This disclosure relates generally to semiconductor processing, and more particularly to a susceptor and susceptor heater providing a more uniform heat distribution to a substrate.
Semiconductor fabrication processes are typically conducted with the substrates supported within a chamber under controlled conditions. For many purposes, semiconductor substrates (e.g., wafers) are heated inside the process chamber. For example, substrates can be heated by direct physical contact with an internally heated wafer holder or “chuck.” “Susceptors” are wafer supports used in systems where the wafer and susceptors absorb heat.
Some of the important controlled conditions for processing include, but are not limited to, fluid flow rate into the chamber, temperature of the reaction chamber, temperature of the fluid flowing into the reaction chamber, and temperature of the fluid throughout the fluid line.
Heating within the reaction chamber can occur in a number of ways, including lamp banks or arrays positioned above the substrate surface for directly heating the susceptor or susceptor heaters/pedestal heaters position below the susceptor. Traditionally, the pedestal style heater extends into the chamber through a bottom wall and the susceptor is mounted on a top surface of the heater. The heater may include a resistive heating element enclosed within the heater to provide conductive heat and increase the susceptor temperature. A major drawback to the resistive pedestal heater is the great deal of heat necessary in order to sufficiently raise the top surface temperature of the susceptor. In order to provide this high level of heat transfer, the pedestal heater and the susceptor interface becomes very hot and may lead to fusion between the two parts. Unfortunately, fusing the susceptor and heater together leads to increased reaction chamber downtime and additional refurbishment/replacement costs.
Various aspects and implementations are disclosed herein that relate to substrate support assembly designs and methods of heating a substrate within a reaction chamber. In one aspect, a substrate supporting assembly in a reaction space includes a heater, a substrate support member, and a shim positioned between the heater and the substrate support member.
In an implementation, the shim may be removably secured between the heater and the substrate support member. The shim may further include an inner surface defining a perimeter of a gap. The gap may be further defined by a bottom surface of the substrate support member and a top surface of the heater. The substrate support member may further include a shoulder positioned radially outside of a substrate support position and wherein the shim inner surface is radially aligned with the substrate support member shoulder.
A temperature of the substrate support member may be modified by both conductive thermal energy and radiant thermal energy from the heater. The radiant thermal energy from the heater may be transferred through the gap. The reaction chamber may under a vacuum condition during substrate processing. The radiant thermal energy transfer component may be greater than the conductive thermal energy transfer component. The shim may be composed of a material selected from the group consisting of aluminum, titanium, and stainless steel. The shim may further include a cross-sectional thickness between 0.1 mm and 2 mm. The shim cross-sectional thickness may be 0.5 mm. The shim may include a radially non-uniform cross-sectional thickness. The shim cross-sectional thickness may increase from a shim inner surface to a shim outer surface. The shim may further include a plurality of locating tabs for maintaining a position of the shim on the heater or the substrate support member. The shim may be a solid disc.
In another aspect, a reaction chamber for processing a wafer may include a plurality of walls defining a reaction space, a heater movably positioned within the reaction space, a susceptor positioned within the reaction space, and a shim located between the heater and the susceptor and preventing direct contact between the heater and the susceptor.
In an implementation, the shim may be removably secured between the heater and the susceptor. A gap may be formed between an inner surface of the shim, a bottom surface of the susceptor, and a top surface of the heater, and wherein the gap is positioned inward of a radial envelope defined by an outer perimeter of the wafer. The shim may be composed of a material selected from the group consisting of aluminum, titanium, and stainless steel.
In yet another aspect, a method of heating a susceptor includes the steps of providing a heater having a heating element within a reaction chamber, placing a shim on the heater, placing a susceptor on the shim, activating the heating element, and transferring thermal energy from the heater to the susceptor by conduction and radiation.
In an implementation, the method may also include the step of placing the reaction chamber under a vacuum during a wafer processing step.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
The present aspects and implementations may be described in terms of functional block components and various processing steps. Such functional blocks may be realized by any number of hardware or software components configured to perform the specified functions and achieve the various results. For example, the present aspects may employ various sensors, detectors, flow control devices, heaters, and the like, which may carry out a variety of functions. In addition, the present aspects and implementations may be practiced in conjunction with any number of processing methods, and the apparatus and systems described may employ any number of processing methods, and the apparatus and systems described are merely examples of applications of the invention.
Susceptor 18 rests on a heater 22 which may be a pedestal heater or any other suitable heating mechanism. Heater 22 may include a shaft portion 24 extending through an opening 26 in wall 14. Shaft portion 24 may also include a collar 28 communicating with a lifting mechanism 30 for moving the heater 22 and the susceptor 18 from a loading position to a processing position and back as necessary.
Heater 22 includes a heating portion 32 generally perpendicular to shaft portion 24. Heating portion 32 is also generally shaped and sized similar to susceptor 18 to provide a uniform heat distribution to the susceptor 18 and ultimately the substrate 16. While the heating portion 32 is shown and described as being integral with the shaft portion 24, it is within the spirit and scope of the present disclosure for the heating portion and shaft portion to be separate pieces that are permanently secured to one another, are removably secured to one another, are formed from a single piece, or to even omit the shaft portion so long as the susceptor is sufficiently heated for processing.
Heating portion 32 includes a heating element 34 which may be a resistive heater and positioned within a diameter defined by substrate 16. In one implementation, the heating element 34 is looped outward from a central point within heating portion 32. In another implementation, the heating element snakes in a regular pattern from the inside to the outside. While the described orientations of heating element 34 have been described as various implementations, the orientation, style, and arrangement of heating element 34 are merely non-limiting examples as any suitable heating element style and orientation may be utilized without departing from the spirit and scope of this disclosure.
As partially seen in
Shaft portion 24 may also include an inlet 44 and an outlet 46 which are arranged to carry wiring and other requirement components to provide heating at the heating portion 32. Advantageously, inlet 44 and outlet 46 are incorporated through shaft portion 24 instead of directly into heating portion 32 to reduce potential contamination issues within reaction chamber 10. In this arrangement, the susceptor 18 is positioned directly in contact with heater 22 and particularly a top surface 48 of heating portion 32 contacts a bottom surface 50 of susceptor 18.
Referring now to
Shim 54 also includes a locating aperture 56 arranged to engage a locating pin 58 positioned within hole 60 of heater 22. Locating aperture 56 and locating pin 58, although not mandatory for system use, provide stability and prevent rotational displacement of shim 54 during operation. Shim 54 may also include a plurality of locating tabs 62 to limit relative movement between heating portion 32 of heater 22 and shim 54. In one implementation, locating tabs 62 are disposed along a perimeter 64 of shim 54 and extend at an angle from perimeter 64. Any suitable number of locating tabs 62 may be utilized, while the illustrated non-limiting implementation shows three locating tabs, two or more locating tabs may be incorporated. Further, the illustrated locating tabs are shown extending downward into contact with heater 22 and heating portion 32 thereof, but may just as easily extend upwards and contact susceptor 18 without departing from the spirit and scope of the disclosure. Still yet, the locating tabs 62 may extend from perimeter 64 at any angle or in any shape/orientation so long as relative positioning is maintained between the susceptor 18, the heater 22, and the shim 54.
In one implementation, shim 54 may have a cross-sectional thickness between 0.1 mm and 2 mm, although any suitable cross-sectional thickness may be utilized. In one preferred implementation, the shim cross-sectional thickness is approximately 0.5 mm. Shim 54 may be composed of any suitable highly thermal conductive material including, but not limited to, aluminum, titanium, stainless steel, or Thermal Pyrolytic Graphite from Momentive Performance Materials Inc. In one implementation, shim 54 may be composed of any 1000 series aluminum. Advantageously, the relative thin shim 54 is cheap to manufacture and can be a consumable part with chamber changeovers or with replacement of the susceptor. Still further, shim 54 prevents fusion of the susceptor and heater, thereby significantly reducing the heater refurbishment costs.
In addition to providing thermal radiation through gap 68, the highly thermally conductive composition of shim 54 ensures sufficient conductive heat transfer from heater 22 into the outer edges of susceptor 18 and shoulder 20 to maintain the edge of the substrate at an appropriate processing temperature. Still further, reaction chamber 10 may be placed in a vacuum state, wherein the radiant heat transfer through gap 68 is not affected by the vacuum condition.
In operation, shim 54 also greatly reduces chamber cleaning and reaction chamber downtime while also reducing chamber consumables. Specifically, the significant amount of heat transfer between the susceptor and the heater without shim 54 can lead to fusing the susceptor 18 to heater 22 and requiring removal of the entire heater assembly. With the addition of the shim 54, the old susceptor 18 and shim 54 may be removed from the chamber and quickly replaced with a new susceptor 18 and shim 54 in a fraction of the time normally required. In another implementation, the susceptor and shim may be a single assembly that can be replaced together and separately refurbished or replaced as necessary, thereby still further reducing downtime. In summary, the prevention of fusion between susceptor 18 and heater 22 greatly reduces downtime and consumables costs.
In operation, all three shims 54, 70, and 72 each provide fusion resistance and reduce consumables as well as reactor downtime. Shims 54 and 72 also provide the advantage of better heat transfer between heater 22 and susceptor 18 in the form of radiant heat within gap 68. The present disclosure also provides a method of conducting thermal energy in a reaction chamber or processing space consisting of positioning a shim with an opening or hole therein between a susceptor bottom surface and a heater top surface and activating the heater to provide both radiant thermal energy transfer and conductive thermal energy transfer to the susceptor and substrate in a vacuum environment or ambient pressure environment.
These and other embodiments for methods and apparatus for a reaction chamber having a shim between the susceptor and heater may incorporate concepts, embodiments, and configurations as described with respect to embodiments of apparatus for heaters described above. The particular implementations shown and described are illustrative of the invention and its best mode and are not intended to otherwise limit the scope of the aspects and implementations in any way. Indeed, for the sake of brevity, conventional manufacturing, connection, preparation, and other functional aspects of the system may not be described in detail. Furthermore, any connecting lines shown in the various figures are intended to represent exemplary functional relationships and/or physical couplings between the various elements. Many alternative or additional functional relationship or physical connections may be present in the practical system, and/or may be absent in some embodiments.
As used herein, the terms “comprises”, “comprising”, or any variation thereof, are intended to reference a non-exclusive inclusion, such that a process, method, article, composition or apparatus that comprises a list of elements does not include only those elements recited, but may also include other elements not expressly listed or inherent to such process, method, article, composition or apparatus. Other combinations and/or modifications of the above-described structures, arrangements, applications, proportions, elements, materials or components used in the practice of the present invention, in addition to those not specifically recited, may be varied or otherwise particularly adapted to specific environments, manufacturing specifications, design parameters or other operating requirements without departing from the general principles of the same.
Number | Name | Date | Kind |
---|---|---|---|
2745640 | Cushman | May 1956 | A |
2990045 | Root | Sep 1959 | A |
3833492 | Bollyky | Sep 1974 | A |
3854443 | Baerg | Dec 1974 | A |
3862397 | Anderson et al. | Jan 1975 | A |
3887790 | Ferguson | Jun 1975 | A |
4054071 | Patejak | Oct 1977 | A |
4058430 | Suntola et al. | Nov 1977 | A |
4145699 | Hu et al. | Mar 1979 | A |
4176630 | Elmer | Dec 1979 | A |
4181330 | Kojima | Jan 1980 | A |
4194536 | Stine et al. | Mar 1980 | A |
4322592 | Martin | Mar 1982 | A |
4389973 | Suntola et al. | Jun 1983 | A |
4393013 | McMenamin | Jul 1983 | A |
4436674 | McMenamin | Mar 1984 | A |
4499354 | Hill et al. | Feb 1985 | A |
4512113 | Budinger | Apr 1985 | A |
4570328 | Price et al. | Feb 1986 | A |
D288556 | Wallgren | Mar 1987 | S |
4653541 | Oehlschlaeger et al. | Mar 1987 | A |
4722298 | Rubin et al. | Feb 1988 | A |
4735259 | Vincent | Apr 1988 | A |
4753192 | Goldsmith et al. | Jun 1988 | A |
4789294 | Sato et al. | Dec 1988 | A |
4821674 | deBoer et al. | Apr 1989 | A |
4827430 | Aid et al. | May 1989 | A |
4882199 | Sadoway et al. | Nov 1989 | A |
4986215 | Yamada | Jan 1991 | A |
4991614 | Hammel | Feb 1991 | A |
5062386 | Christensen | Nov 1991 | A |
5074017 | Toya et al. | Dec 1991 | A |
5119760 | McMillan et al. | Jun 1992 | A |
5167716 | Boitnott et al. | Dec 1992 | A |
5199603 | Prescott | Apr 1993 | A |
5221556 | Hawkins et al. | Jun 1993 | A |
5242539 | Kumihashi et al. | Sep 1993 | A |
5243195 | Nishi | Sep 1993 | A |
5326427 | Jerbic | Jul 1994 | A |
5380367 | Bertone | Jan 1995 | A |
5421893 | Perlov | Jun 1995 | A |
5422139 | Shinriki et al. | Jun 1995 | A |
5518549 | Hellwig | May 1996 | A |
5595606 | Fujikawa et al. | Jan 1997 | A |
5616947 | Tamura | Apr 1997 | A |
5632919 | MacCracken et al. | May 1997 | A |
5681779 | Pasch et al. | Oct 1997 | A |
5695567 | Kordina | Dec 1997 | A |
5730801 | Tepman | Mar 1998 | A |
5732744 | Barr et al. | Mar 1998 | A |
5736314 | Hayes et al. | Apr 1998 | A |
5796074 | Edelstein et al. | Aug 1998 | A |
5836483 | Disel | Nov 1998 | A |
5837320 | Hampden-Smith et al. | Nov 1998 | A |
5855680 | Soininen et al. | Jan 1999 | A |
5920798 | Higuchi et al. | Jul 1999 | A |
5979506 | Aarseth | Nov 1999 | A |
6013553 | Wallace | Jan 2000 | A |
6015465 | Kholodenko et al. | Jan 2000 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6060691 | Minami et al. | May 2000 | A |
6074443 | Venkatesh | Jun 2000 | A |
6083321 | Lei et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6122036 | Yamasaki et al. | Sep 2000 | A |
6125789 | Gupta et al. | Oct 2000 | A |
6129044 | Zhao et al. | Oct 2000 | A |
6148761 | Majewski et al. | Nov 2000 | A |
6160244 | Ohashi | Dec 2000 | A |
6161500 | Kopacz et al. | Dec 2000 | A |
6201999 | Jevtic | Mar 2001 | B1 |
6274878 | Li et al. | Aug 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6312525 | Bright et al. | Nov 2001 | B1 |
D451893 | Robson | Dec 2001 | S |
D452220 | Robson | Dec 2001 | S |
6326597 | Lubomirsky et al. | Dec 2001 | B1 |
6342427 | Choi et al. | Jan 2002 | B1 |
6367410 | Leahey et al. | Apr 2002 | B1 |
6368987 | Kopacz et al. | Apr 2002 | B1 |
6383566 | Zagdoun | May 2002 | B1 |
6410459 | Blalock et al. | Jun 2002 | B2 |
6420279 | Ono et al. | Jul 2002 | B1 |
6454860 | Metzner et al. | Sep 2002 | B2 |
6478872 | Chae et al. | Nov 2002 | B1 |
6482331 | Lu et al. | Nov 2002 | B2 |
6483989 | Okada et al. | Nov 2002 | B1 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6521295 | Remington | Feb 2003 | B1 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6569239 | Arai et al. | May 2003 | B2 |
6579833 | McNallan et al. | Jun 2003 | B1 |
6590251 | Kang et al. | Jul 2003 | B2 |
6594550 | Okrah | Jul 2003 | B1 |
6598559 | Vellore et al. | Jul 2003 | B1 |
6627503 | Ma et al. | Sep 2003 | B2 |
6633364 | Hayashi | Oct 2003 | B2 |
6645304 | Yamaguchi | Nov 2003 | B2 |
6648974 | Ogliari et al. | Nov 2003 | B1 |
6673196 | Oyabu | Jan 2004 | B1 |
6682973 | Paton et al. | Jan 2004 | B1 |
6709989 | Ramdani et al. | Mar 2004 | B2 |
6710364 | Guldi et al. | Mar 2004 | B2 |
6734090 | Agarwala et al. | May 2004 | B2 |
6820570 | Kilpela et al. | Nov 2004 | B2 |
6821910 | Adomaitis et al. | Nov 2004 | B2 |
6824665 | Shelnut et al. | Nov 2004 | B2 |
6847014 | Benjamin et al. | Jan 2005 | B1 |
6858524 | Haukka et al. | Feb 2005 | B2 |
6858547 | Metzner et al. | Feb 2005 | B2 |
6863019 | Shamouilian | Mar 2005 | B2 |
6874480 | Ismailov | Apr 2005 | B1 |
6875677 | Conley, Jr. et al. | Apr 2005 | B1 |
6884066 | Nguyen et al. | Apr 2005 | B2 |
6884319 | Kim | Apr 2005 | B2 |
6889864 | Lindfors et al. | May 2005 | B2 |
6909839 | Wang et al. | Jun 2005 | B2 |
6930059 | Conley, Jr. et al. | Aug 2005 | B2 |
6935269 | Lee et al. | Aug 2005 | B2 |
6955836 | Kumagai et al. | Oct 2005 | B2 |
6972478 | Waite et al. | Dec 2005 | B1 |
7045430 | Ahn et al. | May 2006 | B2 |
7053009 | Conley, Jr. et al. | May 2006 | B2 |
7071051 | Jeon et al. | Jul 2006 | B1 |
7115838 | Kurara et al. | Oct 2006 | B2 |
7122085 | Shero et al. | Oct 2006 | B2 |
7129165 | Basol et al. | Oct 2006 | B2 |
7132360 | Schaeffer et al. | Nov 2006 | B2 |
7135421 | Ahn et al. | Nov 2006 | B2 |
7147766 | Uzoh et al. | Dec 2006 | B2 |
7172497 | Basol et al. | Feb 2007 | B2 |
7192824 | Ahn et al. | Mar 2007 | B2 |
7192892 | Ahn et al. | Mar 2007 | B2 |
7195693 | Cowans | Mar 2007 | B2 |
7204887 | Kawamura et al. | Apr 2007 | B2 |
7205247 | Lee et al. | Apr 2007 | B2 |
7235501 | Ahn et al. | Jun 2007 | B2 |
7238596 | Kouvetakis et al. | Jul 2007 | B2 |
D553104 | Oohashi et al. | Oct 2007 | S |
7298009 | Yan et al. | Nov 2007 | B2 |
D557226 | Uchino et al. | Dec 2007 | S |
7312494 | Ahn et al. | Dec 2007 | B2 |
7329947 | Adachi et al. | Feb 2008 | B2 |
7357138 | Ji et al. | Apr 2008 | B2 |
7393418 | Yokogawa | Jul 2008 | B2 |
7393736 | Ahn et al. | Jul 2008 | B2 |
7402534 | Mahajani | Jul 2008 | B2 |
7405166 | Liang et al. | Jul 2008 | B2 |
7405454 | Ahn et al. | Jul 2008 | B2 |
7414281 | Fastow | Aug 2008 | B1 |
7431966 | Derderian et al. | Oct 2008 | B2 |
7437060 | Wang et al. | Oct 2008 | B2 |
7442275 | Cowans | Oct 2008 | B2 |
7489389 | Shibazaki | Feb 2009 | B2 |
D593969 | Li | Jun 2009 | S |
7547363 | Tomiyasu et al. | Jun 2009 | B2 |
7575968 | Sadaka et al. | Aug 2009 | B2 |
7589003 | Kouvetakis et al. | Sep 2009 | B2 |
7601223 | Lindfors et al. | Oct 2009 | B2 |
7601225 | Tuominen et al. | Oct 2009 | B2 |
7640142 | Tachikawa et al. | Dec 2009 | B2 |
7651583 | Kent et al. | Jan 2010 | B2 |
D609655 | Sugimoto | Feb 2010 | S |
7678197 | Maki | Mar 2010 | B2 |
D614153 | Fondurulia et al. | Apr 2010 | S |
7720560 | Menser et al. | May 2010 | B2 |
7723648 | Tsukamoto et al. | May 2010 | B2 |
7740705 | Li | Jun 2010 | B2 |
7780440 | Shibagaki et al. | Aug 2010 | B2 |
7833353 | Furukawahara et al. | Nov 2010 | B2 |
7838084 | Derderian et al. | Nov 2010 | B2 |
7851019 | Tuominen et al. | Dec 2010 | B2 |
7884918 | Hattori | Feb 2011 | B2 |
D634719 | Yasuda et al. | Mar 2011 | S |
8041197 | Kasai et al. | Oct 2011 | B2 |
8055378 | Numakura | Nov 2011 | B2 |
8071451 | Uzoh | Dec 2011 | B2 |
8071452 | Raisanen | Dec 2011 | B2 |
8072578 | Yasuda | Dec 2011 | B2 |
8076230 | Wei | Dec 2011 | B2 |
8082946 | Laverdiere et al. | Dec 2011 | B2 |
8092604 | Tomiyasu et al. | Jan 2012 | B2 |
8137462 | Fondurulia et al. | Mar 2012 | B2 |
8147242 | Shibagaki et al. | Apr 2012 | B2 |
8216380 | White et al. | Jul 2012 | B2 |
8278176 | Bauer et al. | Oct 2012 | B2 |
8282769 | Iizuka | Oct 2012 | B2 |
8287648 | Reed et al. | Oct 2012 | B2 |
8293016 | Bahng et al. | Oct 2012 | B2 |
8309173 | Tuominen et al. | Nov 2012 | B2 |
8323413 | Son | Dec 2012 | B2 |
8367528 | Bauer et al. | Feb 2013 | B2 |
8372204 | Nakamura | Feb 2013 | B2 |
8444120 | Gregg et al. | May 2013 | B2 |
8506713 | Takagi | Aug 2013 | B2 |
D691974 | Osada et al. | Oct 2013 | S |
8608885 | Goto et al. | Dec 2013 | B2 |
8683943 | Onodera et al. | Apr 2014 | B2 |
8711338 | Liu et al. | Apr 2014 | B2 |
D705745 | Kurs et al. | May 2014 | S |
8726837 | Patalay et al. | May 2014 | B2 |
8728832 | Raisanen et al. | May 2014 | B2 |
8802201 | Raisanen et al. | Aug 2014 | B2 |
D716742 | Jang et al. | Nov 2014 | S |
8877655 | Shero et al. | Nov 2014 | B2 |
8883270 | Shero et al. | Nov 2014 | B2 |
8933375 | Dunn et al. | Jan 2015 | B2 |
8946830 | Jung et al. | Feb 2015 | B2 |
8986456 | Fondurulia et al. | Mar 2015 | B2 |
8993054 | Jung et al. | Mar 2015 | B2 |
9005539 | Halpin et al. | Apr 2015 | B2 |
9017481 | Pettinger et al. | Apr 2015 | B1 |
9018111 | Milligan et al. | Apr 2015 | B2 |
9021985 | Alokozai et al. | May 2015 | B2 |
9029253 | Milligan et al. | May 2015 | B2 |
9096931 | Yednak et al. | Aug 2015 | B2 |
20010017103 | Takeshita et al. | Aug 2001 | A1 |
20010046765 | Cappellani et al. | Nov 2001 | A1 |
20020001974 | Chan | Jan 2002 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020064592 | Datta et al. | May 2002 | A1 |
20020098627 | Pomarede et al. | Jul 2002 | A1 |
20020108670 | Baker et al. | Aug 2002 | A1 |
20020115252 | Haukka et al. | Aug 2002 | A1 |
20020172768 | Endo et al. | Nov 2002 | A1 |
20020187650 | Blalock et al. | Dec 2002 | A1 |
20030019580 | Strang | Jan 2003 | A1 |
20030025146 | Narwankar et al. | Feb 2003 | A1 |
20030040158 | Saitoh | Feb 2003 | A1 |
20030042419 | Katsumata et al. | Mar 2003 | A1 |
20030066826 | Lee et al. | Apr 2003 | A1 |
20030075925 | Lindfors et al. | Apr 2003 | A1 |
20030094133 | Yoshidome et al. | May 2003 | A1 |
20030111963 | Tolmachev et al. | Jun 2003 | A1 |
20030141820 | White et al. | Jul 2003 | A1 |
20030168001 | Sneh | Sep 2003 | A1 |
20030180458 | Sneh | Sep 2003 | A1 |
20030228772 | Cowans | Dec 2003 | A1 |
20030232138 | Tuominen et al. | Dec 2003 | A1 |
20040009679 | Yeo et al. | Jan 2004 | A1 |
20040013577 | Ganguli et al. | Jan 2004 | A1 |
20040018307 | Park et al. | Jan 2004 | A1 |
20040018750 | Sophie et al. | Jan 2004 | A1 |
20040023516 | Londergan et al. | Feb 2004 | A1 |
20040036129 | Forbes et al. | Feb 2004 | A1 |
20040077182 | Lim et al. | Apr 2004 | A1 |
20040101622 | Park et al. | May 2004 | A1 |
20040106249 | Huotari | Jun 2004 | A1 |
20040144980 | Ahn et al. | Jul 2004 | A1 |
20040168627 | Conley et al. | Sep 2004 | A1 |
20040169032 | Murayama et al. | Sep 2004 | A1 |
20040198069 | Metzner et al. | Oct 2004 | A1 |
20040200499 | Harvey et al. | Oct 2004 | A1 |
20040219793 | Hishiya et al. | Nov 2004 | A1 |
20040221807 | Verghese et al. | Nov 2004 | A1 |
20040266011 | Lee et al. | Dec 2004 | A1 |
20050008799 | Tomiyasu et al. | Jan 2005 | A1 |
20050019026 | Wang et al. | Jan 2005 | A1 |
20050020071 | Sonobe et al. | Jan 2005 | A1 |
20050023624 | Ahn et al. | Feb 2005 | A1 |
20050054228 | March | Mar 2005 | A1 |
20050066893 | Soininen | Mar 2005 | A1 |
20050070123 | Hirano | Mar 2005 | A1 |
20050072357 | Shero et al. | Apr 2005 | A1 |
20050092249 | Kilpela et al. | May 2005 | A1 |
20050100669 | Kools et al. | May 2005 | A1 |
20050106893 | Wilk | May 2005 | A1 |
20050110069 | Kil et al. | May 2005 | A1 |
20050123690 | Derderian et al. | Jun 2005 | A1 |
20050173003 | Laverdiere et al. | Aug 2005 | A1 |
20050187647 | Wang et al. | Aug 2005 | A1 |
20050212119 | Shero | Sep 2005 | A1 |
20050214457 | Schmitt et al. | Sep 2005 | A1 |
20050214458 | Meiere | Sep 2005 | A1 |
20050218462 | Ahn et al. | Oct 2005 | A1 |
20050229848 | Shinriki | Oct 2005 | A1 |
20050229972 | Hoshi et al. | Oct 2005 | A1 |
20050241176 | Shero et al. | Nov 2005 | A1 |
20050263075 | Wang et al. | Dec 2005 | A1 |
20050271813 | Kher et al. | Dec 2005 | A1 |
20050282101 | Adachi | Dec 2005 | A1 |
20050287725 | Kitagawa | Dec 2005 | A1 |
20060013946 | Park et al. | Jan 2006 | A1 |
20060014384 | Lee et al. | Jan 2006 | A1 |
20060019033 | Muthukrishnan et al. | Jan 2006 | A1 |
20060024439 | Tuominen et al. | Feb 2006 | A2 |
20060046518 | Hill et al. | Mar 2006 | A1 |
20060051925 | Ahn et al. | Mar 2006 | A1 |
20060060930 | Metz et al. | Mar 2006 | A1 |
20060062910 | Meiere | Mar 2006 | A1 |
20060063346 | Lee et al. | Mar 2006 | A1 |
20060068125 | Radhakrishnan | Mar 2006 | A1 |
20060110934 | Fukuchi | May 2006 | A1 |
20060113675 | Chang et al. | Jun 2006 | A1 |
20060128168 | Ahn et al. | Jun 2006 | A1 |
20060148180 | Ahn et al. | Jul 2006 | A1 |
20060163612 | Kouvetakis et al. | Jul 2006 | A1 |
20060193979 | Meiere et al. | Aug 2006 | A1 |
20060208215 | Metzner et al. | Sep 2006 | A1 |
20060213439 | Ishizaka | Sep 2006 | A1 |
20060223301 | Vanhaelemeersch et al. | Oct 2006 | A1 |
20060226117 | Bertram et al. | Oct 2006 | A1 |
20060228888 | Lee et al. | Oct 2006 | A1 |
20060240574 | Yoshie | Oct 2006 | A1 |
20060257563 | Doh et al. | Nov 2006 | A1 |
20060257584 | Derderian et al. | Nov 2006 | A1 |
20060258078 | Lee et al. | Nov 2006 | A1 |
20060266289 | Verghese et al. | Nov 2006 | A1 |
20070010072 | Bailey et al. | Jan 2007 | A1 |
20070020953 | Tsai et al. | Jan 2007 | A1 |
20070022954 | Iizuka et al. | Feb 2007 | A1 |
20070028842 | Inagawa et al. | Feb 2007 | A1 |
20070031598 | Okuyama et al. | Feb 2007 | A1 |
20070031599 | Gschwandtner et al. | Feb 2007 | A1 |
20070037412 | Dip et al. | Feb 2007 | A1 |
20070042117 | Kupurao et al. | Feb 2007 | A1 |
20070049053 | Mahajani | Mar 2007 | A1 |
20070059948 | Metzner et al. | Mar 2007 | A1 |
20070065578 | McDougall | Mar 2007 | A1 |
20070066010 | Ando | Mar 2007 | A1 |
20070054405 | Kim | Apr 2007 | A1 |
20070077355 | Chacin et al. | Apr 2007 | A1 |
20070096194 | Streck et al. | May 2007 | A1 |
20070116873 | Li et al. | May 2007 | A1 |
20070134942 | Ahn et al. | Jun 2007 | A1 |
20070146621 | Yeom | Jun 2007 | A1 |
20070155138 | Tomasini et al. | Jul 2007 | A1 |
20070163440 | Kim et al. | Jul 2007 | A1 |
20070166457 | Yamoto et al. | Jul 2007 | A1 |
20070175397 | Tomiyasu et al. | Aug 2007 | A1 |
20070209590 | Li | Sep 2007 | A1 |
20070232501 | Tonomura | Oct 2007 | A1 |
20070237697 | Clark | Oct 2007 | A1 |
20070249131 | Allen et al. | Oct 2007 | A1 |
20070252244 | Srividya et al. | Nov 2007 | A1 |
20070264807 | Leone et al. | Nov 2007 | A1 |
20080006208 | Ueno et al. | Jan 2008 | A1 |
20080029790 | Ahn et al. | Feb 2008 | A1 |
20080054332 | Kim et al. | Mar 2008 | A1 |
20080057659 | Forbes et al. | Mar 2008 | A1 |
20080075881 | Won et al. | Mar 2008 | A1 |
20080085226 | Fondurulia et al. | Apr 2008 | A1 |
20080113096 | Mahajani | May 2008 | A1 |
20080113097 | Mahajani et al. | May 2008 | A1 |
20080124908 | Forbes et al. | May 2008 | A1 |
20080149031 | Chu et al. | Jun 2008 | A1 |
20080176375 | Erben et al. | Jul 2008 | A1 |
20080216077 | Emani et al. | Sep 2008 | A1 |
20080224240 | Ahn et al. | Sep 2008 | A1 |
20080233288 | Clark | Sep 2008 | A1 |
20080237572 | Chui et al. | Oct 2008 | A1 |
20080248310 | Kim et al. | Oct 2008 | A1 |
20080261413 | Mahajani | Oct 2008 | A1 |
20080282970 | Heys et al. | Nov 2008 | A1 |
20080315292 | Ji et al. | Dec 2008 | A1 |
20090000550 | Tran et al. | Jan 2009 | A1 |
20090011608 | Nabatame | Jan 2009 | A1 |
20090020072 | Mizunaga et al. | Jan 2009 | A1 |
20090029564 | Yamashita et al. | Jan 2009 | A1 |
20090035947 | Horii | Feb 2009 | A1 |
20090061644 | Chiang et al. | Mar 2009 | A1 |
20090085156 | Dewey et al. | Apr 2009 | A1 |
20090093094 | Ye et al. | Apr 2009 | A1 |
20090095221 | Tam et al. | Apr 2009 | A1 |
20090107404 | Ogliari et al. | Apr 2009 | A1 |
20090136668 | Gregg et al. | May 2009 | A1 |
20090139657 | Lee et al. | Jun 2009 | A1 |
20090211523 | Kuppurao et al. | Aug 2009 | A1 |
20090211525 | Sarigiannis et al. | Aug 2009 | A1 |
20090239386 | Suzaki et al. | Sep 2009 | A1 |
20090242957 | Ma et al. | Oct 2009 | A1 |
20090246374 | Vukovic | Oct 2009 | A1 |
20090261331 | Yang et al. | Oct 2009 | A1 |
20090277510 | Shikata | Nov 2009 | A1 |
20090283041 | Tomiyasu et al. | Nov 2009 | A1 |
20090289300 | Sasaki et al. | Nov 2009 | A1 |
20100024727 | Kim et al. | Feb 2010 | A1 |
20100025796 | Dabiran | Feb 2010 | A1 |
20100055312 | Kato et al. | Mar 2010 | A1 |
20100075507 | Chang et al. | Mar 2010 | A1 |
20100102417 | Ganguli et al. | Apr 2010 | A1 |
20100124610 | Aikawa et al. | May 2010 | A1 |
20100130017 | Luo et al. | May 2010 | A1 |
20100162752 | Tabata et al. | Jul 2010 | A1 |
20100170441 | Won et al. | Jul 2010 | A1 |
20100193501 | Zucker et al. | Aug 2010 | A1 |
20100230051 | Iizuka | Sep 2010 | A1 |
20100255198 | Cleary et al. | Oct 2010 | A1 |
20100275846 | Kitagawa | Nov 2010 | A1 |
20100294199 | Tran et al. | Nov 2010 | A1 |
20100307415 | Shero et al. | Dec 2010 | A1 |
20100322604 | Fondurulia et al. | Dec 2010 | A1 |
20110000619 | Suh | Jan 2011 | A1 |
20110061810 | Ganguly et al. | Mar 2011 | A1 |
20110070380 | Shero et al. | Mar 2011 | A1 |
20110089469 | Merckling | Apr 2011 | A1 |
20110097901 | Banna et al. | Apr 2011 | A1 |
20110108194 | Yoshioka et al. | May 2011 | A1 |
20110236600 | Fox et al. | Sep 2011 | A1 |
20110239936 | Suzaki et al. | Oct 2011 | A1 |
20110254052 | Kouvetakis | Oct 2011 | A1 |
20110256734 | Hausmann et al. | Oct 2011 | A1 |
20110275166 | Shero et al. | Nov 2011 | A1 |
20110308460 | Hong et al. | Dec 2011 | A1 |
20120024479 | Palagashvili et al. | Feb 2012 | A1 |
20120070136 | Koelmel et al. | Mar 2012 | A1 |
20120070997 | Larson | Mar 2012 | A1 |
20120090704 | Laverdiere et al. | Apr 2012 | A1 |
20120098107 | Raisanen et al. | Apr 2012 | A1 |
20120114877 | Lee | May 2012 | A1 |
20120156108 | Fondurulia et al. | Jun 2012 | A1 |
20120160172 | Wamura et al. | Jun 2012 | A1 |
20120240858 | Taniyama et al. | Sep 2012 | A1 |
20120270393 | Pore et al. | Oct 2012 | A1 |
20120289053 | Holland et al. | Nov 2012 | A1 |
20120295427 | Bauer | Nov 2012 | A1 |
20120304935 | Oosterlaken et al. | Dec 2012 | A1 |
20120318334 | Bedell et al. | Dec 2012 | A1 |
20120321786 | Satitpunwaycha et al. | Dec 2012 | A1 |
20130023129 | Reed | Jan 2013 | A1 |
20130104988 | Yednak et al. | May 2013 | A1 |
20130104992 | Yednak et al. | May 2013 | A1 |
20130115383 | Lu et al. | May 2013 | A1 |
20130126515 | Shero et al. | May 2013 | A1 |
20130129577 | Halpin et al. | May 2013 | A1 |
20130230814 | Dunn et al. | Sep 2013 | A1 |
20130256838 | Sanchez et al. | Oct 2013 | A1 |
20130264659 | Jung | Oct 2013 | A1 |
20130292676 | Milligan et al. | Nov 2013 | A1 |
20130292807 | Raisanen et al. | Nov 2013 | A1 |
20130330911 | Huang et al. | Dec 2013 | A1 |
20140000843 | Dunn et al. | Jan 2014 | A1 |
20140014644 | Akiba et al. | Jan 2014 | A1 |
20140020619 | Vincent et al. | Jan 2014 | A1 |
20140027884 | Fang et al. | Jan 2014 | A1 |
20140036274 | Marquardt et al. | Feb 2014 | A1 |
20140060147 | Sarin et al. | Mar 2014 | A1 |
20140067110 | Lawson et al. | Mar 2014 | A1 |
20140073143 | Alokozai et al. | Mar 2014 | A1 |
20140077240 | Roucka et al. | Mar 2014 | A1 |
20140084341 | Weeks | Mar 2014 | A1 |
20140087544 | Tolle | Mar 2014 | A1 |
20140103145 | White et al. | Apr 2014 | A1 |
20140120487 | Kaneko | May 2014 | A1 |
20140159170 | Raisanen et al. | Jun 2014 | A1 |
20140175054 | Carlson et al. | Jun 2014 | A1 |
20140217065 | Winkler et al. | Aug 2014 | A1 |
20140220247 | Haukka et al. | Aug 2014 | A1 |
20140225065 | Rachmady et al. | Aug 2014 | A1 |
20140251953 | Winkler et al. | Sep 2014 | A1 |
20140251954 | Winkler et al. | Sep 2014 | A1 |
20140346650 | Raisanen et al. | Nov 2014 | A1 |
20150004316 | Thompson et al. | Jan 2015 | A1 |
20150014632 | Kim et al. | Jan 2015 | A1 |
20150024609 | Milligan et al. | Jan 2015 | A1 |
20150048485 | Tolle | Feb 2015 | A1 |
20150091057 | Xie et al. | Apr 2015 | A1 |
20150096973 | Dunn et al. | Apr 2015 | A1 |
20150132212 | Winkler et al. | May 2015 | A1 |
20150140210 | Jung et al. | May 2015 | A1 |
20150147877 | Jung | May 2015 | A1 |
20150167159 | Halpin et al. | Jun 2015 | A1 |
20150184291 | Alokozai et al. | Jul 2015 | A1 |
20150187568 | Pettinger et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
1563483 | Dec 2006 | CN |
101330015 | Dec 2008 | CN |
101522943 | Sep 2009 | CN |
101423937 | Sep 2011 | CN |
2036600 | Mar 2009 | EP |
07283149 | Oct 1995 | JP |
08335558 | Dec 1996 | JP |
2001342570 | Dec 2001 | JP |
2004014952 | Jan 2004 | JP |
2004091848 | Mar 2004 | JP |
2004538374 | Dec 2004 | JP |
2005507030 | Mar 2005 | JP |
2006186271 | Jul 2006 | JP |
2008527448 | Jul 2008 | JP |
I226380 | Jan 2005 | TW |
200701301 | Jan 2007 | TW |
2006056091 | Jun 2006 | WO |
2006078666 | Jul 2006 | WO |
Entry |
---|
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037. |
USPTO; Office Action dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223. |
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343. |
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347. |
Chinese Patent Office; Office Action dated Jan. 10, 2013 is Serial No. 201080015699.9. |
Novaro et al. Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis, J. Chem. Phys. 68(5), Mar. 1, 1978 p. 2337-2351. |
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223. |
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818. |
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818. |
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818. |
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980. |
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980. |
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980. |
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642. |
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271. |
USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,258. |
USPTO; Office Action dated Mar. 24, 2014 in U.S. Appl. No. 13/439,258. |
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340. |
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340. |
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340. |
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214. |
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538. |
USPTO; Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/784,362. |
Chinese Patent Office; Notice on the First Office Action dated May 24, 2013 in Serial No. 201080036764.6. |
Chinese Patent Office; Notice on the Second Office Action in Serial No. 201080036764.6 dated Jan. 2, 2014. |
Japanese Patent Office; Office Action dated Dec. 25, 2014 in Serial No. 2012-504786. |
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596. |
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596. |
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596. |
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751. |
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751. |
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126. |
PCT; International Search report and Written Opinion dated Jan. 12, 2011 in Application No. PCT/US2010/045368. |
Chang et al. Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric; IEEE Electron Device Letters; Feb. 2009; 133-135; vol. 30, No. 2; IEEE Electron Device Society. |
Maeng et al. Electrical properties of atomic layer disposition Hf02 and Hf0xNy on Si substrates with various crystal orientations, Journal of the Electrochemical Society, Apr. 2008, p. H267-H271, vol. 155, No. 4, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. |
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037. |
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300. |
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591. |
UPPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214. |
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043. |
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151. |
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708. |
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246. |
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134. |
USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055. |
USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055. |
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187. |
Chinese Patent Office; Notice on the Second Office Action dated Sep. 16, 2014 in Application No. 201110155056. |
Koutsokeras et al. Texture and Microstructure Evolution in Single-Phase TixTa1-xN Alloys of Rocksalt Structure. Journal of Applied Physics, 110, pp. 043535-1-043535-6, (2011). |
USPTO; Non-Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 12/754,223. |
USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300. |
USPTO; Final Office Action dated Mar. 20, 2015 in U.S. Appl. No. 13/312,591. |
USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133. |
USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246. |
USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196. |
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302. |
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462. |
Crowell, “Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies,” Journal of Vacuum Science & Technology A 21.5, (2003): S88-S95. |
USPTO; Final Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/754,223. |
USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 13/283,408. |
USPTO; Notice of Allowance dated Jun. 12, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Notice of Allowance dated Jul. 16, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 13/677,133. |
USPTO; Non-Final Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/941,216. |
USPTO; Non-Final Office Action dated Jun. 29, 2015 in U.S. Appl. No. 13/966,782. |
USPTO; Final Office Action dated Jul. 14, 2015 in U.S. Appl. No. 14/457,058. |
USPTO; Notice of Allowance dated Jul. 6, 2015 in U.S. Appl. No. 29/447,298. |
USPTO; Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/312,591. |
USPTO; Final Office Action dated Jun. 1, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Non-Final Office Action dated May 28, 2015 in U.S. Appl. No. 13/651,144. |
USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345. |
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 29/447,298. |
Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992). |
Varma, et al., “Effect of Mtal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, vol. 32, pp. 3987-4000, (1986). |
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223. |
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980. |
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818. |
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408. |
USPTO; Non-Final Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642. |
USPTO Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214. |
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066. |
USPTO; Non-Final Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538. |
USPTO; Non-Final Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151. |
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362. |
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708. |
USPTO; Non-Final Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187. |
Chinese Patent Office; Notice on the Third Office Action dated Jul. 1, 2014 in Application No. 201080036764.6. |
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511. |
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037. |
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408. |
USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642. |
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271. |
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043. |
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151. |
USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708. |
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134. |
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187. |
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058. |
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044. |
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9. |
Chinese Patent Office; Notice on the Third Office Action dated Feb. 9, 2015 in Application No. 201110155056. |
Taiwan Patent Office; Office Action dated Dec. 30, 2014 in Application No. 099114330. |
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Application No. 099127063. |
Number | Date | Country | |
---|---|---|---|
20130230814 A1 | Sep 2013 | US |