Robotic surgical systems have been used in minimally invasive medical procedures. Some robotic surgical systems included a console supporting a surgical robotic arm and a surgical instrument or at least one end effector (e.g., forceps or a grasping tool) mounted to the robotic arm. The robotic arm provided mechanical power to the surgical instrument for its operation and movement. Each robotic arm may have included an instrument drive unit operatively connected to the surgical instrument.
Robotic arms may be constructed of a plurality of joints that are movable relative to one another via a cable system. The cables may have been fabricated from stainless steel, which may result in stretching of the cables over time, thereby effecting operation of the robotic arm. Accordingly, a need exists to provide robotic arm cables that resist deformation over time, and a way to selectively tension the robotic arm cables during or prior to usage.
In one aspect of the present disclosure, a robotic arm is provided. The robotic arm includes a first elongate member, a second elongate member, a third elongate member, and motor, and a pulley assembly. The first elongate member has a first end configured to be coupled to a fixed surface, and a second end. The second elongate member has a first end rotatably connected to the second end of the first elongate member, and a second end. The third elongate member has a first end rotatably connected to the second end of the second elongate member, and a second end configured to be coupled to a surgical instrument. The motor is attached to the second end of the first elongate member and configured to rotate the second elongate member relative to the first elongate member. The pulley assembly is disposed within the second elongate member and includes a first pulley disposed within the second end of the second elongate member, and a second pulley operably coupled to the first pulley via a first cable. The second pulley includes a hub disposed within the first end of the second elongate member, a first semicircular body rotatably attached to the hub, and a first fastener movably coupled to the hub. Movement of the first fastener rotates the first semicircular body relative to the hub to change a tension in the first cable.
In some embodiments, the second pulley may include a second semicircular body rotatably attached to the hub of the second pulley, and a second fastener movably coupled to the hub of the second pulley such that movement of the second fastener rotates the second semicircular body relative to the hub of the second pulley to change a tension in a second cable. The first cable may have a first end fixed to the first semicircular body and a second end fixed to the first pulley, and the second cable may have a first end fixed to the second semicircular body and a second end fixed to the first pulley. The first and second semicircular bodies may be disposed adjacent one another.
It is contemplated that the first fastener may be a screw that is threadingly coupled to the hub of the second pulley. The screw may have an end in abutting engagement with the first semicircular body. Rotation of the screw may drive the end of the screw toward the first semicircular body to rotate the first semicircular body.
It is envisioned that the first semicircular body may have a first end and a second end and be disposed about the hub of the second pulley. The first fastener may have an end in abutting engagement with the first end of the first semicircular body. The first cable may have an end that is fixed to the second end of the first semicircular body.
In some embodiments, the first cable may have a first end fixed to the first pulley and a second end fixed to the first semicircular body such that rotation of the first semicircular body relative to the hub of the second pulley increases the tension in the first cable.
In another aspect of the present disclosure, a pulley assembly of a robotic arm is provided and includes a first cable, a first pulley, and a second pulley. The first pulley has a first end of the first cable fixed thereto. The second pulley is operably coupled to the first pulley via the first cable. The second pulley includes a hub, a first semicircular body, and a first fastener. The first semicircular body is rotatably attached to the hub and has a second end of the first cable fixed thereto. The first fastener is movably coupled to the hub. Movement of the first fastener rotates the first semicircular body relative to the hub to change a tension in the first cable.
Further details and aspects of exemplary embodiments of the present disclosure are described in more detail below with reference to the appended figures.
As used herein, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about + or −10 degrees from true parallel and true perpendicular.
Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
Embodiments of the presently disclosed surgical robotic arm are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the robotic surgical system or component thereof, that is closer to a patient, while the term “proximal” refers to that portion of the robotic surgical system or component thereof, that is further from the patient.
As will be described in detail below, provided is a surgical robotic arm. The surgical robotic arm has a plurality of elongate members or links that are interconnected with one another and rotatable relative to one another via pulley systems while maintaining relative orientations of various links.
Referring initially to
Operating console 5 includes a display device 6, which is set up in particular to display three-dimensional images; and manual input devices 7, 8, by means of which a person (not shown), for example a surgeon, is able to telemanipulate robotic arms 2, 3 in a first operating mode, as known in principle to a person skilled in the art. Each of the robotic arms 2, 3 may be composed of a plurality of members, which are connected through joints, as will be described in greater detail below. Robotic arms 2, 3 may be driven by electric drives (not shown) that are connected to control device 4. Control device 4 (e.g., a computer) is set up to activate the drives, in particular by means of a computer program, in such a way that robotic arms 2, 3, the attached instrument drive units 100, and thus electromechanical instrument 10 execute a desired movement according to a movement defined by means of manual input devices 7, 8. Control device 4 may also be set up in such a way that it regulates the movement of robotic arms 2, 3 and/or of the drives.
Robotic surgical system 1 is configured for use on a patient “P” lying on a surgical table “ST” to be treated in a minimally invasive manner by means of a surgical instrument, e.g., electromechanical instrument 10. Robotic surgical system 1 may also include more than two robotic arms 2, 3, the additional robotic arms likewise being connected to control device 4 and being telemanipulatable by means of operating console 5. A surgical instrument, for example, electromechanical surgical instrument 10, may also be attached to the additional robotic arm.
Control device 4 may control a plurality of motors, e.g., motors (Motor 1. . . n), with each motor configured to drive movement of robotic arms 2, 3 in a plurality of directions. Further, control device 4 may control a motor, such as, for example, a hollow core motor “M” (
For a detailed description of the construction and operation of a robotic surgical system, reference may be made to U.S. Patent Application Publication No. 2012/0116416, filed on Nov. 3, 2011, entitled “Medical Workstation,” the entire contents of which are incorporated by reference herein.
With reference to
With reference to
Second elongate member 120 includes a fixed pulley 132 disposed within first end 120a thereof. Fixed pulley 132 is fixedly connected to second end 110b of first elongate member 110 such that fixed pulley 132 of second elongate member 120 is non-rotatable relative to first elongate member 110. Second elongate member 120 has a second end 120b having a passive pulley 134 rotatably disposed therein. Passive pulley 134 of second elongate member 120 is operably coupled to fixed pulley 132 of second elongate member 120 via a pair of tethers or cables 114a, 114b. Passive pulley 134 of second elongate member 120 is also fixed to a first end 130a of third elongate member 130 such that rotation of passive pulley 134 of second elongate member 120 effects rotation of third elongate member 130 relative to second elongate member 120.
With reference to
Cables 154a, 154b may be fabricated from steel or tungsten, or a composite of steel and tungsten, and may be comprised of a plurality of metal bands stacked on one another. In some embodiments, the portion of cables 154a, 154b fixed to pulleys 152, 154 may be tungsten whereas the remainder of cables 154a, 154b may be stainless steel. It is further contemplated that cables 154a, 154b may include an outer sheath, and an inner cable disposed within the sheath and having a greater stiffness compared to the sheath. The above-noted various embodiments of cables 154a, 154b are better than the prior art cables at reducing permanent and/or temporary stretching, and therefore have a longer lifespan.
Robotic arm 2 further includes an instrument carrier or rail 140. Passive pulley 154 of third elongate member 130 is non-rotatably coupled to a first end 140a of rail 140 such that rotation of passive pulley 154 of third elongate member 130 effects rotation of rail 140 relative to third elongate member 130. Instrument carrier or rail 140 has a slider 142 movably connected to a track or slide 144 of instrument carrier 140. Slider 142 moves, slides, or translates along a longitudinal axis defined by track 144 upon a selective actuation by motor(s) (not shown) supported on track 144 or motors (1 . . . n) of control device 4. As such, slider 142, with surgical instrument 10 (
With reference to
A rotation of set screws 178a, 178b causes bodies 176a, 176b to rotate relative to hub 170 to change the tension in cables 154a, 154b, respectively. For example, a rotation of set screw 178a (e.g., in a clockwise direction) drives set screw 178a in a linear direction indicated by arrow “C” in
In some embodiments, various fasteners or other mechanisms may be provided that cause bodies 176a, 176b to be selectively moved away from one another.
In operation, motor “M” of first elongate member 110 may be actuated, which rotates second elongate member 120 relative to first elongate member 110 in a first direction indicated by arrow “A” in
As third elongate member 130 rotates in the second direction relative to second elongate member 120, passive pulley 154 of third elongate member 130 rotates in the first direction. Passive pulley 154 of third elongate member 130 rotates in the opposite direction as third elongate member 130 because fixed pulley 152 of third elongate member 130 is non-rotatable relative to third elongate member 130. Since first end 140a of slide 140 is operably coupled to passive pulley 154 of third elongate member 130, slide 140 rotates with passive pulley 154 in the first direction the same amount as third elongate member 130 rotates in the second direction relative to second elongate member 120. In this way, the relative orientation of second elongate member 120 and link 140 remains constant during rotation of third elongate member 130.
With reference to
First and second bodies 236a, 236b of first pulley 232 each have a ring member 241, 243 that allow bodies 236a, 236b to rotatably interlock with one another. First and second bodies 236a, 236b of first pulley 232 are rotatably attached to annular flange member 250 of hub 234. Bodies 236a, 236b each have a set screw 238a, 238b threadedly connected to annular flange member 250 of hub 234 and having ends 239 in engagement with bodies 236a, 236b.
In operation, to account for a permanent stretching of cables 214a, 214b due to use over time, a tension in cables 214a, 214b may be adjusted. To adjust tension in cables 214a, 214b, one or both of set screws 238a, 238b of first pulley 232 may be rotated to drive screws 238a, 238b, in a linear direction indicated by arrow “G” in
It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/012839 | 1/9/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62615578 | Jan 2018 | US |