 Lee Mar 2000 A
6036641 Taylor et al. Mar 2000 A
6036667 Manna et al. Mar 2000 A
6037724 Buss et al. Mar 2000 A
6037927 Rosenberg Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6039734 Goble Mar 2000 A
6042601 Smith Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6043626 Snyder et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6047861 Vidal et al. Apr 2000 A
6049145 Austin Apr 2000 A
6050172 Corves et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6050989 Fox et al. Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053390 Green et al. Apr 2000 A
6053899 Slanda et al. Apr 2000 A
6053922 Krause et al. Apr 2000 A
6054142 Li et al. Apr 2000 A
6055062 Dina et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6056735 Okada et al. May 2000 A
6056746 Goble et al. May 2000 A
6059806 Hoegerle May 2000 A
6062360 Shields May 2000 A
6063020 Jones et al. May 2000 A
6063025 Bridges et al. May 2000 A
6063050 Manna et al. May 2000 A
6063095 Wang et al. May 2000 A
6063097 Oi et al. May 2000 A
6063098 Houser et al. May 2000 A
6065679 Levie May 2000 A
6065919 Peck May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6072299 Kurle Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6077280 Fossum Jun 2000 A
6077286 Cuschieri et al. Jun 2000 A
6077290 Marini Jun 2000 A
6079606 Milliman et al. Jun 2000 A
6080181 Jensen et al. Jun 2000 A
6082577 Coates et al. Jul 2000 A
6083191 Rose Jul 2000 A
6083223 Baker Jul 2000 A
6083234 Nicholas et al. Jul 2000 A
6083242 Cook Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6090106 Goble et al. Jul 2000 A
6093186 Goble Jul 2000 A
6099537 Sugai et al. Aug 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6102926 Tartaglia et al. Aug 2000 A
6104162 Sainsbury et al. Aug 2000 A
6104304 Clark et al. Aug 2000 A
6106511 Jensen Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110187 Donlon Aug 2000 A
6113618 Nic Sep 2000 A
6117148 Ravo et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120433 Mizuno et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6123241 Walter et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126058 Adams et al. Oct 2000 A
6126359 Dittrich et al. Oct 2000 A
6126670 Walker et al. Oct 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6132368 Cooper Oct 2000 A
6134962 Sugitani Oct 2000 A
6139546 Koenig et al. Oct 2000 A
6142149 Steen Nov 2000 A
6142933 Longo et al. Nov 2000 A
6147135 Yuan et al. Nov 2000 A
6149660 Laufer et al. Nov 2000 A
6151323 O'Connell et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6155473 Tompkins et al. Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6157169 Lee Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6159224 Yoon Dec 2000 A
6162208 Hipps Dec 2000 A
6162220 Nezhat Dec 2000 A
6162537 Martin et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6167185 Smiley et al. Dec 2000 A
6168605 Measamer et al. Jan 2001 B1
6171305 Sherman Jan 2001 B1
6171316 Kovac et al. Jan 2001 B1
6171330 Benchetrit Jan 2001 B1
6173074 Russo Jan 2001 B1
6174308 Goble et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6175290 Forsythe et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6181105 Cutolo et al. Jan 2001 B1
6182673 Kindermann et al. Feb 2001 B1
6185356 Parker et al. Feb 2001 B1
6186142 Schmidt et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193129 Bittner et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6206894 Thompson et al. Mar 2001 B1
6206897 Jamiolkowski et al. Mar 2001 B1
6206903 Ramans Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6209414 Uneme Apr 2001 B1
6210403 Klicek Apr 2001 B1
6211626 Lys et al. Apr 2001 B1
6213999 Platt, Jr. et al. Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6220368 Ark et al. Apr 2001 B1
6221007 Green Apr 2001 B1
6221023 Matsuba et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6223835 Habedank et al. May 2001 B1
6224617 Saadat et al. May 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6228083 Lands et al. May 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6228089 Wahrburg May 2001 B1
6228098 Kayan et al. May 2001 B1
6231565 Tovey et al. May 2001 B1
6234178 Goble et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238384 Peer May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6241140 Adams et al. Jun 2001 B1
6241723 Heim et al. Jun 2001 B1
6245084 Mark et al. Jun 2001 B1
6248116 Chevillon et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6249105 Andrews et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6251485 Harris et al. Jun 2001 B1
D445745 Norman Jul 2001 S
6254534 Butler et al. Jul 2001 B1
6254619 Garabet et al. Jul 2001 B1
6254642 Taylor Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6261679 Chen et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6264617 Bales et al. Jul 2001 B1
6270508 Klieman et al. Aug 2001 B1
6270916 Sink et al. Aug 2001 B1
6273252 Mitchell Aug 2001 B1
6273876 Klima et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6293927 McGuckin, Jr. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296640 Wampler et al. Oct 2001 B1
6302311 Adams et al. Oct 2001 B1
6302743 Chiu et al. Oct 2001 B1
6305891 Burlingame Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6306149 Meade Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6309403 Minor et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6315184 Whitman Nov 2001 B1
6319510 Yates Nov 2001 B1
6320123 Reimers Nov 2001 B1
6322494 Bullivant et al. Nov 2001 B1
6324339 Hudson et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6328498 Mersch Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6331761 Kumar et al. Dec 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6336926 Goble Jan 2002 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6346077 Taylor et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
D454951 Bon Mar 2002 S
6352503 Matsui et al. Mar 2002 B1
6352532 Kramer et al. Mar 2002 B1
6355699 Vyakarnam et al. Mar 2002 B1
6356072 Chass Mar 2002 B1
6358224 Tims et al. Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6358459 Ziegler et al. Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6366441 Ozawa et al. Apr 2002 B1
6370981 Watarai Apr 2002 B2
6371114 Schmidt et al. Apr 2002 B1
6373152 Wang et al. Apr 2002 B1
6377011 Ben-Ur Apr 2002 B1
6383201 Dong May 2002 B1
6387092 Burnside et al. May 2002 B1
6387113 Hawkins et al. May 2002 B1
6387114 Adams May 2002 B2
6391038 Vargas et al. May 2002 B2
6392854 O'Gorman May 2002 B1
6394998 Wallace et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6398797 Bombard et al. Jun 2002 B2
6402766 Bowman et al. Jun 2002 B2
6406440 Stefanchik Jun 2002 B1
6406472 Jensen Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6412639 Hickey Jul 2002 B1
6413274 Pedros Jul 2002 B1
6415542 Bates et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6423079 Blake, III Jul 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
RE37814 Allgeyer Aug 2002 E
6428070 Takanashi et al. Aug 2002 B1
6428487 Burdorff et al. Aug 2002 B1
6429611 Li Aug 2002 B1
6430298 Kettl et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6436097 Nardella Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6436110 Bowman et al. Aug 2002 B2
6436115 Beaupre Aug 2002 B1
6436122 Frank et al. Aug 2002 B1
6439439 Rickard et al. Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6440146 Nicholas et al. Aug 2002 B2
6441577 Blumenkranz et al. Aug 2002 B2
D462758 Epstein et al. Sep 2002 S
6443973 Whitman Sep 2002 B1
6445530 Baker Sep 2002 B1
6447518 Krause et al. Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6447799 Ullman Sep 2002 B1
6447864 Johnson et al. Sep 2002 B2
6450391 Kayan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6454781 Witt et al. Sep 2002 B1
6457625 Tormala et al. Oct 2002 B1
6458077 Boebel et al. Oct 2002 B1
6458147 Cruise et al. Oct 2002 B1
6460627 Below et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6468286 Mastri et al. Oct 2002 B2
6471106 Reining Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6478210 Adams et al. Nov 2002 B2
6482200 Shippert Nov 2002 B2
6482217 Pintor et al. Nov 2002 B1
6485490 Wampler et al. Nov 2002 B2
6485503 Jacobs et al. Nov 2002 B2
6485667 Tan Nov 2002 B1
6486286 McGall et al. Nov 2002 B1
6488196 Fenton, Jr. Dec 2002 B1
6488197 Whitman Dec 2002 B1
6488659 Rosenman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491702 Heilbrun et al. Dec 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494882 Lebouitz et al. Dec 2002 B1
6494885 Dhindsa Dec 2002 B1
6494888 Laufer et al. Dec 2002 B1
6494896 D'Alessio et al. Dec 2002 B1
6498480 Manara Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500194 Benderev et al. Dec 2002 B2
6503139 Coral Jan 2003 B2
6503257 Grant et al. Jan 2003 B2
6503259 Huxel et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6506197 Rollero et al. Jan 2003 B1
6510854 Goble Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6512360 Goto et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6516073 Schulz et al. Feb 2003 B1
6517528 Pantages et al. Feb 2003 B1
6517535 Edwards Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6520971 Perry et al. Feb 2003 B1
6520972 Peters Feb 2003 B2
6522101 Malackowski Feb 2003 B2
6524180 Simms et al. Feb 2003 B1
6525499 Naganuma Feb 2003 B2
D471206 Buzzard et al. Mar 2003 S
6527782 Hogg et al. Mar 2003 B2
6527785 Sancoff et al. Mar 2003 B2
6530942 Fogarty et al. Mar 2003 B2
6532958 Buan et al. Mar 2003 B1
6533157 Whitman Mar 2003 B1
6533723 Lockery et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6539297 Weiberle et al. Mar 2003 B2
D473239 Cockerill Apr 2003 S
6539816 Kogiso et al. Apr 2003 B2
6540737 Bacher et al. Apr 2003 B2
6543456 Freeman Apr 2003 B1
6545384 Pelrine et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6550546 Thurler et al. Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6554861 Knox et al. Apr 2003 B2
6555770 Kawase Apr 2003 B2
6558378 Sherman et al. May 2003 B2
6558379 Batchelor et al. May 2003 B1
6558429 Taylor May 2003 B2
6561187 Schmidt et al. May 2003 B2
6565560 Goble et al. May 2003 B1
6566619 Gillman et al. May 2003 B2
6569085 Kortenbach et al. May 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6578751 Hartwick Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6582427 Goble et al. Jun 2003 B1
6582441 He et al. Jun 2003 B1
6583533 Pelrine et al. Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6586898 King et al. Jul 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6588277 Giordano et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6588931 Betzner et al. Jul 2003 B2
6589118 Soma et al. Jul 2003 B1
6589164 Flaherty Jul 2003 B1
6592538 Hotchkiss et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6596296 Nelson et al. Jul 2003 B1
6596304 Bayon et al. Jul 2003 B1
6596432 Kawakami et al. Jul 2003 B2
6599295 Tornier et al. Jul 2003 B1
6599323 Melican et al. Jul 2003 B2
D478665 Isaacs et al. Aug 2003 S
D478986 Johnston et al. Aug 2003 S
6601749 Sullivan et al. Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6602262 Griego et al. Aug 2003 B2
6603050 Heaton Aug 2003 B2
6605078 Adams Aug 2003 B2
6605669 Awokola et al. Aug 2003 B2
6605911 Klesing Aug 2003 B1
6607475 Doyle et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6613069 Boyd et al. Sep 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620111 Stephens et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620166 Wenstrom, Jr. et al. Sep 2003 B1
6625517 Bogdanov et al. Sep 2003 B1
6626834 Dunne et al. Sep 2003 B2
H2086 Amsler Oct 2003 H
6629630 Adams Oct 2003 B2
6629974 Penny et al. Oct 2003 B2
6629988 Weadock Oct 2003 B2
6635838 Kornelson Oct 2003 B1
6636412 Smith Oct 2003 B2
6638108 Tachi Oct 2003 B2
6638285 Gabbay Oct 2003 B2
6638297 Huitema Oct 2003 B1
RE38335 Aust et al. Nov 2003 E
6641528 Torii Nov 2003 B2
6644532 Green et al. Nov 2003 B2
6645201 Utley et al. Nov 2003 B1
6646307 Yu et al. Nov 2003 B1
6648816 Irion et al. Nov 2003 B2
6648901 Fleischman et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
D484243 Ryan et al. Dec 2003 S
D484595 Ryan et al. Dec 2003 S
D484596 Ryan et al. Dec 2003 S
6656177 Truckai et al. Dec 2003 B2
6656193 Grant et al. Dec 2003 B2
6659940 Adler Dec 2003 B2
6660008 Foerster et al. Dec 2003 B1
6663623 Oyama et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6667825 Lu et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6670806 Wendt et al. Dec 2003 B2
6671185 Duval Dec 2003 B2
D484977 Ryan et al. Jan 2004 S
6676660 Wampler et al. Jan 2004 B2
6677687 Ho et al. Jan 2004 B2
6679269 Swanson Jan 2004 B2
6679410 Wursch et al. Jan 2004 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6682544 Mastri et al. Jan 2004 B2
6685698 Morley et al. Feb 2004 B2
6685727 Fisher et al. Feb 2004 B2
6689153 Skiba Feb 2004 B1
6692507 Pugsley et al. Feb 2004 B2
6692692 Stetzel Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6695774 Hale et al. Feb 2004 B2
6695849 Michelson Feb 2004 B2
6696814 Henderson et al. Feb 2004 B2
6697048 Rosenberg et al. Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6699214 Gellman Mar 2004 B2
6699235 Wallace et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6705503 Pedicini et al. Mar 2004 B1
6709445 Boebel et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6716223 Leopold et al. Apr 2004 B2
6716232 Vidal et al. Apr 2004 B1
6716233 Whitman Apr 2004 B1
6720734 Norris Apr 2004 B2
6722550 Ricordi et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6723087 O'Neill et al. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
6723109 Solingen Apr 2004 B2
6726697 Nicholas et al. Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6729119 Schnipke et al. May 2004 B2
6731976 Penn et al. May 2004 B2
6736825 Blatter et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6743230 Lutze et al. Jun 2004 B2
6744385 Kazuya et al. Jun 2004 B2
6747121 Gogolewski Jun 2004 B2
6747300 Nadd et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749600 Levy Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752816 Culp et al. Jun 2004 B2
6754959 Guiette, III et al. Jun 2004 B1
6755195 Lemke et al. Jun 2004 B1
6755338 Hahnen et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756705 Pulford, Jr. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6762339 Klun et al. Jul 2004 B1
6764445 Ramans et al. Jul 2004 B2
6766957 Matsuura et al. Jul 2004 B2
6767352 Field et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6770027 Banik et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6770072 Truckai et al. Aug 2004 B1
6770078 Bonutti Aug 2004 B2
6773409 Truckai et al. Aug 2004 B2
6773437 Ogilvie et al. Aug 2004 B2
6773438 Knodel et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6777838 Miekka et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6790173 Saadat et al. Sep 2004 B2
6793652 Whitman et al. Sep 2004 B1
6793661 Hamilton et al. Sep 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793669 Nakamura et al. Sep 2004 B2
6796921 Buck et al. Sep 2004 B1
6799669 Fukumura et al. Oct 2004 B2
6802822 Dodge Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6802844 Ferree Oct 2004 B2
6805273 Bilotti et al. Oct 2004 B2
6806808 Watters et al. Oct 2004 B1
6808525 Latterell et al. Oct 2004 B2
6810359 Sakaguchi Oct 2004 B2
6814154 Chou Nov 2004 B2
6814741 Bowman et al. Nov 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818018 Sawhney Nov 2004 B1
6820791 Adams Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6827712 Tovey et al. Dec 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6828902 Casden Dec 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6831629 Nishino et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6834001 Myono Dec 2004 B2
6835173 Couvillon, Jr. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6836611 Popovic et al. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6838493 Williams et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6841967 Kim et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6843789 Goble Jan 2005 B2
6843793 Brock et al. Jan 2005 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6847190 Schaefer et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6850817 Green Feb 2005 B1
6852122 Rush Feb 2005 B2
6852330 Bowman et al. Feb 2005 B2
6853879 Sunaoshi Feb 2005 B2
6858005 Ohline et al. Feb 2005 B2
6859882 Fung Feb 2005 B2
RE38708 Bolanos et al. Mar 2005 E
D502994 Blake, III Mar 2005 S
6861142 Wilkie et al. Mar 2005 B1
6861954 Levin Mar 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6863694 Boyce et al. Mar 2005 B1
6863924 Ranganathan et al. Mar 2005 B2
6866178 Adams et al. Mar 2005 B2
6866668 Giannetti et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6867248 Martin et al. Mar 2005 B1
6869430 Balbierz et al. Mar 2005 B2
6869435 Blake, III Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6878106 Herrmann Apr 2005 B1
6883199 Lundell Apr 2005 B1
6884392 Malkin et al. Apr 2005 B2
6884428 Binette et al. Apr 2005 B2
6886730 Fujisawa et al. May 2005 B2
6887710 Call et al. May 2005 B2
6889116 Jinno May 2005 B2
6893435 Goble May 2005 B2
6894140 Roby May 2005 B2
6895176 Archer et al. May 2005 B2
6899538 Matoba May 2005 B2
6899593 Moeller et al. May 2005 B1
6899915 Yelick et al. May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6905497 Truckai et al. Jun 2005 B2
6905498 Hooven Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6913579 Truckai et al. Jul 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6921397 Corcoran et al. Jul 2005 B2
6921412 Black et al. Jul 2005 B1
6923093 Ullah Aug 2005 B2
6923803 Goble Aug 2005 B2
6923819 Meade et al. Aug 2005 B2
6925849 Jairam Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6928902 Eyssallenne Aug 2005 B1
6929641 Goble et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6931830 Liao Aug 2005 B2
6932218 Kosann et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6936948 Bell et al. Aug 2005 B2
D509297 Wells Sep 2005 S
D509589 Wells Sep 2005 S
6938706 Ng Sep 2005 B2
6939358 Palacios et al. Sep 2005 B2
6942662 Goble et al. Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6945444 Gresham et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6951562 Zwirnmann Oct 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6957758 Aranyi Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960107 Schaub et al. Nov 2005 B1
6960163 Ewers et al. Nov 2005 B2
6960220 Marino et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6968908 Tokunaga et al. Nov 2005 B2
6969385 Moreyra Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6971988 Orban, III Dec 2005 B2
6972199 Lebouitz et al. Dec 2005 B2
6974435 Daw et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6981978 Gannoe Jan 2006 B2
6984203 Tartaglia et al. Jan 2006 B2
6984231 Goble et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
6989034 Hammer et al. Jan 2006 B2
6990731 Haytayan Jan 2006 B2
6990796 Schnipke et al. Jan 2006 B2
6993200 Tastl et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994708 Manzo Feb 2006 B2
6995729 Govari et al. Feb 2006 B2
6996433 Burbank et al. Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
6997935 Anderson et al. Feb 2006 B2
6998736 Lee et al. Feb 2006 B2
6998816 Wieck et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7000911 McCormick et al. Feb 2006 B2
7001380 Goble Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7004174 Eggers et al. Feb 2006 B2
7007176 Goodfellow et al. Feb 2006 B2
7008433 Voellmicke et al. Mar 2006 B2
7008435 Cummins Mar 2006 B2
7009039 Yayon et al. Mar 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014640 Kemppainen et al. Mar 2006 B2
7018357 Emmons Mar 2006 B2
7018390 Turovskiy et al. Mar 2006 B2
7021669 Lindermeir et al. Apr 2006 B1
7022131 Derowe et al. Apr 2006 B1
7023159 Gorti et al. Apr 2006 B2
7025064 Wang et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7025774 Freeman et al. Apr 2006 B2
7025775 Gadberry et al. Apr 2006 B2
7028570 Ohta et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029439 Roberts et al. Apr 2006 B2
7030904 Adair et al. Apr 2006 B2
7032798 Whitman et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7035716 Harris et al. Apr 2006 B2
7035762 Menard et al. Apr 2006 B2
7036680 Flannery May 2006 B1
7037314 Armstrong May 2006 B2
7037344 Kagan et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7041868 Greene et al. May 2006 B2
7043852 Hayashida et al. May 2006 B2
7044350 Kameyama et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7046082 Komiya et al. May 2006 B2
7048165 Haramiishi May 2006 B2
7048687 Reuss May 2006 B1
7048745 Tierney et al. May 2006 B2
7052454 Taylor May 2006 B2
7052494 Goble et al. May 2006 B2
7052499 Steger et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059331 Adams et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7063671 Couvillon, Jr. Jun 2006 B2
7063712 Vargas et al. Jun 2006 B2
7064509 Fu et al. Jun 2006 B1
7066879 Fowler et al. Jun 2006 B2
7066944 Laufer et al. Jun 2006 B2
7067038 Trokhan et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7070559 Adams et al. Jul 2006 B2
7070597 Truckai et al. Jul 2006 B2
7071287 Rhine et al. Jul 2006 B2
7075770 Smith Jul 2006 B1
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083073 Yoshie et al. Aug 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7083626 Hart et al. Aug 2006 B2
7086267 Dworak et al. Aug 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090684 McGuckin, Jr. et al. Aug 2006 B2
7091191 Laredo et al. Aug 2006 B2
7091412 Wang et al. Aug 2006 B2
7093492 Treiber et al. Aug 2006 B2
7094202 Nobis et al. Aug 2006 B2
7094247 Monassevitch et al. Aug 2006 B2
7094916 DeLuca et al. Aug 2006 B2
7096972 Orozco, Jr. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7097644 Long Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7098794 Lindsay et al. Aug 2006 B2
7100949 Williams et al. Sep 2006 B2
7101187 Deconinck et al. Sep 2006 B1
7101371 Dycus et al. Sep 2006 B2
7101394 Hamm et al. Sep 2006 B2
7104741 Krohn Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7108701 Evens et al. Sep 2006 B2
7108709 Cummins Sep 2006 B2
7111768 Cummins et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
7114642 Whitman Oct 2006 B2
7116100 Mock et al. Oct 2006 B1
7118020 Lee et al. Oct 2006 B2
7118528 Piskun Oct 2006 B1
7118563 Weckwerth et al. Oct 2006 B2
7118582 Wang et al. Oct 2006 B1
7119534 Butzmann Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7121773 Mikiya et al. Oct 2006 B2
7122028 Looper et al. Oct 2006 B2
7125403 Julian et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7126879 Snyder Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7133601 Phillips et al. Nov 2006 B2
7134364 Kageler et al. Nov 2006 B2
7134587 Schwemberger et al. Nov 2006 B2
7135027 Delmotte Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7139016 Squilla et al. Nov 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7146191 Kerner et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7147140 Wukusick et al. Dec 2006 B2
7147637 Goble Dec 2006 B2
7147648 Lin Dec 2006 B2
7147650 Lee Dec 2006 B2
7150748 Ebbutt et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7156863 Sonnenschein et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7161036 Oikawa et al. Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7162758 Skinner Jan 2007 B2
7163563 Schwartz et al. Jan 2007 B2
7166117 Hellenkamp Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7170910 Chen et al. Jan 2007 B2
7171279 Buckingham et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7172593 Trieu et al. Feb 2007 B2
7172615 Morriss et al. Feb 2007 B2
7174202 Bladen et al. Feb 2007 B2
7174636 Lowe Feb 2007 B2
7177533 McFarlin et al. Feb 2007 B2
7179223 Motoki et al. Feb 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7182763 Nardella Feb 2007 B2
7183737 Kitagawa Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188758 Viola et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7190147 Gileff et al. Mar 2007 B2
7193199 Jang Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7196911 Takano et al. Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7199537 Okamura et al. Apr 2007 B2
7199545 Oleynikov et al. Apr 2007 B2
7202576 Dechene et al. Apr 2007 B1
7202653 Pai Apr 2007 B2
7204404 Nguyen et al. Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7206626 Quaid, III Apr 2007 B2
7207233 Wadge Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207472 Wukusick et al. Apr 2007 B2
7207556 Saitoh et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210609 Leiboff et al. May 2007 B2
7211081 Goble May 2007 B2
7211084 Goble et al. May 2007 B2
7211092 Hughett May 2007 B2
7211979 Khatib et al. May 2007 B2
7213736 Wales et al. May 2007 B2
7214224 Goble May 2007 B2
7215517 Takamatsu May 2007 B2
7217285 Vargas et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7220272 Weadock May 2007 B2
7225959 Patton et al. Jun 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226450 Athanasiou et al. Jun 2007 B2
7228505 Shimazu et al. Jun 2007 B2
7229408 Douglas et al. Jun 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235072 Sartor et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7235302 Jing et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7238195 Viola Jul 2007 B2
7238901 Kim Jul 2007 B2
7239657 Gunnarsson Jul 2007 B1
7241288 Braun Jul 2007 B2
7241289 Braun Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7247161 Johnston et al. Jul 2007 B2
7249267 Chapuis Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252660 Kunz Aug 2007 B2
7255012 Hedtke Aug 2007 B2
7255696 Goble et al. Aug 2007 B2
7256695 Hamel et al. Aug 2007 B2
7258262 Mastri et al. Aug 2007 B2
7258546 Beier et al. Aug 2007 B2
7260431 Libbus et al. Aug 2007 B2
7265374 Lee et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267679 McGuckin, Jr. et al. Sep 2007 B2
7272002 Drapeau Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552623 Vong et al. Oct 2007 S
7275674 Racenet et al. Oct 2007 B2
7276044 Ferry et al. Oct 2007 B2
7276068 Johnson et al. Oct 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7278949 Bader Oct 2007 B2
7278994 Goble Oct 2007 B2
7282048 Goble et al. Oct 2007 B2
7283096 Geisheimer et al. Oct 2007 B2
7286850 Frielink et al. Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7289139 Amling et al. Oct 2007 B2
7293685 Ehrenfels et al. Nov 2007 B2
7295893 Sunaoshi Nov 2007 B2
7295907 Lu et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300373 Jinno et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7303502 Thompson Dec 2007 B2
7303556 Metzger Dec 2007 B2
7306597 Manzo Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7311238 Liu Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314473 Jinno et al. Jan 2008 B2
7322859 Evans Jan 2008 B2
7322975 Goble et al. Jan 2008 B2
7322994 Nicholas et al. Jan 2008 B2
7324572 Chang Jan 2008 B2
7326203 Papineau et al. Feb 2008 B2
7326213 Benderev et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7330004 DeJonge et al. Feb 2008 B2
7331340 Barney Feb 2008 B2
7331343 Schmidt et al. Feb 2008 B2
7331403 Berry et al. Feb 2008 B2
7331406 Wottreng, Jr. et al. Feb 2008 B2
7331969 Inganas et al. Feb 2008 B1
7334717 Rethy et al. Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335199 Goble et al. Feb 2008 B2
7335401 Finke et al. Feb 2008 B2
7336045 Clermonts Feb 2008 B2
7336048 Lohr Feb 2008 B2
7336184 Smith et al. Feb 2008 B2
7337774 Webb Mar 2008 B2
7338505 Belson Mar 2008 B2
7338513 Lee et al. Mar 2008 B2
7341554 Sekine et al. Mar 2008 B2
7341555 Ootawara et al. Mar 2008 B2
7341591 Grinberg Mar 2008 B2
7343920 Toby et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7344533 Pearson et al. Mar 2008 B2
7346344 Fontaine Mar 2008 B2
7346406 Brotto et al. Mar 2008 B2
7348763 Reinhart et al. Mar 2008 B1
7348875 Hughes et al. Mar 2008 B2
RE40237 Bilotti et al. Apr 2008 E
7351258 Ricotta et al. Apr 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7354502 Polat et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357806 Rivera et al. Apr 2008 B2
7361168 Makower et al. Apr 2008 B2
7361195 Schwartz et al. Apr 2008 B2
7362062 Schneider et al. Apr 2008 B2
7364060 Milliman Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7367485 Shelton, IV et al. May 2008 B2
7368124 Chun et al. May 2008 B2
7371210 Brock et al. May 2008 B2
7371403 McCarthy et al. May 2008 B2
7375493 Calhoon et al. May 2008 B2
7377918 Amoah May 2008 B2
7377928 Zubik et al. May 2008 B2
7378817 Calhoon et al. May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7384403 Sherman Jun 2008 B2
7384417 Cucin Jun 2008 B2
7386365 Nixon Jun 2008 B2
7386730 Uchikubo Jun 2008 B2
7388217 Buschbeck et al. Jun 2008 B2
7388484 Hsu Jun 2008 B2
7391173 Schena Jun 2008 B2
7394190 Huang Jul 2008 B2
7396356 Mollenauer Jul 2008 B2
7397364 Govari Jul 2008 B2
7398707 Morley et al. Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7400107 Schneider et al. Jul 2008 B2
7400752 Zacharias Jul 2008 B2
7401000 Nakamura Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404449 Bermingham et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7404822 Viart et al. Jul 2008 B2
D575793 Ording Aug 2008 S
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407076 Racenet et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7408310 Hong et al. Aug 2008 B2
7410085 Wolf et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7410483 Danitz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7418078 Blanz et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419321 Tereschouk Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422138 Bilotti et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7427607 Suzuki Sep 2008 B2
D578644 Shumer et al. Oct 2008 S
7430772 Van Es Oct 2008 B2
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7431230 McPherson et al. Oct 2008 B2
7431694 Stefanchik et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7438718 Milliman et al. Oct 2008 B2
7439354 Lenges et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7442201 Pugsley et al. Oct 2008 B2
7443547 Moreno et al. Oct 2008 B2
7446131 Liu et al. Nov 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7450010 Gravelle et al. Nov 2008 B1
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
D582934 Byeon Dec 2008 S
7461767 Viola et al. Dec 2008 B2
7462187 Johnston et al. Dec 2008 B2
7464845 Chou Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464848 Green et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7467849 Silverbrook et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473221 Ewers et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7476237 Taniguchi et al. Jan 2009 B2
7479608 Smith Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7485124 Kuhns et al. Feb 2009 B2
7485133 Cannon et al. Feb 2009 B2
7485142 Milo Feb 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7489055 Jeong et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7491232 Bolduc et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7494460 Haarstad et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7501198 Barlev et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507202 Schoellhorn Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510534 Burdorff et al. Mar 2009 B2
7510566 Jacobs et al. Mar 2009 B2
7513407 Chang Apr 2009 B1
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7527632 Houghton et al. May 2009 B2
7530984 Sonnenschein et al. May 2009 B2
7530985 Takemoto et al. May 2009 B2
7533906 Luettgen et al. May 2009 B2
7534259 Lashinski et al. May 2009 B2
7540867 Jinno et al. Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547287 Boecker et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7549563 Mather et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7553173 Kowalick Jun 2009 B2
7553275 Padget et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7556647 Drews et al. Jul 2009 B2
7559449 Viola Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7561637 Jonsson et al. Jul 2009 B2
7562910 Kertesz et al. Jul 2009 B2
7563269 Hashiguchi Jul 2009 B2
7563862 Sieg et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7566300 Devierre et al. Jul 2009 B2
7567045 Fristedt Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7568619 Todd et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7578825 Huebner Aug 2009 B2
D600712 LaManna et al. Sep 2009 S
7583063 Dooley Sep 2009 B2
7584880 Racenet et al. Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7591783 Boulais et al. Sep 2009 B2
7591818 Bertolero et al. Sep 2009 B2
7593766 Faber et al. Sep 2009 B2
7595642 Doyle Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7597693 Garrison Oct 2009 B2
7597699 Rogers Oct 2009 B2
7598972 Tomita Oct 2009 B2
7600663 Green Oct 2009 B2
7604118 Iio et al. Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7604668 Farnsworth et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
D604325 Ebeling et al. Nov 2009 S
7611038 Racenet et al. Nov 2009 B2
7611474 Hibner et al. Nov 2009 B2
7615003 Stefanchik et al. Nov 2009 B2
7615006 Abe Nov 2009 B2
7615067 Lee et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
D605201 Lorenz et al. Dec 2009 S
D607010 Kocmick Dec 2009 S
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7625370 Hart et al. Dec 2009 B2
7630841 Comisky et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7635922 Becker Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7638958 Philipp et al. Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641092 Kruszynski et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644783 Roberts et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645230 Mikkaichi et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7648457 Stefanchik et al. Jan 2010 B2
7648519 Lee et al. Jan 2010 B2
7650185 Maile et al. Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7651498 Shifrin et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655004 Long Feb 2010 B2
7655288 Bauman et al. Feb 2010 B2
7655584 Biran et al. Feb 2010 B2
7656131 Embrey et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7658705 Melvin et al. Feb 2010 B2
7659219 Biran et al. Feb 2010 B2
7661448 Kim et al. Feb 2010 B2
7662161 Briganti et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666195 Kelleher et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7674253 Fisher et al. Mar 2010 B2
7674255 Braun Mar 2010 B2
7674263 Ryan Mar 2010 B2
7674270 Layer Mar 2010 B2
7682307 Danitz et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7682686 Curro et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7691106 Schenberger et al. Apr 2010 B2
7694864 Okada et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7695485 Whitman et al. Apr 2010 B2
7695493 Saadat et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699844 Utley et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7699856 Van Wyk et al. Apr 2010 B2
7699859 Bombard et al. Apr 2010 B2
7699860 Huitema et al. Apr 2010 B2
7699868 Frank et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7705559 Powell et al. Apr 2010 B2
7708180 Murray et al. May 2010 B2
7708181 Cole et al. May 2010 B2
7708182 Viola May 2010 B2
7708758 Lee et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7712182 Zeiler et al. May 2010 B2
7713190 Brock et al. May 2010 B2
7713542 Xu et al. May 2010 B2
7714239 Smith May 2010 B2
7714334 Lin May 2010 B2
7717312 Beetel May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7717846 Zirps et al. May 2010 B2
7717873 Swick May 2010 B2
7717915 Miyazawa May 2010 B2
7717926 Whitfield et al. May 2010 B2
7718180 Karp May 2010 B2
7718556 Matsuda et al. May 2010 B2
7721930 McKenna et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7721936 Shalton, IV et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7722610 Viola et al. May 2010 B2
7725214 Diolaiti May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7727954 McKay Jun 2010 B2
7728553 Carrier et al. Jun 2010 B2
7729742 Govari Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7736254 Schena Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744624 Bettuchi Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7747146 Milano et al. Jun 2010 B2
7748587 Haramiishi et al. Jul 2010 B2
7748632 Coleman et al. Jul 2010 B2
7749204 Dhanaraj et al. Jul 2010 B2
7749240 Takahashi et al. Jul 2010 B2
7751870 Whitman Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7757924 Gerbi et al. Jul 2010 B2
7758594 Lamson et al. Jul 2010 B2
7758612 Shipp Jul 2010 B2
7762462 Gelbman Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766821 Brunnen et al. Aug 2010 B2
7766894 Weitzner et al. Aug 2010 B2
7770658 Ito et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7770776 Chen et al. Aug 2010 B2
7771396 Stefanchik et al. Aug 2010 B2
7772720 McGee et al. Aug 2010 B2
7772725 Siman-Tov Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7776065 Griffiths et al. Aug 2010 B2
7778004 Nerheim et al. Aug 2010 B2
7779737 Newman, Jr. et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7780309 McMillan et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7787256 Chan Aug 2010 B2
7789283 Shah Sep 2010 B2
7789875 Brock et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7799044 Johnston et al. Sep 2010 B2
7799965 Patel et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810691 Boyden et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811275 Birk et al. Oct 2010 B2
7814816 Alberti et al. Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7815565 Stefanchik et al. Oct 2010 B2
7815662 Spivey et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819799 Merril et al. Oct 2010 B2
7819884 Lee et al. Oct 2010 B2
7819885 Cooper Oct 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7824401 Manzo et al. Nov 2010 B2
7824422 Benchetrit Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7828794 Sartor Nov 2010 B2
7828808 Hinman et al. Nov 2010 B2
7831292 Quaid et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7833234 Bailly et al. Nov 2010 B2
7835823 Sillman et al. Nov 2010 B2
7836400 May et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7837425 Saeki et al. Nov 2010 B2
7837685 Weinberg et al. Nov 2010 B2
7837687 Harp Nov 2010 B2
7837694 Tethrake et al. Nov 2010 B2
7838789 Stoffers et al. Nov 2010 B2
7839109 Carmen, Jr. et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7842025 Coleman et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7843158 Prisco Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7846085 Silverman et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7848066 Yanagishima Dec 2010 B2
7850623 Griffin et al. Dec 2010 B2
7850642 Moll et al. Dec 2010 B2
7850982 Stopek et al. Dec 2010 B2
7853813 Lee Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
7854736 Ryan Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7857813 Schmitz et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7862502 Pool et al. Jan 2011 B2
7862546 Conlon et al. Jan 2011 B2
7862579 Ortiz et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7871418 Thompson et al. Jan 2011 B2
7871440 Schwartz et al. Jan 2011 B2
7875055 Cichocki, Jr. Jan 2011 B2
7879063 Khosravi Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883461 Albrecht et al. Feb 2011 B2
7883465 Donofrio et al. Feb 2011 B2
7886951 Hessler Feb 2011 B2
7886952 Scirica et al. Feb 2011 B2
7887530 Zemlok et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7887536 Johnson et al. Feb 2011 B2
7887563 Cummins Feb 2011 B2
7891531 Ward Feb 2011 B1
7891532 Mastri et al. Feb 2011 B2
7892200 Birk et al. Feb 2011 B2
7892245 Liddicoat et al. Feb 2011 B2
7893586 West et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7896215 Adams et al. Mar 2011 B2
7896869 DiSilvestro et al. Mar 2011 B2
7896877 Hall et al. Mar 2011 B2
7896895 Boudreaux et al. Mar 2011 B2
7896897 Gresham et al. Mar 2011 B2
7896900 Frank et al. Mar 2011 B2
7898198 Murphree Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7901381 Birk et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7905889 Catanese, III et al. Mar 2011 B2
7905890 Whitfield et al. Mar 2011 B2
7905902 Huitema et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909191 Baker et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7909224 Prommersberger Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914521 Wang et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7914551 Ortiz et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7918845 Saadat et al. Apr 2011 B2
7918848 Lau et al. Apr 2011 B2
7918861 Brock et al. Apr 2011 B2
7918867 Dana et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7923144 Kohn Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7926692 Racenet et al. Apr 2011 B2
7927328 Orszulak et al. Apr 2011 B2
7928281 Augustine Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7930065 Larkin et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7931695 Ringeisen Apr 2011 B2
7931877 Steffens et al. Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7934896 Schnier May 2011 B2
7935130 Williams May 2011 B2
7935773 Hadba et al. May 2011 B2
7936142 Otsuka et al. May 2011 B2
7938307 Bettuchi May 2011 B2
7941865 Seman, Jr. et al. May 2011 B2
7942303 Shah May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7944175 Mori et al. May 2011 B2
7945792 Cherpantier May 2011 B2
7945798 Carlson et al. May 2011 B2
7946453 Voegele et al. May 2011 B2
7947011 Birk et al. May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951071 Whitman et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954684 Boudreaux Jun 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7955253 Ewers et al. Jun 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955322 Devengenzo et al. Jun 2011 B2
7955327 Sartor et al. Jun 2011 B2
7955380 Chu et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7959052 Sonnenschein et al. Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7963913 Devengenzo et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7963964 Santilli et al. Jun 2011 B2
7964206 Suokas et al. Jun 2011 B2
7966236 Noriega et al. Jun 2011 B2
7966269 Bauer et al. Jun 2011 B2
7966799 Morgan et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7967791 Franer et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7972298 Wallace et al. Jul 2011 B2
7972315 Birk et al. Jul 2011 B2
7976213 Bertolotti et al. Jul 2011 B2
7976563 Summerer Jul 2011 B2
7979137 Tracey et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981132 Dubrul et al. Jul 2011 B2
7987405 Turner et al. Jul 2011 B2
7988015 Mason, II et al. Aug 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7988779 Disalvo et al. Aug 2011 B2
7992757 Wheeler et al. Aug 2011 B2
7993360 Hacker et al. Aug 2011 B2
7994670 Ji Aug 2011 B2
7997054 Bertsch et al. Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002696 Suzuki Aug 2011 B2
8002784 Jinno et al. Aug 2011 B2
8002785 Weiss et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006365 Levin et al. Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8007370 Hirsch et al. Aug 2011 B2
8007465 Birk et al. Aug 2011 B2
8007479 Birk et al. Aug 2011 B2
8007511 Brock et al. Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8008598 Whitman et al. Aug 2011 B2
8010180 Quaid et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016176 Kasvikis et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016849 Wenchell Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8016881 Furst Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8025896 Malaviya et al. Sep 2011 B2
8028882 Viola Oct 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8028885 Smith et al. Oct 2011 B2
8029510 Hoegerle Oct 2011 B2
8031069 Cohn et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033439 Racenet et al. Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8034337 Simard Oct 2011 B2
8034363 Li et al. Oct 2011 B2
8035487 Malackowski Oct 2011 B2
8037591 Spivey et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8038686 Huitema et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8043328 Hahnen et al. Oct 2011 B2
8044536 Nguyen et al. Oct 2011 B2
8044604 Hagino et al. Oct 2011 B2
8047236 Perry Nov 2011 B2
8048503 Farnsworth et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056789 White et al. Nov 2011 B1
8057508 Shelton, IV Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8060250 Reiland et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8061576 Cappola Nov 2011 B2
8062236 Soltz Nov 2011 B2
8062306 Nobis et al. Nov 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8063619 Zhu et al. Nov 2011 B2
8066158 Vogel et al. Nov 2011 B2
8066166 Demmy et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066168 Vidal et al. Nov 2011 B2
8066720 Knodel et al. Nov 2011 B2
D650074 Hunt et al. Dec 2011 S
D650789 Arnold Dec 2011 S
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8070743 Kagan et al. Dec 2011 B2
8074858 Marczyk Dec 2011 B2
8074859 Kostrzewski Dec 2011 B2
8074861 Ehrenfels et al. Dec 2011 B2
8075476 Vargas Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8079989 Birk et al. Dec 2011 B2
8080004 Downey et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8084001 Burns et al. Dec 2011 B2
8084969 David et al. Dec 2011 B2
8085013 Wei et al. Dec 2011 B2
8087562 Manoux et al. Jan 2012 B1
8087563 Milliman et al. Jan 2012 B2
8089509 Chatenever et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091756 Viola Jan 2012 B2
8092443 Bischoff Jan 2012 B2
8092932 Phillips et al. Jan 2012 B2
8093572 Kuduvalli Jan 2012 B2
8096458 Hessler Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097017 Viola Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8100824 Hegeman et al. Jan 2012 B2
8100872 Patel Jan 2012 B2
8102138 Sekine et al. Jan 2012 B2
8102278 Deck et al. Jan 2012 B2
8105350 Lee et al. Jan 2012 B2
8107925 Natsuno Jan 2012 B2
8108033 Drew et al. Jan 2012 B2
8108072 Zhao et al. Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8110208 Hen Feb 2012 B1
8113405 Milliman Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8114017 Bacher Feb 2012 B2
8114100 Smith et al. Feb 2012 B2
8118206 Zand et al. Feb 2012 B2
8118207 Racenet et al. Feb 2012 B2
8120301 Goldberg et al. Feb 2012 B2
8122128 Burke, II Feb 2012 B2
8123103 Milliman Feb 2012 B2
8123523 Carron et al. Feb 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8125168 Johnson et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8128624 Couture et al. Mar 2012 B2
8128643 Aranyi et al. Mar 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8128662 Altarac et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8133500 Ringeisen et al. Mar 2012 B2
8134306 Drader et al. Mar 2012 B2
8136711 Beardsley et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8137339 Jinno et al. Mar 2012 B2
8140417 Shibata Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8141763 Milliman Mar 2012 B2
8142200 Crunkilton et al. Mar 2012 B2
8142425 Eggers Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8142515 Therin et al. Mar 2012 B2
8143520 Cutler Mar 2012 B2
8146790 Milliman Apr 2012 B2
8147421 Farquhar et al. Apr 2012 B2
8147456 Fisher et al. Apr 2012 B2
8147485 Wham et al. Apr 2012 B2
8152041 Kostrzewski Apr 2012 B2
8152756 Webster et al. Apr 2012 B2
8154239 Katsuki et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8157153 Shelton, IV et al. Apr 2012 B2
8157793 Omori et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162138 Bettenhausen et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8162668 Toly Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8162965 Reschke et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167622 Zhou May 2012 B2
8167895 D'Agostino et al. May 2012 B2
8167898 Schaller et al. May 2012 B1
8170241 Roe et al. May 2012 B2
8172004 Ho May 2012 B2
8172120 Boyden et al. May 2012 B2
8172122 Kasvikis et al. May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8177776 Humayun et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8179705 Chapuis May 2012 B2
8180458 Kane et al. May 2012 B2
8181839 Beetel May 2012 B2
8181840 Milliman May 2012 B2
8182422 Bayer et al. May 2012 B2
8182444 Uber, III et al. May 2012 B2
8183807 Tsai et al. May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186556 Viola May 2012 B2
8186558 Sapienza May 2012 B2
8186560 Hess et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8192350 Ortiz et al. Jun 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8192651 Young et al. Jun 2012 B2
8193129 Tagawa et al. Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8197501 Shadeck et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8202549 Stucky et al. Jun 2012 B2
8205779 Ma et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates Jul 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210415 Ward Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8210721 Chen et al. Jul 2012 B2
8211125 Spivey Jul 2012 B2
8214019 Govari et al. Jul 2012 B2
8215531 Shelton, IV et al. Jul 2012 B2
8215532 Marczyk Jul 2012 B2
8215533 Viola et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8221402 Francischelli et al. Jul 2012 B2
8221424 Cha Jul 2012 B2
8221433 Lozier et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8226553 Shelton, IV et al. Jul 2012 B2
8226635 Petrie et al. Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8226715 Hwang et al. Jul 2012 B2
8227946 Kim Jul 2012 B2
8228020 Shin et al. Jul 2012 B2
8228048 Spencer Jul 2012 B2
8229549 Whitman et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235272 Nicholas et al. Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8236011 Harris et al. Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8237388 Jinno et al. Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241308 Kortenbach et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245594 Rogers et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8245901 Stopek Aug 2012 B2
8246608 Omori et al. Aug 2012 B2
8246637 Viola et al. Aug 2012 B2
8252009 Weller et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8257251 Shelton, IV et al. Sep 2012 B2
8257356 Bleich et al. Sep 2012 B2
8257386 Lee et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8257634 Scirica Sep 2012 B2
8258745 Smith et al. Sep 2012 B2
8261958 Knodel Sep 2012 B1
8262560 Whitman Sep 2012 B2
8262655 Ghabrial et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267924 Zemlok et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8267951 Whayne et al. Sep 2012 B2
8268344 Ma et al. Sep 2012 B2
8269121 Smith Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8272918 Lam Sep 2012 B2
8273404 Dave et al. Sep 2012 B2
8276594 Shah Oct 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8276802 Kostrzewski Oct 2012 B2
8277473 Sunaoshi et al. Oct 2012 B2
8281446 Moskovich Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8281974 Hessler et al. Oct 2012 B2
8282654 Ferrari et al. Oct 2012 B2
8285367 Hyde et al. Oct 2012 B2
8286723 Puzio et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8286847 Taylor Oct 2012 B2
8287487 Estes Oct 2012 B2
8287522 Moses et al. Oct 2012 B2
8287561 Nunez et al. Oct 2012 B2
8288984 Yang Oct 2012 B2
8289403 Dobashi et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292148 Viola Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8292158 Sapienza Oct 2012 B2
8292801 Dejima et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8292906 Taylor et al. Oct 2012 B2
8294399 Suzuki et al. Oct 2012 B2
8298161 Vargas Oct 2012 B2
8298189 Fisher et al. Oct 2012 B2
8298233 Mueller Oct 2012 B2
8298677 Wiesner et al. Oct 2012 B2
8302323 Fortier et al. Nov 2012 B2
8303621 Miyamoto et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308659 Scheibe et al. Nov 2012 B2
8308725 Bell et al. Nov 2012 B2
8310188 Nakai Nov 2012 B2
8313496 Sauer et al. Nov 2012 B2
8313499 Magnusson et al. Nov 2012 B2
8313509 Kostrzewski Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8317074 Ortiz et al. Nov 2012 B2
8317437 Merkley et al. Nov 2012 B2
8317744 Kirschenman Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8319002 Daniels et al. Nov 2012 B2
D672784 Clanton et al. Dec 2012 S
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8322590 Patel et al. Dec 2012 B2
8322901 Michelotti Dec 2012 B2
8323789 Rozhin et al. Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8328064 Racenet et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328823 Aranyi et al. Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8333691 Schaaf Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8343150 Artale Jan 2013 B2
8347978 Forster et al. Jan 2013 B2
8348118 Segura Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348124 Scirica Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8348837 Wenchell Jan 2013 B2
8348959 Wolford et al. Jan 2013 B2
8348972 Soltz et al. Jan 2013 B2
8349987 Kapiamba et al. Jan 2013 B2
8352004 Mannheimer et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357144 Whitman et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8357161 Mueller Jan 2013 B2
8359174 Nakashima et al. Jan 2013 B2
8360296 Zingman Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8361501 DiTizio et al. Jan 2013 B2
D676866 Chaudhri Feb 2013 S
8365972 Aranyi et al. Feb 2013 B2
8365973 White et al. Feb 2013 B1
8365975 Manoux et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8366559 Papenfuss et al. Feb 2013 B2
8366719 Markey et al. Feb 2013 B2
8366787 Brown et al. Feb 2013 B2
8369056 Senriuchi et al. Feb 2013 B2
8371393 Higuchi et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8371494 Racenet et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8376865 Forster et al. Feb 2013 B2
8377029 Nagao et al. Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8381828 Whitman et al. Feb 2013 B2
8382773 Whitfield et al. Feb 2013 B2
8382790 Uenohara et al. Feb 2013 B2
D677273 Randall et al. Mar 2013 S
8387848 Johnson et al. Mar 2013 B2
8388633 Rousseau et al. Mar 2013 B2
8389588 Ringeisen et al. Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397832 Blickle et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397973 Hausen Mar 2013 B1
8398633 Mueller Mar 2013 B2
8398669 Kim Mar 2013 B2
8398673 Hinchliffe et al. Mar 2013 B2
8398674 Prestel Mar 2013 B2
8400851 Byun Mar 2013 B2
8403138 Weisshaupt et al. Mar 2013 B2
8403195 Beardsley et al. Mar 2013 B2
8403196 Beardsley et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403832 Cunningham et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8408439 Huang et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409079 Okamoto et al. Apr 2013 B2
8409174 Omori Apr 2013 B2
8409175 Lee et al. Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8411500 Gapihan et al. Apr 2013 B2
8413661 Rousseau et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8414469 Diolaiti Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8414598 Brock et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8418909 Kostrzewski Apr 2013 B2
8419635 Shelton, IV et al. Apr 2013 B2
8419717 Diolaiti et al. Apr 2013 B2
8419747 Hinman et al. Apr 2013 B2
8419754 Laby et al. Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8425600 Maxwell Apr 2013 B2
8427430 Lee et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8444037 Nicholas et al. May 2013 B2
8444549 Viola et al. May 2013 B2
8449536 Selig May 2013 B2
8449560 Roth et al. May 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454495 Kawano et al. Jun 2013 B2
8454551 Allen et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8454640 Johnston et al. Jun 2013 B2
8457757 Cauller et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459521 Zemlok et al. Jun 2013 B2
8459524 Pribanic et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8464924 Gresham et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8465475 Isbell, Jr. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8465515 Drew et al. Jun 2013 B2
8469254 Czernik et al. Jun 2013 B2
8469946 Sugita Jun 2013 B2
8469973 Meade et al. Jun 2013 B2
8470355 Skalla et al. Jun 2013 B2
D686240 Lin Jul 2013 S
8474677 Woodard, Jr. et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8475454 Alshemari Jul 2013 B1
8475474 Bombard et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8483509 Matsuzaka Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8487199 Palmer et al. Jul 2013 B2
8487487 Dietz et al. Jul 2013 B2
8490851 Blier et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8491581 Deville et al. Jul 2013 B2
8491603 Yeung et al. Jul 2013 B2
8496153 Demmy et al. Jul 2013 B2
8496154 Marczyk et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8498691 Moll et al. Jul 2013 B2
8499673 Keller Aug 2013 B2
8499992 Whitman et al. Aug 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8500721 Jinno Aug 2013 B2
8500762 Sholev et al. Aug 2013 B2
8502091 Palmer et al. Aug 2013 B2
8505799 Viola et al. Aug 2013 B2
8505801 Ehrenfels et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506557 Zemlok et al. Aug 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8506581 Wingardner, III et al. Aug 2013 B2
8511308 Hecox et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8518024 Williams et al. Aug 2013 B2
8521273 Kliman Aug 2013 B2
8523042 Masiakos et al. Sep 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8523900 Jinno et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8529819 Ostapoff et al. Sep 2013 B2
8532747 Nock et al. Sep 2013 B2
8534527 Brendel et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8535304 Sklar et al. Sep 2013 B2
8535340 Allen Sep 2013 B2
8539866 Nayak et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8540735 Mitelberg et al. Sep 2013 B2
8550984 Takemoto Oct 2013 B2
8551076 Duval et al. Oct 2013 B2
8555660 Takenaka et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8556935 Knodel et al. Oct 2013 B1
8560147 Taylor et al. Oct 2013 B2
8561617 Lindh et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8568416 Schmitz et al. Oct 2013 B2
8568425 Ross et al. Oct 2013 B2
D692916 Granchi et al. Nov 2013 S
8573459 Smith et al. Nov 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573462 Smith et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574199 von Bulow et al. Nov 2013 B2
8574263 Mueller Nov 2013 B2
8575880 Grantz Nov 2013 B2
8575895 Garrastacho et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579178 Holsten et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8584921 Scirica Nov 2013 B2
8585583 Sakaguchi et al. Nov 2013 B2
8585721 Kirsch Nov 2013 B2
8590760 Cummins et al. Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8596515 Okoniewski Dec 2013 B2
8597745 Farnsworth et al. Dec 2013 B2
8599450 Kubo et al. Dec 2013 B2
8602125 King Dec 2013 B2
8602287 Yates et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8603110 Maruyama et al. Dec 2013 B2
8603135 Mueller Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8622275 Baxter, III et al. Jan 2014 B2
8627993 Smith et al. Jan 2014 B2
8627994 Zemlok et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8628518 Blumenkranz et al. Jan 2014 B2
8628544 Farascioni Jan 2014 B2
8628545 Cabrera et al. Jan 2014 B2
8631987 Shelton, IV et al. Jan 2014 B2
8631992 Hausen et al. Jan 2014 B1
8631993 Kostrzewski Jan 2014 B2
8632462 Yoo et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8632539 Twomey et al. Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636190 Zemlok et al. Jan 2014 B2
8636191 Meagher Jan 2014 B2
8636193 Whitman et al. Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8639936 Hu et al. Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8646674 Schulte et al. Feb 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652151 Lehman et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657175 Sonnenschein et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8657482 Malackowski et al. Feb 2014 B2
8657808 McPherson et al. Feb 2014 B2
8657814 Werneth et al. Feb 2014 B2
8657821 Palermo Feb 2014 B2
D701238 Lai et al. Mar 2014 S
8662370 Takei Mar 2014 B2
8663106 Stivoric et al. Mar 2014 B2
8663192 Hester et al. Mar 2014 B2
8663245 Francischelli et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8663270 Donnigan et al. Mar 2014 B2
8664792 Rebsdorf Mar 2014 B2
8668129 Olson Mar 2014 B2
8668130 Hess et al. Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672207 Shelton, IV et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672922 Loh et al. Mar 2014 B2
8672935 Okada et al. Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8673210 Deshays Mar 2014 B2
8675820 Baic et al. Mar 2014 B2
8678263 Viola Mar 2014 B2
8678994 Sonnenschein et al. Mar 2014 B2
8679093 Farra Mar 2014 B2
8679098 Hart Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8679154 Smith et al. Mar 2014 B2
8679156 Smith et al. Mar 2014 B2
8679454 Guire et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684249 Racenet et al. Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684253 Giordano et al. Apr 2014 B2
8684962 Kirschenman et al. Apr 2014 B2
8685004 Zemlock et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690893 Deitch et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8708210 Zemlok et al. Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8714352 Farascioni et al. May 2014 B2
8714429 Demmy May 2014 B2
8714430 Natarajan et al. May 2014 B2
8715256 Greener May 2014 B2
8715302 Ibrahim et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8721666 Schroeder et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727199 Wenchell May 2014 B2
8727200 Roy May 2014 B2
8727961 Ziv May 2014 B2
8728099 Cohn et al. May 2014 B2
8728119 Cummins May 2014 B2
8733470 Matthias et al. May 2014 B2
8733612 Ma May 2014 B2
8733613 Huitema et al. May 2014 B2
8733614 Ross et al. May 2014 B2
8734336 Bonadio et al. May 2014 B2
8734359 Ibanez et al. May 2014 B2
8734478 Widenhouse et al. May 2014 B2
8734831 Kim et al. May 2014 B2
8739033 Rosenberg May 2014 B2
8739417 Tokunaga et al. Jun 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740037 Shelton, IV et al. Jun 2014 B2
8740038 Shelton, IV et al. Jun 2014 B2
8740987 Geremakis et al. Jun 2014 B2
8746529 Shelton, IV et al. Jun 2014 B2
8746530 Giordano et al. Jun 2014 B2
8746533 Whitman et al. Jun 2014 B2
8746535 Shelton, IV et al. Jun 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747441 Konieczynski et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752699 Morgan et al. Jun 2014 B2
8752747 Shelton, IV et al. Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753664 Dao et al. Jun 2014 B2
8757287 Mak et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758235 Jaworek Jun 2014 B2
8758366 McLean et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8758438 Boyce et al. Jun 2014 B2
8763875 Morgan et al. Jul 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8764732 Hartwell Jul 2014 B2
8770458 Scirica Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8770460 Belzer Jul 2014 B2
8771169 Whitman et al. Jul 2014 B2
8771260 Conlon et al. Jul 2014 B2
8777004 Shelton, IV et al. Jul 2014 B2
8777082 Scirica Jul 2014 B2
8777083 Racenet et al. Jul 2014 B2
8777898 Suon et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8783543 Shelton, IV et al. Jul 2014 B2
8784304 Mikkaichi et al. Jul 2014 B2
8784404 Doyle et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8790658 Cigarini et al. Jul 2014 B2
8790684 Dave et al. Jul 2014 B2
D711905 Morrison et al. Aug 2014 S
8794496 Scirica Aug 2014 B2
8794497 Zingman Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795308 Valin Aug 2014 B2
8795324 Kawai et al. Aug 2014 B2
8796995 Cunanan et al. Aug 2014 B2
8800681 Rousson et al. Aug 2014 B2
8800837 Zemlok Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800839 Beetel Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8801734 Shelton, IV et al. Aug 2014 B2
8801735 Shelton, IV et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8801801 Datta et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808161 Gregg et al. Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8808274 Hartwell Aug 2014 B2
8808294 Fox et al. Aug 2014 B2
8808308 Boukhny et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8808325 Hess et al. Aug 2014 B2
8810197 Juergens Aug 2014 B2
8811017 Fujii et al. Aug 2014 B2
8813866 Suzuki Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8814836 Ignon et al. Aug 2014 B2
8815594 Harris et al. Aug 2014 B2
8818523 Olson et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820606 Hodgkinson Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8820608 Miyamoto Sep 2014 B2
8821514 Aranyi Sep 2014 B2
8822934 Sayeh et al. Sep 2014 B2
8825164 Tweden et al. Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8827903 Shelton, IV et al. Sep 2014 B2
8831779 Ortmaier et al. Sep 2014 B2
8833219 Pierce Sep 2014 B2
8833630 Milliman Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8834353 Dejima et al. Sep 2014 B2
8834465 Ramstein et al. Sep 2014 B2
8834498 Byrum et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8840609 Stuebe Sep 2014 B2
8840876 Eemeta et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8844790 Demmy et al. Sep 2014 B2
8851215 Goto Oct 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852174 Burbank Oct 2014 B2
8852185 Twomey Oct 2014 B2
8852199 Deslauriers et al. Oct 2014 B2
8852218 Hughett, Sr. et al. Oct 2014 B2
8857693 Schuckmann et al. Oct 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8858538 Belson et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8858590 Shelton, IV et al. Oct 2014 B2
8864007 Widenhouse et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8864010 Williams Oct 2014 B2
8864750 Ross et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8870867 Walberg et al. Oct 2014 B2
8870912 Brisson et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8876857 Burbank Nov 2014 B2
8876858 Braun Nov 2014 B2
8887979 Mastri et al. Nov 2014 B2
8888688 Julian et al. Nov 2014 B2
8888695 Piskun et al. Nov 2014 B2
8888792 Harris et al. Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8893949 Shelton, IV et al. Nov 2014 B2
8894647 Beardsley et al. Nov 2014 B2
8894654 Anderson Nov 2014 B2
8899460 Wojcicki Dec 2014 B2
8899461 Farascioni Dec 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8899463 Schall et al. Dec 2014 B2
8899464 Hueil et al. Dec 2014 B2
8899465 Shelton, IV et al. Dec 2014 B2
8899466 Baxter, III et al. Dec 2014 B2
8900267 Woolfson et al. Dec 2014 B2
8905287 Racenet et al. Dec 2014 B2
8905977 Shelton et al. Dec 2014 B2
8910846 Viola Dec 2014 B2
8911426 Coppeta et al. Dec 2014 B2
8911448 Stein Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8911471 Spivey et al. Dec 2014 B2
8912746 Reid et al. Dec 2014 B2
8920433 Barrier et al. Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8922163 Macdonald Dec 2014 B2
8925782 Shelton, IV Jan 2015 B2
8925783 Zemlok et al. Jan 2015 B2
8925788 Hess et al. Jan 2015 B2
8926506 Widenhouse et al. Jan 2015 B2
8926598 Mollere et al. Jan 2015 B2
8931576 Iwata Jan 2015 B2
8931679 Kostrzewski Jan 2015 B2
8931680 Milliman Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8945095 Blumenkranz et al. Feb 2015 B2
8945163 Voegele et al. Feb 2015 B2
8955732 Zemlok et al. Feb 2015 B2
8956342 Russo et al. Feb 2015 B1
8956390 Shah et al. Feb 2015 B2
8958860 Banerjee et al. Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8960521 Kostrzewski Feb 2015 B2
8961191 Hanshew Feb 2015 B2
8961504 Hoarau et al. Feb 2015 B2
8963714 Medhal et al. Feb 2015 B2
D725674 Jung et al. Mar 2015 S
8967443 McCuen Mar 2015 B2
8967444 Beetel Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8967448 Carter et al. Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968308 Horner et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968340 Chowaniec et al. Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8968358 Reschke Mar 2015 B2
8970507 Holbein et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
8973805 Scirica et al. Mar 2015 B2
8974440 Farritor et al. Mar 2015 B2
8974542 Fujimoto et al. Mar 2015 B2
8974932 McGahan et al. Mar 2015 B2
8978954 Shelton, IV et al. Mar 2015 B2
8978955 Aronhalt et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8982195 Claus et al. Mar 2015 B2
8985429 Balek et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991676 Hess et al. Mar 2015 B2
8991677 Moore et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992042 Eichenholz Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992565 Brisson et al. Mar 2015 B2
8996165 Wang et al. Mar 2015 B2
8998058 Moore et al. Apr 2015 B2
8998059 Smith et al. Apr 2015 B2
8998060 Bruewer et al. Apr 2015 B2
8998061 Williams et al. Apr 2015 B2
8998939 Price et al. Apr 2015 B2
9000720 Stulen et al. Apr 2015 B2
9002518 Manzo et al. Apr 2015 B2
9004339 Park Apr 2015 B1
9005230 Yates et al. Apr 2015 B2
9005238 DeSantis et al. Apr 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010611 Ross et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011439 Shalaby et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9016539 Kostrzewski et al. Apr 2015 B2
9016540 Whitman et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016542 Shelton, IV et al. Apr 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9017331 Fox Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017369 Renger et al. Apr 2015 B2
9017371 Whitman et al. Apr 2015 B2
D729274 Clement et al. May 2015 S
9021684 Lenker et al. May 2015 B2
9023014 Chowaniec et al. May 2015 B2
9023069 Kasvikis et al. May 2015 B2
9023071 Miller et al. May 2015 B2
9026347 Gadh et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028495 Mueller et al. May 2015 B2
9028510 Miyamoto et al. May 2015 B2
9028511 Weller et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9030169 Christensen et al. May 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9033204 Shelton, IV et al. May 2015 B2
9034505 Detry et al. May 2015 B2
9038881 Schaller et al. May 2015 B1
9039690 Kersten et al. May 2015 B2
9039694 Ross et al. May 2015 B2
9039720 Madan May 2015 B2
9043027 Durant et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044228 Woodard, Jr. et al. Jun 2015 B2
9044229 Scheib et al. Jun 2015 B2
9044230 Morgan et al. Jun 2015 B2
9044241 Barner et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9044281 Pool et al. Jun 2015 B2
9050083 Yates et al. Jun 2015 B2
9050084 Schmid et al. Jun 2015 B2
9050100 Yates et al. Jun 2015 B2
9050120 Swarup et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050176 Datta et al. Jun 2015 B2
9050192 Mansmann Jun 2015 B2
9055941 Schmid et al. Jun 2015 B2
9055942 Balbierz et al. Jun 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9060794 Kang et al. Jun 2015 B2
9060894 Wubbeling Jun 2015 B2
9061392 Forgues et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078653 Leimbach et al. Jul 2015 B2
9078654 Whitman et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9084602 Gleiman Jul 2015 B2
9086875 Harrat et al. Jul 2015 B2
9089326 Krumanaker et al. Jul 2015 B2
9089330 Widenhouse et al. Jul 2015 B2
9089352 Jeong Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9091588 Lefler Jul 2015 B2
D736792 Brinda et al. Aug 2015 S
9095339 Moore et al. Aug 2015 B2
9095346 Houser et al. Aug 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9096033 Holop et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9099877 Banos et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9101475 Wei et al. Aug 2015 B2
9101621 Zeldis Aug 2015 B2
9107663 Swensgard Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9110587 Kim et al. Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113864 Morgan et al. Aug 2015 B2
9113865 Shelton, IV et al. Aug 2015 B2
9113868 Felder et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113874 Shelton, IV et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113879 Felder et al. Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9113881 Scirica Aug 2015 B2
9113883 Aronhalt et al. Aug 2015 B2
9113884 Shelton, IV et al. Aug 2015 B2
9113887 Behnke, II et al. Aug 2015 B2
9119615 Felder et al. Sep 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119898 Bayon et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9123286 Park Sep 2015 B2
9124097 Cruz Sep 2015 B2
9125654 Aronhalt et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9126317 Lawton et al. Sep 2015 B2
9131835 Widenhouse et al. Sep 2015 B2
9131940 Huitema et al. Sep 2015 B2
9131950 Matthew Sep 2015 B2
9131957 Skarbnik et al. Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9138226 Racenet et al. Sep 2015 B2
9144455 Kennedy et al. Sep 2015 B2
D741882 Shmilov et al. Oct 2015 S
9149274 Spivey et al. Oct 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9153994 Wood et al. Oct 2015 B2
9161753 Prior Oct 2015 B2
9161769 Stoddard et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9161807 Garrison Oct 2015 B2
9168038 Shelton, IV et al. Oct 2015 B2
9168039 Knodel Oct 2015 B1
9168042 Milliman Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168144 Rivin et al. Oct 2015 B2
9179911 Morgan et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9180223 Yu et al. Nov 2015 B2
9182244 Luke et al. Nov 2015 B2
9186046 Ramamurthy et al. Nov 2015 B2
9186137 Farascioni et al. Nov 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186142 Fanelli et al. Nov 2015 B2
9186143 Timm et al. Nov 2015 B2
9186148 Felder et al. Nov 2015 B2
9186221 Burbank Nov 2015 B2
9192380 Racenet et al. Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9192430 Rachlin et al. Nov 2015 B2
9192434 Twomey et al. Nov 2015 B2
9193045 Saur et al. Nov 2015 B2
9197079 Yip et al. Nov 2015 B2
D744528 Agrawal Dec 2015 S
9198642 Storz Dec 2015 B2
9198644 Balek et al. Dec 2015 B2
9198661 Swensgard Dec 2015 B2
9198662 Barton et al. Dec 2015 B2
9198683 Friedman et al. Dec 2015 B2
9204830 Zand et al. Dec 2015 B2
9204877 Whitman et al. Dec 2015 B2
9204878 Hall et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204880 Baxter, III et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9204924 Marczyk et al. Dec 2015 B2
9211120 Scheib et al. Dec 2015 B2
9211121 Hall et al. Dec 2015 B2
9211122 Hagerty et al. Dec 2015 B2
9216013 Scirica et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9216020 Zhang et al. Dec 2015 B2
9216030 Fan et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220500 Swayze et al. Dec 2015 B2
9220501 Baxter, III et al. Dec 2015 B2
9220502 Zemlok et al. Dec 2015 B2
9220508 Dannaher Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9220570 Kim et al. Dec 2015 B2
D746854 Shardlow et al. Jan 2016 S
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226754 D'Agostino et al. Jan 2016 B2
9226761 Burbank Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232945 Zingman Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9233610 Kim et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237895 McCarthy et al. Jan 2016 B2
9237900 Boudreaux et al. Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9239064 Helbig et al. Jan 2016 B2
9240740 Zeng et al. Jan 2016 B2
9241711 Ivanko Jan 2016 B2
9241712 Zemlok et al. Jan 2016 B2
9241714 Timm et al. Jan 2016 B2
9241716 Whitman Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9244524 Inoue et al. Jan 2016 B2
D748668 Kim et al. Feb 2016 S
D749623 Gray et al. Feb 2016 S
D750122 Shardlow et al. Feb 2016 S
D750129 Kwon Feb 2016 S
9254131 Soltz et al. Feb 2016 B2
9259274 Prisco Feb 2016 B2
9259275 Burbank Feb 2016 B2
9261172 Solomon et al. Feb 2016 B2
9265500 Sorrentino et al. Feb 2016 B2
9265516 Casey et al. Feb 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9271718 Milad et al. Mar 2016 B2
9271727 McGuckin, Jr. et al. Mar 2016 B2
9271753 Butler et al. Mar 2016 B2
9271799 Shelton, IV et al. Mar 2016 B2
9272406 Aronhalt et al. Mar 2016 B2
9274095 Humayun et al. Mar 2016 B2
9277919 Timmer et al. Mar 2016 B2
9277922 Carter et al. Mar 2016 B2
9277969 Brannan et al. Mar 2016 B2
9282962 Schmid et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283028 Johnson Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9289206 Hess et al. Mar 2016 B2
9289207 Shelton, IV Mar 2016 B2
9289210 Baxter, III et al. Mar 2016 B2
9289211 Williams et al. Mar 2016 B2
9289212 Shelton, IV et al. Mar 2016 B2
9289225 Shelton, IV et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9293757 Toussaint et al. Mar 2016 B2
9295464 Shelton, IV et al. Mar 2016 B2
9295465 Farascioni Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9295467 Scirica Mar 2016 B2
9295468 Heinrich et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9295565 McLean Mar 2016 B2
9295784 Eggert et al. Mar 2016 B2
D753167 Yu et al. Apr 2016 S
9301691 Hufnagel et al. Apr 2016 B2
9301752 Mandakolathur Vasudevan et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301755 Shelton, IV et al. Apr 2016 B2
9301759 Spivey et al. Apr 2016 B2
9307965 Ming et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9307987 Swensgard et al. Apr 2016 B2
9307988 Shelton, IV Apr 2016 B2
9307989 Shelton, IV et al. Apr 2016 B2
9307994 Gresham et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308011 Chao et al. Apr 2016 B2
9308646 Lim et al. Apr 2016 B2
9313915 Niu et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9314247 Shelton, IV et al. Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314339 Mansmann Apr 2016 B2
9314908 Tanimoto et al. Apr 2016 B2
9320518 Henderson et al. Apr 2016 B2
9320520 Shelton, IV et al. Apr 2016 B2
9320521 Shelton, IV et al. Apr 2016 B2
9320523 Shelton, IV et al. Apr 2016 B2
9325516 Pera et al. Apr 2016 B2
D755196 Meyers et al. May 2016 S
D756373 Raskin et al. May 2016 S
D756377 Connolly et al. May 2016 S
D757028 Goldenberg et al. May 2016 S
9326767 Koch et al. May 2016 B2
9326768 Shelton, IV May 2016 B2
9326769 Shelton, IV et al. May 2016 B2
9326770 Shelton, IV et al. May 2016 B2
9326771 Baxter, III et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9326812 Waaler et al. May 2016 B2
9326824 Inoue et al. May 2016 B2
9327061 Govil et al. May 2016 B2
9331721 Martinez Nuevo et al. May 2016 B2
9332890 Ozawa May 2016 B2
9332974 Henderson et al. May 2016 B2
9332984 Weaner et al. May 2016 B2
9332987 Leimbach et al. May 2016 B2
9333040 Shellenberger et al. May 2016 B2
9333082 Wei et al. May 2016 B2
9337668 Yip May 2016 B2
9339226 van der Walt et al. May 2016 B2
9345477 Anim et al. May 2016 B2
9345479 Racenet et al. May 2016 B2
9345480 Hessler et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9345503 Ishida et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351727 Leimbach et al. May 2016 B2
9351728 Sniffin et al. May 2016 B2
9351730 Schmid et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
D758433 Lee et al. Jun 2016 S
D759063 Chen Jun 2016 S
9358003 Hall et al. Jun 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9358015 Sorrentino et al. Jun 2016 B2
9358031 Manzo Jun 2016 B2
9364217 Kostrzewski et al. Jun 2016 B2
9364219 Olson et al. Jun 2016 B2
9364220 Williams Jun 2016 B2
9364226 Zemlok et al. Jun 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364231 Wenchell Jun 2016 B2
9364233 Alexander, III et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9368991 Qahouq Jun 2016 B2
9370341 Ceniccola et al. Jun 2016 B2
9370358 Shelton, IV et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9375206 Vidal et al. Jun 2016 B2
9375218 Wheeler et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375255 Houser et al. Jun 2016 B2
D761309 Lee et al. Jul 2016 S
9381058 Houser et al. Jul 2016 B2
9383881 Day et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9386985 Koch, Jr. et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9387003 Kaercher et al. Jul 2016 B2
9393015 Laurent et al. Jul 2016 B2
9393017 Flanagan et al. Jul 2016 B2
9393018 Wang et al. Jul 2016 B2
9396669 Karkanias et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
D763277 Ahmed et al. Aug 2016 S
D764498 Capela et al. Aug 2016 S
9402604 Williams et al. Aug 2016 B2
9402625 Coleman et al. Aug 2016 B2
9402626 Ortiz et al. Aug 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9402629 Ehrenfels et al. Aug 2016 B2
9402679 Ginnebaugh et al. Aug 2016 B2
9408604 Shelton, IV et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9411370 Benni et al. Aug 2016 B2
9413128 Tien et al. Aug 2016 B2
9414838 Shelton, IV et al. Aug 2016 B2
9414849 Nagashimada Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9420967 Zand et al. Aug 2016 B2
9421003 Williams et al. Aug 2016 B2
9421014 Ingmanson et al. Aug 2016 B2
9421030 Cole et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9421062 Houser et al. Aug 2016 B2
9427223 Park et al. Aug 2016 B2
9427231 Racenet et al. Aug 2016 B2
D767624 Lee et al. Sep 2016 S
9433411 Racenet et al. Sep 2016 B2
9433414 Chen et al. Sep 2016 B2
9433419 Gonzalez et al. Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9439649 Shelton, IV et al. Sep 2016 B2
9439650 McGuckin, Jr. et al. Sep 2016 B2
9439651 Smith et al. Sep 2016 B2
9439668 Timm et al. Sep 2016 B2
9445808 Woodard, Jr. et al. Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9445816 Swayze et al. Sep 2016 B2
9445817 Bettuchi Sep 2016 B2
9446226 Zilberman Sep 2016 B2
9451938 Overes et al. Sep 2016 B2
9451958 Shelton, IV et al. Sep 2016 B2
D768152 Gutierrez et al. Oct 2016 S
D768156 Frincke Oct 2016 S
D769315 Scotti Oct 2016 S
D769930 Agrawal Oct 2016 S
9461340 Li et al. Oct 2016 B2
9463040 Jeong et al. Oct 2016 B2
9463260 Stopek Oct 2016 B2
9468438 Baber et al. Oct 2016 B2
9468447 Aman et al. Oct 2016 B2
9470297 Aranyi et al. Oct 2016 B2
9471969 Zeng et al. Oct 2016 B2
9474506 Magnin et al. Oct 2016 B2
9474523 Meade et al. Oct 2016 B2
9474540 Stokes et al. Oct 2016 B2
9475180 Eshleman et al. Oct 2016 B2
D770476 Jitkoff et al. Nov 2016 S
D770515 Cho et al. Nov 2016 S
D771116 Dellinger et al. Nov 2016 S
D772905 Ingenlath Nov 2016 S
9480476 Aldridge et al. Nov 2016 B2
9480492 Aranyi et al. Nov 2016 B2
9483095 Tran et al. Nov 2016 B2
9486186 Fiebig et al. Nov 2016 B2
9486213 Altman et al. Nov 2016 B2
9486214 Shelton, IV Nov 2016 B2
9486302 Boey et al. Nov 2016 B2
9488197 Wi Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492167 Shelton, IV et al. Nov 2016 B2
9492170 Bear et al. Nov 2016 B2
9492189 Williams et al. Nov 2016 B2
9492192 To et al. Nov 2016 B2
9498213 Marczyk et al. Nov 2016 B2
9498219 Moore et al. Nov 2016 B2
9498231 Haider et al. Nov 2016 B2
9504455 Whitman et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504521 Deutmeyer et al. Nov 2016 B2
D774547 Capela et al. Dec 2016 S
D775336 Shelton, IV et al. Dec 2016 S
9510827 Kostrzewski Dec 2016 B2
9510828 Yates et al. Dec 2016 B2
9510830 Shelton, IV et al. Dec 2016 B2
9510846 Sholev et al. Dec 2016 B2
9510895 Houser et al. Dec 2016 B2
9510925 Hotter et al. Dec 2016 B2
9517063 Swayze et al. Dec 2016 B2
9517068 Shelton, IV et al. Dec 2016 B2
9517326 Hinman et al. Dec 2016 B2
9521996 Armstrong Dec 2016 B2
9522003 Weir et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9526481 Storz et al. Dec 2016 B2
9526499 Kostrzewski et al. Dec 2016 B2
9526563 Twomey Dec 2016 B2
9526564 Rusin Dec 2016 B2
D776683 Gobinski et al. Jan 2017 S
D777773 Shi Jan 2017 S
9532783 Swayze et al. Jan 2017 B2
9539060 Lightcap et al. Jan 2017 B2
9539726 Simaan et al. Jan 2017 B2
9545253 Worrell et al. Jan 2017 B2
9545258 Smith et al. Jan 2017 B2
9549732 Yates et al. Jan 2017 B2
9549735 Shelton, IV et al. Jan 2017 B2
9554794 Baber et al. Jan 2017 B2
9554796 Kostrzewski Jan 2017 B2
9554812 Inkpen et al. Jan 2017 B2
9559624 Philipp Jan 2017 B2
9561013 Tsuchiya Feb 2017 B2
9561030 Zhang et al. Feb 2017 B2
9561031 Heinrich et al. Feb 2017 B2
9561032 Shelton, IV et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9561045 Hinman et al. Feb 2017 B2
9566061 Aronhalt et al. Feb 2017 B2
9566062 Boudreaux Feb 2017 B2
9566065 Knodel Feb 2017 B2
9566067 Milliman et al. Feb 2017 B2
9572574 Shelton, IV et al. Feb 2017 B2
9572576 Hodgkinson et al. Feb 2017 B2
9572577 Lloyd et al. Feb 2017 B2
9572592 Price et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9579088 Farritor et al. Feb 2017 B2
9579158 Brianza et al. Feb 2017 B2
D780803 Gill et al. Mar 2017 S
D781879 Butcher et al. Mar 2017 S
D782530 Paek et al. Mar 2017 S
9585550 Abel et al. Mar 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9585658 Shelton, IV Mar 2017 B2
9585659 Viola et al. Mar 2017 B2
9585660 Laurent et al. Mar 2017 B2
9585662 Shelton, IV et al. Mar 2017 B2
9585663 Shelton, IV et al. Mar 2017 B2
9585672 Bastia Mar 2017 B2
9590433 Li Mar 2017 B2
9592050 Schmid et al. Mar 2017 B2
9592052 Shelton, IV Mar 2017 B2
9592053 Shelton, IV et al. Mar 2017 B2
9592054 Schmid et al. Mar 2017 B2
9597073 Sorrentino et al. Mar 2017 B2
9597075 Shelton, IV et al. Mar 2017 B2
9597080 Milliman et al. Mar 2017 B2
9597104 Nicholas et al. Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9603595 Shelton, IV et al. Mar 2017 B2
9603598 Shelton, IV et al. Mar 2017 B2
9603599 Miller et al. Mar 2017 B2
9603991 Shelton, IV et al. Mar 2017 B2
D783658 Hurst et al. Apr 2017 S
9610068 Kappel et al. Apr 2017 B2
9610080 Whitfield et al. Apr 2017 B2
9614258 Takahashi et al. Apr 2017 B2
9615826 Shelton, IV et al. Apr 2017 B2
9622745 Ingmanson et al. Apr 2017 B2
9629623 Lytle, IV et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9629627 Kostrzewski et al. Apr 2017 B2
9629628 Aranyi Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9629652 Mumaw et al. Apr 2017 B2
9629814 Widenhouse et al. Apr 2017 B2
D786280 Ma May 2017 S
D786896 Kim et al. May 2017 S
D787547 Basargin et al. May 2017 S
D788123 Shan et al. May 2017 S
D788140 Hemsley et al. May 2017 S
9636111 Wenchell May 2017 B2
9636113 Wenchell May 2017 B2
9636850 Stopek et al. May 2017 B2
9641122 Romanowich et al. May 2017 B2
9642620 Baxter, III et al. May 2017 B2
9649096 Sholev May 2017 B2
9649110 Parihar et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9655613 Schaller May 2017 B2
9655614 Swensgard et al. May 2017 B2
9655615 Knodel et al. May 2017 B2
9655616 Aranyi May 2017 B2
9655624 Shelton, IV et al. May 2017 B2
9662108 Williams May 2017 B2
9662110 Huang et al. May 2017 B2
9662116 Smith et al. May 2017 B2
9662131 Omori et al. May 2017 B2
D788792 Alessandri et al. Jun 2017 S
D789384 Lin et al. Jun 2017 S
D790570 Butcher et al. Jun 2017 S
9668728 Williams et al. Jun 2017 B2
9668729 Williams et al. Jun 2017 B2
9668732 Patel et al. Jun 2017 B2
9668733 Williams Jun 2017 B2
9668734 Kostrzewski et al. Jun 2017 B2
9675344 Combrowski et al. Jun 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9675354 Weir et al. Jun 2017 B2
9675355 Shelton, IV et al. Jun 2017 B2
9675372 Laurent et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9675405 Trees et al. Jun 2017 B2
9675819 Dunbar et al. Jun 2017 B2
9681870 Baxter, III et al. Jun 2017 B2
9681873 Smith et al. Jun 2017 B2
9681884 Clem et al. Jun 2017 B2
9687230 Leimbach et al. Jun 2017 B2
9687231 Baxter, III et al. Jun 2017 B2
9687232 Shelton, IV et al. Jun 2017 B2
9687233 Fernandez et al. Jun 2017 B2
9687236 Leimbach et al. Jun 2017 B2
9687237 Schmid et al. Jun 2017 B2
9687253 Detry et al. Jun 2017 B2
9689466 Kanai et al. Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9693774 Gettinger et al. Jul 2017 B2
9693777 Schellin et al. Jul 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700310 Morgan et al. Jul 2017 B2
9700312 Kostrzewski et al. Jul 2017 B2
9700314 Marczyk Jul 2017 B2
9700317 Aronhalt et al. Jul 2017 B2
9700318 Scirica et al. Jul 2017 B2
9700319 Motooka et al. Jul 2017 B2
9700320 Dinardo et al. Jul 2017 B2
9700321 Shelton, IV et al. Jul 2017 B2
9706981 Nicholas et al. Jul 2017 B2
9706991 Hess et al. Jul 2017 B2
9706993 Hessler et al. Jul 2017 B2
9707005 Strobl et al. Jul 2017 B2
9707026 Malackowski et al. Jul 2017 B2
9707033 Parihar et al. Jul 2017 B2
9707043 Bozung Jul 2017 B2
9707684 Ruiz Morales et al. Jul 2017 B2
9713468 Harris et al. Jul 2017 B2
9713470 Scirica et al. Jul 2017 B2
9713474 Lorenz Jul 2017 B2
9717497 Zerkle et al. Aug 2017 B2
9717498 Aranyi et al. Aug 2017 B2
9718190 Larkin et al. Aug 2017 B2
9722236 Sathrum Aug 2017 B2
9724091 Shelton, IV et al. Aug 2017 B2
9724092 Baxter, III et al. Aug 2017 B2
9724094 Baber et al. Aug 2017 B2
9724095 Gupta et al. Aug 2017 B2
9724096 Thompson et al. Aug 2017 B2
9724098 Baxter, III et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724163 Orban Aug 2017 B2
9730692 Shelton, IV et al. Aug 2017 B2
9730695 Leimbach et al. Aug 2017 B2
9730697 Morgan et al. Aug 2017 B2
9730717 Katsuki et al. Aug 2017 B2
9731410 Hirabayashi et al. Aug 2017 B2
9733663 Leimbach et al. Aug 2017 B2
9737297 Racenet et al. Aug 2017 B2
9737301 Baber et al. Aug 2017 B2
9737302 Shelton, IV et al. Aug 2017 B2
9737303 Shelton, IV et al. Aug 2017 B2
9737365 Hegeman et al. Aug 2017 B2
9743927 Whitman Aug 2017 B2
9743928 Shelton, IV et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
D798319 Bergstrand et al. Sep 2017 S
9750498 Timm et al. Sep 2017 B2
9750499 Leimbach et al. Sep 2017 B2
9750501 Shelton, IV et al. Sep 2017 B2
9750502 Scirica et al. Sep 2017 B2
9750639 Barnes et al. Sep 2017 B2
9757123 Giordano et al. Sep 2017 B2
9757124 Schellin et al. Sep 2017 B2
9757126 Cappola Sep 2017 B2
9757128 Baber et al. Sep 2017 B2
9757129 Williams Sep 2017 B2
9757130 Shelton, IV Sep 2017 B2
9763662 Shelton, IV et al. Sep 2017 B2
9763668 Whitfield et al. Sep 2017 B2
9770245 Swayze et al. Sep 2017 B2
9770274 Pool et al. Sep 2017 B2
D798886 Prophete et al. Oct 2017 S
D800742 Rhodes Oct 2017 S
D800744 Jitkoff et al. Oct 2017 S
D800766 Park et al. Oct 2017 S
D800904 Leimbach et al. Oct 2017 S
9775608 Aronhalt et al. Oct 2017 B2
9775609 Shelton, IV et al. Oct 2017 B2
9775610 Nicholas et al. Oct 2017 B2
9775611 Kostrzewski Oct 2017 B2
9775613 Shelton, IV et al. Oct 2017 B2
9775614 Shelton, IV et al. Oct 2017 B2
9775618 Bettuchi et al. Oct 2017 B2
9775635 Takei Oct 2017 B2
9775678 Lohmeier Oct 2017 B2
9782169 Kimsey et al. Oct 2017 B2
9782170 Zemlok et al. Oct 2017 B2
9782180 Smith et al. Oct 2017 B2
9782193 Thistle Oct 2017 B2
9782214 Houser et al. Oct 2017 B2
9788834 Schmid et al. Oct 2017 B2
9788835 Morgan et al. Oct 2017 B2
9788836 Overmyer et al. Oct 2017 B2
9788847 Jinno Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9788902 Inoue et al. Oct 2017 B2
9795379 Leimbach et al. Oct 2017 B2
9795380 Shelton, IV et al. Oct 2017 B2
9795381 Shelton, IV Oct 2017 B2
9795382 Shelton, IV Oct 2017 B2
9795383 Aldridge et al. Oct 2017 B2
9795384 Weaner et al. Oct 2017 B2
9797486 Zergiebel et al. Oct 2017 B2
9801626 Parihar et al. Oct 2017 B2
9801627 Harris et al. Oct 2017 B2
9801628 Harris et al. Oct 2017 B2
9801634 Shelton, IV et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9804618 Leimbach et al. Oct 2017 B2
D803234 Day et al. Nov 2017 S
D803235 Markson et al. Nov 2017 S
D803850 Chang et al. Nov 2017 S
9808244 Leimbach et al. Nov 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808247 Shelton, IV et al. Nov 2017 B2
9808248 Hoffman Nov 2017 B2
9808249 Shelton, IV Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9814462 Woodard, Jr. et al. Nov 2017 B2
9814463 Williams et al. Nov 2017 B2
9814530 Weir et al. Nov 2017 B2
9814561 Forsell Nov 2017 B2
9820445 Simpson et al. Nov 2017 B2
9820737 Beardsley et al. Nov 2017 B2
9820738 Lytle, IV et al. Nov 2017 B2
9820741 Kostrzewski Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9825455 Sandhu et al. Nov 2017 B2
9826976 Parihar et al. Nov 2017 B2
9826977 Leimbach et al. Nov 2017 B2
9826978 Shelton, IV et al. Nov 2017 B2
9829698 Haraguchi et al. Nov 2017 B2
D806108 Day Dec 2017 S
9833236 Shelton, IV et al. Dec 2017 B2
9833238 Baxter, III et al. Dec 2017 B2
9833239 Yates et al. Dec 2017 B2
9833241 Huitema et al. Dec 2017 B2
9833242 Baxter, III et al. Dec 2017 B2
9839420 Shelton, IV et al. Dec 2017 B2
9839421 Zerkle et al. Dec 2017 B2
9839422 Schellin et al. Dec 2017 B2
9839423 Vendely et al. Dec 2017 B2
9839427 Swayze et al. Dec 2017 B2
9839428 Baxter, III et al. Dec 2017 B2
9839429 Weisenburgh, II et al. Dec 2017 B2
9839480 Pribanic et al. Dec 2017 B2
9844368 Boudreaux et al. Dec 2017 B2
9844369 Huitema et al. Dec 2017 B2
9844372 Shelton, IV et al. Dec 2017 B2
9844373 Swayze et al. Dec 2017 B2
9844374 Lytle, IV et al. Dec 2017 B2
9844375 Overmyer et al. Dec 2017 B2
9844376 Baxter, III et al. Dec 2017 B2
9844379 Shelton, IV et al. Dec 2017 B2
9848871 Harris et al. Dec 2017 B2
9848873 Shelton, IV Dec 2017 B2
9848875 Aronhalt et al. Dec 2017 B2
9848877 Shelton, IV et al. Dec 2017 B2
9850994 Schena Dec 2017 B2
9855039 Racenet et al. Jan 2018 B2
9855040 Kostrzewski Jan 2018 B2
9855662 Ruiz Morales et al. Jan 2018 B2
9861261 Shahinian Jan 2018 B2
9861359 Shelton, IV et al. Jan 2018 B2
9861361 Aronhalt et al. Jan 2018 B2
9861362 Whitman et al. Jan 2018 B2
9861382 Smith et al. Jan 2018 B2
9861446 Lang Jan 2018 B2
9867612 Parihar et al. Jan 2018 B2
9867615 Fanelli et al. Jan 2018 B2
9867618 Hall et al. Jan 2018 B2
9867620 Fischvogt et al. Jan 2018 B2
9868198 Nicholas et al. Jan 2018 B2
9872682 Hess et al. Jan 2018 B2
9872683 Hopkins et al. Jan 2018 B2
9872684 Hall et al. Jan 2018 B2
9872722 Lech Jan 2018 B2
9877721 Schellin et al. Jan 2018 B2
9877723 Hall et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
D810099 Riedel Feb 2018 S
9883843 Garlow Feb 2018 B2
9883860 Leimbach Feb 2018 B2
9883861 Shelton, IV et al. Feb 2018 B2
9884456 Schellin et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888921 Williams et al. Feb 2018 B2
9888924 Ebersole et al. Feb 2018 B2
9889230 Bennett et al. Feb 2018 B2
9895147 Shelton, IV Feb 2018 B2
9895148 Shelton, IV et al. Feb 2018 B2
9895813 Blumenkranz et al. Feb 2018 B2
9901339 Farascioni Feb 2018 B2
9901341 Kostrzewski Feb 2018 B2
9901342 Shelton, IV et al. Feb 2018 B2
9901344 Moore et al. Feb 2018 B2
9901345 Moore et al. Feb 2018 B2
9901346 Moore et al. Feb 2018 B2
9901406 State et al. Feb 2018 B2
9901412 Lathrop et al. Feb 2018 B2
D813899 Erant et al. Mar 2018 S
9907456 Miyoshi Mar 2018 B2
9907553 Cole et al. Mar 2018 B2
9907600 Stulen et al. Mar 2018 B2
9907620 Shelton, IV et al. Mar 2018 B2
9913641 Takemoto et al. Mar 2018 B2
9913642 Leimbach et al. Mar 2018 B2
9913644 McCuen Mar 2018 B2
9913646 Shelton, IV Mar 2018 B2
9913647 Weisenburgh, II et al. Mar 2018 B2
9913648 Shelton, IV et al. Mar 2018 B2
9913694 Brisson Mar 2018 B2
9913733 Piron et al. Mar 2018 B2
9918704 Shelton, IV et al. Mar 2018 B2
9918714 Gibbons, Jr. Mar 2018 B2
9918715 Menn Mar 2018 B2
9918716 Baxter, III et al. Mar 2018 B2
9918717 Czernik Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9924941 Burbank Mar 2018 B2
9924942 Swayze et al. Mar 2018 B2
9924944 Shelton, IV et al. Mar 2018 B2
9924945 Zheng et al. Mar 2018 B2
9924946 Vendely et al. Mar 2018 B2
9924947 Shelton, IV et al. Mar 2018 B2
9924961 Shelton, IV et al. Mar 2018 B2
9931106 Au et al. Apr 2018 B2
9931116 Racenet et al. Apr 2018 B2
9931118 Shelton, IV et al. Apr 2018 B2
9931120 Chen et al. Apr 2018 B2
9936949 Measamer et al. Apr 2018 B2
9936950 Shelton, IV et al. Apr 2018 B2
9936951 Hufnagel et al. Apr 2018 B2
9936954 Shelton, IV et al. Apr 2018 B2
9937626 Rockrohr Apr 2018 B2
9943309 Shelton, IV et al. Apr 2018 B2
9943310 Harris et al. Apr 2018 B2
9943312 Posada et al. Apr 2018 B2
D819072 Clediere May 2018 S
9955954 Destoumieux et al. May 2018 B2
9955965 Chen et al. May 2018 B2
9955966 Zergiebel May 2018 B2
9962129 Jerebko et al. May 2018 B2
9962157 Sapre May 2018 B2
9962158 Hall et al. May 2018 B2
9962159 Heinrich et al. May 2018 B2
9962161 Scheib et al. May 2018 B2
9968354 Shelton, IV et al. May 2018 B2
9968355 Shelton, IV et al. May 2018 B2
9968356 Shelton, IV et al. May 2018 B2
9968397 Taylor et al. May 2018 B2
9974529 Shelton, IV et al. May 2018 B2
9974538 Baxter, III et al. May 2018 B2
9974539 Yates et al. May 2018 B2
9974541 Calderoni May 2018 B2
9974542 Hodgkinson May 2018 B2
9980713 Aronhalt et al. May 2018 B2
9980724 Farascioni et al. May 2018 B2
9980729 Moore et al. May 2018 B2
9980769 Trees et al. May 2018 B2
D819680 Nguyen Jun 2018 S
D819682 Howard et al. Jun 2018 S
D819684 Dart Jun 2018 S
D820307 Jian et al. Jun 2018 S
D820867 Dickens et al. Jun 2018 S
9987000 Shelton, IV et al. Jun 2018 B2
9987003 Timm et al. Jun 2018 B2
9987006 Morgan et al. Jun 2018 B2
9987095 Chowaniec et al. Jun 2018 B2
9987099 Chen et al. Jun 2018 B2
9993248 Shelton, IV et al. Jun 2018 B2
9993258 Shelton, IV et al. Jun 2018 B2
9999408 Boudreaux et al. Jun 2018 B2
9999423 Schuckmann et al. Jun 2018 B2
9999426 Moore et al. Jun 2018 B2
9999431 Shelton, IV et al. Jun 2018 B2
9999472 Weir et al. Jun 2018 B2
10004497 Overmyer et al. Jun 2018 B2
10004498 Morgan et al. Jun 2018 B2
10004500 Shelton, IV et al. Jun 2018 B2
10004501 Shelton, IV et al. Jun 2018 B2
10004505 Moore et al. Jun 2018 B2
10004506 Shelton, IV et al. Jun 2018 B2
D822206 Shelton, IV et al. Jul 2018 S
10010322 Shelton, IV et al. Jul 2018 B2
10010324 Huitema et al. Jul 2018 B2
10013049 Leimbach et al. Jul 2018 B2
10016199 Baber et al. Jul 2018 B2
10016656 Devor et al. Jul 2018 B2
10022125 Stopek et al. Jul 2018 B2
10024407 Aranyi et al. Jul 2018 B2
10028742 Shelton, IV et al. Jul 2018 B2
10028743 Shelton, IV et al. Jul 2018 B2
10028744 Shelton, IV et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10029125 Shapiro et al. Jul 2018 B2
10034344 Yoshida Jul 2018 B2
10034668 Ebner Jul 2018 B2
D826405 Shelton, IV et al. Aug 2018 S
10039440 Fenech et al. Aug 2018 B2
10039529 Kerr et al. Aug 2018 B2
10039532 Srinivas et al. Aug 2018 B2
10039545 Sadowski et al. Aug 2018 B2
10041822 Zemlok Aug 2018 B2
10045769 Aronhalt et al. Aug 2018 B2
10045776 Shelton, IV et al. Aug 2018 B2
10045778 Yates et al. Aug 2018 B2
10045779 Savage et al. Aug 2018 B2
10045781 Cropper et al. Aug 2018 B2
10045782 Murthy Aravalli Aug 2018 B2
10052044 Shelton, IV et al. Aug 2018 B2
10052099 Morgan et al. Aug 2018 B2
10052100 Morgan et al. Aug 2018 B2
10052102 Baxter, III et al. Aug 2018 B2
10052104 Shelton, IV et al. Aug 2018 B2
10052164 Overmyer Aug 2018 B2
10058317 Fan et al. Aug 2018 B2
10058327 Weisenburgh, II et al. Aug 2018 B2
10058373 Takashino et al. Aug 2018 B2
10058395 Devengenzo et al. Aug 2018 B2
10058963 Shelton, IV et al. Aug 2018 B2
10064620 Gettinger et al. Sep 2018 B2
10064621 Kerr et al. Sep 2018 B2
10064624 Shelton, IV et al. Sep 2018 B2
10064639 Ishida et al. Sep 2018 B2
10064649 Golebieski et al. Sep 2018 B2
10064688 Shelton, IV et al. Sep 2018 B2
10070861 Spivey et al. Sep 2018 B2
10070863 Swayze et al. Sep 2018 B2
10071452 Shelton, IV et al. Sep 2018 B2
10076325 Huang et al. Sep 2018 B2
10076326 Yates et al. Sep 2018 B2
10076340 Belagali et al. Sep 2018 B2
D831209 Huitema et al. Oct 2018 S
D831676 Park et al. Oct 2018 S
D832301 Smith Oct 2018 S
10085624 Isoda et al. Oct 2018 B2
10085643 Bandic et al. Oct 2018 B2
10085728 Jogasaki et al. Oct 2018 B2
10085746 Fischvogt Oct 2018 B2
10085748 Morgan et al. Oct 2018 B2
10085749 Cappola et al. Oct 2018 B2
10085751 Overmyer et al. Oct 2018 B2
10085754 Sniffin et al. Oct 2018 B2
10085806 Hagn et al. Oct 2018 B2
10092290 Yigit et al. Oct 2018 B2
10092292 Boudreaux et al. Oct 2018 B2
10098635 Burbank Oct 2018 B2
10098636 Shelton, IV et al. Oct 2018 B2
10098640 Bertolero et al. Oct 2018 B2
10098642 Baxter, III et al. Oct 2018 B2
10099303 Yoshida et al. Oct 2018 B2
10101861 Kiyoto Oct 2018 B2
10105128 Cooper et al. Oct 2018 B2
10105136 Yates et al. Oct 2018 B2
10105139 Yates et al. Oct 2018 B2
10105140 Malinouskas et al. Oct 2018 B2
10105142 Baxter, III et al. Oct 2018 B2
10106932 Anderson et al. Oct 2018 B2
10111657 McCuen Oct 2018 B2
10111679 Baber et al. Oct 2018 B2
10111698 Scheib et al. Oct 2018 B2
10111702 Kostrzewski Oct 2018 B2
10117649 Baxter et al. Nov 2018 B2
10117650 Nicholas et al. Nov 2018 B2
10117652 Schmid et al. Nov 2018 B2
10117653 Leimbach et al. Nov 2018 B2
10117654 Ingmanson et al. Nov 2018 B2
10123798 Baxter, III et al. Nov 2018 B2
10124493 Rothfuss et al. Nov 2018 B2
10130352 Widenhouse et al. Nov 2018 B2
10130359 Hess et al. Nov 2018 B2
10130361 Yates et al. Nov 2018 B2
10130363 Huitema et al. Nov 2018 B2
10130366 Shelton, IV et al. Nov 2018 B2
10130367 Cappola et al. Nov 2018 B2
10130738 Shelton, IV et al. Nov 2018 B2
10130830 Miret Carceller et al. Nov 2018 B2
10133248 Fitzsimmons et al. Nov 2018 B2
10135242 Baber et al. Nov 2018 B2
10136879 Ross et al. Nov 2018 B2
10136887 Shelton, IV et al. Nov 2018 B2
10136889 Shelton, IV et al. Nov 2018 B2
10136890 Shelton, IV et al. Nov 2018 B2
10136891 Shelton, IV et al. Nov 2018 B2
D835659 Anzures et al. Dec 2018 S
D836124 Fan Dec 2018 S
10143474 Bucciaglia et al. Dec 2018 B2
10149679 Shelton, IV et al. Dec 2018 B2
10149680 Parihar et al. Dec 2018 B2
10149682 Shelton, IV et al. Dec 2018 B2
10149683 Smith et al. Dec 2018 B2
10149712 Manwaring et al. Dec 2018 B2
10154841 Weaner et al. Dec 2018 B2
10159481 Whitman et al. Dec 2018 B2
10159482 Swayze et al. Dec 2018 B2
10159483 Beckman et al. Dec 2018 B2
10159506 Boudreaux et al. Dec 2018 B2
10163589 Zergiebel et al. Dec 2018 B2
D837244 Kuo et al. Jan 2019 S
D837245 Kuo et al. Jan 2019 S
10166025 Leimbach et al. Jan 2019 B2
10166026 Shelton, IV et al. Jan 2019 B2
10172611 Shelton, IV et al. Jan 2019 B2
10172615 Marczyk et al. Jan 2019 B2
10172616 Murray et al. Jan 2019 B2
10172617 Shelton, IV et al. Jan 2019 B2
10172619 Harris et al. Jan 2019 B2
10172620 Harris et al. Jan 2019 B2
10172636 Stulen et al. Jan 2019 B2
10175127 Collins et al. Jan 2019 B2
10178992 Wise et al. Jan 2019 B2
10180463 Beckman et al. Jan 2019 B2
10182813 Leimbach et al. Jan 2019 B2
10182815 Williams et al. Jan 2019 B2
10182816 Shelton, IV et al. Jan 2019 B2
10182818 Hensel et al. Jan 2019 B2
10182819 Shelton, IV Jan 2019 B2
10188385 Kerr et al. Jan 2019 B2
10188393 Smith et al. Jan 2019 B2
10188394 Shelton, IV et al. Jan 2019 B2
D839900 Gan Feb 2019 S
D841667 Coren Feb 2019 S
10194801 Elhawary et al. Feb 2019 B2
10194904 Viola et al. Feb 2019 B2
10194907 Marczyk et al. Feb 2019 B2
10194910 Shelton, IV et al. Feb 2019 B2
10194913 Nalagatla et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194992 Robinson Feb 2019 B2
10201348 Scheib et al. Feb 2019 B2
10201349 Leimbach et al. Feb 2019 B2
10201363 Shelton, IV Feb 2019 B2
10201364 Leimbach et al. Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10201381 Zergiebel et al. Feb 2019 B2
10206605 Shelton, IV et al. Feb 2019 B2
10206676 Shelton, IV Feb 2019 B2
10206677 Harris et al. Feb 2019 B2
10206678 Shelton, IV et al. Feb 2019 B2
10206748 Burbank Feb 2019 B2
10210244 Branavan et al. Feb 2019 B1
10211586 Adams et al. Feb 2019 B2
10213198 Aronhalt et al. Feb 2019 B2
10213201 Shelton, IV et al. Feb 2019 B2
10213202 Flanagan et al. Feb 2019 B2
10213203 Swayze et al. Feb 2019 B2
10213262 Shelton, IV et al. Feb 2019 B2
D842328 Jian et al. Mar 2019 S
10219811 Haider et al. Mar 2019 B2
10219832 Bagwell et al. Mar 2019 B2
10220522 Rockrohr Mar 2019 B2
10226239 Nicholas et al. Mar 2019 B2
10226249 Jaworek et al. Mar 2019 B2
10226250 Beckman et al. Mar 2019 B2
10226251 Scheib et al. Mar 2019 B2
10226274 Worrell et al. Mar 2019 B2
10231634 Zand et al. Mar 2019 B2
10231653 Bohm et al. Mar 2019 B2
10231734 Thompson et al. Mar 2019 B2
10231794 Shelton, IV et al. Mar 2019 B2
10238385 Yates et al. Mar 2019 B2
10238386 Overmyer et al. Mar 2019 B2
10238387 Yates et al. Mar 2019 B2
10238389 Yates et al. Mar 2019 B2
10238390 Harris et al. Mar 2019 B2
10238391 Leimbach et al. Mar 2019 B2
D844666 Espeleta et al. Apr 2019 S
D844667 Espeleta et al. Apr 2019 S
D845342 Espeleta et al. Apr 2019 S
10245027 Shelton, IV et al. Apr 2019 B2
10245028 Shelton, IV et al. Apr 2019 B2
10245029 Hunter et al. Apr 2019 B2
10245030 Hunter et al. Apr 2019 B2
10245032 Shelton, IV Apr 2019 B2
10245033 Overmyer et al. Apr 2019 B2
10245034 Shelton, IV et al. Apr 2019 B2
10245035 Swayze et al. Apr 2019 B2
10245038 Hopkins et al. Apr 2019 B2
10245058 Omori et al. Apr 2019 B2
10251648 Harris et al. Apr 2019 B2
10251649 Schellin et al. Apr 2019 B2
10251725 Valentine et al. Apr 2019 B2
10258322 Fanton et al. Apr 2019 B2
10258330 Shelton, IV et al. Apr 2019 B2
10258331 Shelton, IV et al. Apr 2019 B2
10258332 Schmid et al. Apr 2019 B2
10258333 Shelton, IV et al. Apr 2019 B2
10258336 Baxter, III et al. Apr 2019 B2
10258418 Shelton, IV et al. Apr 2019 B2
10264797 Zhang et al. Apr 2019 B2
10265065 Shelton, IV et al. Apr 2019 B2
10265067 Yates et al. Apr 2019 B2
10265068 Harris et al. Apr 2019 B2
10265072 Shelton, IV et al. Apr 2019 B2
10265073 Scheib et al. Apr 2019 B2
10265074 Shelton, IV et al. Apr 2019 B2
10265090 Ingmanson et al. Apr 2019 B2
10271844 Valentine et al. Apr 2019 B2
10271845 Shelton, IV Apr 2019 B2
10271846 Shelton, IV et al. Apr 2019 B2
10271849 Vendely et al. Apr 2019 B2
10271851 Shelton, IV et al. Apr 2019 B2
D847989 Shelton, IV et al. May 2019 S
D848473 Zhu et al. May 2019 S
D849046 Kuo et al. May 2019 S
10278696 Gurumurthy et al. May 2019 B2
10278697 Shelton, IV et al. May 2019 B2
10278702 Shelton, IV et al. May 2019 B2
10278703 Nativ et al. May 2019 B2
10278707 Thompson et al. May 2019 B2
10278722 Shelton, IV et al. May 2019 B2
10278780 Shelton, IV May 2019 B2
10285694 Viola et al. May 2019 B2
10285695 Jaworek et al. May 2019 B2
10285699 Vendely et al. May 2019 B2
10285705 Shelton, IV et al. May 2019 B2
10292701 Scheib et al. May 2019 B2
10292704 Harris et al. May 2019 B2
10292707 Shelton, IV et al. May 2019 B2
10293100 Shelton, IV et al. May 2019 B2
10293553 Racenet et al. May 2019 B2
10299787 Shelton, IV May 2019 B2
10299788 Heinrich et al. May 2019 B2
10299789 Marczyk et al. May 2019 B2
10299792 Huitema et al. May 2019 B2
10299817 Shelton, IV et al. May 2019 B2
10299818 Riva May 2019 B2
10299878 Shelton, IV et al. May 2019 B2
D850617 Shelton, IV et al. Jun 2019 S
D851676 Foss et al. Jun 2019 S
D851762 Shelton, IV et al. Jun 2019 S
10307159 Harris et al. Jun 2019 B2
10307160 Vendely et al. Jun 2019 B2
10307161 Jankowski Jun 2019 B2
10307163 Moore et al. Jun 2019 B2
10307170 Parfett et al. Jun 2019 B2
10307202 Smith et al. Jun 2019 B2
10314559 Razzaque et al. Jun 2019 B2
10314577 Laurent et al. Jun 2019 B2
10314582 Shelton, IV et al. Jun 2019 B2
10314587 Harris et al. Jun 2019 B2
10314588 Turner et al. Jun 2019 B2
10314589 Shelton, IV et al. Jun 2019 B2
10314590 Shelton, IV et al. Jun 2019 B2
10315566 Choi et al. Jun 2019 B2
10321907 Shelton, IV et al. Jun 2019 B2
10321909 Shelton, IV et al. Jun 2019 B2
10321927 Hinman Jun 2019 B2
10327743 St. Goar et al. Jun 2019 B2
10327764 Harris et al. Jun 2019 B2
10327765 Timm et al. Jun 2019 B2
10327767 Shelton, IV et al. Jun 2019 B2
10327769 Overmyer et al. Jun 2019 B2
10327776 Harris et al. Jun 2019 B2
10327777 Harris et al. Jun 2019 B2
D854032 Jones et al. Jul 2019 S
D854151 Shelton, IV et al. Jul 2019 S
10335144 Shelton, IV et al. Jul 2019 B2
10335145 Harris et al. Jul 2019 B2
10335147 Rector et al. Jul 2019 B2
10335148 Shelton, IV et al. Jul 2019 B2
10335149 Baxter, III et al. Jul 2019 B2
10335150 Shelton, IV Jul 2019 B2
10335151 Shelton, IV et al. Jul 2019 B2
10337148 Rouse et al. Jul 2019 B2
10342533 Shelton, IV et al. Jul 2019 B2
10342535 Scheib et al. Jul 2019 B2
10342541 Shelton, IV et al. Jul 2019 B2
10342543 Shelton, IV et al. Jul 2019 B2
10342623 Huelman et al. Jul 2019 B2
10349939 Shelton, IV et al. Jul 2019 B2
10350016 Burbank et al. Jul 2019 B2
10357246 Shelton, IV et al. Jul 2019 B2
10357247 Shelton, IV et al. Jul 2019 B2
10357248 Dalessandro et al. Jul 2019 B2
10357252 Harris et al. Jul 2019 B2
10363031 Alexander, III et al. Jul 2019 B2
10363033 Timm et al. Jul 2019 B2
10363036 Yates et al. Jul 2019 B2
10363037 Aronhalt et al. Jul 2019 B2
D855634 Kim Aug 2019 S
D856359 Huang et al. Aug 2019 S
10368838 Williams et al. Aug 2019 B2
10368861 Baxter, III et al. Aug 2019 B2
10368863 Timm et al. Aug 2019 B2
10368864 Harris et al. Aug 2019 B2
10368865 Harris et al. Aug 2019 B2
10368867 Harris et al. Aug 2019 B2
10368892 Stulen et al. Aug 2019 B2
10376263 Morgan et al. Aug 2019 B2
10383626 Soltz Aug 2019 B2
10383628 Kang et al. Aug 2019 B2
10383629 Ross et al. Aug 2019 B2
10383630 Shelton, IV et al. Aug 2019 B2
10383633 Shelton, IV et al. Aug 2019 B2
10383634 Shelton, IV et al. Aug 2019 B2
10390823 Shelton, IV et al. Aug 2019 B2
10390825 Shelton, IV et al. Aug 2019 B2
10390828 Vendely et al. Aug 2019 B2
10390829 Eckert et al. Aug 2019 B2
10390830 Schulz Aug 2019 B2
10390841 Shelton, IV et al. Aug 2019 B2
10390897 Kostrzewski Aug 2019 B2
D860219 Rasmussen et al. Sep 2019 S
D861035 Park et al. Sep 2019 S
10398433 Boudreaux et al. Sep 2019 B2
10398434 Shelton, IV et al. Sep 2019 B2
10398436 Shelton, IV et al. Sep 2019 B2
10405854 Schmid et al. Sep 2019 B2
10405857 Shelton, IV et al. Sep 2019 B2
10405859 Harris et al. Sep 2019 B2
10405863 Wise et al. Sep 2019 B2
10405914 Manwaring et al. Sep 2019 B2
10405932 Overmyer Sep 2019 B2
10413291 Worthington et al. Sep 2019 B2
10413293 Shelton, IV et al. Sep 2019 B2
10413294 Shelton, IV et al. Sep 2019 B2
10413297 Harris et al. Sep 2019 B2
10413370 Yates et al. Sep 2019 B2
10413373 Yates et al. Sep 2019 B2
10420548 Whitman et al. Sep 2019 B2
10420549 Yates et al. Sep 2019 B2
10420550 Shelton, IV Sep 2019 B2
10420552 Shelton, IV et al. Sep 2019 B2
10420553 Shelton, IV et al. Sep 2019 B2
10420555 Shelton, IV et al. Sep 2019 B2
10420558 Nalagatla et al. Sep 2019 B2
10420559 Marczyk et al. Sep 2019 B2
10420560 Shelton, IV et al. Sep 2019 B2
10420561 Shelton, IV et al. Sep 2019 B2
10420577 Chowaniec et al. Sep 2019 B2
D861707 Yang Oct 2019 S
D863343 Mazlish et al. Oct 2019 S
D864388 Barber Oct 2019 S
10426463 Shelton, IV et al. Oct 2019 B2
10426466 Contini et al. Oct 2019 B2
10426467 Miller et al. Oct 2019 B2
10426468 Contini et al. Oct 2019 B2
10426469 Shelton, IV et al. Oct 2019 B2
10426471 Shelton, IV et al. Oct 2019 B2
10426476 Harris et al. Oct 2019 B2
10426477 Harris et al. Oct 2019 B2
10426478 Shelton, IV et al. Oct 2019 B2
10426481 Aronhalt et al. Oct 2019 B2
10433837 Worthington et al. Oct 2019 B2
10433839 Scheib et al. Oct 2019 B2
10433840 Shelton, IV et al. Oct 2019 B2
10433844 Shelton, IV et al. Oct 2019 B2
10433845 Baxter, III et al. Oct 2019 B2
10433846 Vendely et al. Oct 2019 B2
10433849 Shelton, IV et al. Oct 2019 B2
10433918 Shelton, IV et al. Oct 2019 B2
10441279 Shelton, IV et al. Oct 2019 B2
10441280 Timm et al. Oct 2019 B2
10441281 Shelton, IV et al. Oct 2019 B2
10441285 Shelton, IV et al. Oct 2019 B2
10441286 Shelton, IV et al. Oct 2019 B2
10441345 Aldridge et al. Oct 2019 B2
10441369 Shelton, IV et al. Oct 2019 B2
10448948 Shelton, IV et al. Oct 2019 B2
10448950 Shelton, IV et al. Oct 2019 B2
10448952 Shelton, IV et al. Oct 2019 B2
10456122 Koltz et al. Oct 2019 B2
10456132 Gettinger et al. Oct 2019 B2
10456133 Yates et al. Oct 2019 B2
10456137 Vendely et al. Oct 2019 B2
10456140 Shelton, IV et al. Oct 2019 B2
D865796 Xu et al. Nov 2019 S
10463367 Kostrzewski et al. Nov 2019 B2
10463369 Shelton, IV et al. Nov 2019 B2
10463370 Yates et al. Nov 2019 B2
10463372 Shelton, IV et al. Nov 2019 B2
10463373 Mozdzierz et al. Nov 2019 B2
10463382 Ingmanson et al. Nov 2019 B2
10463383 Shelton, IV et al. Nov 2019 B2
10463384 Shelton, IV et al. Nov 2019 B2
10470762 Leimbach et al. Nov 2019 B2
10470763 Yates et al. Nov 2019 B2
10470764 Baxter, III et al. Nov 2019 B2
10470768 Harris et al. Nov 2019 B2
10470769 Shelton, IV et al. Nov 2019 B2
10471576 Totsu Nov 2019 B2
10471607 Butt et al. Nov 2019 B2
10478181 Shelton, IV et al. Nov 2019 B2
10478182 Taylor Nov 2019 B2
10478188 Harris et al. Nov 2019 B2
10478189 Bear et al. Nov 2019 B2
10478190 Miller et al. Nov 2019 B2
10478207 Lathrop Nov 2019 B2
10485536 Ming et al. Nov 2019 B2
10485537 Yates et al. Nov 2019 B2
10485539 Shelton, IV et al. Nov 2019 B2
10485541 Shelton, IV et al. Nov 2019 B2
10485542 Shelton, IV et al. Nov 2019 B2
10485543 Shelton, IV et al. Nov 2019 B2
10485546 Shelton, IV et al. Nov 2019 B2
10485547 Shelton, IV et al. Nov 2019 B2
D869655 Shelton, IV et al. Dec 2019 S
D870742 Cornell Dec 2019 S
10492783 Shelton, IV et al. Dec 2019 B2
10492785 Overmyer et al. Dec 2019 B2
10492787 Smith et al. Dec 2019 B2
10492814 Snow et al. Dec 2019 B2
10492847 Godara et al. Dec 2019 B2
10492851 Hughett, Sr. et al. Dec 2019 B2
10498269 Zemlok et al. Dec 2019 B2
10499890 Shelton, IV et al. Dec 2019 B2
10499914 Huang et al. Dec 2019 B2
10499918 Schellin et al. Dec 2019 B2
10500309 Shah et al. Dec 2019 B2
10512461 Gupta et al. Dec 2019 B2
10517590 Giordano et al. Dec 2019 B2
10517594 Shelton, IV et al. Dec 2019 B2
10517595 Hunter et al. Dec 2019 B2
10517596 Hunter et al. Dec 2019 B2
10517599 Baxter, III et al. Dec 2019 B2
10517682 Giordano et al. Dec 2019 B2
10524784 Kostrzewski Jan 2020 B2
10524787 Shelton, IV et al. Jan 2020 B2
10524788 Vendely et al. Jan 2020 B2
10524789 Swayze et al. Jan 2020 B2
10524790 Shelton, IV et al. Jan 2020 B2
10524795 Nalagatla et al. Jan 2020 B2
10531874 Morgan et al. Jan 2020 B2
10531887 Shelton, IV et al. Jan 2020 B2
10537324 Shelton, IV et al. Jan 2020 B2
10537325 Bakos et al. Jan 2020 B2
10542908 Mei et al. Jan 2020 B2
10542974 Yates et al. Jan 2020 B2
10542978 Chowaniec et al. Jan 2020 B2
10542979 Shelton, IV et al. Jan 2020 B2
10542982 Beckman et al. Jan 2020 B2
10542985 Zhan et al. Jan 2020 B2
10542988 Schellin et al. Jan 2020 B2
10542991 Shelton, IV et al. Jan 2020 B2
10548504 Shelton, IV et al. Feb 2020 B2
10548600 Shelton, IV et al. Feb 2020 B2
10548673 Harris et al. Feb 2020 B2
10561418 Richard et al. Feb 2020 B2
10561420 Harris et al. Feb 2020 B2
10561422 Schellin et al. Feb 2020 B2
10561432 Estrella et al. Feb 2020 B2
10561474 Adams et al. Feb 2020 B2
10562160 Iwata et al. Feb 2020 B2
10568621 Shelton, IV et al. Feb 2020 B2
10568624 Shelton, IV et al. Feb 2020 B2
10568625 Harris et al. Feb 2020 B2
10568626 Shelton, IV et al. Feb 2020 B2
10568629 Shelton, IV et al. Feb 2020 B2
10568632 Miller et al. Feb 2020 B2
10568652 Hess et al. Feb 2020 B2
10569071 Harris et al. Feb 2020 B2
10575868 Hall et al. Mar 2020 B2
10580320 Kamiguchi et al. Mar 2020 B2
10582928 Hunter et al. Mar 2020 B2
10588623 Schmid et al. Mar 2020 B2
10588625 Weaner et al. Mar 2020 B2
10588626 Overmyer et al. Mar 2020 B2
10588629 Malinouskas et al. Mar 2020 B2
10588630 Shelton, IV et al. Mar 2020 B2
10588631 Shelton, IV et al. Mar 2020 B2
10588632 Shelton, IV et al. Mar 2020 B2
10588633 Shelton, IV et al. Mar 2020 B2
10595835 Kerr et al. Mar 2020 B2
10595862 Shelton, IV et al. Mar 2020 B2
10595882 Parfett et al. Mar 2020 B2
10595929 Boudreaux et al. Mar 2020 B2
10603036 Hunter et al. Mar 2020 B2
10603039 Vendely et al. Mar 2020 B2
10603117 Schings et al. Mar 2020 B2
10603128 Zergiebel et al. Mar 2020 B2
10610224 Shelton, IV et al. Apr 2020 B2
10610313 Bailey et al. Apr 2020 B2
20010000531 Casscells et al. Apr 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20020014510 Richter et al. Feb 2002 A1
20020022810 Urich Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020022861 Jacobs et al. Feb 2002 A1
20020029032 Arkin Mar 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020042620 Julian et al. Apr 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020091374 Cooper Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020103494 Pacey Aug 2002 A1
20020116063 Giannetti et al. Aug 2002 A1
20020117534 Green et al. Aug 2002 A1
20020127265 Bowman et al. Sep 2002 A1
20020128633 Brock et al. Sep 2002 A1
20020134811 Napier et al. Sep 2002 A1
20020135474 Sylliassen Sep 2002 A1
20020143340 Kaneko Oct 2002 A1
20020151770 Noll et al. Oct 2002 A1
20020151884 Hoey Oct 2002 A1
20020158593 Henderson et al. Oct 2002 A1
20020185514 Adams et al. Dec 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20020188287 Zvuloni et al. Dec 2002 A1
20030009193 Corsaro Jan 2003 A1
20030011245 Fiebig Jan 2003 A1
20030012805 Chen et al. Jan 2003 A1
20030040670 Govari Feb 2003 A1
20030045835 Anderson et al. Mar 2003 A1
20030066858 Holgersson Apr 2003 A1
20030078647 Vallana et al. Apr 2003 A1
20030083648 Wang et al. May 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030094356 Waldron May 2003 A1
20030096158 Takano et al. May 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030121586 Mitra et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030149406 Martineau et al. Aug 2003 A1
20030153908 Goble et al. Aug 2003 A1
20030153968 Geis et al. Aug 2003 A1
20030163085 Tanner et al. Aug 2003 A1
20030164172 Chumas et al. Sep 2003 A1
20030181900 Long Sep 2003 A1
20030190584 Heasley Oct 2003 A1
20030195387 Kortenbach et al. Oct 2003 A1
20030205029 Chapolini et al. Nov 2003 A1
20030212005 Petito et al. Nov 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20040006335 Garrison Jan 2004 A1
20040006340 Latterell et al. Jan 2004 A1
20040007608 Ehrenfels et al. Jan 2004 A1
20040024457 Boyce et al. Feb 2004 A1
20040028502 Cummins Feb 2004 A1
20040030333 Goble Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040044295 Reinert et al. Mar 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040049121 Yaron Mar 2004 A1
20040049172 Root et al. Mar 2004 A1
20040059362 Knodel et al. Mar 2004 A1
20040068161 Couvillon Apr 2004 A1
20040068224 Couvillon et al. Apr 2004 A1
20040068307 Goble Apr 2004 A1
20040070369 Sakakibara Apr 2004 A1
20040073222 Koseki Apr 2004 A1
20040078037 Batchelor et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040085180 Juang May 2004 A1
20040092992 Adams et al. May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040098040 Taniguchi et al. May 2004 A1
20040101822 Wiesner et al. May 2004 A1
20040102783 Sutterlin et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040110439 Chaikof et al. Jun 2004 A1
20040115022 Albertson et al. Jun 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040119185 Chen Jun 2004 A1
20040122419 Neuberger Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040133095 Dunki-Jacobs et al. Jul 2004 A1
20040133189 Sakurai Jul 2004 A1
20040143297 Ramsey, III Jul 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040153100 Ahlberg et al. Aug 2004 A1
20040158261 Vu Aug 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040166169 Malaviya et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040178112 Snyder Sep 2004 A1
20040181219 Goble et al. Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040197367 Rezania et al. Oct 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040204735 Shiroff et al. Oct 2004 A1
20040218451 Said et al. Nov 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040225186 Horne et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040236352 Wang et al. Nov 2004 A1
20040243147 Lipow Dec 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040243163 Casiano et al. Dec 2004 A1
20040247415 Mangone Dec 2004 A1
20040249366 Kunz Dec 2004 A1
20040254455 Iddan Dec 2004 A1
20040254566 Plicchi et al. Dec 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050010158 Brugger et al. Jan 2005 A1
20050010213 Stad et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050032511 Malone et al. Feb 2005 A1
20050033352 Zepf et al. Feb 2005 A1
20050051163 Deem et al. Mar 2005 A1
20050054946 Krzyzanowski Mar 2005 A1
20050057225 Marquet Mar 2005 A1
20050058890 Brazell et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050075561 Golden Apr 2005 A1
20050080342 Gilreath et al. Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050116673 Carl et al. Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125528 Burke, II Jun 2005 A1
20050125897 Wyslucha et al. Jun 2005 A1
20050130682 Takara et al. Jun 2005 A1
20050131173 McDaniel et al. Jun 2005 A1
20050131211 Bayley et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050131436 Johnston et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050137455 Ewers et al. Jun 2005 A1
20050139636 Schwemberger et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050145671 Viola Jul 2005 A1
20050150928 Kameyama et al. Jul 2005 A1
20050154258 Tartaglia et al. Jul 2005 A1
20050154406 Bombard et al. Jul 2005 A1
20050159184 Kerner Jul 2005 A1
20050159778 Heinrich et al. Jul 2005 A1
20050165419 Sauer et al. Jul 2005 A1
20050169974 Tenerz et al. Aug 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050177249 Kladakis et al. Aug 2005 A1
20050182298 Ikeda et al. Aug 2005 A1
20050182443 Jonn et al. Aug 2005 A1
20050184121 Heinrich Aug 2005 A1
20050186240 Ringeisen et al. Aug 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050203550 Laufer et al. Sep 2005 A1
20050209614 Fenter et al. Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050222587 Jinno et al. Oct 2005 A1
20050222611 Weitkamp Oct 2005 A1
20050222616 Rethy et al. Oct 2005 A1
20050222665 Aranyi Oct 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050228446 Mooradian et al. Oct 2005 A1
20050230453 Viola Oct 2005 A1
20050240178 Morley et al. Oct 2005 A1
20050245965 Orban, III et al. Nov 2005 A1
20050246881 Kelly et al. Nov 2005 A1
20050251063 Basude Nov 2005 A1
20050256452 DeMarchi et al. Nov 2005 A1
20050261676 Hall et al. Nov 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20050266301 Smith Dec 2005 A1
20050267455 Eggers et al. Dec 2005 A1
20050274034 Hayashida et al. Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20060008787 Hayman et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060020258 Strauss et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025812 Shelton Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060047275 Goble Mar 2006 A1
20060049229 Milliman et al. Mar 2006 A1
20060052824 Ransick et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060079735 Martone et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060086032 Valencic et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060089535 Raz et al. Apr 2006 A1
20060097699 Kamenoff May 2006 A1
20060100643 Laufer et al. May 2006 A1
20060100649 Hart May 2006 A1
20060111711 Goble May 2006 A1
20060111723 Chapolini et al. May 2006 A1
20060116634 Shachar Jun 2006 A1
20060142772 Ralph et al. Jun 2006 A1
20060154546 Murphy et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060161185 Saadat et al. Jul 2006 A1
20060167471 Phillips Jul 2006 A1
20060173290 Lavallee et al. Aug 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060176031 Forman et al. Aug 2006 A1
20060178556 Hasser et al. Aug 2006 A1
20060180633 Emmons Aug 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060185682 Marczyk Aug 2006 A1
20060199999 Ikeda et al. Sep 2006 A1
20060201989 Ojeda Sep 2006 A1
20060206100 Eskridge Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060235368 Oz Oct 2006 A1
20060241666 Briggs et al. Oct 2006 A1
20060244460 Weaver Nov 2006 A1
20060252990 Kubach Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060258904 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060261763 Iott et al. Nov 2006 A1
20060263444 Ming et al. Nov 2006 A1
20060264831 Skwarek et al. Nov 2006 A1
20060264929 Goble et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060282064 Shimizu et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20060287576 Tsuji et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20060291981 Viola et al. Dec 2006 A1
20060293649 Lorang Dec 2006 A1
20070009570 Kim et al. Jan 2007 A1
20070010702 Wang et al. Jan 2007 A1
20070010838 Shelton et al. Jan 2007 A1
20070016235 Tanaka et al. Jan 2007 A1
20070026039 Drumheller et al. Feb 2007 A1
20070026040 Crawley et al. Feb 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070027551 Farnsworth et al. Feb 2007 A1
20070040674 Hsu Feb 2007 A1
20070043387 Vargas et al. Feb 2007 A1
20070049951 Menn Mar 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070073389 Bolduc et al. Mar 2007 A1
20070078328 Ozaki et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070088376 Zacharias Apr 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070106113 Ravo May 2007 A1
20070106317 Shelton et al. May 2007 A1
20070134251 Ashkenazi et al. Jun 2007 A1
20070135686 Pruitt et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070152612 Chen et al. Jul 2007 A1
20070155010 Farnsworth et al. Jul 2007 A1
20070158385 Hueil Jul 2007 A1
20070170225 Shelton et al. Jul 2007 A1
20070173687 Shima et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070179477 Danger Aug 2007 A1
20070185545 Duke Aug 2007 A1
20070187857 Riley et al. Aug 2007 A1
20070190110 Pameijer et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070197954 Keenan Aug 2007 A1
20070198039 Jones et al. Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070207010 Caspi Sep 2007 A1
20070208359 Hoffman Sep 2007 A1
20070208375 Nishizawa et al. Sep 2007 A1
20070213750 Weadock Sep 2007 A1
20070225562 Spivey et al. Sep 2007 A1
20070233163 Bombard et al. Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070244471 Malackowski Oct 2007 A1
20070244496 Hellenkamp Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070262592 Hwang et al. Nov 2007 A1
20070270790 Smith Nov 2007 A1
20070275035 Herman et al. Nov 2007 A1
20070276409 Ortiz et al. Nov 2007 A1
20070279011 Jones et al. Dec 2007 A1
20070286892 Herzberg et al. Dec 2007 A1
20070296286 Avenell Dec 2007 A1
20080003196 Jonn et al. Jan 2008 A1
20080015598 Prommersberger Jan 2008 A1
20080021486 Oyola et al. Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080042861 Dacquay et al. Feb 2008 A1
20080051833 Gramuglia et al. Feb 2008 A1
20080064921 Larkin et al. Mar 2008 A1
20080065153 Allard et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080077158 Haider et al. Mar 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080082114 McKenna et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080083807 Beardsley et al. Apr 2008 A1
20080085296 Powell et al. Apr 2008 A1
20080086078 Powell et al. Apr 2008 A1
20080091072 Omori et al. Apr 2008 A1
20080108443 Jinno et al. May 2008 A1
20080114250 Urbano et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080125749 Olson May 2008 A1
20080128469 Dalessandro et al. Jun 2008 A1
20080129253 Shiue et al. Jun 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080140115 Stopek Jun 2008 A1
20080140159 Bornhoft et al. Jun 2008 A1
20080154299 Livneh Jun 2008 A1
20080154335 Thrope et al. Jun 2008 A1
20080164296 Shelton Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080172087 Fuchs et al. Jul 2008 A1
20080177392 Williams et al. Jul 2008 A1
20080185419 Smith Aug 2008 A1
20080190989 Crews et al. Aug 2008 A1
20080196253 Ezra et al. Aug 2008 A1
20080196419 Dube Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200835 Monson et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080206186 Butler et al. Aug 2008 A1
20080223903 Marczyk Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080241667 Kohn Oct 2008 A1
20080242939 Johnston Oct 2008 A1
20080249536 Stahler et al. Oct 2008 A1
20080249608 Dave Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080281171 Fennell et al. Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080293910 Kapiamba et al. Nov 2008 A1
20080294142 Patel Nov 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080297287 Shachar et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20080312686 Ellingwood Dec 2008 A1
20080312687 Blier Dec 2008 A1
20080315829 Jones et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090004455 Gravagna et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090012534 Madhani et al. Jan 2009 A1
20090015195 Loth-Krausser Jan 2009 A1
20090020958 Soul Jan 2009 A1
20090040735 Chan Feb 2009 A1
20090048583 Williams et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090081313 Aghion et al. Mar 2009 A1
20090088659 Graham et al. Apr 2009 A1
20090090763 Zemlok Apr 2009 A1
20090099579 Nentwick et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090106563 Cherpantier Apr 2009 A1
20090112234 Crainich et al. Apr 2009 A1
20090118762 Crainch et al. May 2009 A1
20090119011 Kondo et al. May 2009 A1
20090131819 Ritchie et al. May 2009 A1
20090132400 Conway May 2009 A1
20090143855 Weber et al. Jun 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090171147 Lee et al. Jul 2009 A1
20090177226 Reinprecht et al. Jul 2009 A1
20090179757 Cohn Jul 2009 A1
20090181290 Baldwin et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090204108 Steffen Aug 2009 A1
20090204109 Grove et al. Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090221993 Sohi et al. Sep 2009 A1
20090227834 Nakamoto et al. Sep 2009 A1
20090234273 Intoccia et al. Sep 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090246873 Yamamoto et al. Oct 2009 A1
20090247368 Chiang Oct 2009 A1
20090247901 Zimmer Oct 2009 A1
20090248100 Vaisnys Oct 2009 A1
20090253959 Yoshie et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090262078 Pizzi Oct 2009 A1
20090270895 Churchill et al. Oct 2009 A1
20090278406 Hoffman Nov 2009 A1
20090290016 Suda Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090306639 Nevo et al. Dec 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20090318557 Stockel Dec 2009 A1
20090325859 Ameer et al. Dec 2009 A1
20100005035 Carpenter et al. Jan 2010 A1
20100012703 Calabrese et al. Jan 2010 A1
20100015104 Fraser et al. Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100017715 Balassanian Jan 2010 A1
20100023024 Zeiner et al. Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100065604 Weng Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100076474 Yates Mar 2010 A1
20100076483 Imuta Mar 2010 A1
20100076489 Stopek et al. Mar 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094340 Stopek et al. Apr 2010 A1
20100100123 Bennett Apr 2010 A1
20100100124 Calabrese et al. Apr 2010 A1
20100116519 Gareis May 2010 A1
20100122339 Boccacci May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100137990 Apatsidis et al. Jun 2010 A1
20100141185 Benning Jun 2010 A1
20100145146 Melder Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100179022 Shirokoshi Jul 2010 A1
20100180711 Kilibarda et al. Jul 2010 A1
20100191262 Harris et al. Jul 2010 A1
20100191292 DeMeo et al. Jul 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100193567 Scheib Aug 2010 A1
20100204717 Knodel Aug 2010 A1
20100204721 Young et al. Aug 2010 A1
20100217281 Matsuoka et al. Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100241137 Doyle et al. Sep 2010 A1
20100245102 Yokoi Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249947 Lesh et al. Sep 2010 A1
20100256675 Romans Oct 2010 A1
20100258327 Esenwein et al. Oct 2010 A1
20100267662 Fielder et al. Oct 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100284521 McBroom Nov 2010 A1
20100292540 Hess et al. Nov 2010 A1
20100298636 Castro et al. Nov 2010 A1
20100301097 Scirica et al. Dec 2010 A1
20100310623 Laurencin et al. Dec 2010 A1
20100312261 Suzuki et al. Dec 2010 A1
20100318085 Austin et al. Dec 2010 A1
20100331856 Carlson et al. Dec 2010 A1
20110001454 Kano Jan 2011 A1
20110006101 Hall et al. Jan 2011 A1
20110011916 Levine Jan 2011 A1
20110016960 Debrailly Jan 2011 A1
20110021871 Berkelaar Jan 2011 A1
20110022032 Zemlok Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110025311 Chauvin et al. Feb 2011 A1
20110036890 Ma Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110046667 Culligan et al. Feb 2011 A1
20110052660 Yang et al. Mar 2011 A1
20110060363 Hess et al. Mar 2011 A1
20110066156 McGahan et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110088921 Forgues et al. Apr 2011 A1
20110091515 Zilberman et al. Apr 2011 A1
20110095064 Taylor et al. Apr 2011 A1
20110101069 Bombard et al. May 2011 A1
20110101794 Schroeder et al. May 2011 A1
20110112517 Peine et al. May 2011 A1
20110112530 Keller May 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110125149 El-Galley et al. May 2011 A1
20110125176 Yates et al. May 2011 A1
20110127945 Yoneda Jun 2011 A1
20110129706 Takahashi et al. Jun 2011 A1
20110139851 McCuen Jun 2011 A1
20110144764 Bagga et al. Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110160725 Kabaya et al. Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110172495 Armstrong Jul 2011 A1
20110174861 Shelton, IV et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110198103 Suzuki Aug 2011 A1
20110199225 Touchberry Aug 2011 A1
20110218400 Ma et al. Sep 2011 A1
20110218550 Ma Sep 2011 A1
20110225105 Scholer et al. Sep 2011 A1
20110230713 Kleemann et al. Sep 2011 A1
20110238044 Main et al. Sep 2011 A1
20110241597 Zhu et al. Oct 2011 A1
20110271186 Owens Nov 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276083 Shelton, IV et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110278344 Zemlok Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110313894 Dye et al. Dec 2011 A1
20110315413 Fisher et al. Dec 2011 A1
20120004636 Lo Jan 2012 A1
20120007442 Rhodes et al. Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120016467 Chen et al. Jan 2012 A1
20120029272 Shelton, IV et al. Feb 2012 A1
20120033360 Hsu Feb 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120064483 Lint et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120086276 Sawyers Apr 2012 A1
20120095458 Cybulski et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116261 Mumaw et al. May 2012 A1
20120116262 Houser et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120116381 Houser et al. May 2012 A1
20120118595 Pellenc May 2012 A1
20120123463 Jacobs May 2012 A1
20120125792 Cassivi May 2012 A1
20120130217 Kauphusman et al. May 2012 A1
20120132286 Lim et al. May 2012 A1
20120171539 Rejman et al. Jul 2012 A1
20120175398 Sandborn et al. Jul 2012 A1
20120184814 Ebata Jul 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120199633 Shelton, IV Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120239068 Morris et al. Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120251861 Liang et al. Oct 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120289811 Viola et al. Nov 2012 A1
20120289979 Eskaros et al. Nov 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20130006227 Takashino Jan 2013 A1
20130008937 Viola Jan 2013 A1
20130012983 Kleyman Jan 2013 A1
20130018400 Milton et al. Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130023861 Shelton, IV et al. Jan 2013 A1
20130023910 Solomon et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130026973 Luke Jan 2013 A1
20130030462 Keating et al. Jan 2013 A1
20130030608 Taylor Jan 2013 A1
20130041292 Cunningham Feb 2013 A1
20130057162 Pollischansky Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130090534 Burns et al. Apr 2013 A1
20130096568 Justis Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130105552 Weir et al. May 2013 A1
20130106352 Nagamine May 2013 A1
20130112730 Whitman May 2013 A1
20130116669 Shelton, IV et al. May 2013 A1
20130123816 Hodgkinson et al. May 2013 A1
20130126202 Oomori et al. May 2013 A1
20130126379 Medhal May 2013 A1
20130126581 Yates May 2013 A1
20130131476 Siu et al. May 2013 A1
20130131651 Strobl et al. May 2013 A1
20130136969 Yasui et al. May 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130158390 Tan et al. Jun 2013 A1
20130162198 Yokota et al. Jun 2013 A1
20130169217 Watanabe et al. Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130211244 Nathaniel Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130215449 Yamasaki Aug 2013 A1
20130233906 Hess et al. Sep 2013 A1
20130238021 Gross et al. Sep 2013 A1
20130248578 Arteaga Gonzalez Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130256373 Schmid et al. Oct 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130267978 Trissel Oct 2013 A1
20130270322 Scheib et al. Oct 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130306704 Balbierz et al. Nov 2013 A1
20130317753 Kamen et al. Nov 2013 A1
20130327552 Lovelass et al. Dec 2013 A1
20130333910 Tanimoto et al. Dec 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130341374 Shelton, IV et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140012299 Stoddard et al. Jan 2014 A1
20140014705 Baxter, III Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140018832 Shelton, IV Jan 2014 A1
20140039549 Belsky et al. Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140081176 Hassan Mar 2014 A1
20140094681 Valentine et al. Apr 2014 A1
20140100558 Schmitz et al. Apr 2014 A1
20140107640 Yates et al. Apr 2014 A1
20140115229 Kothamasu et al. Apr 2014 A1
20140131418 Kostrzewski May 2014 A1
20140135832 Park et al. May 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140158747 Measamer et al. Jun 2014 A1
20140166723 Beardsley et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140175147 Manoux et al. Jun 2014 A1
20140175150 Shelton, IV et al. Jun 2014 A1
20140175152 Hess et al. Jun 2014 A1
20140181710 Baalu et al. Jun 2014 A1
20140188091 Vidal et al. Jul 2014 A1
20140188159 Steege Jul 2014 A1
20140207124 Aldridge et al. Jul 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140209658 Skalla et al. Jul 2014 A1
20140224857 Schmid Aug 2014 A1
20140228632 Sholev et al. Aug 2014 A1
20140228867 Thomas et al. Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140243865 Swayze et al. Aug 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140248167 Sugimoto et al. Sep 2014 A1
20140249557 Koch et al. Sep 2014 A1
20140249573 Arav Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263558 Hausen et al. Sep 2014 A1
20140276730 Boudreaux et al. Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140288460 Ouyang et al. Sep 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303645 Morgan et al. Oct 2014 A1
20140303660 Boyden et al. Oct 2014 A1
20140330161 Swayze et al. Nov 2014 A1
20140330298 Arshonsky et al. Nov 2014 A1
20140330579 Cashman et al. Nov 2014 A1
20140367445 Ingmanson et al. Dec 2014 A1
20140374130 Nakamura et al. Dec 2014 A1
20140378950 Chiu Dec 2014 A1
20150002089 Rejman et al. Jan 2015 A1
20150008248 Giordano et al. Jan 2015 A1
20150025549 Kilroy et al. Jan 2015 A1
20150038961 Clark et al. Feb 2015 A1
20150053737 Leimbach et al. Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150060518 Shelton, IV et al. Mar 2015 A1
20150060519 Shelton, IV et al. Mar 2015 A1
20150060520 Shelton, IV et al. Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150066000 An et al. Mar 2015 A1
20150076208 Shelton, IV Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076212 Shelton, IV Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150083782 Scheib et al. Mar 2015 A1
20150088547 Balram et al. Mar 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150134077 Shelton, IV et al. May 2015 A1
20150150620 Miyamoto et al. Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173789 Baxter, III et al. Jun 2015 A1
20150196295 Shelton, IV et al. Jul 2015 A1
20150196296 Swayze et al. Jul 2015 A1
20150196299 Swayze et al. Jul 2015 A1
20150201918 Kumar et al. Jul 2015 A1
20150201932 Swayze et al. Jul 2015 A1
20150201936 Swayze et al. Jul 2015 A1
20150201937 Swayze et al. Jul 2015 A1
20150201938 Swayze et al. Jul 2015 A1
20150201939 Swayze et al. Jul 2015 A1
20150201940 Swayze et al. Jul 2015 A1
20150201941 Swayze et al. Jul 2015 A1
20150222212 Iwata Aug 2015 A1
20150223868 Brandt et al. Aug 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20150238118 Legassey et al. Aug 2015 A1
20150272557 Overmyer et al. Oct 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272582 Leimbach et al. Oct 2015 A1
20150297200 Fitzsimmons et al. Oct 2015 A1
20150297222 Huitema et al. Oct 2015 A1
20150297223 Huitema et al. Oct 2015 A1
20150297225 Huitema et al. Oct 2015 A1
20150297228 Huitema et al. Oct 2015 A1
20150297233 Huitema et al. Oct 2015 A1
20150302539 Mazar et al. Oct 2015 A1
20150303417 Koeder et al. Oct 2015 A1
20150313594 Shelton, IV et al. Nov 2015 A1
20150324317 Collins et al. Nov 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20150352699 Sakai et al. Dec 2015 A1
20150366585 Lemay et al. Dec 2015 A1
20150372265 Morisaku et al. Dec 2015 A1
20150374369 Yates et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20160000431 Giordano et al. Jan 2016 A1
20160000437 Giordano et al. Jan 2016 A1
20160000438 Swayze et al. Jan 2016 A1
20160000442 Shelton, IV Jan 2016 A1
20160000452 Yates et al. Jan 2016 A1
20160000453 Yates et al. Jan 2016 A1
20160023342 Koenig et al. Jan 2016 A1
20160030042 Heinrich et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160058443 Yates et al. Mar 2016 A1
20160066913 Swayze et al. Mar 2016 A1
20160069449 Kanai et al. Mar 2016 A1
20160074040 Widenhouse et al. Mar 2016 A1
20160074103 Sartor Mar 2016 A1
20160082161 Zilberman et al. Mar 2016 A1
20160089137 Hess et al. Mar 2016 A1
20160089198 Arya et al. Mar 2016 A1
20160106431 Shelton, IV et al. Apr 2016 A1
20160113653 Zingman Apr 2016 A1
20160120545 Shelton, IV et al. May 2016 A1
20160135835 Onuma May 2016 A1
20160166248 Deville et al. Jun 2016 A1
20160166256 Baxter, III et al. Jun 2016 A1
20160183939 Shelton, IV et al. Jun 2016 A1
20160183943 Shelton, IV Jun 2016 A1
20160183944 Swensgard et al. Jun 2016 A1
20160192916 Shelton, IV et al. Jul 2016 A1
20160192918 Shelton, IV et al. Jul 2016 A1
20160192960 Bueno et al. Jul 2016 A1
20160192977 Manwaring et al. Jul 2016 A1
20160199063 Mandakolathur Vasudevan et al. Jul 2016 A1
20160199956 Shelton, IV et al. Jul 2016 A1
20160206314 Scheib et al. Jul 2016 A1
20160235404 Shelton, IV Aug 2016 A1
20160235409 Shelton, IV et al. Aug 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160242783 Shelton, IV et al. Aug 2016 A1
20160249910 Shelton, IV et al. Sep 2016 A1
20160249922 Morgan et al. Sep 2016 A1
20160256154 Shelton, IV et al. Sep 2016 A1
20160256159 Pinjala et al. Sep 2016 A1
20160256160 Shelton, IV et al. Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160262746 Shelton, IV et al. Sep 2016 A1
20160262921 Balbierz et al. Sep 2016 A1
20160278771 Shelton, IV et al. Sep 2016 A1
20160287265 Macdonald et al. Oct 2016 A1
20160287279 Bovay et al. Oct 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160314716 Grubbs Oct 2016 A1
20160345976 Gonzalez et al. Dec 2016 A1
20160346034 Arya et al. Dec 2016 A1
20160354088 Cabrera et al. Dec 2016 A1
20160367122 Ichimura et al. Dec 2016 A1
20160374678 Becerra et al. Dec 2016 A1
20170007236 Shelton, IV et al. Jan 2017 A1
20170007243 Shelton, IV et al. Jan 2017 A1
20170007244 Shelton, IV et al. Jan 2017 A1
20170007245 Shelton, IV et al. Jan 2017 A1
20170007250 Shelton, IV et al. Jan 2017 A1
20170007347 Jaworek et al. Jan 2017 A1
20170014125 Shelton, IV et al. Jan 2017 A1
20170027572 Nalagatla et al. Feb 2017 A1
20170049444 Schellin et al. Feb 2017 A1
20170049447 Barton et al. Feb 2017 A1
20170049448 Widenhouse et al. Feb 2017 A1
20170056000 Nalagatla et al. Mar 2017 A1
20170056002 Nalagatla et al. Mar 2017 A1
20170056005 Shelton, IV et al. Mar 2017 A1
20170079642 Overmyer et al. Mar 2017 A1
20170086827 Vendely et al. Mar 2017 A1
20170086829 Vendely et al. Mar 2017 A1
20170086830 Yates et al. Mar 2017 A1
20170086831 Shelton, IV et al. Mar 2017 A1
20170086838 Harris et al. Mar 2017 A1
20170086842 Shelton, IV et al. Mar 2017 A1
20170105733 Scheib et al. Apr 2017 A1
20170119388 Kostrzewski May 2017 A1
20170119397 Harris et al. May 2017 A1
20170150965 Williams Jun 2017 A1
20170172382 Nir et al. Jun 2017 A1
20170172550 Mukherjee et al. Jun 2017 A1
20170172662 Panescu et al. Jun 2017 A1
20170182211 Raxworthy et al. Jun 2017 A1
20170196554 Rousseau et al. Jul 2017 A1
20170196556 Shah et al. Jul 2017 A1
20170196558 Morgan et al. Jul 2017 A1
20170196637 Shelton, IV et al. Jul 2017 A1
20170196648 Ward et al. Jul 2017 A1
20170196649 Yates et al. Jul 2017 A1
20170202571 Shelton, IV et al. Jul 2017 A1
20170202596 Shelton, IV et al. Jul 2017 A1
20170202770 Friedrich et al. Jul 2017 A1
20170209145 Swayze et al. Jul 2017 A1
20170209146 Yates et al. Jul 2017 A1
20170215881 Shelton, IV et al. Aug 2017 A1
20170215943 Allen, IV Aug 2017 A1
20170224331 Worthington et al. Aug 2017 A1
20170224332 Hunter et al. Aug 2017 A1
20170224334 Worthington et al. Aug 2017 A1
20170224339 Huang et al. Aug 2017 A1
20170231627 Shelton, IV et al. Aug 2017 A1
20170231628 Shelton, IV et al. Aug 2017 A1
20170238928 Morgan et al. Aug 2017 A1
20170238929 Yates et al. Aug 2017 A1
20170245952 Shelton, IV et al. Aug 2017 A1
20170249431 Shelton, IV et al. Aug 2017 A1
20170258469 Shelton, IV et al. Sep 2017 A1
20170265774 Johnson et al. Sep 2017 A1
20170265856 Shelton, IV et al. Sep 2017 A1
20170281164 Harris et al. Oct 2017 A1
20170281167 Shelton, IV et al. Oct 2017 A1
20170281169 Harris et al. Oct 2017 A1
20170281171 Shelton, IV et al. Oct 2017 A1
20170281173 Shelton, IV et al. Oct 2017 A1
20170281174 Harris et al. Oct 2017 A1
20170281186 Shelton, IV et al. Oct 2017 A1
20170281187 Shelton, IV et al. Oct 2017 A1
20170281189 Nalagatla et al. Oct 2017 A1
20170290584 Jasemian et al. Oct 2017 A1
20170290585 Shelton, IV et al. Oct 2017 A1
20170290586 Wellman Oct 2017 A1
20170296169 Yates et al. Oct 2017 A1
20170296173 Shelton, IV et al. Oct 2017 A1
20170296177 Harris et al. Oct 2017 A1
20170296185 Swensgard et al. Oct 2017 A1
20170296213 Swensgard et al. Oct 2017 A1
20170311944 Morgan et al. Nov 2017 A1
20170311949 Shelton, IV Nov 2017 A1
20170312041 Giordano et al. Nov 2017 A1
20170312042 Giordano et al. Nov 2017 A1
20170319201 Morgan et al. Nov 2017 A1
20170319207 Shelton, IV et al. Nov 2017 A1
20170319209 Morgan et al. Nov 2017 A1
20170325813 Aranyi et al. Nov 2017 A1
20170333034 Morgan et al. Nov 2017 A1
20170333035 Morgan et al. Nov 2017 A1
20170333070 Laurent et al. Nov 2017 A1
20170348010 Chiang Dec 2017 A1
20170348043 Wang et al. Dec 2017 A1
20170354413 Chen et al. Dec 2017 A1
20170354415 Casasanta, Jr. et al. Dec 2017 A1
20170358052 Yuan Dec 2017 A1
20170360439 Chen et al. Dec 2017 A1
20170360441 Sgroi Dec 2017 A1
20170364183 Xiao Dec 2017 A1
20170367695 Shelton, IV et al. Dec 2017 A1
20170367696 Shelton, IV et al. Dec 2017 A1
20170367697 Shelton, IV et al. Dec 2017 A1
20170367698 Shelton, IV et al. Dec 2017 A1
20170367700 Leimbach et al. Dec 2017 A1
20170367991 Widenhouse et al. Dec 2017 A1
20180000483 Leimbach et al. Jan 2018 A1
20180000545 Giordano et al. Jan 2018 A1
20180008270 Moore et al. Jan 2018 A1
20180008271 Moore et al. Jan 2018 A1
20180008356 Giordano et al. Jan 2018 A1
20180008357 Giordano et al. Jan 2018 A1
20180028184 Shelton, IV et al. Feb 2018 A1
20180028185 Shelton, IV et al. Feb 2018 A1
20180042611 Swayze et al. Feb 2018 A1
20180049824 Harris et al. Feb 2018 A1
20180049883 Moskowitz et al. Feb 2018 A1
20180055513 Shelton, IV et al. Mar 2018 A1
20180055524 Shelton, IV et al. Mar 2018 A1
20180055525 Shelton, IV et al. Mar 2018 A1
20180055526 Shelton, IV et al. Mar 2018 A1
20180064440 Shelton, IV et al. Mar 2018 A1
20180064441 Shelton, IV et al. Mar 2018 A1
20180064442 Shelton, IV et al. Mar 2018 A1
20180064443 Shelton, IV et al. Mar 2018 A1
20180070942 Shelton, IV et al. Mar 2018 A1
20180078248 Swayze et al. Mar 2018 A1
20180078268 Messerly et al. Mar 2018 A1
20180085116 Yates et al. Mar 2018 A1
20180085117 Shelton, IV et al. Mar 2018 A1
20180103953 Shelton, IV et al. Apr 2018 A1
20180103955 Shelton, IV et al. Apr 2018 A1
20180110516 Baxter, III et al. Apr 2018 A1
20180110518 Overmyer et al. Apr 2018 A1
20180110519 Lytle, IV et al. Apr 2018 A1
20180110520 Shelton, IV et al. Apr 2018 A1
20180110521 Shelton, IV et al. Apr 2018 A1
20180110522 Shelton, IV et al. Apr 2018 A1
20180110523 Shelton, IV Apr 2018 A1
20180110574 Shelton, IV et al. Apr 2018 A1
20180110575 Shelton, IV et al. Apr 2018 A1
20180114591 Pribanic et al. Apr 2018 A1
20180116658 Aronhalt, IV et al. May 2018 A1
20180116662 Shelton, IV et al. May 2018 A1
20180116665 Hall et al. May 2018 A1
20180125481 Yates et al. May 2018 A1
20180125484 Kostrzewski May 2018 A1
20180125487 Beardsley May 2018 A1
20180125488 Morgan et al. May 2018 A1
20180125489 Leimbach et al. May 2018 A1
20180125590 Giordano et al. May 2018 A1
20180125594 Beardsley May 2018 A1
20180126504 Shelton, IV et al. May 2018 A1
20180132845 Schmid et al. May 2018 A1
20180132849 Miller et al. May 2018 A1
20180132850 Leimbach et al. May 2018 A1
20180132851 Hall et al. May 2018 A1
20180132926 Asher et al. May 2018 A1
20180132952 Spivey et al. May 2018 A1
20180133856 Shelton, IV et al. May 2018 A1
20180140299 Weaner et al. May 2018 A1
20180140368 Shelton, IV et al. May 2018 A1
20180146960 Shelton, IV et al. May 2018 A1
20180150153 Yoon et al. May 2018 A1
20180153542 Shelton, IV et al. Jun 2018 A1
20180161034 Scheib et al. Jun 2018 A1
20180168575 Simms et al. Jun 2018 A1
20180168577 Aronhalt et al. Jun 2018 A1
20180168578 Aronhalt et al. Jun 2018 A1
20180168579 Aronhalt et al. Jun 2018 A1
20180168584 Harris et al. Jun 2018 A1
20180168586 Shelton, IV et al. Jun 2018 A1
20180168589 Swayze et al. Jun 2018 A1
20180168590 Overmyer et al. Jun 2018 A1
20180168591 Swayze et al. Jun 2018 A1
20180168592 Overmyer et al. Jun 2018 A1
20180168593 Overmyer et al. Jun 2018 A1
20180168594 Shelton, IV et al. Jun 2018 A1
20180168597 Fanelli et al. Jun 2018 A1
20180168598 Shelton, IV et al. Jun 2018 A1
20180168600 Shelton, IV et al. Jun 2018 A1
20180168601 Bakos et al. Jun 2018 A1
20180168602 Bakos et al. Jun 2018 A1
20180168603 Morgan et al. Jun 2018 A1
20180168604 Shelton, IV et al. Jun 2018 A1
20180168605 Baber et al. Jun 2018 A1
20180168606 Shelton, IV et al. Jun 2018 A1
20180168607 Shelton, IV et al. Jun 2018 A1
20180168608 Shelton, IV et al. Jun 2018 A1
20180168609 Fanelli et al. Jun 2018 A1
20180168610 Shelton, IV et al. Jun 2018 A1
20180168614 Shelton, IV et al. Jun 2018 A1
20180168615 Shelton, IV et al. Jun 2018 A1
20180168616 Shelton, IV et al. Jun 2018 A1
20180168617 Shelton, IV et al. Jun 2018 A1
20180168618 Scott et al. Jun 2018 A1
20180168619 Scott et al. Jun 2018 A1
20180168621 Shelton, IV et al. Jun 2018 A1
20180168623 Simms et al. Jun 2018 A1
20180168624 Shelton, IV et al. Jun 2018 A1
20180168625 Posada et al. Jun 2018 A1
20180168626 Shelton, IV et al. Jun 2018 A1
20180168627 Weaner et al. Jun 2018 A1
20180168628 Hunter et al. Jun 2018 A1
20180168629 Shelton, IV et al. Jun 2018 A1
20180168630 Shelton, IV et al. Jun 2018 A1
20180168631 Harris et al. Jun 2018 A1
20180168632 Harris et al. Jun 2018 A1
20180168633 Shelton, IV et al. Jun 2018 A1
20180168637 Harris et al. Jun 2018 A1
20180168638 Harris et al. Jun 2018 A1
20180168639 Shelton, IV et al. Jun 2018 A1
20180168641 Harris et al. Jun 2018 A1
20180168642 Shelton, IV et al. Jun 2018 A1
20180168643 Shelton, IV et al. Jun 2018 A1
20180168646 Shelton, IV et al. Jun 2018 A1
20180168647 Shelton, IV et al. Jun 2018 A1
20180168648 Shelton, IV et al. Jun 2018 A1
20180168649 Shelton, IV et al. Jun 2018 A1
20180168650 Shelton, IV et al. Jun 2018 A1
20180168651 Shelton, IV et al. Jun 2018 A1
20180168715 Strobl Jun 2018 A1
20180199940 Zergiebel et al. Jul 2018 A1
20180206843 Yates et al. Jul 2018 A1
20180206906 Moua et al. Jul 2018 A1
20180214147 Merchant et al. Aug 2018 A1
20180221046 Demmy et al. Aug 2018 A1
20180221050 Kostrzewski et al. Aug 2018 A1
20180228490 Richard et al. Aug 2018 A1
20180242962 Walen et al. Aug 2018 A1
20180249999 Parihar et al. Sep 2018 A1
20180250001 Aronhalt et al. Sep 2018 A1
20180250020 Carusillo Sep 2018 A1
20180250086 Grubbs Sep 2018 A1
20180271520 Shelton, IV et al. Sep 2018 A1
20180271604 Grout et al. Sep 2018 A1
20180273597 Stimson Sep 2018 A1
20180280020 Hess et al. Oct 2018 A1
20180289369 Shelton, IV et al. Oct 2018 A1
20180296211 Timm et al. Oct 2018 A1
20180296213 Strobl Oct 2018 A1
20180296215 Baxter, III et al. Oct 2018 A1
20180296216 Shelton, IV et al. Oct 2018 A1
20180296217 Moore et al. Oct 2018 A1
20180303481 Shelton, IV et al. Oct 2018 A1
20180303482 Shelton, IV et al. Oct 2018 A1
20180310931 Hall et al. Nov 2018 A1
20180311002 Giordano et al. Nov 2018 A1
20180317916 Wixey Nov 2018 A1
20180317917 Huang et al. Nov 2018 A1
20180317919 Shelton, IV et al. Nov 2018 A1
20180325528 Windolf et al. Nov 2018 A1
20180325611 Robinson et al. Nov 2018 A1
20180333155 Hall et al. Nov 2018 A1
20180333169 Leimbach et al. Nov 2018 A1
20180344319 Shelton, IV et al. Dec 2018 A1
20180353170 Overmyer et al. Dec 2018 A1
20180353176 Shelton, IV et al. Dec 2018 A1
20180353177 Shelton, IV et al. Dec 2018 A1
20180353178 Shelton, IV et al. Dec 2018 A1
20180353179 Shelton, IV et al. Dec 2018 A1
20180360443 Shelton, IV et al. Dec 2018 A1
20180360445 Shelton, IV et al. Dec 2018 A1
20180360446 Shelton, IV et al. Dec 2018 A1
20180360447 Shelton, IV et al. Dec 2018 A1
20180360448 Harris et al. Dec 2018 A1
20180360449 Shelton, IV et al. Dec 2018 A1
20180360450 Shelton, IV et al. Dec 2018 A1
20180360452 Shelton, IV et al. Dec 2018 A1
20180360454 Shelton, IV et al. Dec 2018 A1
20180360455 Shelton, IV et al. Dec 2018 A1
20180360456 Shelton, IV et al. Dec 2018 A1
20180360471 Parfett et al. Dec 2018 A1
20180360472 Harris et al. Dec 2018 A1
20180360473 Shelton, IV et al. Dec 2018 A1
20180360549 Hares et al. Dec 2018 A1
20180368822 Shelton, IV et al. Dec 2018 A1
20180368833 Shelton, IV et al. Dec 2018 A1
20180368837 Morgan et al. Dec 2018 A1
20180368838 Shelton, IV et al. Dec 2018 A1
20180368839 Shelton, IV et al. Dec 2018 A1
20180368840 Shelton, IV et al. Dec 2018 A1
20180368841 Shelton, IV et al. Dec 2018 A1
20180368842 Shelton, IV et al. Dec 2018 A1
20180368843 Shelton, IV et al. Dec 2018 A1
20180368844 Bakos et al. Dec 2018 A1
20180368845 Bakos et al. Dec 2018 A1
20180368846 Shelton, IV et al. Dec 2018 A1
20180368847 Shelton, IV et al. Dec 2018 A1
20190000446 Shelton, IV et al. Jan 2019 A1
20190000448 Shelton, IV et al. Jan 2019 A1
20190000450 Shelton, IV et al. Jan 2019 A1
20190000454 Swayze et al. Jan 2019 A1
20190000456 Shelton, IV et al. Jan 2019 A1
20190000457 Shelton, IV et al. Jan 2019 A1
20190000459 Shelton, IV et al. Jan 2019 A1
20190000460 Shelton, IV et al. Jan 2019 A1
20190000461 Shelton, IV et al. Jan 2019 A1
20190000462 Shelton, IV et al. Jan 2019 A1
20190000463 Shelton, IV et al. Jan 2019 A1
20190000464 Shelton, IV et al. Jan 2019 A1
20190000465 Shelton, IV et al. Jan 2019 A1
20190000466 Shelton, IV et al. Jan 2019 A1
20190000467 Shelton, IV et al. Jan 2019 A1
20190000468 Adams et al. Jan 2019 A1
20190000469 Shelton, IV et al. Jan 2019 A1
20190000470 Yates et al. Jan 2019 A1
20190000471 Shelton, IV et al. Jan 2019 A1
20190000472 Shelton, IV et al. Jan 2019 A1
20190000473 Shelton, IV et al. Jan 2019 A1
20190000474 Shelton, IV et al. Jan 2019 A1
20190000475 Shelton, IV et al. Jan 2019 A1
20190000476 Shelton, IV et al. Jan 2019 A1
20190000477 Shelton, IV et al. Jan 2019 A1
20190000478 Messerly et al. Jan 2019 A1
20190000479 Harris et al. Jan 2019 A1
20190000525 Messerly et al. Jan 2019 A1
20190000528 Yates et al. Jan 2019 A1
20190000530 Yates et al. Jan 2019 A1
20190000531 Messerly et al. Jan 2019 A1
20190000534 Messerly et al. Jan 2019 A1
20190000538 Widenhouse et al. Jan 2019 A1
20190000565 Shelton, IV et al. Jan 2019 A1
20190003292 Balan et al. Jan 2019 A1
20190008509 Shelton, IV et al. Jan 2019 A1
20190008511 Kerr et al. Jan 2019 A1
20190015096 Shelton, IV et al. Jan 2019 A1
20190015102 Baber et al. Jan 2019 A1
20190015165 Giordano et al. Jan 2019 A1
20190029675 Yates et al. Jan 2019 A1
20190029676 Yates et al. Jan 2019 A1
20190029677 Yates et al. Jan 2019 A1
20190029678 Shelton, IV et al. Jan 2019 A1
20190029681 Swayze et al. Jan 2019 A1
20190029682 Huitema et al. Jan 2019 A1
20190029701 Shelton, IV et al. Jan 2019 A1
20190033955 Leimbach et al. Jan 2019 A1
20190038279 Shelton, IV et al. Feb 2019 A1
20190038281 Shelton, IV et al. Feb 2019 A1
20190038282 Shelton, IV et al. Feb 2019 A1
20190038283 Shelton, IV et al. Feb 2019 A1
20190038292 Zhang Feb 2019 A1
20190038371 Wixey et al. Feb 2019 A1
20190046181 McCuen Feb 2019 A1
20190046187 Yates et al. Feb 2019 A1
20190059886 Shelton, IV et al. Feb 2019 A1
20190090870 Shelton, IV et al. Mar 2019 A1
20190090871 Shelton, IV et al. Mar 2019 A1
20190091183 Tomat et al. Mar 2019 A1
20190099177 Yates et al. Apr 2019 A1
20190099178 Leimbach et al. Apr 2019 A1
20190099179 Leimbach et al. Apr 2019 A1
20190099180 Leimbach et al. Apr 2019 A1
20190099181 Shelton, IV et al. Apr 2019 A1
20190099182 Bakos et al. Apr 2019 A1
20190099183 Leimbach et al. Apr 2019 A1
20190099184 Setser et al. Apr 2019 A1
20190099224 Leimbach et al. Apr 2019 A1
20190099229 Spivey et al. Apr 2019 A1
20190102930 Leimbach et al. Apr 2019 A1
20190105035 Shelton, IV et al. Apr 2019 A1
20190105036 Morgan et al. Apr 2019 A1
20190105037 Morgan et al. Apr 2019 A1
20190105038 Schmid et al. Apr 2019 A1
20190105039 Morgan et al. Apr 2019 A1
20190105043 Jaworek et al. Apr 2019 A1
20190105044 Shelton, IV et al. Apr 2019 A1
20190105049 Moore et al. Apr 2019 A1
20190110791 Shelton, IV et al. Apr 2019 A1
20190110792 Shelton, IV et al. Apr 2019 A1
20190110793 Parihar et al. Apr 2019 A1
20190117216 Overmyer et al. Apr 2019 A1
20190117217 Overmyer et al. Apr 2019 A1
20190117222 Shelton, IV et al. Apr 2019 A1
20190117224 Setser et al. Apr 2019 A1
20190117225 Moore et al. Apr 2019 A1
20190125343 Wise et al. May 2019 A1
20190125344 DiNardo et al. May 2019 A1
20190125345 Baber et al. May 2019 A1
20190125380 Hunter et al. May 2019 A1
20190125475 Wise et al. May 2019 A1
20190133585 Smith et al. May 2019 A1
20190142421 Shelton, IV May 2019 A1
20190183490 Shelton, IV et al. Jun 2019 A1
20190183491 Shelton, IV et al. Jun 2019 A1
20190183492 Shelton, IV et al. Jun 2019 A1
20190183493 Shelton, IV et al. Jun 2019 A1
20190183494 Shelton, IV et al. Jun 2019 A1
20190183495 Shelton, IV et al. Jun 2019 A1
20190183496 Shelton, IV et al. Jun 2019 A1
20190183497 Shelton, IV et al. Jun 2019 A1
20190183498 Shelton, IV et al. Jun 2019 A1
20190183499 Shelton, IV et al. Jun 2019 A1
20190183500 Shelton, IV et al. Jun 2019 A1
20190183501 Shelton, IV et al. Jun 2019 A1
20190183502 Shelton, IV et al. Jun 2019 A1
20190183503 Shelton, IV et al. Jun 2019 A1
20190183504 Shelton, IV et al. Jun 2019 A1
20190183505 Vendely et al. Jun 2019 A1
20190183592 Shelton, IV et al. Jun 2019 A1
20190183594 Shelton, IV et al. Jun 2019 A1
20190183597 Shelton, IV et al. Jun 2019 A1
20190192137 Shelton, IV et al. Jun 2019 A1
20190192138 Shelton, IV et al. Jun 2019 A1
20190192141 Shelton, IV et al. Jun 2019 A1
20190192144 Parfett et al. Jun 2019 A1
20190192145 Shelton, IV et al. Jun 2019 A1
20190192146 Widenhouse et al. Jun 2019 A1
20190192147 Shelton, IV et al. Jun 2019 A1
20190192148 Shelton, IV et al. Jun 2019 A1
20190192149 Shelton, IV et al. Jun 2019 A1
20190192150 Widenhouse et al. Jun 2019 A1
20190192151 Shelton, IV et al. Jun 2019 A1
20190192152 Morgan et al. Jun 2019 A1
20190192153 Shelton, IV et al. Jun 2019 A1
20190192154 Shelton, IV et al. Jun 2019 A1
20190192155 Shelton, IV et al. Jun 2019 A1
20190192156 Simms et al. Jun 2019 A1
20190192157 Scott et al. Jun 2019 A1
20190192158 Scott et al. Jun 2019 A1
20190192159 Simms et al. Jun 2019 A1
20190192227 Shelton, IV et al. Jun 2019 A1
20190192235 Harris et al. Jun 2019 A1
20190192236 Shelton, IV et al. Jun 2019 A1
20190200895 Shelton, IV et al. Jul 2019 A1
20190200991 Moore et al. Jul 2019 A1
20190200992 Moore et al. Jul 2019 A1
20190200993 Moore et al. Jul 2019 A1
20190200994 Moore et al. Jul 2019 A1
20190201028 Shelton, IV et al. Jul 2019 A1
20190206562 Shelton, IV et al. Jul 2019 A1
20190209164 Timm et al. Jul 2019 A1
20190209165 Timm et al. Jul 2019 A1
20190209171 Shelton, IV et al. Jul 2019 A1
20190209172 Shelton, IV et al. Jul 2019 A1
20190209247 Giordano et al. Jul 2019 A1
20190209248 Giordano et al. Jul 2019 A1
20190209249 Giordano et al. Jul 2019 A1
20190209250 Giordano et al. Jul 2019 A1
20190216558 Giordano et al. Jul 2019 A1
20190223865 Shelton, IV et al. Jul 2019 A1
20190223871 Moore et al. Jul 2019 A1
20190261984 Nelson et al. Aug 2019 A1
20190261991 Beckman et al. Aug 2019 A1
20190267403 Li et al. Aug 2019 A1
20190269400 Mandakolathur Vasudevan et al. Sep 2019 A1
20190269402 Murray et al. Sep 2019 A1
20190269403 Baxter, III et al. Sep 2019 A1
20190269407 Swensgard et al. Sep 2019 A1
20190269428 Allen et al. Sep 2019 A1
20190274677 Shelton, IV Sep 2019 A1
20190274678 Shelton, IV Sep 2019 A1
20190274679 Shelton, IV Sep 2019 A1
20190274680 Shelton, IV Sep 2019 A1
20190274685 Olson et al. Sep 2019 A1
20190290263 Morgan et al. Sep 2019 A1
20190290264 Morgan et al. Sep 2019 A1
20190290265 Shelton, IV et al. Sep 2019 A1
20190290267 Baxter, III et al. Sep 2019 A1
20190290274 Shelton, IV Sep 2019 A1
20190290281 Aronhalt et al. Sep 2019 A1
20190298348 Harris et al. Oct 2019 A1
20190298360 Shelton, IV et al. Oct 2019 A1
20190298361 Shelton, IV et al. Oct 2019 A1
20190298362 Shelton, IV et al. Oct 2019 A1
20190307452 Shelton, IV et al. Oct 2019 A1
20190307453 Shelton, IV et al. Oct 2019 A1
20190307454 Shelton, IV et al. Oct 2019 A1
20190307455 Shelton, IV et al. Oct 2019 A1
20190307456 Shelton, IV et al. Oct 2019 A1
20190307476 Shelton, IV et al. Oct 2019 A1
20190307477 Shelton, IV et al. Oct 2019 A1
20190307478 Shelton, IV et al. Oct 2019 A1
20190307479 Shelton, IV et al. Oct 2019 A1
20190314016 Huitema et al. Oct 2019 A1
20190314017 Huitema et al. Oct 2019 A1
20190314018 Huitema et al. Oct 2019 A1
20190321039 Harris et al. Oct 2019 A1
20190321040 Shelton, IV Oct 2019 A1
20190321041 Shelton, IV Oct 2019 A1
20190328386 Harris et al. Oct 2019 A1
20190328387 Overmyer et al. Oct 2019 A1
20190328390 Harris et al. Oct 2019 A1
20190336128 Harris et al. Nov 2019 A1
20190343514 Shelton, IV et al. Nov 2019 A1
20190343515 Morgan et al. Nov 2019 A1
20190343518 Shelton, IV Nov 2019 A1
20190343525 Shelton, IV et al. Nov 2019 A1
20190350582 Shelton, IV et al. Nov 2019 A1
20190357909 Huitema et al. Nov 2019 A1
20190365384 Baxter, III et al. Dec 2019 A1
20190374224 Huitema et al. Dec 2019 A1
20200000461 Yates et al. Jan 2020 A1
20200000468 Shelton, IV et al. Jan 2020 A1
20200000469 Shelton, IV et al. Jan 2020 A1
20200000471 Shelton, IV et al. Jan 2020 A1
20200000531 Giordano et al. Jan 2020 A1
20200008800 Shelton, IV et al. Jan 2020 A1
20200008802 Aronhalt et al. Jan 2020 A1
20200008809 Shelton, IV et al. Jan 2020 A1
20200015819 Shelton, IV et al. Jan 2020 A1
20200022702 Shelton, IV et al. Jan 2020 A1
20200029964 Overmyer et al. Jan 2020 A1
20200030050 Shelton, IV et al. Jan 2020 A1
20200038016 Shelton, IV et al. Feb 2020 A1
20200038018 Shelton, IV et al. Feb 2020 A1
20200038020 Yates et al. Feb 2020 A1
20200046348 Shelton, IV et al. Feb 2020 A1
20200046893 Shelton, IV et al. Feb 2020 A1
20200054320 Harris et al. Feb 2020 A1
20200054321 Harris et al. Feb 2020 A1
20200054322 Harris et al. Feb 2020 A1
20200054323 Harris et al. Feb 2020 A1
20200054324 Shelton, IV et al. Feb 2020 A1
20200054325 Harris et al. Feb 2020 A1
20200054326 Harris et al. Feb 2020 A1
20200054327 Harris et al. Feb 2020 A1
20200054328 Harris et al. Feb 2020 A1
20200054329 Shelton, IV et al. Feb 2020 A1
20200054330 Harris et al. Feb 2020 A1
20200054331 Harris et al. Feb 2020 A1
20200054332 Shelton, IV et al. Feb 2020 A1
20200054333 Shelton, IV et al. Feb 2020 A1
20200054334 Shelton, IV et al. Feb 2020 A1
20200054355 Laurent et al. Feb 2020 A1
20200060680 Shelton, IV et al. Feb 2020 A1
20200060681 Shelton, IV et al. Feb 2020 A1
20200060713 Leimbach et al. Feb 2020 A1
20200077994 Shelton, IV et al. Mar 2020 A1
20200078015 Miller et al. Mar 2020 A1
20200078016 Swayze et al. Mar 2020 A1
20200085427 Giordano et al. Mar 2020 A1
20200085431 Swayze et al. Mar 2020 A1
20200085435 Shelton, IV et al. Mar 2020 A1
20200085436 Beckman et al. Mar 2020 A1
20200085518 Giordano et al. Mar 2020 A1
20200093484 Shelton, IV et al. Mar 2020 A1
20200093485 Shelton, IV et al. Mar 2020 A1
20200093487 Baber et al. Mar 2020 A1
20200093488 Baber et al. Mar 2020 A1
20200093506 Leimbach et al. Mar 2020 A1
20200093550 Spivey et al. Mar 2020 A1
Foreign Referenced Citations (404)
Number Date Country
2012200594 Feb 2012 AU
2011218702 Jun 2013 AU
2012200178 Jul 2013 AU
112013027777 Jan 2017 BR
1015829 Aug 1977 CA
1125615 Jun 1982 CA
2520413 Mar 2007 CA
2725181 Nov 2007 CA
2851239 Nov 2007 CA
2664874 Nov 2009 CA
2813230 Apr 2012 CA
2940510 Aug 2015 CA
2698728 Aug 2016 CA
1163558 Oct 1997 CN
2488482 May 2002 CN
1634601 Jul 2005 CN
2716900 Aug 2005 CN
2738962 Nov 2005 CN
1777406 May 2006 CN
2796654 Jul 2006 CN
2868212 Feb 2007 CN
200942099 Sep 2007 CN
200984209 Dec 2007 CN
200991269 Dec 2007 CN
201001747 Jan 2008 CN
101143105 Mar 2008 CN
201029899 Mar 2008 CN
101378791 Mar 2009 CN
101522120 Sep 2009 CN
101669833 Mar 2010 CN
101721236 Jun 2010 CN
101828940 Sep 2010 CN
101873834 Oct 2010 CN
201719298 Jan 2011 CN
102038532 May 2011 CN
201879759 Jun 2011 CN
201949071 Aug 2011 CN
102217961 Oct 2011 CN
102217963 Oct 2011 CN
102247183 Nov 2011 CN
101779977 Dec 2011 CN
101912284 Jul 2012 CN
102125450 Jul 2012 CN
202313537 Jul 2012 CN
202397539 Aug 2012 CN
202426586 Sep 2012 CN
202489990 Oct 2012 CN
102228387 Nov 2012 CN
102835977 Dec 2012 CN
202568350 Dec 2012 CN
103690212 Apr 2014 CN
203564285 Apr 2014 CN
203564287 Apr 2014 CN
203597997 May 2014 CN
103829981 Jun 2014 CN
103829983 Jun 2014 CN
103908313 Jul 2014 CN
203693685 Jul 2014 CN
203736251 Jul 2014 CN
103981635 Aug 2014 CN
203815517 Sep 2014 CN
102783741 Oct 2014 CN
102973300 Oct 2014 CN
104337556 Feb 2015 CN
204158440 Feb 2015 CN
204158441 Feb 2015 CN
102469995 Mar 2015 CN
204636451 Sep 2015 CN
103860225 Mar 2016 CN
103750872 May 2016 CN
273689 May 1914 DE
1775926 Jan 1972 DE
3036217 Apr 1982 DE
3210466 Sep 1983 DE
3709067 Sep 1988 DE
19534043 Mar 1997 DE
19851291 Jan 2000 DE
19924311 Nov 2000 DE
20016423 Feb 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
202004012389 Sep 2004 DE
10314072 Oct 2004 DE
102004014011 Oct 2005 DE
102004063606 Jul 2006 DE
202007003114 Jun 2007 DE
102010013150 Sep 2011 DE
0000756 Feb 1979 EP
0122046 Oct 1984 EP
0129442 Nov 1987 EP
0255631 Feb 1988 EP
0169044 Jun 1991 EP
0541950 May 1993 EP
0548998 Jun 1993 EP
0594148 Apr 1994 EP
0646357 Apr 1995 EP
0505036 May 1995 EP
0669104 Aug 1995 EP
0705571 Apr 1996 EP
0528478 May 1996 EP
0770355 May 1997 EP
0625335 Nov 1997 EP
0879742 Nov 1998 EP
0650701 Mar 1999 EP
0923907 Jun 1999 EP
0484677 Jul 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0726632 Oct 2000 EP
1053719 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1090592 Apr 2001 EP
1095627 May 2001 EP
0806914 Sep 2001 EP
1234587 Aug 2002 EP
1284120 Feb 2003 EP
0717967 May 2003 EP
0869742 May 2003 EP
1374788 Jan 2004 EP
1407719 Apr 2004 EP
0996378 Jun 2004 EP
1157666 Sep 2005 EP
0880338 Oct 2005 EP
1158917 Nov 2005 EP
1344498 Nov 2005 EP
1330989 Dec 2005 EP
1632191 Mar 2006 EP
1082944 May 2006 EP
1253866 Jul 2006 EP
1723914 Nov 2006 EP
1285633 Dec 2006 EP
1011494 Jan 2007 EP
1767163 Mar 2007 EP
1837041 Sep 2007 EP
0922435 Oct 2007 EP
1599146 Oct 2007 EP
1330201 Jun 2008 EP
2039302 Mar 2009 EP
1719461 Jun 2009 EP
2116196 Nov 2009 EP
1769754 Jun 2010 EP
1627605 Dec 2010 EP
2316345 May 2011 EP
1962711 Feb 2012 EP
2486862 Aug 2012 EP
2486868 Aug 2012 EP
2517638 Oct 2012 EP
2606812 Jun 2013 EP
2649948 Oct 2013 EP
2649949 Oct 2013 EP
2668910 Dec 2013 EP
2687164 Jan 2014 EP
2713902 Apr 2014 EP
2743042 Jun 2014 EP
2764827 Aug 2014 EP
2777524 Sep 2014 EP
2842500 Mar 2015 EP
2853220 Apr 2015 EP
2298220 Jun 2016 EP
2510891 Jun 2016 EP
3031404 Jun 2016 EP
3047806 Jul 2016 EP
3078334 Oct 2016 EP
2364651 Nov 2016 EP
2747235 Nov 2016 EP
3095399 Nov 2016 EP
2789299 May 2017 EP
3225190 Oct 2017 EP
3363378 Aug 2018 EP
459743 Nov 1913 FR
999646 Feb 1952 FR
1112936 Mar 1956 FR
2598905 Nov 1987 FR
2689749 Jul 1994 FR
2765794 Jan 1999 FR
2815842 May 2002 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
1217159 Dec 1970 GB
1339394 Dec 1973 GB
2024012 Jan 1980 GB
2109241 Jun 1983 GB
2090534 Jun 1984 GB
2272159 May 1994 GB
2336214 Oct 1999 GB
2509523 Jul 2014 GB
930100110 Nov 1993 GR
S4711908 May 1972 JP
S5033988 Apr 1975 JP
S5367286 Jun 1978 JP
S56112235 Sep 1981 JP
S60113007 Jun 1985 JP
S62170011 Oct 1987 JP
S63270040 Nov 1988 JP
H0129503 Jun 1989 JP
H0378514 Aug 1991 JP
H0385009 Aug 1991 JP
H04215747 Aug 1992 JP
H04131860 Dec 1992 JP
H0584252 Apr 1993 JP
H05123325 May 1993 JP
H05226945 Sep 1993 JP
H0630945 Feb 1994 JP
H06237937 Aug 1994 JP
H06327684 Nov 1994 JP
H079622 Feb 1995 JP
H07124166 May 1995 JP
H07163573 Jun 1995 JP
H07255735 Oct 1995 JP
H07285089 Oct 1995 JP
H0833642 Feb 1996 JP
H08164141 Jun 1996 JP
H08182684 Jul 1996 JP
H08507708 Aug 1996 JP
H08229050 Sep 1996 JP
H08289895 Nov 1996 JP
H09-323068 Dec 1997 JP
H10118090 May 1998 JP
H10-200699 Jul 1998 JP
H10296660 Nov 1998 JP
2000014632 Jan 2000 JP
2000033071 Feb 2000 JP
2000112002 Apr 2000 JP
2000166932 Jun 2000 JP
2000171730 Jun 2000 JP
2000271141 Oct 2000 JP
2000287987 Oct 2000 JP
2000325303 Nov 2000 JP
2001087272 Apr 2001 JP
2001514541 Sep 2001 JP
2001276091 Oct 2001 JP
2002051974 Feb 2002 JP
2002054903 Feb 2002 JP
2002085415 Mar 2002 JP
2002143078 May 2002 JP
2002153481 May 2002 JP
2002528161 Sep 2002 JP
2002314298 Oct 2002 JP
2003135473 May 2003 JP
2003521301 Jul 2003 JP
3442423 Sep 2003 JP
2003300416 Oct 2003 JP
2004147701 May 2004 JP
2004162035 Jun 2004 JP
2004229976 Aug 2004 JP
2005013573 Jan 2005 JP
2005080702 Mar 2005 JP
2005131163 May 2005 JP
2005131164 May 2005 JP
2005131173 May 2005 JP
2005131211 May 2005 JP
2005131212 May 2005 JP
2005137423 Jun 2005 JP
2005187954 Jul 2005 JP
2005211455 Aug 2005 JP
2005328882 Dec 2005 JP
2005335432 Dec 2005 JP
2005342267 Dec 2005 JP
3791856 Jun 2006 JP
2006187649 Jul 2006 JP
2006218228 Aug 2006 JP
2006281405 Oct 2006 JP
2006346445 Dec 2006 JP
2007289715 Nov 2007 JP
2008220032 Sep 2008 JP
2009507526 Feb 2009 JP
2009189838 Aug 2009 JP
2009189846 Aug 2009 JP
2009207260 Sep 2009 JP
2009226028 Oct 2009 JP
2009538684 Nov 2009 JP
2009539420 Nov 2009 JP
D1383743 Feb 2010 JP
2010069307 Apr 2010 JP
2010069310 Apr 2010 JP
2010098844 Apr 2010 JP
2010214128 Sep 2010 JP
2011072574 Apr 2011 JP
4722849 Jul 2011 JP
4728996 Jul 2011 JP
2011524199 Sep 2011 JP
D1432094 Dec 2011 JP
2012143283 Aug 2012 JP
5154710 Feb 2013 JP
2013126430 Jun 2013 JP
D1481426 Sep 2013 JP
2014121599 Jul 2014 JP
2016512057 Apr 2016 JP
20100110134 Oct 2010 KR
20110003229 Jan 2011 KR
300631507 Mar 2012 KR
300747646 Jun 2014 KR
1814161 May 1993 RU
1814161 May 1993 RU
2008830 Mar 1994 RU
2052979 Jan 1996 RU
2066128 Sep 1996 RU
2069981 Dec 1996 RU
2098025 Dec 1997 RU
2104671 Feb 1998 RU
2110965 May 1998 RU
2141279 Nov 1999 RU
2144791 Jan 2000 RU
2161450 Jan 2001 RU
2181566 Apr 2002 RU
2187249 Aug 2002 RU
32984 Oct 2003 RU
2225170 Mar 2004 RU
42750 Dec 2004 RU
61114 Feb 2007 RU
61122 Feb 2007 RU
2430692 Oct 2011 RU
189517 Jan 1967 SU
297156 May 1971 SU
328636 Sep 1972 SU
511939 Apr 1976 SU
674747 Jul 1979 SU
728848 Apr 1980 SU
1009439 Apr 1983 SU
1271497 Nov 1986 SU
1333319 Aug 1987 SU
1377052 Feb 1988 SU
1377053 Feb 1988 SU
1443874 Dec 1988 SU
1509051 Sep 1989 SU
1561964 May 1990 SU
1708312 Jan 1992 SU
1722476 Mar 1992 SU
1752361 Aug 1992 SU
WO-9315648 Aug 1993 WO
WO-9420030 Sep 1994 WO
WO-9517855 Jul 1995 WO
WO-9520360 Aug 1995 WO
WO-9623448 Aug 1996 WO
WO-9635464 Nov 1996 WO
WO-9639086 Dec 1996 WO
WO-9639088 Dec 1996 WO
WO-9724073 Jul 1997 WO
WO-9734533 Sep 1997 WO
WO-9827870 Jul 1998 WO
WO-9903407 Jan 1999 WO
WO-9903409 Jan 1999 WO
WO-9948430 Sep 1999 WO
WO-0024322 May 2000 WO
WO-0024330 May 2000 WO
WO-0053112 Sep 2000 WO
WO-0024448 Oct 2000 WO
WO-0057796 Oct 2000 WO
WO-0105702 Jan 2001 WO
WO-0154594 Aug 2001 WO
WO-0158371 Aug 2001 WO
WO-0162164 Aug 2001 WO
WO-0162169 Aug 2001 WO
WO-0191646 Dec 2001 WO
WO-0219932 Mar 2002 WO
WO-0226143 Apr 2002 WO
WO-0236028 May 2002 WO
WO-02065933 Aug 2002 WO
WO-03055402 Jul 2003 WO
WO-03094747 Nov 2003 WO
WO-03079909 Mar 2004 WO
WO-2004019803 Mar 2004 WO
WO-2004032783 Apr 2004 WO
WO-2004047626 Jun 2004 WO
WO-2004047653 Jun 2004 WO
WO-2004056277 Jul 2004 WO
WO-2004078050 Sep 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004096015 Nov 2004 WO
WO-2006044581 Apr 2006 WO
WO-2006051252 May 2006 WO
WO-2006059067 Jun 2006 WO
WO-2006073581 Jul 2006 WO
WO-2006085389 Aug 2006 WO
WO-2007015971 Feb 2007 WO
WO-2007074430 Jul 2007 WO
WO-2007129121 Nov 2007 WO
WO-2007137304 Nov 2007 WO
WO-2007142625 Dec 2007 WO
WO-2008021969 Feb 2008 WO
WO-2008061566 May 2008 WO
WO-2008089404 Jul 2008 WO
WO-2009005969 Jan 2009 WO
WO-2009067649 May 2009 WO
WO-2009091497 Jul 2009 WO
WO-2010126129 Nov 2010 WO
WO-2010134913 Nov 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2012006306 Jan 2012 WO
WO-2012013577 Feb 2012 WO
WO-2012044606 Apr 2012 WO
WO-2012061725 May 2012 WO
WO-2012072133 Jun 2012 WO
WO-2012166503 Dec 2012 WO
WO-2013087092 Jun 2013 WO
WO-2013151888 Oct 2013 WO
WO-2014004209 Jan 2014 WO
WO-2014113438 Jul 2014 WO
WO-2015032797 Mar 2015 WO
WO-2015138760 Sep 2015 WO
WO-2015187107 Dec 2015 WO
Non-Patent Literature Citations (80)
Entry
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001).
Data Sheet of LM4F230H5QR, 2007.
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf; Wayback Machine to Feb. 15, 2012.
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012.
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98.
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51.
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages.
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12.
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246.
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986.
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986).
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671.
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345.
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991).
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages.
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, On Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504.
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages).
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20., pp. 1744-1748.
Patrick J. Sweeney: “RFID for Dummies”, Mar. 11, 2010, pp. 365-365, XP055150775, ISBN: 978-1-11-805447-5, Retrieved from the Internet: URL: books.google.de/books?isbn=1118054474 [retrieved on Nov. 4, 2014]—book not attached.
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages.
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001), Mar. 1, 2001.
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005).
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000).
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010).
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004.
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523.
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages).
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages).
Covidien “iDrive™ Ultra Powered Stapling System, A Guide for Surgeons,” (6 pages).
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages).
Covidien Brochure “iDrive™ Ultra Powered Stapling System,” (6 pages).
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages).
Biomedical Coatings, Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
Allegro MicroSystems, LLC, Automotive Full Bridge MOSFET Driver, A3941-DS, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en.
Lyon et al. “The Relationship Between Current Load and Temperature for Quasi-Steady State and Transient Conditions,” SPIE—International Society for Optical Engineering. Proceedings, vol. 4020, (pp. 62-70), Mar. 30, 2000.
Anonymous: “Sense & Control Application Note Current Sensing Using Linear Hall Sensors,” Feb. 3, 2009, pp. 1-18. Retrieved from the Internet: URL: http://www.infineon.com/dgdl/Current_Sensing_Rev.1.1.pdf?fileId=db3a304332d040720132d939503e5f17 [retrieved on Oct. 18, 2016].
Mouser Electronics, “LM317M 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Mar. 31, 2014 (Mar. 31, 2014), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-8.
Mouser Electronics, “LM317 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Sep. 30, 2016 (Sep. 30, 2016), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-9.
Cuper et al., “The Use of Near-Infrared Light for Safe and Effective Visualization of Subsurface Blood Vessels to Facilitate Blood Withdrawal in Children,” Medical Engineering & Physics, vol. 35, No. 4, pp. 433-440 (2013).
Yan et al, Comparison of the effects of Mg—6Zn and Ti—3Al—2.5V alloys on TGF-β/TNF-α/VEGF/b-FGF in the healing of the intestinal track in vivo, Biomed. Mater. 9 (2014), 11 pages.
Pellicer et al. “On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials,” J Biomed Mater Res Part A ,2013:101A:502-517.
Anonymous, Analog Devices Wiki, Chapter 11: The Current Mirror, Aug. 20, 2017, 22 pages. https://wiki.analog.com/university/courses/electronics/text/chapter-11?rev=1503222341.
Yan et al., “Comparison of the effects of Mg—6Zn and titanium on intestinal tract in vivo,” J Mater Sci: Mater Med (2013), 11 pages.
Brar et al., “Investigation of the mechanical and degradation properties of Mg—Sr and Mg—Zn—Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behavior of Biomed. Mater. 7 (2012) pp. 87-95.
Texas Instruments: “Current Recirculation and Decay Modes,” Application Report SLVA321—Mar. 2009; Retrieved from the Internet: URL:http://www.ti.com/lit/an/slva321/slva321 [retrieved on Apr. 25, 2017], 7 pages.
Qiu Li Loh et al.: “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size”, Tissue Engineering Part B—Reviews, vol. 19, No. 6, Dec. 1, 2013, pp. 485-502.
Gao et al., “Mechanical Signature Enhancement of Response Vibrations in the Time Lag Domain,” Fifth International Congress on Sound and Vibration, Dec. 15-18, 1997, pp. 1-8.
Trendafilova et al., “Vibration-based Methods for Structural and Machinery Fault Diagnosis Based on Nonlinear Dynamics Tools,” In: Fault Diagnosis in Robotic and Industrial Systems, IConcept Press LTD, 2012, pp. 1-29.
Youtube.com; video by Fibran (retrieved from URL https://www.youtube.com/watch?v=vN2Qjt51gFQ); (Year: 2018).
Foot and Ankle: Core Knowledge in Orthopaedics; by DiGiovanni MD, Elsevier; (p. 27, left column, heading “Materials for Soft Orthoses”, 7th bullet point); (Year: 2007).
Lee, Youbok, “Antenna Circuit Design for RFID Applications,” 2003, pp. 1-50, DS00710C, Microchip Technology Inc., Available: http://ww1.microchip.com/downloads/en/AppNotes/00710c.pdf.
Kawamura, Atsuo, et al. “Wireless Transmission of Power and Information Through One High-Frequency Resonant AC Link Inverter for Robot Manipulator Applications,” Journal, May/Jun. 1996, pp. 503-508, vol. 32, No. 3, IEEE Transactions on Industry Applications.
Honda HS1332AT and ATD Model Info, powerequipment.honda.com [online], published on or before Mar. 22, 2016, [retrieved on May 31, 2019], retrieved from the Internet [URL: https://powerequipment.honda.com/snowblowers/models/hss1332at-hss1332atd] {Year: 2016).
Slow Safety Sign, shutterstock.com [online], published on or before May 9, 2017, [retrieved on May 31, 2019], retrieved from the https://www.shutterstock.com/image-victor/slow-safety-sign-twodimensional-turtle-symbolizing- . . . see PDF in file for full URL] (Year: 2017).
Warning Sign Beveled Buttons, by Peter, flarestock.com [online], published on or before Jan. 1, 2017, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.flarestock.com/stock-images/warning-sign-beveled-buttons/70257] (Year: 2017).
Arrow Sign Icon Next Button, by Blan-k, shutterstock.com [online], published on or before Aug. 6, 2014, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL:https://www.shutterstock.com/de/image-vector/arrow-sign-icon-next-button-navigation-207700303?irgwc=1&utm . . . see PDF in file for full URL] (Year: 2014).
Elite Icons, by smart/icons, iconfinder.com [online], published on Aug. 18, 2016, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.iconfinder.com/iconsets/elite] (Year: 2016).
Tutorial overview of inductively coupled RFID Systems, UPM, May 2003, pp. 1-7, UPM Rafsec,<http://cdn.mobiusconsulting.com/papers/rfidsystems.pdf>.
Schroeter, John, “Demystifying UHF Gen 2 RFID, HF RFID,” Online Article, Jun. 2, 2008, pp. 1-3, <https://www.edn.com/design/industrial-control/4019123/Demystifying-UHF-Gen-2-RFID-HF-RFID>.
Adeeb, et al., “An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications,” Research Article, Nov. 14, 2011, pp. 1-12, vol. 2012, Article ID 879294, Hindawi Publishing Corporation.
Pushing Pixels (GIF), published on dribble.com, 2013.
Sodium stearate C18H35NaO2, Chemspider Search and Share Chemistry, Royal Society of Chemistry, pp. 1-3, 2015, http://www.chemspider.com/Chemical-Structure.12639.html, accessed May 23, 2016.
NF Monographs: Sodium Stearate, U.S. Pharmacopeia, http://www.pharmacopeia.cn/v29240/usp29nf24s0_m77360.html, accessed May 23, 2016.
Fischer, Martin H, “Colloid-Chemical Studies on Soaps”, The Chemical Engineer, pp. 184-193, Aug. 1919.
V.K. Ahluwalia and Madhuri Goyal, A Textbook of Organic Chemistry, Section 19.11.3, p. 356, 2000.
A.V. Kasture and S.G. Wadodkar, Pharmaceutical Chemistry—II: Second Year Diploma in Pharmacy, Nirali Prakashan, p. 339, 2007.
Forum discussion regarding “Speed Is Faster”, published on Oct. 1, 2014 and retrieved on Nov. 8, 2019 from URL https://english.stackexchange.com/questions/199018/how-is-that-correct-speed-is-faster-or-prices-are-cheaper (Year: 2014).
“Understanding the Requirements of ISO/IEC 14443 for Type B Proximity Contactless Identification Cards,” retrieved from https://www.digchip.com/application-notes/22/15746.php on Mar. 2, 2020, pp. 1-28 (Nov. 2005).
Jauchem, J.R., “Effects of low-level radio-frequency (3 kHz to 300 GHz) enery on human cardiovascular, reproductive, immune, and other systems: A review of the recent literatured,” Int. J. Hyg. Environ. Health 211 (2008) 1-29.
Related Publications (1)
Number Date Country
20180064443 A1 Mar 2018 US
Continuations (1)
Number Date Country
Parent 13974224 Aug 2013 US
Child 15718879 US