The present invention is related to switching devices. More particularly, the present invention provides a structure and a method for forming non-volatile resistive switching memory devices characterized by a suppression of current at low bias and a high measured ON/OFF resistance ratio.
The success of semiconductor devices has been mainly driven by an intensive transistor down-scaling process. However, as field effect transistors (FET) approach sizes less than 100 nm, problems such as short channel effect start to prevent proper device operation. Moreover, such sub 100 nm device size can lead to sub-threshold slope non-scaling and increased power dissipation. It is generally believed that transistor based memories such as those commonly known as Flash memory may approach an end to scaling within a decade. Flash memory is one type of non-volatile memory device.
Other non-volatile random access memory (RAM) devices such as ferroelectric RAM (Fe RAM), magneto-resistive RAM (MRAM), organic RAM (ORAM), and phase change RAM (PCRAM), among others, have been explored as next generation memory devices. These devices often require new materials and device structures to couple with silicon based devices to form a memory cell, which lack one or more key attributes. For example, Fe-RAM and MRAM devices have fast switching characteristics and good programming endurance, but their fabrication is not CMOS compatible and size is usually large. Switching for a PCRAM device uses Joules heating, which inherently has high power consumption. Organic RAM or ORAM is incompatible with large volume silicon based fabrication and device reliability is usually poor.
As integration of memory devices increases, the size of elements is reduced while the density of elements in a given area is increased. As a result, dark current or leakage current becomes more of a problem, where leakage current can return a false result for a read operation or cause an unintentional state change in a cell. The problem of leakage current is particularly acute in two-terminal devices, in which multiple memory cells can form leakage paths through interconnecting top and bottom electrodes.
Conventional approaches to suppressing leakage current in switching devices include coupling a vertical diode to a memory element. However, the external diode approach has several disadvantages. In general, the diode fabrication process is a high temperature process, typically conducted above 500 degrees Celsius. Because most diodes rely on a P/N junction, it is difficult to scale the diode height to achieve a memory and diode structure with a desirable aspect ratio. And finally, a conventional diode is only compatible with a unipolar switching device, and not a two-way bipolar device. It is therefore desirable to have a robust and scalable method and structure for a highly integrated memory that is not adversely affected by leak currents.
The present invention is generally related to switching devices. More particularly, the present invention provides a structure and a method for forming a non-volatile memory cell using resistive switching. It should be recognized that embodiments according the present invention have a much broader range of applicability.
In a specific embodiment, a switching device includes a substrate; a first electrode formed over the substrate; a second electrode formed over the first electrode; a switching medium disposed between the first and second electrode; and a nonlinear element disposed between the first and second electrodes and electrically coupled in series to the first electrode and the switching medium. The nonlinear element is configured to change from a first resistance state to a second resistance state on application of a voltage greater than a threshold.
The switching device includes a RRAM in an embodiment.
The switching device include a PCRAM in an embodiment.
The present invention has a number of advantages over conventional techniques. For example, embodiments of the present invention allow for a high density non-volatile memory characterized by high switching speed, low leakage current characteristic, and high device yield. Depending on the embodiment, one or more of these may be achieved. These and other advantages will be described below in more detail in the present specification.
Exemplary embodiments will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
The present invention is generally directed to a memory device. More particularly, the present invention provides a structure and a method for a resistive switching cell having a nonlinear element. The switching cell may be used in a Resistive Random Access Memory (RRAM) or any highly integrated device. It should be recognized that embodiments of the present invention can have a broader range of applicability. Although the present invention is described with respect to specific embodiments, the embodiments are only used for illustrative purposes and should not be considered limiting.
RRAM is typically a two terminal device in which a switching element is sandwiched between a top electrode and a bottom electrode. The resistance of the switching element is varied by applying a voltage to the electrodes or a current through the switching element. Resistive switching can be bipolar or unipolar. In bipolar switching, the change in resistance of the switching element depends on polarity and a magnitude of a current or voltage based applied electrical signal. In the case of unipolar switching, the change in resistance of the switching element depends only on the magnitude of the applied voltage or current and typically is a result of Joule heating within the switching element. Embodiments of the present invention are explained with respect to a two-terminal RRAM device using bipolar switching, but are not limited thereto. As used herein, the terms “RRAM” or “resistive memory cell” refer to a memory cell or memory device that uses a switching medium whose resistance can be controlled by applying an electrical signal without ferroelectricity, magnetization, and phase change of the switching medium. The present invention is not limited to implementation in RRAM, e.g., the invention may be implemented using the phase change RAM.
In the present embodiment, the memory cell 100 is an amorphous-silicon-based resistive memory cell and uses amorphous silicon (a-Si) as the switching medium 104. The resistance of the switching medium 104 changes according to formation or retrieval of a conductive filament inside the switching medium 104 according to a voltage applied to the electrodes. In an embodiment, the switching medium 104 is substantially free of dopants. In another embodiment, the switching medium 104 is a-Si doped with boron. The top electrode 106 is a conductive layer containing silver (Ag) and acts as the source of filament-forming ions in the a-Si structure. Although silver is used in the present embodiment, it will be understood that the top electrode 106 can be formed from various other suitable metals, such as gold (Au), nickel (Ni), aluminum (Al), chromium (Cr), iron (Fe), manganese (Mn), tungsten (W), vanadium (V), and cobalt (Co). In certain embodiments, the bottom electrode 102 is pure metal, a boron-doped electrode, or other p-type polysilicon or silicon-germanium, which is in contact with a lower-end face of the a-Si structure. In an embodiment, the memory cell 100 is configured to store more than a single bit of information, e.g., by adjusting the external circuit resistance, as explained in application Ser. No. 12/575,921, filed on Oct. 9, 2009, which is entitled “Silicon-Based Nanoscale Resistive Device with Adjustable Resistance” and is incorporated by reference in its entirety.
The filament 310 is believed to be comprised of a collection of metal particles that are separated from each other by the non-conducting switching medium 104 and that do not define a continuous conductive path, unlike the continuous conductive path 312 in the metallic region 302. The filament 310 extends about 2 to 10 nm depending on implementation. The conduction mechanism in an ON state is electrons tunneling through the metal particles in the filament 310. The cell resistance is dominated by the tunneling resistance between the metal particle 306 and the bottom electrode 102. The metal particle 306 is a metal particle in the filament region 304 that is closest to the bottom electrode 102 and that is the last metal particle in the filament region 304 in an ON state.
Four memory cells 402, 404, 406, and 408 are shown. Memory cells 404 and 406 share a common first top electrode 410, while cells 402 and 408 share a common second top electrode 418. The first top electrode 410 and the second top electrode 418 are arranged parallel to each other. Memory cells 402 and 404 share a common first bottom electrode 412 and cells 406 and 408 share a common second bottom electrode 420. The first bottom electrode 412 and the second bottom electrode 420 are spatially arranged parallel to each other. In addition, each of the top electrodes is configured to be non-parallel to each of the bottom electrodes.
To determine a state of a target cell which has a high resistance state, a voltage is applied and a current flowing through the target cell is measured. If some cells in the crossbar array are in low resistance states, the voltage applied to the target cell can cause a leakage current to flow through the untargeted cells instead. In this case the cells causing the leakage, including the target cell, are interconnected through shared electrodes. The leakage current can form a current path, commonly known as a sneak current or a sneak current path, through these untargeted cells. Such a sneak current can cause undesirable behavior in a switching array.
For example, in an exemplary array, cells 402, 404, and 406 are at a low resistance ON state, and cell 408 is at a high resistance OFF state. Because the ON state is characterized by a low resistance, a sneak path 416 may be formed allowing current to flow through cells 402, 404, and 406. Thus, when a read voltage is applied to target cell 408, leakage current flowing along sneak path 416 may cause an erroneous reading of an ON state result.
In some embodiments, a sneak path can be very short, existing in as few as two forward biased cells and one reverse biased cell. In addition, once started, a sneak path can propagate throughout the array through cells in the ON state. The most common conductive path in a switching array is the shared top and bottom electrodes. Sneak path 416 is only one example of a sneak path passing leakage current through an array.
To mitigate problems caused by leakage current in a switching array, a nonlinear element (NLE) may be included in a resistive switching device. NLEs can be generally divided into two categories: an NLE that exhibits digital-like behavior, or “digital NLE,” and an NLE that exhibits analog-like behavior, or an “analog NLE,” both of which are described in detail separately below. The categories of digital and analog behavior are not strictly defined, so it is possible for a particular NLE to have properties that are characteristic of both digital and analog behavior, or somewhere in between. In its most basic form, an NLE is an element that has a nonlinear response with respect to voltage, for instance, with a nonlinear I-V relationship. In most embodiments, the relationship is characterized by a high resistance state at low amplitude voltages and a lower resistance state at higher amplitude voltages, with a nonlinear transition from the high resistance state to the low resistance state. Unlike a switching medium, an NLE does not have a memory characteristic; an NLE returns to an original state when a voltage is no longer applied. An NLE that is suitable for suppressing leak currents is characterized by a high resistance state at a low bias, a lower resistance state at a higher bias, and a threshold between the states.
In an embodiment, an NLE is a two terminal device which shows an apparent threshold effect such that the resistance measured below a first voltage is significantly higher than the resistance measured above a second voltage. In a typical embodiment, the resistance below the first voltage is more than 100 times greater than the resistance above the second voltage. In some embodiments, the first and second voltages are different, and are typically referred to as a hold voltage VHOLD and threshold voltage VTH, respectively. In other embodiments, the first voltage and second voltage may be the same. In various embodiments, these relationships may exist in both polarities of voltage, or only in one polarity, and the NLE can be a single material or multiple layers of different materials.
As shown in
The behavior of a digital NLE is characterized by abrupt changes in current at certain voltages, which may be referred to as threshold voltages. Such behavior is illustrated in
Referring back to
The relationships between I-V performance in a memory cell, an NLE, and a combined device can also be explained through equations. The equations assume that both the NLE and the switching medium switch instantly (e.g., a few ns˜a few hundreds of ns) when experiencing a threshold voltage. In addition to the definitions given above, the following variables are designated:
Using these variables, the relationship between the hold voltage of a combined device and the hold voltage of an NLE can be expressed as:
The value for the program voltage of the combined device can be expressed as:
Where “small” indicates the smaller of two values in a set, and “large” indicates the larger of two values in a set. In most embodiments, the VPROGRAM is significantly higher than VTH1, and VPROGRAMC is thus similar to VPROGRAM.
Thus, the read threshold voltage of the combined device is approximately the same as the threshold voltage of the NLE, or VTHC1≈VTH1.
Similarly, as seen in
The relationship between the negative threshold voltages of a discrete and combined device can be expressed as:
So that in most embodiments, VTHC2≈VTH2.
Various embodiments of a digital NLE can be made of many different materials. For example, a digital NLE can be a threshold device such as a film that experiences a field-driven metal-insulating (Mott) transition. Such materials are known in the art, and include VO2 and doped semiconductors. Other threshold devices include material that experiences resistance switching due to electronic mechanisms observed in metal oxides and other amorphous films, or other volatile resistive switching devices such as devices based on anion or cation motion in oxides, oxide heterostructures, or amorphous films. A digital NLE can also be in the form of a breakdown element exhibiting soft breakdown behavior such as SiO2, HfO2, and other dielectrics. Examples of such breakdown elements are described in further detail by application Ser. No. 12/826,653, filed on Jun. 29, 2010, which is entitled “Rectification Element for Resistive Switching for Non-volatile Memory Device and Method,” and is incorporated by reference in its entirety. This reference discloses that additional materials may be used for a switching medium, for a NLE, for electrodes, and the like. In light of that disclosure, embodiments of the present invention may have a switching medium that includes: metal oxides such as ZnO, WO3, TiOx, NiO, CuO, or chalcogenide glass, organic materials, polymeric materials (inorganic or organic), and others. Additionally, in light of this disclosure, embodiments of the present invention may have an NLE that includes: an oxide dielectric material such as HfO2, a dielectric material or a combination of dielectric materials. Further, in light of this disclosure, the electrodes may be a metal or an alloy.
As is known in the art, the precise values of threshold, hold, program and erase can be adjusted for different embodiments by changing the form of and materials used for the NLE and the memory cell. In various embodiments the threshold voltage for the NLE can be about the same as the hold voltage, the program voltage, or both. In other embodiments the threshold voltage for the NLE can exceed the program and erase voltages of a resistive switching device.
An analog NLE differs from a digital NLE in that its I-V relationship is characterized by a more gradual transition when current starts to flow through the element. As shown in
Turning now to
An analog NLE can be any element that exhibits the above described behavior. Examples of suitable materials include a punch-through diode, a Zener diode, an impact ionization (or avalanche) element, and a tunneling element such as a tunneling barrier layer. Such elements can be fabricated using standard fabrication techniques.
In most embodiments, |VA, VB|<|VPROGRAM, VERASE|. As is known in the art, the precise threshold values of VA, VB, program, and erase can be adjusted for different embodiments by changing the form of and materials used for the NLE and the memory cell. In various embodiments the threshold voltage for the NLE can be about the same as the program voltage. In other embodiments the threshold voltage can exceed the program and erase voltages.
In other embodiments, a resistive switching cell may be configured to retain multiple resistive states. That is, rather than being configured to have binary states of ON and OFF, a cell can retain a plurality of resistance states. An array of such switches has the same limitations regarding leakage current, and would similarly benefit from the inclusion of an NLE.
The examples and embodiments described herein are for illustrative purposes only and are not intended to be limiting. Various modifications or alternatives in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.
The instant application is a continuation of and claims priority to U.S. patent application Ser. No. 13/960,735, filed Aug. 6, 2013, which claims priority to and is a continuation of U.S. patent application Ser. No. 13/149,757, filed May 31, 2011, which is hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
680652 | Leonard | Aug 1901 | A |
4433468 | Kawamata | Feb 1984 | A |
4684972 | Owen et al. | Aug 1987 | A |
4741601 | Saito | May 1988 | A |
4994866 | Awano | Feb 1991 | A |
5139911 | Yagi et al. | Aug 1992 | A |
5242855 | Oguro | Sep 1993 | A |
5278085 | Maddox, III et al. | Jan 1994 | A |
5315131 | Kishimoto et al. | May 1994 | A |
5335219 | Ovshinsky et al. | Aug 1994 | A |
5360981 | Owen et al. | Nov 1994 | A |
5457649 | Eichman et al. | Oct 1995 | A |
5499208 | Shoji | Mar 1996 | A |
5538564 | Kaschmitter | Jul 1996 | A |
5541869 | Rose et al. | Jul 1996 | A |
5594363 | Freeman et al. | Jan 1997 | A |
5596214 | Endo | Jan 1997 | A |
5614756 | Forouhi et al. | Mar 1997 | A |
5627451 | Takeda | May 1997 | A |
5645628 | Endo et al. | Jul 1997 | A |
5673223 | Park | Sep 1997 | A |
5707487 | Hori et al. | Jan 1998 | A |
5714416 | Eichman et al. | Feb 1998 | A |
5751012 | Wolstenholme et al. | May 1998 | A |
5763898 | Forouhi et al. | Jun 1998 | A |
5840608 | Chang | Nov 1998 | A |
5923587 | Choi | Jul 1999 | A |
5970332 | Pruijmboom et al. | Oct 1999 | A |
5973335 | Shannon | Oct 1999 | A |
5998244 | Wolstenholme et al. | Dec 1999 | A |
6002268 | Sasaki et al. | Dec 1999 | A |
6037204 | Chang et al. | Mar 2000 | A |
6122318 | Yamaguchi et al. | Sep 2000 | A |
6128214 | Kuekes et al. | Oct 2000 | A |
6143642 | Sur, Jr. et al. | Nov 2000 | A |
6180998 | Crafts | Jan 2001 | B1 |
6181587 | Kuramoto et al. | Jan 2001 | B1 |
6181597 | Nachumovsky | Jan 2001 | B1 |
6259116 | Shannon | Jul 2001 | B1 |
6288435 | Mei et al. | Sep 2001 | B1 |
6291836 | Kramer et al. | Sep 2001 | B1 |
6436765 | Liou et al. | Aug 2002 | B1 |
6436818 | Hu et al. | Aug 2002 | B1 |
6492694 | Noble et al. | Dec 2002 | B2 |
6552932 | Cernea | Apr 2003 | B1 |
6627530 | Li et al. | Sep 2003 | B2 |
6724186 | Jordil | Apr 2004 | B2 |
6731535 | Ooishi et al. | May 2004 | B1 |
6740921 | Matsuoka et al. | May 2004 | B2 |
6762474 | Mills, Jr. | Jul 2004 | B1 |
6768157 | Krieger et al. | Jul 2004 | B2 |
6815286 | Krieger et al. | Nov 2004 | B2 |
6816405 | Lu et al. | Nov 2004 | B1 |
6821879 | Wong | Nov 2004 | B2 |
6838720 | Krieger et al. | Jan 2005 | B2 |
6848012 | LeBlanc et al. | Jan 2005 | B2 |
6849891 | Hsu et al. | Feb 2005 | B1 |
6858481 | Krieger et al. | Feb 2005 | B2 |
6858482 | Gilton | Feb 2005 | B2 |
6864127 | Yamazaki et al. | Mar 2005 | B2 |
6864522 | Krieger et al. | Mar 2005 | B2 |
6867618 | Li | Mar 2005 | B2 |
6881994 | Lee et al. | Apr 2005 | B2 |
6897519 | Dosluoglu | May 2005 | B1 |
6927430 | Hsu | Aug 2005 | B2 |
6939787 | Ohtake et al. | Sep 2005 | B2 |
6946719 | Petti et al. | Sep 2005 | B2 |
7020006 | Chevallier et al. | Mar 2006 | B2 |
7023093 | Canaperi et al. | Apr 2006 | B2 |
7026702 | Krieger et al. | Apr 2006 | B2 |
7087454 | Campbell et al. | Aug 2006 | B2 |
7102150 | Harshfield et al. | Sep 2006 | B2 |
7122853 | Gaun et al. | Oct 2006 | B1 |
7167387 | Sugita et al. | Jan 2007 | B2 |
7187577 | Wang et al. | Mar 2007 | B1 |
7221599 | Gaun et al. | May 2007 | B1 |
7238607 | Dunton et al. | Jul 2007 | B2 |
7238994 | Chen et al. | Jul 2007 | B2 |
7251152 | Roehr | Jul 2007 | B2 |
7254053 | Krieger et al. | Aug 2007 | B2 |
7274587 | Yasuda | Sep 2007 | B2 |
7289353 | Spitzer et al. | Oct 2007 | B2 |
7324363 | Kerns et al. | Jan 2008 | B2 |
7345907 | Scheuerlein | Mar 2008 | B2 |
7365411 | Campbell | Apr 2008 | B2 |
7405418 | Happ et al. | Jul 2008 | B2 |
7426128 | Scheuerlein | Sep 2008 | B2 |
7433253 | Gogl et al. | Oct 2008 | B2 |
7474000 | Scheuerlein et al. | Jan 2009 | B2 |
7479650 | Gilton | Jan 2009 | B2 |
7499355 | Scheuerlein et al. | Mar 2009 | B2 |
7515454 | Symanczyk | Apr 2009 | B2 |
7521705 | Liu | Apr 2009 | B2 |
7534625 | Karpov et al. | May 2009 | B2 |
7541252 | Eun et al. | Jun 2009 | B2 |
7550380 | Elkins et al. | Jun 2009 | B2 |
7561461 | Nagai et al. | Jul 2009 | B2 |
7566643 | Czubatyi et al. | Jul 2009 | B2 |
7606059 | Toda | Oct 2009 | B2 |
7615439 | Schricker et al. | Nov 2009 | B1 |
7629198 | Kumar et al. | Dec 2009 | B2 |
7667442 | Itoh | Feb 2010 | B2 |
7692959 | Krusin-Elbaum et al. | Apr 2010 | B2 |
7704788 | Youn et al. | Apr 2010 | B2 |
7719001 | Nomura et al. | May 2010 | B2 |
7728318 | Raghuram et al. | Jun 2010 | B2 |
7729158 | Toda et al. | Jun 2010 | B2 |
7746601 | Sugiyama et al. | Jun 2010 | B2 |
7746696 | Paak | Jun 2010 | B1 |
7749805 | Pinnow et al. | Jul 2010 | B2 |
7764536 | Luo et al. | Jul 2010 | B2 |
7772581 | Lung | Aug 2010 | B2 |
7776682 | Nickel et al. | Aug 2010 | B1 |
7778063 | Brubaker et al. | Aug 2010 | B2 |
7786464 | Nirschl et al. | Aug 2010 | B2 |
7786589 | Matsunaga et al. | Aug 2010 | B2 |
7791060 | Aochi et al. | Sep 2010 | B2 |
7824956 | Schricker et al. | Nov 2010 | B2 |
7829875 | Scheuerlein | Nov 2010 | B2 |
7830698 | Chen et al. | Nov 2010 | B2 |
7835170 | Bertin et al. | Nov 2010 | B2 |
7858468 | Liu et al. | Dec 2010 | B2 |
7859884 | Scheuerlein | Dec 2010 | B2 |
7869253 | Liaw et al. | Jan 2011 | B2 |
7875871 | Kumar et al. | Jan 2011 | B2 |
7881097 | Hosomi et al. | Feb 2011 | B2 |
7883964 | Goda et al. | Feb 2011 | B2 |
7897953 | Liu | Mar 2011 | B2 |
7898838 | Chen et al. | Mar 2011 | B2 |
7920412 | Hosotani et al. | Apr 2011 | B2 |
7924138 | Kinoshita et al. | Apr 2011 | B2 |
7927472 | Takahashi et al. | Apr 2011 | B2 |
7968419 | Li et al. | Jun 2011 | B2 |
7972897 | Kumar et al. | Jul 2011 | B2 |
7984776 | Sastry et al. | Jul 2011 | B2 |
8004882 | Katti et al. | Aug 2011 | B2 |
8018760 | Muraoka et al. | Sep 2011 | B2 |
8021897 | Sills et al. | Sep 2011 | B2 |
8045364 | Schloss et al. | Oct 2011 | B2 |
8054674 | Tamai et al. | Nov 2011 | B2 |
8054679 | Nakai et al. | Nov 2011 | B2 |
8067815 | Chien et al. | Nov 2011 | B2 |
8071972 | Lu et al. | Dec 2011 | B2 |
8084830 | Kanno et al. | Dec 2011 | B2 |
8088688 | Herner | Jan 2012 | B1 |
8097874 | Venkatasamy et al. | Jan 2012 | B2 |
8102018 | Bertin et al. | Jan 2012 | B2 |
8102698 | Scheuerlein | Jan 2012 | B2 |
8143092 | Kumar et al. | Mar 2012 | B2 |
8144498 | Kumar et al. | Mar 2012 | B2 |
8164948 | Katti et al. | Apr 2012 | B2 |
8168506 | Herner | May 2012 | B2 |
8183553 | Phatak et al. | May 2012 | B2 |
8187945 | Herner | May 2012 | B2 |
8198144 | Herner | Jun 2012 | B2 |
8207064 | Bandyopadhyay et al. | Jun 2012 | B2 |
8227787 | Kumar et al. | Jul 2012 | B2 |
8231998 | Sastry et al. | Jul 2012 | B2 |
8233308 | Schricker et al. | Jul 2012 | B2 |
8237146 | Kreupl et al. | Aug 2012 | B2 |
8243542 | Bae et al. | Aug 2012 | B2 |
8258020 | Herner | Sep 2012 | B2 |
8265136 | Hong et al. | Sep 2012 | B2 |
8274130 | Mihnea et al. | Sep 2012 | B2 |
8274812 | Nazarian et al. | Sep 2012 | B2 |
8305793 | Majewski et al. | Nov 2012 | B2 |
8315079 | Kuo et al. | Nov 2012 | B2 |
8320160 | Nazarian | Nov 2012 | B2 |
8351241 | Lu et al. | Jan 2013 | B2 |
8369129 | Fujita et al. | Feb 2013 | B2 |
8369139 | Liu et al. | Feb 2013 | B2 |
8374018 | Lu | Feb 2013 | B2 |
8385100 | Kau et al. | Feb 2013 | B2 |
8389971 | Chen et al. | Mar 2013 | B2 |
8394670 | Herner | Mar 2013 | B2 |
8399307 | Herner | Mar 2013 | B2 |
8441835 | Jo et al. | May 2013 | B2 |
8456892 | Yasuda | Jun 2013 | B2 |
8466005 | Pramanik et al. | Jun 2013 | B2 |
8467226 | Bedeschi et al. | Jun 2013 | B2 |
8467227 | Jo | Jun 2013 | B1 |
8502185 | Lu et al. | Aug 2013 | B2 |
8569104 | Pham et al. | Oct 2013 | B2 |
8587989 | Manning et al. | Nov 2013 | B2 |
8619459 | Nguyen et al. | Dec 2013 | B1 |
8658476 | Sun et al. | Feb 2014 | B1 |
8659003 | Herner et al. | Feb 2014 | B2 |
8675384 | Kuo et al. | Mar 2014 | B2 |
8693241 | Kim et al. | Apr 2014 | B2 |
8853759 | Lee et al. | Oct 2014 | B2 |
8934294 | Kim et al. | Jan 2015 | B2 |
8946667 | Clark et al. | Feb 2015 | B1 |
8946673 | Kumar | Feb 2015 | B1 |
8947908 | Jo | Feb 2015 | B2 |
8999811 | Endo et al. | Apr 2015 | B2 |
9093635 | Kim et al. | Jul 2015 | B2 |
9166163 | Gee et al. | Oct 2015 | B2 |
20020048940 | Derderian et al. | Apr 2002 | A1 |
20030006440 | Uchiyama | Jan 2003 | A1 |
20030036238 | Toet et al. | Feb 2003 | A1 |
20030052330 | Klein | Mar 2003 | A1 |
20030141565 | Hirose et al. | Jul 2003 | A1 |
20030174574 | Perner et al. | Sep 2003 | A1 |
20030194865 | Gilton | Oct 2003 | A1 |
20030206659 | Hamanaka | Nov 2003 | A1 |
20040026682 | Jiang | Feb 2004 | A1 |
20040036124 | Vyvoda et al. | Feb 2004 | A1 |
20040159835 | Krieger et al. | Aug 2004 | A1 |
20040170040 | Rinerson et al. | Sep 2004 | A1 |
20040192006 | Campbell et al. | Sep 2004 | A1 |
20040194340 | Kobayashi | Oct 2004 | A1 |
20040202041 | Hidenori | Oct 2004 | A1 |
20050019699 | Moore | Jan 2005 | A1 |
20050020510 | Benedict | Jan 2005 | A1 |
20050029587 | Harshfield | Feb 2005 | A1 |
20050041498 | Resta et al. | Feb 2005 | A1 |
20050052915 | Herner et al. | Mar 2005 | A1 |
20050062045 | Bhattacharyya | Mar 2005 | A1 |
20050073881 | Tran et al. | Apr 2005 | A1 |
20050101081 | Goda et al. | May 2005 | A1 |
20050175099 | Sarkijarvi et al. | Aug 2005 | A1 |
20060017488 | Hsu et al. | Jan 2006 | A1 |
20060054950 | Baek et al. | Mar 2006 | A1 |
20060134837 | Subramanian et al. | Jun 2006 | A1 |
20060154417 | Shinmura et al. | Jul 2006 | A1 |
20060215445 | Baek et al. | Sep 2006 | A1 |
20060231910 | Hsieh et al. | Oct 2006 | A1 |
20060246606 | Hsu et al. | Nov 2006 | A1 |
20060279979 | Lowrey et al. | Dec 2006 | A1 |
20060281244 | Ichige et al. | Dec 2006 | A1 |
20060286762 | Tseng et al. | Dec 2006 | A1 |
20070008773 | Scheuerlein | Jan 2007 | A1 |
20070015348 | Hsu et al. | Jan 2007 | A1 |
20070025144 | Hsu et al. | Feb 2007 | A1 |
20070035990 | Hush | Feb 2007 | A1 |
20070042612 | Nishino et al. | Feb 2007 | A1 |
20070045615 | Cho et al. | Mar 2007 | A1 |
20070069119 | Appleyard et al. | Mar 2007 | A1 |
20070087508 | Herner et al. | Apr 2007 | A1 |
20070090425 | Kumar et al. | Apr 2007 | A1 |
20070091685 | Guterman et al. | Apr 2007 | A1 |
20070105284 | Herner et al. | May 2007 | A1 |
20070105390 | Oh | May 2007 | A1 |
20070133250 | Kim | Jun 2007 | A1 |
20070133270 | Jeong et al. | Jun 2007 | A1 |
20070159869 | Baek et al. | Jul 2007 | A1 |
20070159876 | Sugibayashi et al. | Jul 2007 | A1 |
20070171698 | Hoenigschmid et al. | Jul 2007 | A1 |
20070205510 | Lavoie et al. | Sep 2007 | A1 |
20070228414 | Kumar et al. | Oct 2007 | A1 |
20070284575 | Li et al. | Dec 2007 | A1 |
20070290186 | Bourim et al. | Dec 2007 | A1 |
20070291527 | Tsushima et al. | Dec 2007 | A1 |
20070295950 | Cho et al. | Dec 2007 | A1 |
20070297501 | Hussain et al. | Dec 2007 | A1 |
20080002481 | Gogl et al. | Jan 2008 | A1 |
20080006907 | Lee et al. | Jan 2008 | A1 |
20080007987 | Takashima | Jan 2008 | A1 |
20080019163 | Hoenigschmid et al. | Jan 2008 | A1 |
20080043521 | Liaw et al. | Feb 2008 | A1 |
20080048164 | Odagawa | Feb 2008 | A1 |
20080083918 | Aratani et al. | Apr 2008 | A1 |
20080089110 | Robinett et al. | Apr 2008 | A1 |
20080090337 | Williams | Apr 2008 | A1 |
20080106925 | Paz de Araujo et al. | May 2008 | A1 |
20080106926 | Brubaker et al. | May 2008 | A1 |
20080165571 | Lung | Jul 2008 | A1 |
20080185567 | Kumar et al. | Aug 2008 | A1 |
20080192531 | Tamura et al. | Aug 2008 | A1 |
20080198934 | Hong et al. | Aug 2008 | A1 |
20080205179 | Markert et al. | Aug 2008 | A1 |
20080206931 | Breuil et al. | Aug 2008 | A1 |
20080220601 | Kumar et al. | Sep 2008 | A1 |
20080232160 | Gopalakrishnan | Sep 2008 | A1 |
20080278988 | Ufert | Nov 2008 | A1 |
20080278990 | Kumar et al. | Nov 2008 | A1 |
20080301497 | Chung et al. | Dec 2008 | A1 |
20080304312 | Ho et al. | Dec 2008 | A1 |
20080311722 | Petti et al. | Dec 2008 | A1 |
20090001343 | Schricker et al. | Jan 2009 | A1 |
20090001345 | Schricker et al. | Jan 2009 | A1 |
20090003717 | Sekiguchi et al. | Jan 2009 | A1 |
20090014703 | Inaba | Jan 2009 | A1 |
20090014707 | Lu et al. | Jan 2009 | A1 |
20090052226 | Lee et al. | Feb 2009 | A1 |
20090091981 | Park et al. | Apr 2009 | A1 |
20090095951 | Kostylev et al. | Apr 2009 | A1 |
20090109728 | Maejima et al. | Apr 2009 | A1 |
20090134432 | Tabata et al. | May 2009 | A1 |
20090141567 | Lee et al. | Jun 2009 | A1 |
20090152737 | Harshfield | Jun 2009 | A1 |
20090168486 | Kumar | Jul 2009 | A1 |
20090227067 | Kumar et al. | Sep 2009 | A1 |
20090231905 | Sato | Sep 2009 | A1 |
20090231910 | Liu et al. | Sep 2009 | A1 |
20090250787 | Kutsunai | Oct 2009 | A1 |
20090251941 | Saito | Oct 2009 | A1 |
20090256130 | Schricker | Oct 2009 | A1 |
20090257265 | Chen et al. | Oct 2009 | A1 |
20090267047 | Sasago et al. | Oct 2009 | A1 |
20090268513 | De Ambroggi et al. | Oct 2009 | A1 |
20090272962 | Kumar et al. | Nov 2009 | A1 |
20090283737 | Kiyotoshi | Nov 2009 | A1 |
20090298224 | Lowrey | Dec 2009 | A1 |
20090321706 | Happ et al. | Dec 2009 | A1 |
20090321789 | Wang et al. | Dec 2009 | A1 |
20100007937 | Widjaja et al. | Jan 2010 | A1 |
20100012914 | Xu et al. | Jan 2010 | A1 |
20100019221 | Lung et al. | Jan 2010 | A1 |
20100019310 | Sakamoto | Jan 2010 | A1 |
20100025675 | Yamazaki et al. | Feb 2010 | A1 |
20100032637 | Kinoshita et al. | Feb 2010 | A1 |
20100032638 | Xu | Feb 2010 | A1 |
20100032640 | Xu | Feb 2010 | A1 |
20100034518 | Iwamoto et al. | Feb 2010 | A1 |
20100038791 | Lee et al. | Feb 2010 | A1 |
20100039136 | Chua-Eoan et al. | Feb 2010 | A1 |
20100044708 | Lin et al. | Feb 2010 | A1 |
20100044798 | Hooker et al. | Feb 2010 | A1 |
20100046622 | Doser et al. | Feb 2010 | A1 |
20100067279 | Choi | Mar 2010 | A1 |
20100067282 | Liu et al. | Mar 2010 | A1 |
20100084625 | Wicker et al. | Apr 2010 | A1 |
20100085798 | Lu et al. | Apr 2010 | A1 |
20100085822 | Yan et al. | Apr 2010 | A1 |
20100090192 | Goux et al. | Apr 2010 | A1 |
20100101290 | Bertolotto | Apr 2010 | A1 |
20100102290 | Lu et al. | Apr 2010 | A1 |
20100110767 | Katoh et al. | May 2010 | A1 |
20100118587 | Chen et al. | May 2010 | A1 |
20100140614 | Uchiyama et al. | Jun 2010 | A1 |
20100157651 | Kumar et al. | Jun 2010 | A1 |
20100157656 | Tsuchida | Jun 2010 | A1 |
20100157659 | Norman | Jun 2010 | A1 |
20100157710 | Lambertson et al. | Jun 2010 | A1 |
20100163828 | Tu | Jul 2010 | A1 |
20100171086 | Lung et al. | Jul 2010 | A1 |
20100176368 | Ko et al. | Jul 2010 | A1 |
20100182821 | Muraoka et al. | Jul 2010 | A1 |
20100203731 | Kong et al. | Aug 2010 | A1 |
20100219510 | Scheuerlein et al. | Sep 2010 | A1 |
20100221868 | Sandoval | Sep 2010 | A1 |
20100237314 | Tsukamoto | Sep 2010 | A1 |
20100243983 | Chiang et al. | Sep 2010 | A1 |
20100258781 | Phatak et al. | Oct 2010 | A1 |
20100271885 | Scheuerlein et al. | Oct 2010 | A1 |
20100277969 | Li et al. | Nov 2010 | A1 |
20100321095 | Mikawa et al. | Dec 2010 | A1 |
20110006275 | Roelofs et al. | Jan 2011 | A1 |
20110007551 | Tian et al. | Jan 2011 | A1 |
20110033967 | Lutz et al. | Feb 2011 | A1 |
20110063888 | Chi et al. | Mar 2011 | A1 |
20110066878 | Hosono et al. | Mar 2011 | A1 |
20110068373 | Minemura et al. | Mar 2011 | A1 |
20110069533 | Kurosawa et al. | Mar 2011 | A1 |
20110089391 | Mihnea et al. | Apr 2011 | A1 |
20110122679 | Chen et al. | May 2011 | A1 |
20110128779 | Redaelli et al. | Jun 2011 | A1 |
20110133149 | Sonehara | Jun 2011 | A1 |
20110136327 | Han et al. | Jun 2011 | A1 |
20110151277 | Nishihara et al. | Jun 2011 | A1 |
20110155991 | Chen | Jun 2011 | A1 |
20110183525 | Purushothaman et al. | Jul 2011 | A1 |
20110193051 | Nam et al. | Aug 2011 | A1 |
20110194329 | Ohba et al. | Aug 2011 | A1 |
20110198557 | Rajendran et al. | Aug 2011 | A1 |
20110204312 | Phatak | Aug 2011 | A1 |
20110204314 | Baek et al. | Aug 2011 | A1 |
20110205780 | Yasuda et al. | Aug 2011 | A1 |
20110205782 | Costa et al. | Aug 2011 | A1 |
20110212616 | Seidel et al. | Sep 2011 | A1 |
20110227028 | Sekar et al. | Sep 2011 | A1 |
20110284814 | Zhang | Nov 2011 | A1 |
20110299324 | Li et al. | Dec 2011 | A1 |
20110305064 | Jo et al. | Dec 2011 | A1 |
20110310656 | Kreupl et al. | Dec 2011 | A1 |
20110312151 | Herner | Dec 2011 | A1 |
20110317470 | Lu et al. | Dec 2011 | A1 |
20120001145 | Magistretti et al. | Jan 2012 | A1 |
20120001146 | Lu et al. | Jan 2012 | A1 |
20120007035 | Jo et al. | Jan 2012 | A1 |
20120008366 | Lu | Jan 2012 | A1 |
20120012806 | Herner | Jan 2012 | A1 |
20120012808 | Herner | Jan 2012 | A1 |
20120015506 | Jo et al. | Jan 2012 | A1 |
20120025161 | Rathor et al. | Feb 2012 | A1 |
20120033479 | Delucca et al. | Feb 2012 | A1 |
20120043519 | Jo et al. | Feb 2012 | A1 |
20120043520 | Herner et al. | Feb 2012 | A1 |
20120043621 | Herner | Feb 2012 | A1 |
20120043654 | Lu et al. | Feb 2012 | A1 |
20120044751 | Wang et al. | Feb 2012 | A1 |
20120074374 | Jo | Mar 2012 | A1 |
20120074507 | Jo et al. | Mar 2012 | A1 |
20120076203 | Sugimoto et al. | Mar 2012 | A1 |
20120080798 | Harshfield | Apr 2012 | A1 |
20120087169 | Kuo et al. | Apr 2012 | A1 |
20120091420 | Kusai et al. | Apr 2012 | A1 |
20120104351 | Wei et al. | May 2012 | A1 |
20120108030 | Herner | May 2012 | A1 |
20120120712 | Kawai et al. | May 2012 | A1 |
20120122290 | Nagashima | May 2012 | A1 |
20120140816 | Franche et al. | Jun 2012 | A1 |
20120142163 | Herner | Jun 2012 | A1 |
20120145984 | Rabkin et al. | Jun 2012 | A1 |
20120147657 | Sekar et al. | Jun 2012 | A1 |
20120155146 | Ueda et al. | Jun 2012 | A1 |
20120176831 | Xiao et al. | Jul 2012 | A1 |
20120205606 | Lee et al. | Aug 2012 | A1 |
20120205793 | Schieffer et al. | Aug 2012 | A1 |
20120218807 | Johnson | Aug 2012 | A1 |
20120220100 | Herner | Aug 2012 | A1 |
20120224413 | Zhang et al. | Sep 2012 | A1 |
20120235112 | Huo et al. | Sep 2012 | A1 |
20120236625 | Ohba et al. | Sep 2012 | A1 |
20120241710 | Liu et al. | Sep 2012 | A1 |
20120243292 | Takashima et al. | Sep 2012 | A1 |
20120250183 | Tamaoka et al. | Oct 2012 | A1 |
20120252183 | Herner | Oct 2012 | A1 |
20120269275 | Hannuksela | Oct 2012 | A1 |
20120305874 | Herner | Dec 2012 | A1 |
20120305879 | Lu et al. | Dec 2012 | A1 |
20120320660 | Nazarian et al. | Dec 2012 | A1 |
20120326265 | Lai et al. | Dec 2012 | A1 |
20130020548 | Clark et al. | Jan 2013 | A1 |
20130023085 | Pramanik et al. | Jan 2013 | A1 |
20130026440 | Yang et al. | Jan 2013 | A1 |
20130065066 | Sambasivan et al. | Mar 2013 | A1 |
20130075685 | Li et al. | Mar 2013 | A1 |
20130075688 | Xu et al. | Mar 2013 | A1 |
20130119341 | Liu et al. | May 2013 | A1 |
20130128653 | Kang et al. | May 2013 | A1 |
20130134379 | Lu | May 2013 | A1 |
20130166825 | Kim et al. | Jun 2013 | A1 |
20130207065 | Chiang | Aug 2013 | A1 |
20130214234 | Gopalan et al. | Aug 2013 | A1 |
20130235648 | Kim et al. | Sep 2013 | A1 |
20130264535 | Sonehara | Oct 2013 | A1 |
20130279240 | Jo | Oct 2013 | A1 |
20130308369 | Lu et al. | Nov 2013 | A1 |
20140015018 | Kim | Jan 2014 | A1 |
20140029327 | Strachan et al. | Jan 2014 | A1 |
20140070160 | Ishikawa et al. | Mar 2014 | A1 |
20140103284 | Hsueh et al. | Apr 2014 | A1 |
20140145135 | Gee et al. | May 2014 | A1 |
20140166961 | Liao et al. | Jun 2014 | A1 |
20140175360 | Tendulkar et al. | Jun 2014 | A1 |
20140177315 | Pramanik et al. | Jun 2014 | A1 |
20140192589 | Maxwell et al. | Jul 2014 | A1 |
20140197369 | Sheng et al. | Jul 2014 | A1 |
20140264236 | Kim et al. | Sep 2014 | A1 |
20140264250 | Maxwell et al. | Sep 2014 | A1 |
20140268997 | Nazarian et al. | Sep 2014 | A1 |
20140268998 | Jo | Sep 2014 | A1 |
20140269002 | Jo | Sep 2014 | A1 |
20140312296 | Jo et al. | Oct 2014 | A1 |
20140335675 | Narayanan | Nov 2014 | A1 |
20160111640 | Chang et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
101131872 | Feb 2008 | CN |
101170132 | Apr 2008 | CN |
101501850 | Aug 2009 | CN |
101636792 | Jan 2010 | CN |
102024494 | Apr 2011 | CN |
102077296 | May 2011 | CN |
1096465 | May 2001 | EP |
2405441 | Jan 2012 | EP |
2408035 | Jan 2012 | EP |
2005506703 | Mar 2005 | JP |
2006032951 | Feb 2006 | JP |
2007067408 | Mar 2007 | JP |
2007281208 | Oct 2007 | JP |
2007328857 | Dec 2007 | JP |
2008503085 | Jan 2008 | JP |
2008147343 | Jun 2008 | JP |
2009043873 | Feb 2009 | JP |
2011-23645 | Feb 2011 | JP |
2011065737 | Mar 2011 | JP |
2012504840 | Feb 2012 | JP |
2012505551 | Mar 2012 | JP |
2012089567 | May 2012 | JP |
2012533195 | Dec 2012 | JP |
20090051206 | May 2009 | KR |
20110014248 | Feb 2011 | KR |
03034498 | Apr 2003 | WO |
2005124787 | Dec 2005 | WO |
2009005699 | Jan 2009 | WO |
2010026654 | Mar 2010 | WO |
2010042354 | Apr 2010 | WO |
2010042732 | Apr 2010 | WO |
2011008654 | Jan 2011 | WO |
WO 2011005266 | Jan 2011 | WO |
2011133138 | Oct 2011 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2012/040232 filed on May 31, 2012. |
Notice of Allowance for U.S. Appl. No. 13/585,759 dated Sep. 19, 2013. |
Office Action for U.S. Appl. No. 13/921,157 dated Oct. 3, 2013. |
Office Action for U.S. Appl. No. 13/960,735, dated Dec. 6, 2013. |
International Search Report and Written Opinion for PCT/US2013/054976, filed on Aug. 14, 2013. |
Notice of Allowance for U.S. Appl. No. 13/592,224, dated Mar. 17, 2014. |
Office Action for U.S. Appl. No. 13/426,869 dated Sep. 12, 2014. |
Notice of Allowance for U.S. Appl. No. 13/426,869 dated Oct. 21, 2014. |
Notice of Allowance for U.S. Appl. No. 13/960,735, dated Sep. 17, 2014. |
Office Action mailed Mar. 1, 2012 for U.S. Appl. No. 12/835,704, filed Jul. 13, 2010. |
Office Action mailed Aug. 2, 2013 for U.S. Appl. No. 13/594,665, filed Aug. 24, 2012. |
Office Action mailed Sep. 2, 2014 for U.S. Appl. No. 13/705,082, 41 pages. |
Office Action mailed Apr. 3, 2014 for U.S. Appl. No. 13/870,919, filed Apr. 25, 2013. |
Office Action mailed Apr. 5, 2012 for U.S. Appl. No. 12/833,898, filed Jul. 9, 2010. |
Office Action mailed Oct. 5, 2011 for U.S. Appl. No. 11/875,541, filed Oct. 19, 2007. |
Office Action mailed Apr. 6, 2015 for U.S. Appl. No. 14/034,390, filed Sep. 23, 2013. |
Office Action mailed Dec. 6, 2013 for U.S Appl. No. 13/564,639, filed Aug. 1, 2012. |
Office Action mailed Feb. 6, 2014 for U.S. Appl. No. 13/434,567, filed Mar. 29, 2012. |
Office Action mailed Mar. 6, 2013 for U.S. Appl. No. 13/174,264, filed Jun. 30, 2011. |
Office Action mailed Mar. 6, 2013 for U.S. Appl. No. 13/679,976, filed Nov. 16, 2012. |
Office Action mailed Sep. 6, 2011 for U.S. Appl. No. 12/582,086, filed Oct. 20, 2009. |
Office Action mailed Dec. 7, 2012 for U.S Appl. No. 13/436,714, filed Mar. 30, 2012. |
Office Action mailed Mar. 7, 2013 for U.S. Appl. No. 13/651,169, filed Oct. 12, 2012. |
Office Action mailed May 7, 2013 for U.S. Appl. No. 13/585,759, filed Aug. 14, 2012. |
Office Action mailed Aug. 8, 2012 for EP Application No. EP11005207 filed Jun. 27, 2011. |
Office Action mailed Jan. 8, 2014 for U.S. Appl. No. 12/861,432, filed Aug. 23, 2010. |
Office Action mailed Jun. 8, 2012 for U.S. Appl. No. 11/875,541, filed Oct. 19, 2007. |
Office Action mailed Aug. 9, 2013 for U.S. Appl.No. 13/764,710, filed Feb. 11, 2013. |
Office Action mailed Jul. 9, 2013 for U.S. Appl. No. 13/447,036, filed Apr. 13, 2012. |
Office Action mailed Jul. 9, 2014 for U.S. Appl. No. 14/166,691, filed Jan. 28, 2014. |
Office Action mailed Oct. 9, 2012 for U.S. Appl. No. 13/417,135, filed Mar. 9, 2012. |
Office Action mailed Jan. 10, 2014 for U.S. Appl. No. 13/920,021, filed Jun. 17, 2013. |
Office Action mailed Apr. 11, 2014 for U.S. Appl. No. 13/143,047, filed Jun. 30, 2011. |
Office Action mailed Feb. 11, 2014 for U.S. Appl. No. 13/620,012, filed Sep. 14, 2012. |
Office Action mailed Jul. 11, 2013 for U.S. Appl. No. 13/764,698, filed Feb. 11, 2013. |
Office Action mailed Sep. 11, 2014 for U.S. Appl. No. 13/739,283, filed Jan. 11, 2013. |
Office Action mailed Aug. 12, 2013 for U.S. Appl. No. 13/077,941, filed Mar. 31, 2011. |
Office Action mailed Mar. 12, 2014 for U.S. Appl. No. 13/167,920, filed Jun. 24, 2011. |
Office Action mailed Sep. 12, 2014 for U.S. Appl. No. 13/756,498. |
Office Action mailed Dec. 3, 2015 for U.S. Appl. No. 14/253,796. |
Office Action mailed Feb. 13, 2014 for U.S. Appl. No. 13/174,077, filed Jun. 30, 2011. |
Office Action mailed Mar. 14, 2012 for U.S. Appl. No. 12/815,369, filed Jun. 14, 2010. |
Office Action mailed Mar. 14, 2014 for U.S. Appl. No. 12/835,704, filed Jul. 13, 2010. |
Office Action mailed Apr. 15, 2016 for U.S. Appl. No. 14/597,151. |
Office Action mailed Apr. 16, 2012 for U.S. Appl. No. 12/834,610, filed Jul. 12, 2010. |
Office Action mailed Jan. 16, 2014 for U.S. Appl. No. 13/739,283, filed Jan. 11, 2013. |
Office Action mailed May 16, 2012 for U.S. Appl. No. 12/815,318, filed Jun. 14, 2010. |
Office Action mailed Oct. 16, 2012 for U.S. Appl. No. 12/861,650, filed Aug. 23, 2010. |
Office Action mailed Apr. 17, 2012 for U.S. Appl. No. 12/814,410, filed Jun. 11, 2010. |
Office Action mailed Feb. 17, 2011 for U.S. Appl. No. 12/913,719, filed Oct. 27, 2010. |
Office Action mailed Jun. 17, 2014 for U.S. Appl. No. 14/072,657, filed Nov. 5, 2013. |
Office Action mailed Apr. 19, 2011 for U.S. Appl. No. 12/582,086, filed Oct. 20, 2009. |
Office Action mailed Aug. 19, 2013 for U.S. Appl. No. 13/585,759, filed Aug. 14, 2012. |
Office Action mailed Jun. 19, 2012 for U.S. Appl. No. 13/149,757, filed May 31, 2011. |
Office Action mailed Mar. 19, 2013 for U.S. Appl. No. 13/465,188, filed May 7, 2012. |
Office Action mailed Mar. 19, 2013 for U.S. Appl. No. 13/564,639, filed Aug. 1, 2012. |
Office Action mailed May 20, 2013 for U.S. Appl. No. 13/725,331, filed Dec. 21, 2012. |
Office Action mailed Nov. 20, 2012 for U.S Appl. No. 13/149,653, filed May 31, 2011. |
Office Action mailed Sep. 20, 2013 for U.S. Appl. No. 13/481,600, filed May 25, 2012. |
International Search Report and Written Opinion for Application No. PCT/US2012/045312, mailed on Mar. 29, 2013, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/US2013/042746, mailed on Sep. 6, 2013, 7 pages. |
International Search Report and Written Opinion for Application No. PCT/US2013/061244, mailed on Jan. 28, 2014, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US2013/077628, mailed on Apr. 29, 2014, 12 pages. |
International Search Report for Application No. PCT/US2009/060023, mailed on May 18, 2010, 3 pages. |
International Search Report for Application No. PCT/US2009/061249, mailed on May 19, 2010, 3 pages. |
International Search Report for Application No. PCT/US2011/040090, mailed on Feb. 17, 2012, 5 pages. |
International Search Report for Application No. PCT/US2011/045124, mailed on May 29, 2012, 3 pages. |
International Search Report for Application No. PCT/US2011/046036, mailed on Feb. 23, 2012, 3 pages. |
Jafar M., et al., “Switching in Amorphous-silicon Devices,” Physical Review, 1994, vol. 49 (19), pp. 611-615. |
Japanese Office Action and English Translation for Japanese Patent Application No. 2011-153349 mailed Feb. 24, 2015, 9 pages. |
Japanese Office Action and English Translation for Japanese Patent Application No. 2011-153349 mailed Mar. 24, 2015, 9 pages. |
Japanese Office Action (English Translation) for Japanese Application No. 2011-153349 mailed Feb. 24, 2015, 3 pages. |
Japanese Office Action (English Translation) for Japanese Application No. 2013-525926 mailed Mar. 3, 2015, 4 pages. |
Japanese Office Action (English Translation) for Japanese Application No. 2014-513700 mailed Jan. 12, 2016, 4 pages. |
Japanese Search Report (English Translation) for Japanese Application No. 2013-525926 dated Feb. 9, 2015, 15 pages. |
Japanese Search Report (English Translation) for Japanese Application No. 2011-153349 dated Feb. 9, 2015, 11 pages. |
Japanese Search Report (English Translation) for Japanese Application No. 2014-513700 dated Jan. 14, 2016, 25 pages. |
Jian Hu., et al., “Area-Dependent Switching In Thin Film-Silicon Devices,” Materials Research Society Symposium Proceedings, 2003, vol. 762, pp. A 18.3.1-A 18.3.6. |
Jian Hu., et al., “Switching and Filament Formation in hot-wire CVD p-type a-Si:H devices,” Thin Solid Films, Science Direct, 2003, vol. 430, pp. 249-252. |
Jo S.H., et al., “A Silicon-Based Crossbar Ultra-High-Density Non-Volatile Memory”, SSEL Annual Report, 2007. |
Jo S.H., et al., “Ag/a-Si:H/c-Si Resistive Switching Nonvolatile Memory Devices,” Nanotechnology Materials and Devices Conference, 2006, vol. 1, pp. 116-117. |
Jo S.H., et al., “CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory,” Nano Letters, 2008, vol. 8 (2), pp. 392-397. |
Jo S.H., et al., “Experimental, Modeling and Simulation Studies of Nanoscale Resistance Switching Devices”, Conference on Nanotechnology, IEEE, 2009, pp. 493-495. |
Jo S.H., et al., “High-Density Crossbar Arrays Based on a Si Memristive System,” Nano Letters, 2009, vol. 9 (2), pp. 870-874. |
Jo S.H. et al., “High-Density Crossbar Arrays Based on a Si Memristive System”, Supporting Information, 2009, pp. 1-4. |
Jo S.H., et al., “Si Memristive Devices Applied to Memory and Neuromorphic Circuits”, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010, pp. 13-16. |
Jo S.H., et al., “Si-Based Two-Terminal Resistive Switching Nonvolatile Memory”, IEEE, 2008. |
Jo S.H., et al., “Nanoscale Memristive Devices for Memory and Logic Applications”, Ph. D Dissertation, University of Michigan, 2010. |
Jo S.H., et al., “Nanoscale Memristor Device as Synapse in Neuromorphic Systems,” Nano Letters, 2010, vol. 10, pp. 1297-1301. |
Jo S.H., et al., “Nonvolatile Resistive Switching Devices Based on Nanoscale Metal/Amorphous Silicon/Crystalline Silicon Junctions,” Materials Research Society Symposium Proceedings, 2007, vol. 997. |
Jo S.H., et al., “Programmable Resistance Switching in Nanoscale Two-Terminal Devices,” Nano Letters, 2009, vol. 9 (1), pp. 496-500. |
Jo S.H., et al., “Programmable Resistance Switching in Nanoscale Two-Terminal Devices,” Supporting Information, 2009, pp. 1-4. |
Kuk-Hwan Kim et al., “Nanoscale Resistive Memory with Intrinsic Diode Characteristics and Long Endurance,” Applied Physics Letters, 2010, vol. 96, pp. 053106-1-053106-3. |
Kund M., et al., “Conductive Bridging Ram (cbram): An Emerging Non-volatile Memory Technology Scalable to Sub 20nm”, IEEE, 2005. |
Le Comber P.G., et al., “The Switching Mechanism in Amorphous Silicon Junctions,” Journal of Non-Crystalline Solids, 1985, vol. 77 & 78, pp. 1373-1382. |
Le Comber P.G., “Present and Future Applications of Amorphous Silicon and Its Alloys,” Journal of Non-Crystalline Solids, 1989, vol. 115, pp. 1-13. |
Lee S.H., et al., “Full Integration and Cell Characteristics for 64Mb Nonvolatile PRAM”, 2004 Symposium on VLSI Technology Digest of Technical Papers, IEEE, 2004, pp. 20-21. |
Liu M., et al., “rFGA: CMOS-Nano Hybrid FPGA Using RRAM Components”, IEEE CB3 N171nternational Symposium on Nanoscale Architectures, Anaheim, USA, Jun. 12-13, 2008, pp. 93-98. |
Lu W., et al., “Nanoelectronics from the Bottom Up,” Nature Materials, 2007, vol. 6, pp. 841-850. |
Lu W., et al., “Supporting Information”, 2008. |
Marand, “Materials Engineering Science,” MESc. 5025 Lecture Notes: Chapter 7. Diffusion, University of Vermont. Retrieved from the Internet on Aug. 8, 2016. |
Moopenn A. et al., “Programmable Synaptic Devices for Electronic Neural Nets,” Control and Computers, 1990, vol. 18 (2), pp. 37-41. |
Muller D.A., et al., “The Electronic Structure at the Atomic Scale of Ultrathin Gate Oxides,” Nature, 1999, vol. 399, pp. 758-761. |
Muller G., et al., “Status and Outlook of Emerging Nonvolatile Memory Technologies”, IEEE, 2004, pp. 567-570. |
Newman R.C., “Defects in Silicon,” Reports on Progress in Physics, 1982, vol. 45, pp. 1163-1210. |
Notice of Allowance dated Nov. 26, 2013 for U.S. Appl. No. 13/481,696, 15 pages. |
Notice of Allowance dated Dec. 16, 2014 for U.S. Appl. No. 12/835,704, 47 pages. |
Notice of Allowance dated Dec. 19, 2014 for U.S. Appl. No. 13/529,985, 9 pgs. |
Notice of Allowance dated Jul. 1, 2016 for U.S. Appl. No. 14/213,953, 96 pages. |
Office Action mailed Mar. 21, 2014 for U.S. Appl. No. 13/447,036, filed Apr. 13, 2012. |
Office Action mailed May 21, 2014 for U.S. Appl. No. 13/764,698, filed Feb. 11, 2013. |
Office Action mailed Sep. 21, 2011 for U.S. Appl. No. 12/835,704, filed Jul. 13, 2010. |
Office Action mailed Jul. 22, 2010 for U.S. Appl. No. 11/875,541, filed Oct. 19, 2007. |
Office Action mailed Jul. 22, 2011 for U.S. Appl. No. 12/913,719, filed Oct. 27, 2010. |
Office Action mailed Sep. 22, 2013 for U.S. Appl. No. 13/189,401, filed Jul. 22, 2011. |
Office Action mailed May 23, 2013 for U.S. Appl. No. 13/592,224, filed Aug. 22, 2012. |
Office Action mailed Aug. 24, 2011 for U.S. Appl. No. 12/835,699, filed Jul. 13, 2010. |
Office Action mailed Apr. 25, 2012 for U.S. Appl. No. 13/149,653, filed May 31, 2011. |
Office Action mailed Apr. 25, 2014 for U.S. Appl. No. 13/761,132, filed Feb. 6, 2013. |
Office Action mailed Jan. 25, 2012 for U.S. Appl. No. 12/861,650, filed Aug. 23, 2010. |
Office Action mailed Oct. 25, 2012 for U.S. Appl. No. 13/461,725, filed May 1, 2012. |
Office Action mailed Sep. 25, 2013 for U.S. Appl. No. 13/194,479, filed Jul. 29, 2011. |
Office Action mailed Nov. 26, 2012 for U.S Appl. No. 13/156,232. |
Office Action mailed Aug. 27, 2013 for U.S. Appl. No. 13/436,714, filed Mar. 30, 2012. |
Office Action mailed Dec. 27, 2013 for U.S. Appl. No. 13/525,096, filed Jun. 15, 2012. |
Office Action mailed Mar. 27, 2012 for U.S. Appl. No. 13/314,513, filed Dec. 8, 2011. |
Office Action mailed Feb. 28, 2014 for U.S. Appl. No. 12/625,817, filed Nov. 25, 2009. |
Office Action mailed Jan. 29, 2014 for U.S. Appl. No. 13/586,815, filed Aug. 15, 2012. |
Office Action mailed Jul. 29, 2013 for U.S. Appl. No. 13/466,008, filed May 7, 2012. |
Office Action mailed Mar. 29, 2013 for U.S. Appl. No. 12/861,432, filed Aug. 23, 2010. |
Office Action mailed Jul. 30, 2012 for U.S. Appl. No. 12/900,232, filed Oct. 7, 2010. |
Office Action mailed Jun. 30, 2014 for U.S. Appl. No. 13/531,449, filed Jun. 22, 2012. |
Office Action mailed Mar. 30, 2011 for U.S. Appl. No. 11/875,541, filed Oct. 19, 2007. |
Office Action mailed Sep. 30, 2013 for U.S. Appl. No. 13/189,401, filed Jul. 22, 2011. |
Office Action mailed Sep. 30, 2013 for U.S. Appl. No. 13/462,653, filed May 2, 2012. |
Office Action mailed Apr. 6, 2015 for U.S. Appl. No. 14/034,390. |
Office Action mailed May 20, 2016 for U.S. Appl. No. 14/613,299. |
Office Action mailed Jul. 9, 2015 for U.S. Appl. No. 14/573,817. |
Owen A.E., et al., “Electronic Switching in Amorphous Silicon Devices: Properties of the Conducting Filament”, Proceedings of 5th International Conference on Solid-State and Integrated Circuit Technology, IEEE, 1998, pp. 830-833. |
Owen A.E., et al., “Memory Switching In Amorphous Silicon Devices,” Journal of Non- Crystalline Solids, 1983, vol. 50-60 (Pt.2), pp. 1273-1280. |
Owen A.E., et al., “New Amorphous-Silicon Electrically Programmable Nonvolatile Switching Device,” Solid-State and Electron Devices, IEEE Proceedings, 1982, vol. 129 (Pt. 1), pp. 51-54. |
Owen A.E., et al., “Switching in Amorphous Devices,” International Journal of Electronics, 1992, vol. 73 (5), pp. 897-906. |
Rose M.J., et al., “Amorphous Silicon Analogue Memory Devices,” Journal of Non-Crystalline Solids, 1989, vol. 115, pp. 168-170. |
Russo U., et al., “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices,” IEEE Transactions on Electron Devices, 2009, vol. 56 (2), pp. 193-200. |
Scott J.C., “Is There an Immortal Memory?,” American Association for the Advancement of Science, 2004, vol. 304 (5667), pp. 62-63. |
Shin W., et al., “Effect of Native Oxide on Polycrystalline Silicon CMP,” Journal of the Korean Physical Society, 2009, vol. 54 (3), pp. 1077-1081. |
Stikeman a., Polymer Memory—The Plastic Path to Better Data Storage, Technology Review, Sep. 2002, pp. 31 Retrieved from the Internet. |
Suehle J.S., et al., “Temperature Dependence of Soft Breakdown and Wear-out in Sub-3 Nm Si02 Films”, 38th Annual International Reliability Physics Symposium, San Jose, California, 2000, pp. 33-39. |
Sune J., et al., “Nondestructive Multiple Breakdown Events in Very Thin Si02 Films,” Applied Physics Letters, 1989, vol. 55, pp. 128-130. |
Terabe K., et al., “Quantized Conductance Atomic Switch,” Nature, 2005, vol. 433, pp. 47-50. |
Waser R., et al., “Nanoionics-based Resistive Switching Memories,” Nature Materials, 2007, vol. 6, pp. 833-835. |
Written Opinion for Application No. PCT/US2009/060023, mailed on May 18, 2010, 3 pages. |
Written Opinion for Application No. PCT/US2009/061249, mailed on May 19, 2010, 3 pages. |
Written Opinion for Application No. PCT/US2011/040090, mailed on Feb. 17, 2012, 6 pages. |
Written Opinion for Application No. PCT/US2011/045124, mailed on May 29, 2012, 5 pages. |
Written Opinion for Application No. PCT/US2011/046036, mailed on Feb. 23, 2012, 4 pages. |
Yin S., “Solution Processed Silver Sulfide Thin Films for Filament Memory Applications”, Technical Report No. UCB/EECS-2010-166, Dec. 17, 2010, Electrical Engineering and Computer Sciences, University of California at Berkeley. Retrieved from the Internet. |
Yuan H.C., et al., “Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction”, NREL Conference Paper CP-520-42566, 33rd IEEE Photovoltaic Specialists Conference, May 11-16, 2008, National Renewable Energy Laboratory, San Diego, California. |
Zankovych S., et al., “Nanoimprint Lithography: Challenges and Prospects,” Nanotechnology, 2001, vol. 12, pp. 91-95. |
Advisory Action mailed Jun. 8, 2012 for U.S Appl. No. 12/835,704, filed Jul. 13, 2012. |
Avila A., et al., “Switching in Coplanar Amorphous Hydrogenated Silicon Devices,” Solid-State Electronics, 2000, vol. 44 (1), pp. 17-27. |
Cagli C., et al., “Evidence for Threshold Switching in the Set Process of Nio-based Rram and Physical Modeling for Set, Reset, Retention and Disturb Prediction”, 2008 IEEE International Electron Devices Meeting (IEDM), Dec. 15-17, 2008, pp. 1-4, San Francisco, CA, USA. |
Chang P.H., at al., “Aluminum Spiking at Contact Windows in Al/Ti—W/Si,” Applied Physics Letters, 1988, vol. 52 (4), pp. 272-274. |
Chen Y., et al., “Nanoscale Molecular-switch Crossbar Circuits,” Nanotechnology, 2003, vol. 14, pp. 462-468. |
Chinese Office Action (English Translation) for Chinese Application No. 201180050941.0 dated Apr. 3, 2015, 8 pages. |
Chinese Office Action (English Translation) for Chinese Application No. 201280027066.9 dated Nov. 23, 2015, 6 pages. |
Chinese Office Action (English Translation) for Chinese Application No 201110195933.7 dated Jul. 31, 2014, 4 pages. |
Chinese Office Action (English Translation) for Chinese Application No 201110195933.7 dated May 18, 2015, 4 pages. |
Chinese Office Action (English Translation) for Chinese Application No 201180050941.0 dated Dec. 9, 2015, 5 pages. |
Chinese Office Action (with English Translation) for Chinese Application No. 201280027066.9 mailed on Jul. 4, 2016, 5 pages. |
Chinese Office Action (with English Translation) for Chinese Application No. 201290000773.4 dated Jun. 9, 2014, 3 pages. |
Chinese Seach Report (English Translation) for Chinese Application No. 201180050941.0 dated Mar. 25, 2015, 1 page. |
Chinese Search Report (English Translation) for Chinese Application No. 201280027066.9 dated Nov. 13, 2015, 2 pages. |
Choi J.W., “Bistable [2]Rotaxane Based Molecular Electronics: Fundamentals and Applications”, Dissertation, Chapter 3, California Institute of Technology, Pasadena, 2007, pp. 79-120. Retrieved from the Internet. |
Chou S.Y., et al., “Imprint Lithography With 25-Nanometer Resolution,” Science, 1996, vol. 272, pp. 85-87. |
Collier C.P., et al., “Electronically Configurable Molecular-based Logic Gates ,” Science, 1999, vol. 285 (5426), pp. 391-395. |
Corrected Notice of Allowability dated Nov. 20, 2014 for U.S. Appl. No. 13/594,665, 5 pages. |
Corrected Notice of Allowability dated Jun. 15, 2016 for U.S. Appl. No. 13/952,467, 10 pages. |
Corrected Notice of Allowability mailed Oct. 1, 2013 for U.S. Appl. No. 13/733,828, filed Jan. 3, 2013. |
Corrected Notice of Allowance mailed Jan. 11, 2013 for U.S. Appl. No. 12/861,666 dated Aug. 23, 2010. |
Dehon A., “Array-Based Architecture for FET-Based, Nanoscale Electronics,” IEEE Transactions on Nanotechnology, 2003, vol. 2 (1), pp. 23-32. |
Del Alamo J., et al., “Operating limits of Al-alloyed High-low Junction for BSF Solar Cells,” Solid-State Electronics, 1981, vol. 24, pp. 415-420. |
Den Boer W., “Threshold Switching in Hydrogenated Amorphous Silicon,” Applied Physics Letters, 1982, vol. 40, pp. 312-813. |
Dey S.K., “Electrothermal Model of Switching in Amorphous Silicon Films,” Journal of Vacuum Science & Technology , 1980, vol. 17 (1), pp. 445-448. |
Dong Y., et al., “Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches,” Nano Letters, 2008, vol. 8 (2), pp. 386-391. |
European Search Report for Application No. EP09819890.6 mailed on Mar. 27, 2012. |
European Search Report for Application No. EP11005207.3 mailed on Oct. 12, 2011. |
European Search Report for Application No. EP14000949, mailed on Jun. 4, 2014, 7 pages. |
European Search Report for European Application No. EP11005649 mailed Oct. 15, 2014, 2 pages. |
Ex parte Quayle Action mailed May 8, 2012 for U.S. Appl. No. 12/826,653, filed Jun. 29, 2010. |
Final Office Action dated Jun. 29, 2016 for U.S. Appl. No. 14/692,677, 21 pages. |
Final Office Action for U.S. Appl. No. 14/612,025 dated Jun. 14, 2016, 7 pages. |
Final Office Action mailed Feb. 1, 2016 for U.S. Appl. No. 14/573,817. |
Final Office Action mailed May 20, 2016 for U.S. Appl. No. 14/253,796. |
Final Office Action mailed Aug. 13, 2014 for U.S. Appl. No. 13/525,096, filed Jun. 15, 2012. |
Gangopadhyay S., et al., “Memory Switching in Sputtered Hydrogenated Amorphous Silicon (a—Si:H),” Japanese Journal of Applied Physics, 1985, vol. 24 (10), pp. 1363-1364. |
Goronkin H., et al., High-Performance Emerging Solid-State Memory Technologies, MRS Bulletin, Nov. 2004, pp. 805-813. Retrieved from the Internet. |
Hajto J., et al., “Amorphous & Microcrystalline Semiconductor Devices: Materials and Device Physics”, Artech House Publishers, Mar. 1, 2004, vol. 2, pp. 640-700. |
Hajto J., et al., “Analogue Memory and Ballistic Electron Effects in Metal-amorphous Silicon Structures,” Philosophical Magazine, 1991, vol. 63 (1), pp. 349-369. |
Hajto J., et al., “Electronic Switching in Amorphous-Semiconductor Thin Films”, Chapter 14, 1992, pp. 640-701. |
Hajto J., et al., “The Programmability of Amorphous Silicon Analogue Memory Elements,” Materials Research Society Symposium Proceedings , 1990, vol. 192, pp. 405-410. |
Holmes A.J., et al., “Design of Analogue Synapse Circuits using Non-Volatile a—Si:H Memory Devices”, Proceedings of IEEE International Symposium on Circuits and System, 1994, pp. 351-354, vol. 6. |
Hu J., et al., “AC Characteristics of Cr/p. sup.+a—Si:H/V Analog Switching Devices,” IEEE Transactions on Electron Devices, 2000, vol. 47 (9), pp. 1751-1757. |
Hu X.Y., et al., “Write Amplification Analysis in Flash-based Solid State Drives”, SYSTOR'09; 20090504-20090406, May 2009, pp. 1-9. |
Hudgens S., et al., “Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology”, MRS Bulletin, Nov. 2004, pp. 829-832. Retrieved from the Internet. |
International Search Report and Written Opinion for Application No. PCT/US2011/040362, mailed on Jan. 19, 2012, 7 pages. |
International Search Report and Written Opinion for Application No. PCT/US2011/046035, mailed on Mar. 27, 2012, 6 pages. |
International Search Report and Written Opinion for Application No. PCT/US2012/040242, mailed on Jan. 31, 2013, 9 pages. |
International Search Report and Written Opinion for Application No. PCT/US2012/044077, mailed on Jan. 25, 2013, 9 pages. |
Notice of Allowance mailed Mar. 20, 2014 for U.S. Appl. No. 13/461,725, filed May 1, 2012. |
Notice of Allowance mailed Oct. 21, 2011 for U.S. Appl. No. 12/582,086, filed Oct. 20, 2009. |
Notice of Allowance mailed Feb. 10, 2015 for U.S. Appl. No. 13/525,096, filed Jun. 15, 2012. |
Notice of Allowance mailed May 22, 2012 for U.S. Appl. No. 12/815,369, filed Jun. 14, 2010. |
Notice of Allowance mailed Oct. 23, 2013 for U.S. Appl. No. 13/417,135, filed Mar. 9, 2012. |
Notice of Allowance mailed Jan. 24, 2013 for U.S. Appl. No. 13/314,513, filed Dec. 8, 2011. |
Notice of Allowance mailed Jul. 24, 2012 for U.S. Appl. No. 12/939,824, filed Nov. 4, 2010. |
Notice of Allowance mailed Oct. 25, 2012 for U.S. Appl. No. 12/894,087, filed Sep. 29, 2010. |
Notice of Allowance mailed Sep. 25, 2014 for U.S. Appl. No. 13/447,036, filed Apr. 13, 2012. |
Notice of Allowance mailed Sep. 26, 2014 for U.S. Appl. No. 13/594,665, filed Aug. 24, 2012. |
Notice of Allowance mailed Aug. 27, 2014 for U.S. Appl. No. 13/077,941, filed Mar. 31, 2011. |
Notice of Allowance mailed Nov. 28, 2012 for U.S. Appl. No. 13/290,024, filed Nov. 4, 2011. |
Notice of Allowance mailed Oct. 28, 2013 for U.S. Appl. No. 13/194,500, filed Jul. 29, 2011. |
Notice of Allowance mailed Oct. 28, 2013 for U.S. Appl. No. 13/651,169, filed Oct. 12, 2012. |
Notice of Allowance mailed Nov. 29, 2012 for U.S. Appl. No. 12/815,318, filed Jun. 14, 2010. |
Notice of Allowance mailed Oct. 29, 2012 for U.S. Appl. No. 13/149,807, filed May 31, 2011. |
Notice of Allowance mailed May 30, 2012 for U.S. Appl. No. 12/833,898, filed Jul. 9, 2010. |
Notice of Allowance mailed Sep. 30, 2013 for U.S. Appl. No. 13/481,696, filed May 25, 2012. |
Notice of Allowance mailed Aug. 31, 2012 for U.S. Appl. No. 13/051,296, filed Mar. 18, 2011. |
Notice of Allowance mailed Apr. 20, 2016 for U.S. Appl. No. 14/573,817. |
Notice of Allowance mailed Oct. 8, 2014 for U.S. Appl. No. 13/077,941, filed Mar. 31, 2011. |
Notice of Allowance mailed Aug. 26, 2015 for U.S. Appl. No. 14/034,390. |
Notice of Allowance mailed Sep. 8, 2015 for U.S. Appl. No. 14/613,299. |
Office Action dated Dec. 31, 2015 for U.S. Appl. No. 14/692,677, 27 pages. |
Office Action dated Feb. 5, 2015 for U.S. Appl. No. 14/027,045, 6 pages. |
Office Action dated Apr. 11, 2014 for U.S. Appl. No. 13/594,665, 44 pages. |
Office Action dated Apr. 6, 2015 for U.S. Appl. No. 13/912,136, 23 pages. |
Office Action for European Application No. 11005649.6 dated Dec. 1, 2014, 2 pages. |
Office Action for European Application No. 11005649.6 dated Nov. 17, 2015, 5 pages. |
Office Action for European Application No. EP11005207.3 dated Aug. 8, 2012, 4 pages. |
Office Action for U.S. Appl. No. 13/463,714 dated Dec. 7, 2012. |
Office Action for U.S. Appl. No. 14/611,022 dated May 7, 2015, 13 pages. |
Office Action for U.S. Appl. No. 14/612,025 dated Feb. 1, 2016, 12 pages. |
Office Action for U.S. Appl. No. 13/952,467 dated Jan. 15, 2016, 22 pages. |
Office Action for U.S. Appl. No. 14/194,499 dated May 18, 2016, 10 pages. |
Office Action for U.S. Appl. No. 14/207,430 dated Oct. 15, 2015, 57 pages. |
Office Action for U.S. Appl. No. 14/207,430 dated Mar. 10, 2016, 78 pages. |
Office Action for U.S. Appl. No. 14/207,430 dated Jul. 25, 2016, 79 pages. |
Office Action for U.S. Appl. No. 14/213,953 dated Nov. 9, 2015, 20 pages. |
Office Action for U.S. Appl. No. 14/383,079 dated May 10, 2016, 7 pages. |
Office Action for U.S. Appl. No. 14/383,079 dated Aug. 4, 2015, 11 pages. |
Office Action for U.S. Appl. No. 14/588,202 dated May 10, 2016, 8 pages. |
Office Action for U.S. Appl. No. 14/588,202 dated Sep. 11, 2015, 9 pages. |
Office Action for U.S. Appl. No. 14/613,301 dated Feb. 4, 2016, 42 pages. |
Office Action for U.S. Appl. No. 14/613,301 dated Mar. 31, 2015, 58 pages. |
Office Action for U.S. Appl. No. 14/613,301 dated Jul. 31, 2015, 26 pages. |
Office Action for U.S. Appl. No. 14/887,050 dated Mar. 11, 2016, 12 pages. |
Office Action for U.S. Appl. No. 15/046,172 dated Apr. 20, 2016, 8 pages. |
Office Action mailed Apr. 1, 2013 for U.S. Appl. No. 13/174,077, filed Jun. 30, 2011. |
Office Action mailed Aug. 1, 2012 for U.S. Appl. No. 12/894,098, filed Sep. 29, 2010. |
Notice of Allowance dated Jul. 17, 2014 for U.S. Appl. No. 12/861,432, 25 pages. |
Notice of Allowance for U.S. Appl. No. 14/213,953 dated Feb. 16, 2016, 21 pages. |
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Feb. 12, 2016, 13 pages. |
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Jun. 8, 2016, 57 pages. |
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Sep. 10, 2015, 13 pages. |
Notice of Allowance for U.S. Appl. No. 14/612,025 dated Jul. 22, 2015, 25 pages. |
Notice of Allowance for U.S Appl. No. 14/509,967 dated Feb. 17, 2016, 18 pages. |
Notice of Allowance for U.S Appl. No. 14/509,967 dated Jun. 16, 2016, 96 pages. |
Notice of Allowance for U.S. Appl. No. 13/912,136 dated Aug. 3, 2015, 15 pages. |
Notice of Allowance for U.S. Appl. No. 13/952,467 dated May 20, 2016, 19 pages. |
Notice of Allowance for U.S. Appl. No. 14/027,045 dated Jun. 9, 2015, 14 pages. |
Notice of Allowance for U.S. Appl. No. 14/383,079 dated Jan. 4, 2016, 27 pages. |
Notice of Allowance for U.S. Appl. No. 14/588,202 dated Jan. 20, 2016, 15 pages. |
Notice of Allowance for U.S. Appl. No. 14/887,050 dated Jun. 22, 2016, 13 pages. |
Notice of Allowance for U.S. Appl. No. 14/946,367 dated Jul. 13, 2016, 23 pages. |
Notice of Allowance mailed Sep. 4, 2014 for U.S. Appl. No. 13/761,132, filed Feb. 6, 2013. |
Notice of Allowance mailed Oct. 5, 2011 for U.S. Appl. No. 12/940,920, filed Nov. 5, 2010. |
Notice of Allowance mailed Feb. 6, 2012 for U.S. Appl. No. 12/835,699, filed Jul. 13, 2010. |
Notice of Allowance mailed Feb. 6, 2013 for U.S. Appl. No. 13/118,258, filed May 27, 2011. |
Notice of Allowance mailed Aug. 8, 2013 for U.S. Appl. No. 13/733,828, filed Jan. 3, 2013. |
Notice of Allowance mailed Jan. 8, 2013 for U.S. Appl. No. 12/814,410, filed Jun. 11, 2010. |
Notice of Allowance mailed Oct. 8, 2013 for U.S. Appl. No. 13/769,152, filed Feb. 15, 2013. |
Notice of Allowance mailed Oct. 8, 2013 for U.S. Appl. No. 13/905,074, filed May 29, 2013. |
Notice of Allowance mailed Apr. 9, 2013 for U.S. Appl. No. 13/748,490, filed Jan. 23, 2013. |
Notice of Allowance mailed Sep. 9, 2014 for U.S. Appl. No. 13/620,012, filed Sep. 14, 2012. |
Notice of Allowance mailed Sep. 9, 2014 for U.S. Appl. No. 13/870,919, filed Apr. 25, 2013. |
Notice of Allowance mailed Oct. 10, 2013 for U.S. Appl. No. 13/452,657, filed Apr. 20, 2012. |
Notice of Allowance mailed Jan. 11, 2013 for U.S. Appl. No. 12/894,087, filed Sep. 29, 2010. |
Notice of Allowance mailed May 11, 2012 for U.S. Appl. No. 12/939,824, filed Nov. 4, 2010. |
Notice of Allowance mailed Jan. 11, 2016 for U.S. Appl. No. 14/613,299. |
Notice of Allowance mailed Mar. 12, 2012 for U.S. Appl. No. 12/913,719, filed Oct. 27, 2010. |
Notice of Allowance mailed Jan. 20, 2016 for U.S. Appl. No. 14/034,390. |
Notice of Allowance mailed Nov. 13, 2013 for U.S. Appl. No. 13/461,725, filed May 1, 2012. |
Notice of Allowance mailed Nov. 14, 2012 for U.S. Appl. No. 12/861,666, filed Aug. 23, 2010. |
Notice of Allowance mailed Nov. 14, 2012 for U.S. Appl. No. 13/532,019, filed Jun. 25, 2012. |
Notice of Allowance mailed Mar. 15, 2013 for U.S. Appl. No. 12/894,098, filed Sep. 29, 2010. |
Notice of Allowance mailed Jan. 16, 2014 for U.S. Appl. No. 13/921,157, filed Jun. 18, 2013. |
Notice of Allowance mailed Oct. 16, 2013 for U.S. Appl. No. 13/174,264, filed Jun. 30, 2011. |
Notice of Allowance mailed Apr. 17, 2012 for U.S. Appl. No. 13/158,231, filed Jun. 10, 2011. |
Notice of Allowance mailed Jan. 17, 2014 for U.S. Appl. No. 13/725,331, filed Dec. 21, 2012. |
Notice of Allowance mailed May 17, 2013 for U.S. Appl. No. 13/290,024. |
Notice of Allowance mailed Sep. 17, 2013 for U.S. Appl. No. 13/679,976, filed Nov. 16, 2012. |
Notice of Allowance mailed Sep. 17, 2014 for U.S. Appl. No. 13/462,653, filed May 2, 2012. |
Notice of Allowance mailed Sep. 18, 2012 for U.S. Appl. No. 12/900,232, filed Oct. 7, 2010. |
Notice of Allowance mailed Sep. 18, 2014 for U.S. Appl. No. 13/920,021, filed Jun. 17, 2013. |
Notice of Allowance mailed Sep. 18, 2014 for U.S. Appl. No. 13/586,815, filed Aug. 15, 2012. |
Notice of Allowance mailed Jun. 19, 2012 for U.S. Appl. No. 12/861,650, filed Aug. 23, 2010. |
Notice of Allowance mailed Apr. 2, 2013 for U.S. Appl. No. 13/149,757, filed May 31, 2011. |
Notice of Allowance mailed Feb. 20, 2014 for U.S. Appl. No. 13/468,201, filed May 10, 2012. |
Notice of Allowance mailed Mar. 20, 2014 for U.S. Appl. No. 13/598,550, filed Aug. 29, 2012. |
Office Action dated Aug. 12, 2016 for U.S. Appl. No. 14/667,346, 27 pages. |
Office Action dated Aug. 12, 2016 for U.S. Appl. No. 14/613,301, 43 pages. |
Office Action dated Aug. 23, 2016 for U.S. Appl. No. 14/613,585, 9 pages. |
Notice of Allowance dated Sep. 14, 2016 for U.S. Appl. No. 14/588,202, 119 pages. |
Notice of Allowance dated Oct. 5, 2016 for U.S. Appl. No. 14/887,050, 113 pages. |
Notice of Allowance dated Oct. 7, 2016 for U.S. Appl. No. 14/213,953, 43 pages. |
Notice of Allowance for U.S. Appl. No. 14/509,967 dated Oct. 24, 2016, 42 pages. |
Notice of Allowance for U.S. Appl. No. 14/383,079 dated Aug. 17, 2016, 71 pages. |
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Oct. 26, 2016, 41 pages. |
Notice of Allowance for U.S. Appl. No. 13/952,467 dated Sep. 28, 2016, 128 pages. |
Notice of Allowance for U.S. Appl. No. 15/046,172 dated Oct. 4, 2016, 116 pages. |
Notice of Allowance for U.S. Appl. No. 14/612,025 dated Oct. 19, 2016, 108 pages. |
Office Action for U.S. Appl. No. 14/597,151 dated Oct. 20, 2016, 52 pages. |
Japanese Office Action mailed on Aug. 9, 2016 for Japanese Application No. 2014-513700, 8 pages. (including translation). |
Chinese Office Action mailed on Sep. 1, 2016 for Chinese Application No. 201380027469.8, 8 pages. (including translation). |
Office Action for U.S Appl. No. 14/588,136 dated Nov. 2, 2016, 132 pages. |
Notice of Allowance for U.S. Appl. No. 14/692,677 dated Nov. 21, 2016, 97 pages. |
Number | Date | Country | |
---|---|---|---|
20150102281 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13960735 | Aug 2013 | US |
Child | 14573770 | US | |
Parent | 13149757 | May 2011 | US |
Child | 13960735 | US |