This application relates generally to laboratory-based x-ray fluorescence analysis systems and methods.
In x-ray fluorescence (XRF) analysis using laboratory x-ray sources, a major limitation in the detection and quantification of trace elements is the background contribution due to elastic and inelastic (Compton) scattering of the incident x-rays reaching and being detected by the x-ray detector. This background contribution extends across an energy range that overlaps with the energies of the x-ray fluorescence lines of interest, and is an important source of noise that reduces the signal-to-noise ratio of the x-ray detector.
In some conventional XRF systems, this background contribution is reduced by transmitting the incident x-ray beam through one or more thin foil filters to attenuate the x-rays incident on the sample in the energy range of the x-ray fluorescence lines of interest. However, such transmission filters tend to be effective only over a relatively narrow energy range immediately above the absorption edge of the filter material. In addition, such transmission filters also attenuate the higher energy bremsstrahlung x-rays from reaching the sample and exciting the x-ray fluorescence lines, thereby diminishing the desired x-ray fluorescence signal. In other conventional XRF systems, the background contribution is filtered from the incident x-ray energy spectrum by reflecting the incident x-ray beam from a multilayer-coated surface (e.g., mirror; monochromator) which selectively reflects x-rays within a corresponding energy range and transmits x-rays outside the corresponding energy range. The reflected x-rays are directed to illuminate the sample, while transmitted x-rays propagate away from the sample and the x-ray detector.
In one aspect disclosed herein, an x-ray optical filter comprises at least one x-ray optical mirror. The at least one x-ray optical mirror is configured to receive a plurality of x-rays having a first x-ray spectrum with a first intensity as a function of energy in a predetermined solid angle range and to separate at least some of the received x-rays by multilayer reflection or total external reflection into reflected x-rays and non-reflected x-rays and to form an x-ray beam comprising at least some of the reflected x-rays and/or at least some of the non-reflected x-rays. The x-ray beam has a second x-ray spectrum with a second intensity as a function of energy in the solid angle range, the second intensity greater than or equal to 50% of the first intensity across a first continuous energy range at least 3 keV wide, the second intensity less than or equal to 10% of the first intensity across a second continuous energy range at least 100 eV wide.
In another aspect disclosed herein, a method of performing x-ray fluorescence analysis is provided. The method comprises receiving x-rays having a first energy spectrum and a first spatial distribution. The method further comprises reflecting at least some of the received x-rays, the reflected x-rays having a second energy spectrum and a second spatial distribution. The method further comprises separating the reflected x-rays by multilayer reflection and/or total external reflection into a first portion that impinges a sample and a second portion having a predetermined range of x-ray energies, the first portion having a third energy spectrum that has a reduced intensity, as compared to the second energy spectrum, in the predetermined range of x-ray energies.
In another aspect disclosed herein, an x-ray system comprises at least one first x-ray optical mirror configured to receive at least a portion of a first x-ray beam having a first energy spectrum and to reflect at least some of the x-rays of the portion of the first x-ray beam to form a second x-ray beam. The x-ray system further comprises at least one second x-ray optical mirror comprising at least one mosaic crystal layer, at least one depth-grated multilayer reflector, and/or at least one grazing incidence mirror. The at least one second x-ray optical mirror is configured to receive at least some of the x-rays from the at least one first x-ray optical mirror, to transmit a second x-ray beam comprising a transmitted portion of the x-rays received from the at least one first x-ray optical mirror, and to reflect a reflected portion of the x-rays received from the at least one first x-ray optical mirror. The second x-ray beam has a second energy spectrum with a reduced intensity, as compared to the first energy spectrum, in a predetermined range of x-ray energies.
In another aspect disclosed herein, an x-ray system comprises at least one x-ray source configured to generate x-rays. The x-ray system further comprises at least one x-ray optical element configured to receive and focus at least some of the x-rays from the at least one x-ray source. The at least one x-ray optical element comprises at least one substrate comprising a surface and at least one depth-graded multilayer coating on the surface. The at least one depth-graded multilayer coating is configured to substantially reflect x-rays having energies in a first energy range and to not substantially reflect x-rays having energies in a second energy range that does not overlap the first energy range.
One example area in which x-ray fluorescence (XRF) can provide information is the interactions of metals in biological systems (e.g., role of metals in biological processes; metal-based drugs). These trace elements are typically found in concentration of parts per million (ppm) and spatially specific at organ, tissue, cell, and sub-cellular levels. Abnormal trace element distribution in tissues has been directly linked to many diseases, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), Huntington disease. Recent studies are also linking pathologies such as arthritis and schizophrenia to abnormal trace element concentrations of blood serum in human populations, which are driving questions on elemental distributions in the diseased tissues. In addition, promising new metal-based therapeutics (e.g., anti-cancer and anti-HIV) are driving the need for metal mapping capabilities to better understand the in vivo uptake of the drugs and to determine targeting strategies.
XRF has previously been used for chemical analysis and elemental imaging for metal mapping in biological specimens. High performance synchrotron-based “microXRF” is capable of elemental analysis of biological tissue at cellular and sub-cellular resolution (e.g., microns to 30 nm) with trace-level (e.g., below parts per million (ppm)) sensitivity and quantification. Synchrotron XRF microprobes typically use a monochromator to define a single incident x-ray energy and large synchrotron-specific optics (e.g., Kirkpatrick-Baez mirrors or KB mirrors) to focus the x-rays onto a 0.5-5 μm spot. Example synchrotron-based microXRF studies performed at about 1.6 μm resolution have analyzed intracellular localization of Pt-based anticancer chemotherapeutic compounds in cancerous and non-cancerous cells and the relation of Pt to Zn, providing the insight that Zn-related detoxification was responsible for the development of resistance to chemotherapy. In another example study, synchrotron-based microXRF performed at around 4 μm resolution was used to determine the ration of Co to Cu surrounding failed hip implants, which showed that the failed implants preferentially distributed Co versus non-failed implants, and that analyses of this ratio may inform implant selection. In still another example study, the spatial density of Fe-rich regions in the fingernails of people diagnosed with lung cancer was mapped at about 2 μm resolution.
However, such microXRF systems require access to synchrotron facilities, which are expensive (e.g., each synchrotron facility costs upward to $1B) and are limited in number to only a few centers worldwide. Because of the small number of such facilities with x-ray fluorescence beamlines (e.g., each beamline can cost over $10M), access is immensely competitive. Even if granted, beamtime is often limited to a week or a few days, which is problematic in that it limits the number of samples that can be analyzed, and/or the ability to change the measurement protocol (e.g., improvements to sample preparation and/or sample selection). There are of course additional challenges including logistics of traveling to the synchrotron and the associated costs.
Conventional laboratory-based XRF systems, which had been developed to provide broad access to microspot XRF analysis, are typically based on an electron-bombardment laboratory x-ray source that produces a polychromatic x-ray spectrum, which is then focused to a spot size of about 30-100 μm using polycapillary x-ray optics. In comparison to synchrotron systems, such conventional systems are limited to poorer resolution and have lower sensitivity, which is problematic for elemental analysis of trace concentrations in biological applications.
Certain embodiments described herein provide a system (e.g., an x-ray fluorescence system) comprising a microstructured x-ray source comprising at least one target material (e.g., Au) embedded in a thermally conductive substrate (e.g., diamond), the x-ray source configured to emit x-rays with energies corresponding to one or more characteristic x-ray lines of the at least one target material. The system further comprises an x-ray optic positioned to receive at least a portion of the x-rays from the x-ray source. The x-ray optic comprises an axially symmetric x-ray focusing optic having a depth graded multilayer coating on an inner surface (e.g., with an ellipsoidal profile in a plane along a longitudinal axis of the x-ray optic) configured to substantially reflect (e.g., to have a reflectivity greater than 30%; to have a reflectivity greater than 50%) x-rays having energies in a first predetermined range, to not substantially reflect (e.g., to have a reflectivity less than 10%; to have a reflectivity less than 5%) x-rays in a second predetermined range (e.g., in a range which includes the fluorescence lines of the elements being analyzed), and to focus the reflected x-rays onto a sample (e.g., biological sample; semiconductor sample; geological sample) to be analyzed.
Certain embodiments described herein provide an x-ray optic comprising at least an axially symmetric portion of a tube (e.g., capillary), the portion having an inner surface with a shape (e.g., an ellipsoidal profile in a plane along a longitudinal axis of the x-ray optic) configured for focusing the x-rays from an x-ray source (e.g., with source imaging; with source demagnification; with source magnification). The inner surface of the axially symmetric portion comprises at least one depth graded multilayer coating configured to substantially reflect x-rays having energies in a first range of energies and to not substantially reflect x-rays having energies in a second range of energies that does not overlap the first range of energies.
Certain embodiments described herein provide an x-ray fluorescence system. The system comprises at least one x-ray optic configured to receive at least a portion of a first x-ray beam having a first energy spectrum and to reflect at least some of the x-rays of the portion of the first x-ray beam to form a second x-ray beam. The second x-ray beam has a second energy spectrum. The system further comprises at least one optical element (e.g., mirror) configured to receive at least some of the x-rays of the second x-ray beam, to transmit a third x-ray beam comprising a transmitted portion of the x-rays received from the second x-ray beam, and to reflect a reflected portion of the x-rays received from the second x-ray beam. The third x-ray beam has a third energy spectrum with a reduced intensity, as compared to the second energy spectrum, in a predetermined range of x-ray energies.
Certain embodiments described herein provide a method of performing x-ray fluorescence analysis. The method comprises receiving x-rays having a first energy spectrum and a first spatial distribution and reflecting at least some of the received x-rays. The reflected x-rays have a second energy spectrum and a second spatial distribution. The method further comprises transmitting a first portion of the reflected x-rays to impinge a sample and reflecting a second portion of the reflected x-rays. The first portion has a third energy spectrum that has a reduced intensity, as compared to the second energy spectrum, in a predetermined range of x-ray energies.
Certain embodiments described herein advantageously tailor the energy spectrum of the x-rays incident on the sample to reduce (e.g., remove; cut out) the intensity (e.g., flux) of x-rays in the x-ray fluorescence energy range of interest while preserving (e.g., not substantially affecting) the intensity (e.g., flux) of x-rays at energies higher than the x-ray fluorescence energy range of interest. By reducing the intensity of the incident x-rays in the x-ray fluorescence energy range, certain embodiments reduce the scattered x-ray contribution to the background in the x-ray fluorescence energy range. By preserving the intensity of the incident x-rays at energies above the x-ray fluorescence energy range, certain embodiments maintain (e.g., do not substantially reduce) the x-ray intensity that excites the x-ray fluorescence within the sample. Certain embodiments described herein utilize reflection, rather than absorption, to reduce the intensity of x-rays in the x-ray fluorescence energy range of interest.
Certain embodiments described herein advantageously operate as a “notch filter” in which x-rays within at least one predetermined energy range having a lower bound x-ray energy and an upper bound x-ray energy are substantially prevented from impinging the sample while x-rays outside the at least one predetermined energy range (e.g., at energies above the upper bound x-ray energy; at energies above the upper bound x-ray energy and x-rays below the lower bound x-ray energy) are allowed to propagate to impinge the sample.
Certain embodiments described herein advantageously increase the throughput for x-ray fluorescence analysis by reducing the data acquisition time for performing measurements with sufficient signal-to-noise ratio. For example, the data acquisition time T can be expressed as: T∝B/F2, where B is the background contribution and F is the x-ray fluorescence signal. Certain embodiments described herein reduce the background contribution B by about 90% while the x-ray fluorescence signal F is only decreased by about 10%, resulting in a reduction of the data acquisition time T by about 88%.
Certain embodiments described herein are configured to facilitate (e.g., improve) x-ray fluorescence systems configured for trace element mapping (e.g., in biological samples; in semiconductor samples; in geological samples). In certain such embodiments, the bremsstrahlung x-ray beam is refocused using a second paraboloidal optic and the sample is scanned to generate elemental maps of a wide range of elements. Certain embodiments described herein provide more rapid analysis and/or increased sensitivity to the trace elements being analyzed (e.g., by improving the signal-to-noise ratio), while maintaining the desired high spatial resolution (e.g., for semiconductor applications, biomedical research, and other applications). Certain other embodiments described herein provide more rapid analysis and/or increased sensitivity to the trace elements being analyzed (e.g., by improving the signal-to-noise ratio) in applications that do not utilize high spatial resolution (e.g., mineral exploration).
Certain other embodiments are configured to determine the contribution from a first x-ray fluorescence line of a first element (e.g., Hf) from the contribution from a second x-ray fluorescence line of a second element (e.g., Cu) where the first x-ray fluorescence line and the second x-ray fluorescence line have similar (e.g., substantially the same) energies. For example, in a semiconductor processing application, a notch filter can be configured to remove x-rays in an energy range of 9 keV-9.6 keV from an incident x-ray beam, and a sample containing both Cu (e.g., having a K absorption edge at about 9 keV and a Kα fluorescence line at about 8 keV) and Hf (e.g., having an L absorption edge at about 9.6 keV and an Lα fluorescence line at about 8 keV) can be analyzed by (i) measuring a first x-ray fluorescence from the sample with the notch filter preventing x-rays within the energy range from impinging the sample, (ii) measuring a second x-ray fluorescence from the sample without the notch filter preventing x-rays within the energy range from impinging the sample, and (iii) comparing the first x-ray fluorescence and the second x-ray fluorescence. Certain other embodiments described herein are configured to advantageously remove the contributions from diffraction peaks in the measured x-rays. Certain other embodiments described herein are configured to reduce (e.g., prevent; minimize) the flux of x-rays within a selected range of energies from impinging the sample while allowing x-rays outside the selected range of energies to impinge the sample, thereby advantageously reducing the overall x-ray flux impinging the sample (e.g., a sample that is sensitive or susceptible to damage by radiation dosages above a predetermined threshold).
With regard to biological systems, XRF analysis is often complex (e.g., the XRF of different elements are maximized at different energies) and it can be desirable to detect multiple elements simultaneously at the highest sensitivities possible. Certain embodiments described herein produce both strong characteristic x-ray energies related to the x-ray target material and a broad polychromatic x-ray spectrum up to the accelerating voltage of the electron beam of the x-ray source, thus enabling increased excitations.
Certain embodiments described herein provide systems and methods for x-ray fluorescence for chemical analysis and elemental imaging with sub-cellular resolution. As described herein, certain such embodiments can provide advantages even over those provided by a recently developed laboratory microXRF system which incorporates a microstructured x-ray source and a double paraboloidal x-ray optic to achieve resolution less than 10 μm (e.g., 8 μm) and sub-ppm and sub-femtogram (absolute) detection sensitivities. This laboratory-based microXRF system has been applied to a broad range of biological applications by various researchers, including but not limited to: nanoparticle drugs in tumors; trace element dysregulations in diseased calcified tissue such as penile stones, kidney stones, and teeth; genetic modification of crops to improve nutritional uptake (e.g., iron); correlations of elemental anomalous distribution of Zr, I, Cu, and Sr in hair samples with the onset and progression of diabetes, autism, and cancer; Parkinson mouse models and toward the creation of a quantitative hybrid routine using microXRF and inductively coupled plasma mass spectrometry (ICP-MS) techniques. Certain embodiments described herein are configured to advantageously provide imaging of biologically important elements at 1.6 μm resolution with a speed that is three times faster than this system provides at 8 μm resolution. Certain embodiments described herein advantageously expand the use of laboratory microXRF systems for imaging biologically important elements for biomedical applications and speed up the pace of biomedical research that is bottlenecked by low synchrotron access.
Certain embodiments described herein are configured to provide information relevant to metal-binding proteins (e.g., metalloproteins) in the tissue samples. Metalloproteins account for one third of all proteins in the human body, are known to carry out at least one step in almost every biological pathway. The dysregulation of these physiologically important metals is hypothesized to be linked to numerous diseases, including: Menke's and Wilson's diseases, neurodegenerative diseases such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), Huntington disease, autism, and autoimmune diseases such as rheumatoid arthritis, Crohn's, Grave's disease, and infertility. Certain embodiments described herein are configured to provide information relevant to additional elements, previously not found in biological systems, but which are being introduced into such systems, either intentionally (e.g., such as pharmaceutical drugs, which have been moving toward inorganic-based concepts and metal nanoparticles) or unintentionally (e.g., accumulated by environmental exposure, often the result of modern industrial use and pollution), and which can have potential toxic effects. Certain embodiments described herein are configured to provide information relevant to the development of targeted and rational design approaches to metallodrugs (e.g., information relevant to their uptake into tumors, cells, and organelles; information relevant to the removal or detoxification of such drugs; information relevant to the effectiveness of such drugs and/or the development of drug resistance to such drugs).
Certain embodiments described herein provide high spatial resolution imaging information (e.g., relevant to understand the underlying biological functions of physiologically important elements and associated molecules, and biological pathways of therapeutic drugs or toxic elements) with multilength scale resolutions, such as cellular resolution for imaging tissues and organs and sub-cellular resolution for imaging cells, despite the low trace level concentrations of many biologically important elements in biological specimens, due to the small number of metal atoms in the small probed volume. Certain embodiments described herein enable simultaneously imaging multiple elements at sub-cellular resolution and at high sensitivity to provide information relevant to the relationship between elements and corresponding biomolecules (e.g., metalloproteins) and/or textural information (such as K). For example, imaging trace elements along with the distribution of phosphorus, sulfur, and potassium by certain embodiments described herein provides information relevant to spatial correlation with DNA (P), protein (S) and cellular shape (K).
Certain embodiments described herein provide “pre-synchrotron” screening which can inform sample preparation and ensure effective utilization of synchrotron resources, as well as to select samples prior to ultrahigh resolution (e.g., 30 nm-100 nm) XRF studies. Certain embodiments described herein provide analysis of a large number of samples (e.g., used by many biomedical applications) to account for statistical population variance. Certain embodiments described herein provide analysis of samples that cannot be transported other facilities (e.g., synchrotrons) due to the proprietary nature of the samples, the dangerous nature of the samples, or other reasons. Certain embodiments described herein provide high penetration and experimental flexibility in accommodating various specimen sizes and shapes under various conditions (e.g., wet, cryo-preserved, fixed, and/or stained under a range of flexible operating conditions; ambient; cryogenic). Certain embodiments described herein provide non-destructive x-ray fluorescence analysis which can be combined with correlative (e.g., follow-on or follow-up) analysis and/or imaging performed with other techniques, including but not limited to, infrared and Raman spectroscopy/microscopy, molecular mass spectroscopy (e.g., matrix assisted laser desorption/ionization or MALDI), secondary mass spectroscopy x-ray absorption spectroscopy for investigating the chemical state of the elements of interest). Certain embodiments described herein advantageously provide other benefits, including but not limited to: simultaneous detection of many elements within absolute detection limits, and measurements of specimens at or close to their natural state under ambient conditions. Certain embodiments described herein provide much higher spatial resolution than do mass spectroscopy imaging techniques (e.g., laser ablation inductively coupled plasma mass spectrometry or LA-ICP-MS), and orders of magnitude higher sensitivity and lower radiation dose than do electron-based techniques.
Certain embodiments described herein are configured to provide elemental imaging (e.g., information regarding the spatial distributions) of one or more biologically important elements (e.g., in metal-binding proteins) in tissue samples at minor and trace level concentrations (e.g., parts per million; 0.1% or less).
In certain embodiments, as schematically illustrated by
In certain embodiments, the system 10 further comprises at least one x-ray detector 60 configured to detect and measure at least a portion of the x-ray fluorescence 52 emitted from the sample 50. For example, the at least one x-ray detector 60 can comprise an energy dispersive detector configured to detect the fluorescence x-rays emitted from the sample (e.g., to generate images indicative of the elemental distribution of the sample). As schematically illustrated by
In certain embodiments, the x-ray source 40 comprises at least one microstructured target 42 having at least one material (e.g., Au) on or embedded in a thermally conductive substrate 44 (e.g., diamond). The at least one material of the at least one microstructured target 42 is configured to emit x-rays (e.g., the first x-ray beam 12) with ultrahigh source brightness upon being bombarded by electrons 46, the first x-ray beam 12 emitted from the x-ray source 40 through at least one window 48. The at least one material of the at least one target 42 is configured to emit x-rays having energies higher than one or more characteristic x-ray fluorescence lines of the sample 50 being analyzed. For example, the characteristic L-lines of Au are slightly above the K-absorption edge of Zn and not far above the K-absorption edges of Fe and Cu, so the L-lines of an Au target material can be more than three times more efficient for production of x-ray fluorescence signals for these example elements. The x-ray source 40 of certain embodiments has as a source size in a range of 5 μm to 15 μm (e.g., 8 μm; 10 μm). Example parameters of the x-ray source 40 include, but are not limited to: an electron beam operating acceleration voltage of 35 kV; an electron power of 30 W; a window 48 comprising beryllium and having a thickness of 50 μm; an electron beam footprint on the target (e.g., full-width-at-half-maximum) of 8 μm (width)×100 μm (length); the substrate 44 comprising diamond with 200 etched trenches (e.g., 4 μm deep, 1 μm thick, and 20 μm wide) extending along the long dimension of the electron beam footprint; trenches filled with the at least one material (e.g., Au) of the at least one target 42; the first x-ray beam 12 having a 5° takeoff angle along the long dimension of the electron beam footprint. Examples of x-ray sources 40 compatible with certain embodiments described herein are disclosed by U.S. Pat. Nos. 9,874,531, 9,823,203, 9,719,947, 9,594,036, 9,570,265, 9,543,109, 9,449,781, 9,448,190, and 9,390,881, each of which is incorporated in its entirety by reference herein.
The example at least one x-ray optical element 20 of
In certain embodiments, the surface 73 of the x-ray focusing optical element 70 is configured to focus the x-rays with a 1:1 imaging at the sample 50 of the portion of the x-ray source 40 from which the x-rays are generated (e.g., the source spot on at least one microstructured target 42 from which the x-rays are emitted). In certain other embodiments, the surface 73 of the x-ray focusing optical element 70 is configured to focus the x-rays with magnification (e.g., by at least a factor of 3; by at least a factor of 5; 1:3; 1:5) at the sample 50 of the portion of the x-ray source 40 from which the x-rays are generated (e.g., the source spot on at least one microstructured target 42 from which the x-rays are emitted). In certain other embodiments, the surface 73 of the x-ray focusing optical element 70 is configured to focus the x-rays with demagnification (e.g., by at least a factor of 3; by at least a factor of 5; 3:1; 5:1) at the sample 50 of the portion of the x-ray source 40 from which the x-rays are generated (e.g., the source spot on at least one microstructured target 42 from which the x-rays are emitted). In certain embodiments, as schematically illustrated by
As schematically illustrated in
In the example depth-graded multilayer 90 of
In certain embodiments, the x-ray focusing optical element 70 is further configured to reduce unwanted background contributions at specific x-ray energies (e.g., by at least a factor of 12) that would otherwise obscure the trace element signals of interest. The main component of this unwanted background contribution is Bremsstrahlung continuum from the laboratory x-ray source 40. Previously, two conventional approaches have been used to minimize the background Bj,k: (i) a crystal or multilayer monochromator to obtain an x-ray excitation beam with a narrow energy bandwidth, but at the cost of substantially reduced flux, and (ii) a spectral filter (e.g., a foil) to absorb a fraction of the “undesirable” x-rays. However, both conventional approaches have major limitations for laboratory microXRF, especially for higher resolution applications in which the focus spot size is smaller than 8 μm. The monochromator approach only provides a limited amount of flux, since only a tiny fraction of the x-ray spectrum is used (e.g., only one x-ray energy, such as the Au Lα energy of 9.713 keV, would be used). Additionally, there are technical challenges associated with the conflicting requirements of: (i) collecting x-rays over a large solid angle to obtain good focused x-ray flux and (ii) the need for highly collimated x-ray beams for use with monochromators, which is made more challenging when collecting x-rays of multiple angular incidences to fulfill requirement (i). As a result, the monochromator approach is almost exclusively performed at synchrotrons and no laboratory microXRF system uses this approach.
In contrast,
In certain embodiments, the x-ray focusing x-ray optical element 70 (e.g., comprising the at least one substrate 72 and the at least one layer 74 comprising the depth-graded multilayer 90) is configured to provide a near-optimal spectrum for the intended application. For example, applying the Bragg equation (2d·sin θ=λ), x-rays reflected from a location on the depth-graded multilayer 90 have a spectral bandwidth of about 45-50%. The lowest x-ray energy reflected by the depth-graded multilayer 90 is given by the largest incidence angle, which is at the downstream end 78 of the ellipsoidal portion of the x-ray focusing optical element 70 (e.g., the end 78 farthest from the x-ray source 40; see
As shown in
As shown in the example reflectivity spectra of
In certain embodiments, the combination of the increased x-ray fluorescence signal and the reduction of background provides a significant gain in the signal-to-noise ratio and the imaging speed for imaging the elements of interest. For example, as described more fully herein, the figure-of-merit (FOM) of certain embodiments is maximized by maximizing the flux of x-rays of energy greater than the K-edge absorption energy to increase the fluorescence signal Fj,k and minimizing the background Bj,k. Besides examples such as Fe, Cu, and Zn (as shown in
Certain embodiments described herein can be characterized by a figure of merit (FOM) that is indicative of the performance of the microXRF system. The minimum detection limit (MDL) using x-ray fluorescence analysis is proportional to 3*Fj,k/sqrt(Bj,k), i.e., MDL˜3 F′j,k/sqrt(B′j,k)=3*Fj,k*T/*sqrt(Bj,k*T)=3*sqrt(T)*Fj,k/sqrt(Bj,k), where F′j,k and Fj,k is the total net counts and count rate (counts/s), respectively, of fluorescence x-rays of an element j for a given characteristic x-ray fluorescence line k integrated over the detector energy resolution band, and the B′j,k and Bj,k are the total net counts and count rate (counts/s), respectively, of the background underneath the x-ray fluorescence signal (Fj,k), integrated over the same detector energy resolution band. Therefore, the time T required to obtain a given MDL is proportional to Bj,k/F2j,k, which can be defined as a Figure of Merit (FOM):
FOM˜F2j,k/Bj,k (1)
Certain embodiments described herein are advantageous based at least in part on increasing (e.g., maximizing) the x-ray fluorescence signal (Fj,k) and/or reducing (e.g., minimizing) the background contribution (Bj,k).
The x-ray fluorescence signal (Fj,k) detected by an energy dispersive detector 60 in an x-ray micro-XRF system is approximately given by:
Fj,k=F*σj,k(E)*NjΩ*η/4π (2)
where F is the flux of the incident focused second x-ray beam, σj,k(E) is the x-ray fluorescence cross section of the element j for the characteristic line k having energy E, Nj is the number of atoms of the element j in the illuminated volume, Ω is the detector solid angle in steradians, and η is a parameter that takes into account losses, including the detector detection efficiency and the attenuation of the fluorescence x-rays from the production point to the detector.
In an evaluation of a microXRF system (e.g., a comparison among different microXRF systems), Nj is the concentration of elements to be measured and should be kept constant. The detector solid angle Ω and the loss parameter η are largely dependent on the detector and physics (self-attenuation) and can be implemented, in principle, in most microXRF systems. Certain embodiments described herein are advantageous based at least in part on increasing (e.g., maximizing) the incident focused x-ray beam flux F and/or increasing (e.g., maximizing) the x-ray fluorescence cross section σj,k(E).
With regard to increasing (e.g., maximizing) the incident focused x-ray beam flux F, the incident focused x-ray flux F can be expressed as:
F=B*L2*(2NA)2 (3)
where B is the product of the x-ray source brightness B at the sample, with brightness B defined as number of x-rays per unit area and per unit solid angle illuminating the sample (and not to be confused with the background contribution Bj,k), L is the focus spot size, and NA is the numerical aperture (which is related to the collection solid angle) of the x-ray focusing optic. The product of L2 and (2NA)2 is the square of the phase space of the focused x-ray beam.
Certain embodiments described herein are advantageous based at least in part on increasing (e.g., maximizing) the x-ray source brightness B and increasing (e.g., maximizing) the collection solid angle of the x-ray focusing optical element 70 for a given probe spot size L. For example, a high source brightness can be achieved using a microstructured target x-ray source 40 (see, e.g., U.S. Pat. Nos. 9,874,531, 9,823,203, 9,719,947, 9,594,036, 9,570,265, 9,543,109, 9,449,781, 9,448,190, and 9,390,881, each of which are incorporated in its entirety by reference herein) that comprises micron-sized metal targets 42 on or embedded in an anode substrate 44 (e.g., diamond). The brightness B of an electron bombardment x-ray source 40 is directly proportional to the electron power density on the anode, which can be limited by the melting of the anode and therefore the thermal dissipation properties of the anode. Due to the excellent thermal properties of diamond, with a thermal conductivity that is five times that of Au at room temperature, certain embodiments described herein advantageously load the anode with substantially higher electron power densities within a spot (e.g., 8-10 μm spot size) than are used for bulk metal anodes as used in conventional sources. Additional benefits of the microstructured anode include (i) the high temperature gradient between the micron-sized metal targets 42 and the surrounding diamond substrate 44 due to the differential energy deposition rate of the incident electrons, which is proportional to mass density, in the metal material of the target 42 (with higher mass density) versus in the diamond substrate 44 (with lower mass density) and/or (ii) the small size of the microstructure targets 42 have maximal contact between the microstructure target 42 and the diamond substrate 44. The microstructured x-ray source 40 also enables the use of one or more metal materials for the target 42 with x-ray spectral properties optimal for the intended applications (e.g., Au) and/or that otherwise would be impractical to use.
With regard to increasing (e.g., maximizing) the x-ray fluorescence cross section σj,k(E), the x-ray fluorescence cross section σj,k(E) is equal to the product of the ionization cross section and the fluorescence yield of the characteristic line, which is constant for a given element. The ionization cross section strongly depends on the energy of the incident x-ray beam E and is proportional to (E−Ej,k)−3, so the x-ray fluorescence cross section is as well, that is:
σj,k(E)˜(E−Ej,k)−3 (4)
where Ej,k is the photon ionization energy of the element j for producing characteristic line k.
Certain embodiments described herein are advantageous based at least in part on selecting the x-ray energy of the excitation beam to increase (e.g., maximize) the quantity (E−Ej,k)−3. For example, a microstructured target 42 comprising Au can provide nearly optimal spectra for increasing σj,k(E) for many elements, including but not limited to: Fe, Cu, and Zn.
With regard to decreasing the background contribution (Bj,k), the background contribution Bj,k of the x-ray spectrum recorded in a microXRF system arises from two major factors: (i) incident x-rays that are scattered by the sample 50 and detected by the energy dispersive detector 60 (and that have energies within the same energy bandwidth of the corresponding fluorescence signal), and (ii) incomplete charge collection of the energy dispersive detector 60, specified as the peak to background (P/B) ratio. Because widely-used energy dispersive detectors 60 typically have a large P/B ratio (e.g., equal to 20,000), the background contribution Bj,k is dominated by the scattered incident x-rays for a microXRF system. Certain embodiments described herein are advantageous based at least in part on reducing (e.g., minimizing) the incident x-rays within the energy bandwidth of the corresponding fluorescence signal(s) of trace level elements to reduce (e.g., minimize) Bj,k, thereby achieving a large FOM for biologically relevant trace elements. This reduction of Bj,k can be especially advantageous when analyzing trace elements with weak x-ray fluorescence signals (Fj,k).
In certain embodiments, the focusing x-ray optical element 70 comprising the depth-graded multilayer 90 is configured to provide substantial improvement over conventional focusing x-ray optics (e.g., an x-ray optic comprising a coating having a single layer of Pt). For example, the focusing x-ray optical element 70 comprising the depth-graded multilayer 90 can include the following attributes:
In certain embodiments, the net gain in FOM (expression (1)) of a factor of 3 compared to other microXRF systems results from a combination of: a 3× increase of the relative gain in fluorescence cross section of the focused second x-ray beam 32, a 9× increase of the solid angle collection of x-rays from the x-ray source 40, offset by 45% multilayer reflectivity, a 12× reduction of the unwanted background, and a 25× loss of the number of metal atoms due to the reduction of area resulting from the 5× higher resolution (e.g., 5:1 demagnification).
A major challenge for laboratory-based microXRF is to image trace concentrations of the large number of biologically important elements with sufficient sensitivity and at acceptable speeds, and it can be even more challenging to do so at high resolutions. The FOM of a laboratory-based microXRF system can be indicative of the time required to image elements with trace level concentration in biological specimens with sufficient detection sensitivity at a high spatial resolution, an important measurement of performance of a laboratory-based microXRF system. Certain embodiments described herein can provide such images in a shorter amount of time than conventional systems.
In certain embodiments, at large incidence angles of the depth-graded multilayer 90, lower energy x-rays (e.g., up to 4 keV) can be reflected with relatively high efficiency, and these energies can be above the K-absorption edges of P and S. In certain embodiments, a thin film filter (e.g., about 5 mm thick Si) is positioned in the focused x-ray beam path to suppress the unwanted background under the fluorescence lines of P and S. FIG. 7 shows the suppression of unwanted background under the P and S K-line fluorescence using a 5 mm thick Si filter in accordance with certain embodiments described herein. The increase of solid angle of collection of the x-rays from the x-ray source 40 leads to an increase of the flux of the focused x-rays at energies above the K-absorption edge energies of P and S (e.g., by about 5×, which is approximately equal to 9× multiplied by the reflectivity shown in
In certain embodiments, the at least one first x-ray optical element 22 comprises at least one x-ray condenser (e.g., at least one x-ray optical element configured to collect and direct x-rays) having a reflective interface region (e.g., surface) configured to receive at least some of the x-rays of the first x-ray beam 12 and to reflect (e.g., at grazing incidence; total external reflection) at least some of the received x-rays 26 of the first x-ray beam 12. In certain embodiments, the at least one first x-ray optical element 22 is unitary (e.g., a single piece) and is axially symmetric about a longitudinal axis. For example, the at least one first x-ray optical element 22 can comprise a hollow axially symmetric tube or portion of a tube (e.g., capillary) extending along a longitudinal axis and comprising an inner surface (e.g., mirror surface) that extends fully around the longitudinal axis (e.g., encircles the longitudinal axis; extends 360 degrees around the longitudinal axis). In certain other embodiments, the at least one first x-ray optical element 22 comprises at least one portion of a hollow axially symmetric structure (e.g., a portion of an axially symmetric tube) extending along the longitudinal axis with an inner surface that extends only partially around the longitudinal axis (e.g., less than 360 degrees; in a range of 45 degrees to 360 degrees; in a range of 45 degrees to 315 degrees; in a range of 180 degrees to 360 degrees; in a range of 90 degrees to 270 degrees). In certain embodiments, the at least one first x-ray optical element 22 comprises multiple portions (e.g., 2, 3, 4, 5, 6, or more) separate from one another (e.g., with spaces between the portions) and distributed around the longitudinal axis, with the surface of each portion extending at least partially around and along the longitudinal axis. For example, the surfaces of the multiple portions can each extend around the longitudinal axis by an angle in a range of 15 degrees to 175 degrees, in a range of 30 degrees to 115 degrees, and/or in a range of 45 degrees to 85 degrees. In certain other embodiments, the at least one first x-ray optical element 22 comprises a plurality of portions (e.g., a polycapillary lens comprising a plurality of capillary tubes) positioned about a longitudinal axis.
As schematically illustrated by
In certain embodiments, the x-rays 26 form an x-ray beam having a beam size (e.g., outer diameter) that is in a range of less than 3 mm (e.g., in a range between 1 mm and 3 mm) at a downstream end 127 of the at least one first x-ray optical element 22. In certain embodiments, the portion of the first x-ray beam 22 received by the at least one first x-ray optical element 22 is divergent (e.g., has a first divergence angle in a range of 5 mrad to 60 mrad) and the x-rays 26 of certain embodiments form a collimated x-ray beam (e.g., having a second divergence angle in a range less than two mrad, less than 1.5 mrad, or less than 1 mrad).
The at least one x-ray reflector 130 is configured to reflect a first portion 132 of the x-rays 26 having energies in at least one predetermined energy range and to transmit a second portion of the x-rays 26 having energies outside the at least one predetermined energy range. As described herein, the transmitted second portion of the x-rays 26 is used as the second x-ray beam 32 which irradiates the sample being analyzed, the second x-ray beam 32 consisting essentially of the at least some of the non-reflected x-rays that are transmitted through the at least one x-ray reflector 130.
For example, the at least one x-ray reflector 130 can comprise at least one mosaic crystal layer on a substrate (e.g., silicon or glass having a thickness in a range of 0.2 millimeter to 1 millimeter). Example materials of the at least one mosaic crystal layer compatible with certain embodiments described herein include but are not limited to, highly oriented pyrolytic graphite (HOPG) or highly aligned pyrolytic graphite (HAPG). The mosaic crystal layer comprises a plurality of crystalline portions (e.g., domains; crystallites) tilted relative to one another with a mosaicity (e.g., range of crystal plane orientations; range of normal directions of the crystal planes). In certain embodiments, the mosaicity is less than three degrees. The x-ray reflector 130 of certain embodiments comprising at least one mosaic crystal layer and a substrate has a thickness in a range of 0.5 mm to 3 mm and the mosaic crystal layer comprises a low atomic number material (e.g., carbon; silicon; quartz) such that absorption of the x-rays 26 by the mosaic crystal layer is lower than a predetermined upper bound (e.g., less than 20%; less than 10%; less than 5%; less than 3%). In certain embodiments, the at least one mosaic crystal layer is planar, while in certain other embodiments, the at least one mosaic crystal layer is curved or bent (e.g., controllably bent to adjust the incident angle at which the x-rays 26 impinge the crystalline portions). In certain embodiments, the at least one mosaic crystal layer is oriented such that a surface of the at least one mosaic crystal layer is in a range of 6 degrees to 20 degrees, in a range of 15 degrees to 40 degrees, in a range of 40 degrees to 50 degrees, or in a range of 40 degrees to 65 degrees, relative to the x-rays 26 (e.g., relative to a collimated x-ray beam comprising the x-rays 26).
At least a first portion 132 of the x-rays 26 impinging the mosaic crystal layer satisfies the Bragg reflection condition for at least some of the crystalline portions of the mosaic crystal layer. The Bragg reflection condition can be expressed as: 2d·sin θ=n·λ, where d is the interplanar spacing between the crystal planes (e.g., carbon layers) of a crystalline portion, θ is the incident angle of the x-ray relative to the crystal planes of the crystalline portion, n is the integer order of the reflection, and λ is the wavelength of the incident x-rays (with the x-ray wavelength related to the x-ray energy by the relation: E=h·c/λ, where E is the energy, h is Planck's constant, and c is the speed of light). The first portion 132 of the x-rays 26 satisfying the Bragg reflection condition for at least some of the crystalline portions of the mosaic crystal layer is reflected by the mosaic crystal layer. The remaining portion of the x-rays 26 that does not satisfy the Bragg reflection condition for any of the crystalline portions of the mosaic crystal layer is not reflected by the mosaic crystal layer and is transmitted through the mosaic crystal layer (e.g., with substantially no attenuation), thereby forming the second x-ray beam 32.
In certain embodiments, due to the slight misalignment among the crystalline portions of the mosaic crystal layer and the small divergence angle of the incident x-rays 26, some of the x-rays 26 within a narrow range of wavelengths will find a crystalline portion for which the Bragg reflection condition is satisfied and will be reflected by the mosaic crystal layer so as to not contribute to the second x-ray beam 32. The mosaic crystal layer can be configured to have a mosaicity and to be oriented relative to the x-rays 26 (e.g., relative to a collimated x-ray beam comprising the x-rays 26) to reflect x-rays having a range of energies with a predetermined central value and predetermined bandwidth (e.g., a range having a lower bound and an upper bound), thereby preventing x-rays within the range (e.g., between the lower bound and the upper bound) from contributing to the second x-ray beam 32.
For another example, the at least one x-ray reflector 130 can comprise at least one depth-graded multilayer reflector, an example of which is schematically illustrated by
The at least one depth-graded multilayer of certain embodiments comprises a plurality of layer pairs (e.g., pairs of layers or bilayers having a high atomic number material and a low atomic number material that alternate in a direction perpendicular to the layers). The thicknesses of the layer pairs differ from one another (e.g., the spacings between sequential high-atomic-number-material layers differ from one another). For example, each layer pair can comprise a first layer comprising a first material and a second layer comprising a second material (e.g., Pt/Si layer pairs; Pt/B4C layer pairs; Pt/Al2O3 layer pairs; W/Si layer pairs; W/B4C layer pairs; W/Al2O3 layer pairs; Mo/Si layer pairs; Mo/B4C layer pairs; Mo/Al2O3 layer pairs; Ni/Si layer pairs; Ni/B4C layer pairs; Ni/Al2O3 layer pairs; Cu/Si layer pairs; Cu/B4C layer pairs; Cu/Al2O3 layer pairs). The thickness (e.g., in a direction substantially perpendicular to the substrate surface) of each layer pair is substantially constant along a direction substantially parallel to the surface. However, along the normal of the substrate surface, layer pairs are configured in sets or groups in which the thicknesses of the layer pairs in each group differ from one another. For example, the thicknesses of the layer pairs of the various groups can increase from a first thickness to a second thickness, with the layer groups closer to the substrate surface having smaller layer thicknesses than do layer groups farther from the substrate surface.
At least a first portion 132 of the x-rays 26 impinging the depth-graded multilayer reflector satisfies the Bragg reflection condition (2d·sin θ=n·λ) for at least some of the layers of the depth-graded multilayer coating, where d is the spacing between the high atomic number material layers (e.g., spacing between Pt, W, Mo, Ni, or Cu layers). The first portion 132 of the x-rays 26 satisfying the Bragg reflection condition for at least some of the layers is reflected by the depth-graded multilayer coating. The remaining portion of the x-rays 26 that does not satisfy the Bragg reflection condition for any of the layers of the depth-graded multilayer coating is not reflected by the depth-graded multilayer coating and is transmitted through the depth-graded multilayer coating and the substrate (e.g., with substantially no attenuation), thereby forming the second x-ray beam 32.
In certain embodiments, due to the varying thicknesses of the layers of the depth-graded multilayer coating, the incident x-rays 26 within a narrow range of wavelengths will find a layer spacing for which the Bragg reflection condition is satisfied and will be reflected by the depth-graded multilayer coating so as to not contribute to the second x-ray beam 32. The depth-graded multilayer reflector can be oriented relative to the x-rays 26 (e.g., relative to a collimated x-ray beam comprising the x-rays 26) to reflect x-rays 26 having a range of energies with a predetermined central value and predetermined bandwidth (e.g., a range having a lower bound and an upper bound), thereby preventing x-rays 26 within the range (e.g., between the lower bound and the upper bound) from contributing to the second x-ray beam 32.
As schematically illustrated by
As schematically illustrated by
In the example system of
At least a first portion 132 of the x-rays 26 impinging the grazing incidence mirror comprises x-rays for which the grazing angle of incidence is below the critical angle for total external reflection by the grazing incidence mirror (e.g., low energy x-rays; x-rays having energies below 1 keV, 3 keV, or 5 keV), and are reflected by the grazing incidence mirror. The remaining portion of the x-rays 26 for which the grazing angle of incidence is above the critical angle for total external reflection (e.g., higher energy x-rays; x-rays having energies above 1 keV, 3 keV, or 5 keV) is not reflected by the grazing incidence mirror and is transmitted through the grazing incident mirror (e.g., with substantially no attenuation), thereby forming the second x-ray beam 32 (e.g., the second x-ray beam 32 consists essentially of the at least some of the non-reflected x-rays from the at least one x-ray reflector 130).
As schematically illustrated by
For example, at least some x-rays 136 of the first portion 132 of the x-rays 26 impinging the second x-ray reflector 134 (e.g., second grazing incidence mirror) have a grazing angle of incidence that is below the critical angle for total external reflection by the second x-ray reflector 134 (e.g., low energy x-rays; x-rays having energies below 1 keV, 3 keV, or 5 keV) and are reflected by the second x-ray reflector 134 (e.g., the x-rays 136 are twice reflected, once by the first x-ray reflector 130 and once by the second x-ray reflector 134). The remaining x-rays of the first portion 132 of the x-rays 26 for which the grazing angle of incidence is above the critical angle for total external reflection by the second x-ray reflector 134 (e.g., higher energy x-rays; x-rays having energies above 1 keV, 3 keV, or 5 keV) are not reflected by the second x-ray reflector 134 and are transmitted through the second x-ray reflector 134.
In certain embodiments, as schematically illustrated by
In certain embodiments, the first x-ray reflector 130 is configured to reflect x-rays 132 in a first energy range having a first upper bound (e.g., 4 keV, 5 keV, 6 keV) and the second x-ray reflector 134 is configured to reflect x-rays 136 in a second energy range having a second upper bound (e.g., 2 keV, 3 keV, 4 keV) that is lower than the first upper bound. The energy range between the first upper bound and the second upper bound can have a reduced x-ray intensity (e.g., flux) (e.g., by at least 80%; by at least 90%; by at least 95%) as compared to the x-ray energy spectrum of the first x-ray beam 12 (e.g., schematically illustrated by
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is to be understood within the context used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Language of degree, as used herein, such as the terms “approximately,” “about,” “generally,” and “substantially,” represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” “generally,” and “substantially” may refer to an amount that is within ±10% of, within ±5% of, within ±2% of, within ±1% of, or within ±0.1% of the stated amount. As another example, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by ±10 degrees, by ±5 degrees, by ±2 degrees, by ±1 degree, or by ±0.1 degree, and the terms “generally perpendicular” and “substantially perpendicular” refer to a value, amount, or characteristic that departs from exactly perpendicular by ±10 degrees, by ±5 degrees, by ±2 degrees, by ±1 degree, or by ±0.1 degree.
Various configurations have been described above. Although this invention has been described with reference to these specific configurations, the descriptions are intended to be illustrative of the invention and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention. Thus, for example, in any method or process disclosed herein, the acts or operations making up the method/process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Features or elements from various embodiments and examples discussed above may be combined with one another to produce alternative configurations compatible with embodiments disclosed herein. Various aspects and advantages of the embodiments have been described where appropriate. It is to be understood that not necessarily all such aspects or advantages may be achieved in accordance with any particular embodiment. Thus, for example, it should be recognized that the various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may be taught or suggested herein.
This application claims the benefit of priority to U.S. Provisional Appl. No. 62/726,776 filed on Sep. 4, 2018 and U.S. Provisional Appl. No. 62/794,281 filed on Jan. 18, 2019, each of which is incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1203495 | Coolidge | Oct 1916 | A |
1211092 | Coolidge | Jan 1917 | A |
1215116 | Coolidge | Feb 1917 | A |
1328495 | Coolidge | Jan 1920 | A |
1355126 | Coolidge | Oct 1920 | A |
1790073 | Pohl | Jan 1931 | A |
1917099 | Coolidge | Jul 1933 | A |
1946312 | Coolidge | Feb 1934 | A |
2926270 | Zunick | Feb 1960 | A |
3795832 | Holland | Mar 1974 | A |
4165472 | Wittry | Aug 1979 | A |
4192994 | Kastner | Mar 1980 | A |
4227112 | Waugh et al. | Oct 1980 | A |
4266138 | Nelson et al. | May 1981 | A |
4426718 | Hayashi | Jan 1984 | A |
4523327 | Eversole | Jun 1985 | A |
4573186 | Reinhold | Feb 1986 | A |
4727000 | Ovshinsky | Feb 1988 | A |
4798446 | Hettrick | Jan 1989 | A |
4807268 | Wittry | Feb 1989 | A |
4940319 | Ueda et al. | Jul 1990 | A |
4945552 | Ueda | Jul 1990 | A |
4951304 | Piestrup et al. | Aug 1990 | A |
4972449 | Upadhya et al. | Nov 1990 | A |
5001737 | Lewis et al. | Mar 1991 | A |
5008918 | Lee et al. | Apr 1991 | A |
5119408 | Little | Jun 1992 | A |
5132997 | Kojima | Jul 1992 | A |
5148462 | Spitsyn et al. | Sep 1992 | A |
5173928 | Momose et al. | Dec 1992 | A |
5249216 | Ohsugi et al. | Sep 1993 | A |
5276724 | Kumasaka et al. | Jan 1994 | A |
5371774 | Cerrina | Dec 1994 | A |
5452142 | Hall | Sep 1995 | A |
5461657 | Hayashida | Oct 1995 | A |
5513237 | Nobuta et al. | Apr 1996 | A |
5602899 | Larson | Feb 1997 | A |
5604782 | Cash, Jr. | Feb 1997 | A |
5629969 | Koshishiba | May 1997 | A |
5657365 | Yamamoto et al. | Aug 1997 | A |
5682415 | O'Hara | Oct 1997 | A |
5715291 | Momose | Feb 1998 | A |
5729583 | Tang et al. | Mar 1998 | A |
5737387 | Smither | Apr 1998 | A |
5768339 | O'Hara | Jun 1998 | A |
5772903 | Hirsch | Jun 1998 | A |
5778039 | Hossain | Jul 1998 | A |
5799056 | Gulman | Aug 1998 | A |
5812629 | Clauser | Sep 1998 | A |
5825848 | Virshup et al. | Oct 1998 | A |
5832052 | Hirose et al. | Nov 1998 | A |
5857008 | Reinhold | Jan 1999 | A |
5878110 | Yamamoto et al. | Mar 1999 | A |
5881126 | Momose | Mar 1999 | A |
5912940 | O'Hara | Jun 1999 | A |
5930325 | Momose | Jul 1999 | A |
6108397 | Cash, Jr. | Aug 2000 | A |
6108398 | Mazor et al. | Aug 2000 | A |
6118853 | Hansen et al. | Sep 2000 | A |
6125167 | Morgan | Sep 2000 | A |
6195410 | Cash, Jr. | Feb 2001 | B1 |
6226347 | Golenhofen | May 2001 | B1 |
6278764 | Barbee, Jr. et al. | Aug 2001 | B1 |
6307916 | Rogers et al. | Oct 2001 | B1 |
6359964 | Kogan | Mar 2002 | B1 |
6377660 | Ukita et al. | Apr 2002 | B1 |
6381303 | Vu et al. | Apr 2002 | B1 |
6389100 | Verman et al. | May 2002 | B1 |
6430254 | Wilkins | Aug 2002 | B2 |
6430260 | Snyder | Aug 2002 | B1 |
6442231 | O'Hara | Aug 2002 | B1 |
6456688 | Taguchi et al. | Sep 2002 | B1 |
6463123 | Korenev | Oct 2002 | B1 |
6487272 | Kutsuzawa | Nov 2002 | B1 |
6504901 | Loxley et al. | Jan 2003 | B1 |
6504902 | Iwasaki et al. | Jan 2003 | B2 |
6507388 | Burghoorn | Jan 2003 | B2 |
6553096 | Zhou et al. | Apr 2003 | B1 |
6560313 | Harding et al. | May 2003 | B1 |
6560315 | Price et al. | May 2003 | B1 |
6707883 | Tiearney et al. | Mar 2004 | B1 |
6711234 | Loxley et al. | Mar 2004 | B1 |
6763086 | Platonov | Jul 2004 | B2 |
6811612 | Gruen et al. | Nov 2004 | B2 |
6815363 | Yun et al. | Nov 2004 | B2 |
6829327 | Chen | Dec 2004 | B1 |
6847699 | Rigali et al. | Jan 2005 | B2 |
6850598 | Fryda et al. | Feb 2005 | B1 |
6870172 | Mankos et al. | Mar 2005 | B1 |
6885503 | Yun et al. | Apr 2005 | B2 |
6891627 | Levy et al. | May 2005 | B1 |
6914723 | Yun et al. | Jul 2005 | B2 |
6917472 | Yun et al. | Jul 2005 | B1 |
6934359 | Chen | Aug 2005 | B2 |
6947522 | Wilson et al. | Sep 2005 | B2 |
6975703 | Wilson et al. | Dec 2005 | B2 |
7003077 | Jen et al. | Feb 2006 | B2 |
7006596 | Janik | Feb 2006 | B1 |
7015467 | Maldonado et al. | Mar 2006 | B2 |
7023950 | Annis | Apr 2006 | B1 |
7023955 | Chen et al. | Apr 2006 | B2 |
7057187 | Yun et al. | Jun 2006 | B1 |
7076026 | Verman et al. | Jun 2006 | B2 |
7079625 | Lenz | Jul 2006 | B2 |
7095822 | Yun | Aug 2006 | B1 |
7103138 | Pelc et al. | Sep 2006 | B2 |
7110503 | Kumakhov | Sep 2006 | B1 |
7119953 | Yun et al. | Oct 2006 | B2 |
7120228 | Yokhin et al. | Oct 2006 | B2 |
7130375 | Yun et al. | Oct 2006 | B1 |
7170969 | Yun et al. | Jan 2007 | B1 |
7180979 | Momose | Feb 2007 | B2 |
7180981 | Wang | Feb 2007 | B2 |
7183547 | Yun et al. | Feb 2007 | B2 |
7215736 | Wang et al. | May 2007 | B1 |
7215741 | Ukita et al. | May 2007 | B2 |
7218700 | Huber et al. | May 2007 | B2 |
7218703 | Yada et al. | May 2007 | B2 |
7221731 | Yada et al. | May 2007 | B2 |
7245696 | Yun et al. | Jul 2007 | B2 |
7264397 | Ritter | Sep 2007 | B2 |
7268945 | Yun et al. | Sep 2007 | B2 |
7286640 | Yun et al. | Oct 2007 | B2 |
7297959 | Yun et al. | Nov 2007 | B2 |
7298826 | Inazuru | Nov 2007 | B2 |
7330533 | Sampayon | Feb 2008 | B2 |
7346148 | Ukita | Mar 2008 | B2 |
7346204 | Ito | Mar 2008 | B2 |
7349525 | Morton | Mar 2008 | B2 |
7359487 | Newcome | Apr 2008 | B1 |
7365909 | Yun et al. | Apr 2008 | B2 |
7365918 | Yun et al. | Apr 2008 | B1 |
7382864 | Hebert et al. | Jun 2008 | B2 |
7388942 | Wang et al. | Jun 2008 | B2 |
7394890 | Wang et al. | Jul 2008 | B1 |
7400704 | Yun et al. | Jul 2008 | B1 |
7406151 | Yun | Jul 2008 | B1 |
7412024 | Yun et al. | Aug 2008 | B1 |
7412030 | O'Hara | Aug 2008 | B1 |
7412131 | Lee et al. | Aug 2008 | B2 |
7414787 | Yun et al. | Aug 2008 | B2 |
7433444 | Baumann | Oct 2008 | B2 |
7440542 | Baumann | Oct 2008 | B2 |
7443953 | Yun et al. | Oct 2008 | B1 |
7443958 | Harding | Oct 2008 | B2 |
7453981 | Baumann | Nov 2008 | B2 |
7463712 | Zhu et al. | Dec 2008 | B2 |
7486770 | Baumann | Feb 2009 | B2 |
7492871 | Popescu | Feb 2009 | B2 |
7499521 | Wang et al. | Mar 2009 | B2 |
7515684 | Gibson et al. | Apr 2009 | B2 |
7522698 | Popescu | Apr 2009 | B2 |
7522707 | Steinlage et al. | Apr 2009 | B2 |
7522708 | Heismann | Apr 2009 | B2 |
7529343 | Safal et al. | May 2009 | B2 |
7532704 | Hempel | May 2009 | B2 |
7551719 | Yokhin et al. | Jun 2009 | B2 |
7551722 | Ohshima et al. | Jun 2009 | B2 |
7561662 | Wang et al. | Jul 2009 | B2 |
7564941 | Baumann | Jul 2009 | B2 |
7583789 | Macdonald et al. | Sep 2009 | B1 |
7601399 | Barnola et al. | Oct 2009 | B2 |
7605371 | Yasui et al. | Oct 2009 | B2 |
7639786 | Baumann | Dec 2009 | B2 |
7646843 | Popescu et al. | Jan 2010 | B2 |
7672433 | Zhong et al. | Mar 2010 | B2 |
7680243 | Yokhin et al. | Mar 2010 | B2 |
7738629 | Chen | Jun 2010 | B2 |
7787588 | Yun et al. | Aug 2010 | B1 |
7796725 | Yun et al. | Sep 2010 | B1 |
7796726 | Gendreau et al. | Sep 2010 | B1 |
7800072 | Yun et al. | Sep 2010 | B2 |
7809113 | Aoki et al. | Oct 2010 | B2 |
7813475 | Wu et al. | Oct 2010 | B1 |
7817777 | Baumann et al. | Oct 2010 | B2 |
7848483 | Platonov | Dec 2010 | B2 |
7864426 | Yun et al. | Jan 2011 | B2 |
7864922 | Kawabe | Jan 2011 | B2 |
7873146 | Okunuki et al. | Jan 2011 | B2 |
7876883 | O'Hara | Jan 2011 | B2 |
7889838 | David et al. | Feb 2011 | B2 |
7889844 | Okunuki et al. | Feb 2011 | B2 |
7899154 | Chen et al. | Mar 2011 | B2 |
7902528 | Nara et al. | Mar 2011 | B2 |
7914693 | Jeong et al. | Mar 2011 | B2 |
7920673 | Lanza et al. | Apr 2011 | B2 |
7920676 | Yun et al. | Apr 2011 | B2 |
7924973 | Kottler et al. | Apr 2011 | B2 |
7929667 | Zhuang et al. | Apr 2011 | B1 |
7945018 | Heismann | May 2011 | B2 |
7949092 | Brons | May 2011 | B2 |
7949095 | Ning | May 2011 | B2 |
7974379 | Case et al. | Jul 2011 | B1 |
7983381 | David et al. | Jul 2011 | B2 |
7991120 | Okunuki et al. | Aug 2011 | B2 |
8005185 | Popescu | Aug 2011 | B2 |
8009796 | Popescu | Aug 2011 | B2 |
8009797 | Ouchi | Aug 2011 | B2 |
8041004 | David | Oct 2011 | B2 |
8036341 | Lee | Nov 2011 | B2 |
8058621 | Kommareddy | Nov 2011 | B2 |
8068579 | Yun et al. | Nov 2011 | B1 |
8073099 | Niu et al. | Dec 2011 | B2 |
8094784 | Morton | Jan 2012 | B2 |
8139711 | Takahashi | Mar 2012 | B2 |
8139716 | Okunuki et al. | Mar 2012 | B2 |
8184771 | Murakoshi | May 2012 | B2 |
8208602 | Lee | Jun 2012 | B2 |
8208603 | Sato | Jun 2012 | B2 |
8233587 | Sato | Jul 2012 | B2 |
8243879 | Itoh et al. | Aug 2012 | B2 |
8243884 | Rödhammer et al. | Aug 2012 | B2 |
8249220 | Verman et al. | Aug 2012 | B2 |
8280000 | Takahashi | Oct 2012 | B2 |
8306183 | Koehler | Nov 2012 | B2 |
8306184 | Chang et al. | Nov 2012 | B2 |
8331534 | Silver | Dec 2012 | B2 |
8351569 | Baker | Jan 2013 | B2 |
8351570 | Nakamura | Jan 2013 | B2 |
8353628 | Yun et al. | Jan 2013 | B1 |
8357894 | Toth et al. | Jan 2013 | B2 |
8360640 | Reinhold | Jan 2013 | B2 |
8374309 | Donath | Feb 2013 | B2 |
8406378 | Wang et al. | Mar 2013 | B2 |
8416920 | Okumura et al. | Apr 2013 | B2 |
8422633 | Lantz et al. | Apr 2013 | B2 |
8423127 | Mahmood et al. | Apr 2013 | B2 |
8451975 | Tada | May 2013 | B2 |
8422637 | Okunuki et al. | Jun 2013 | B2 |
8488743 | Verman | Jul 2013 | B2 |
8509386 | Lee et al. | Aug 2013 | B2 |
8520803 | Behling | Aug 2013 | B2 |
8526575 | Yun et al. | Sep 2013 | B1 |
8532257 | Mukaide et al. | Sep 2013 | B2 |
8553843 | Drory | Oct 2013 | B2 |
8559594 | Ouchi | Oct 2013 | B2 |
8559597 | Chen et al. | Oct 2013 | B2 |
8565371 | Bredno | Oct 2013 | B2 |
8576983 | Baeumer | Nov 2013 | B2 |
8588372 | Zou et al. | Nov 2013 | B2 |
8591108 | Tada | Nov 2013 | B2 |
8602648 | Jacobsen et al. | Dec 2013 | B1 |
8632247 | Ishii | Jan 2014 | B2 |
8644451 | Aoki et al. | Feb 2014 | B2 |
8666024 | Okunuki et al. | Mar 2014 | B2 |
8666025 | Klausz | Mar 2014 | B2 |
8699667 | Steinlage et al. | Apr 2014 | B2 |
8735844 | Khaykovich et al. | May 2014 | B1 |
8737565 | Lyon et al. | May 2014 | B1 |
8744048 | Lee et al. | Jun 2014 | B2 |
8755487 | Kaneko | Jun 2014 | B2 |
8767915 | Stutman | Jul 2014 | B2 |
8767916 | Hashimoto | Jul 2014 | B2 |
8781069 | Murakoshi | Jul 2014 | B2 |
8824629 | Ishii | Sep 2014 | B2 |
8831174 | Kohara | Sep 2014 | B2 |
8831175 | Silver et al. | Sep 2014 | B2 |
8831179 | Adler et al. | Sep 2014 | B2 |
8837680 | Tsujii | Sep 2014 | B2 |
8855265 | Engel | Oct 2014 | B2 |
8859977 | Kondoh | Oct 2014 | B2 |
8861682 | Okunuki et al. | Oct 2014 | B2 |
8903042 | Ishii | Dec 2014 | B2 |
8908824 | Kondoh | Dec 2014 | B2 |
8972191 | Stampanoni et al. | Mar 2015 | B2 |
8989351 | Vogtmeier et al. | Mar 2015 | B2 |
8989474 | Kido et al. | Mar 2015 | B2 |
8995622 | Adler et al. | Mar 2015 | B2 |
9001967 | Baturin | Apr 2015 | B2 |
9001968 | Kugland et al. | Apr 2015 | B2 |
9007562 | Marconi et al. | Apr 2015 | B2 |
9008278 | Lee et al. | Apr 2015 | B2 |
9016943 | Jacobsen et al. | Apr 2015 | B2 |
9020101 | Omote et al. | Apr 2015 | B2 |
9025725 | Kiyohara et al. | May 2015 | B2 |
9029795 | Sando | May 2015 | B2 |
9031201 | Sato | May 2015 | B2 |
9063055 | Ouchi | Jun 2015 | B2 |
9086536 | Pang et al. | Jul 2015 | B2 |
9129715 | Adler et al. | Sep 2015 | B2 |
9222899 | Yamaguchi | Dec 2015 | B2 |
9234856 | Mukaide | Jan 2016 | B2 |
9251995 | Ogura | Feb 2016 | B2 |
9257254 | Ogura et al. | Feb 2016 | B2 |
9263225 | Morton | Feb 2016 | B2 |
9280056 | Clube et al. | Mar 2016 | B2 |
9281158 | Ogura | Mar 2016 | B2 |
9291578 | Adler | Mar 2016 | B2 |
9329141 | Stutman | May 2016 | B2 |
9336917 | Ozawa et al. | May 2016 | B2 |
9357975 | Baturin | Jun 2016 | B2 |
9362081 | Bleuet | Jun 2016 | B2 |
9370084 | Sprong et al. | Jun 2016 | B2 |
9390881 | Yun et al. | Jul 2016 | B2 |
9412552 | Aoki et al. | Aug 2016 | B2 |
9430832 | Koehler et al. | Aug 2016 | B2 |
9439613 | Stutman | Sep 2016 | B2 |
9445775 | Das | Sep 2016 | B2 |
9448190 | Yun et al. | Sep 2016 | B2 |
9449780 | Chen | Sep 2016 | B2 |
9449781 | Yun et al. | Sep 2016 | B2 |
9453803 | Radicke | Sep 2016 | B2 |
9486175 | Fredenberg et al. | Nov 2016 | B2 |
9494534 | Baturin | Nov 2016 | B2 |
9502204 | Ikarashi | Nov 2016 | B2 |
9520260 | Hesselink et al. | Dec 2016 | B2 |
9524846 | Sato et al. | Dec 2016 | B2 |
9532760 | Anton et al. | Jan 2017 | B2 |
9543109 | Yun et al. | Jan 2017 | B2 |
9564284 | Gerzoskovitz | Feb 2017 | B2 |
9570264 | Ogura et al. | Feb 2017 | B2 |
9570265 | Yun et al. | Feb 2017 | B1 |
9588066 | Pois et al. | Mar 2017 | B2 |
9594036 | Yun et al. | Mar 2017 | B2 |
9595415 | Ogura | Mar 2017 | B2 |
9632040 | Stutman | Apr 2017 | B2 |
9658174 | Omote | May 2017 | B2 |
9700267 | Baturin et al. | Jul 2017 | B2 |
9719947 | Yun et al. | Aug 2017 | B2 |
9748012 | Yokoyama | Aug 2017 | B2 |
9757081 | Proksa | Sep 2017 | B2 |
9761021 | Koehler | Sep 2017 | B2 |
9823203 | Yun et al. | Nov 2017 | B2 |
9826949 | Ning | Nov 2017 | B2 |
9837178 | Nagai | Dec 2017 | B2 |
9842414 | Koehler | Dec 2017 | B2 |
9861330 | Rossl | Jan 2018 | B2 |
9874531 | Yun et al. | Jan 2018 | B2 |
9881710 | Roessl | Jan 2018 | B2 |
9916655 | Sampanoni | Mar 2018 | B2 |
9934930 | Parker et al. | Apr 2018 | B2 |
9939392 | Wen | Apr 2018 | B2 |
9970119 | Yokoyama | May 2018 | B2 |
10014148 | Tang et al. | Jul 2018 | B2 |
10020158 | Yamada | Jul 2018 | B2 |
10028716 | Rossl | Jul 2018 | B2 |
10045753 | Teshima | Aug 2018 | B2 |
10068740 | Gupta | Sep 2018 | B2 |
10074451 | Kottler et al. | Sep 2018 | B2 |
10076297 | Bauer | Sep 2018 | B2 |
10085701 | Hoshino | Oct 2018 | B2 |
10105112 | Utsumi | Oct 2018 | B2 |
10115557 | Ishii | Oct 2018 | B2 |
10141081 | Preusche | Nov 2018 | B2 |
10151713 | Wu et al. | Dec 2018 | B2 |
10153061 | Yokoyama | Dec 2018 | B2 |
10153062 | Gall et al. | Dec 2018 | B2 |
10182194 | Karim et al. | Jan 2019 | B2 |
10217596 | Liang et al. | Feb 2019 | B2 |
10231687 | Kahn et al. | Mar 2019 | B2 |
10247683 | Yun et al. | Apr 2019 | B2 |
10256001 | Yokoyama | Apr 2019 | B2 |
10264659 | Miller et al. | Apr 2019 | B1 |
10267752 | Zhang et al. | Apr 2019 | B2 |
10267753 | Zhang et al. | Apr 2019 | B2 |
10269528 | Yun et al. | Apr 2019 | B2 |
10295485 | Yun et al. | May 2019 | B2 |
10295486 | Yun et al. | May 2019 | B2 |
10297359 | Yun et al. | May 2019 | B2 |
10304580 | Yun et al. | May 2019 | B2 |
10349908 | Yun et al. | Jul 2019 | B2 |
10352695 | Dziura et al. | Jul 2019 | B2 |
10352880 | Yun et al. | Jul 2019 | B2 |
10393683 | Hegeman et al. | Aug 2019 | B2 |
10401309 | Yun et al. | Sep 2019 | B2 |
10416099 | Yun et al. | Sep 2019 | B2 |
10429325 | Ito et al. | Oct 2019 | B2 |
20010006413 | Burghoorn | Jul 2001 | A1 |
20020080916 | Jiang | Jun 2002 | A1 |
20020085676 | Snyder | Jul 2002 | A1 |
20030142790 | Zhou et al. | Jan 2003 | A1 |
20030054133 | Wadley et al. | Mar 2003 | A1 |
20030112923 | Lange | Jun 2003 | A1 |
20030223536 | Yun et al. | Dec 2003 | A1 |
20040047446 | Platonov | Mar 2004 | A1 |
20040120463 | Wilson et al. | Jun 2004 | A1 |
20040140432 | Maldonado et al. | Jul 2004 | A1 |
20050025281 | Verman et al. | Feb 2005 | A1 |
20050074094 | Jen et al. | Apr 2005 | A1 |
20050123097 | Wang | Jun 2005 | A1 |
20050163284 | Inazuru | Jul 2005 | A1 |
20050282300 | Yun et al. | Dec 2005 | A1 |
20060045234 | Pelc | Mar 2006 | A1 |
20060062350 | Yokhin | Mar 2006 | A1 |
20060233309 | Kutzner et al. | Oct 2006 | A1 |
20060239405 | Verman | Oct 2006 | A1 |
20070030959 | Ritter | Feb 2007 | A1 |
20070071174 | Hebert et al. | Mar 2007 | A1 |
20070108387 | Yun et al. | May 2007 | A1 |
20070110217 | Ukita | May 2007 | A1 |
20070183563 | Baumann | Aug 2007 | A1 |
20070183579 | Baumann et al. | Aug 2007 | A1 |
20070189449 | Baumann | Aug 2007 | A1 |
20070248215 | Ohshima et al. | Oct 2007 | A1 |
20080084966 | Aoki et al. | Apr 2008 | A1 |
20080089484 | Reinhold | Apr 2008 | A1 |
20080094694 | Yun et al. | Apr 2008 | A1 |
20080099935 | Egle | May 2008 | A1 |
20080116398 | Hara | May 2008 | A1 |
20080117511 | Chen | May 2008 | A1 |
20080159707 | Lee et al. | Jul 2008 | A1 |
20080165355 | Yasui et al. | Jul 2008 | A1 |
20080170662 | Reinhold | Jul 2008 | A1 |
20080170668 | Kruit et al. | Jul 2008 | A1 |
20080181363 | Fenter et al. | Jul 2008 | A1 |
20080240344 | Reinhold | Oct 2008 | A1 |
20080273662 | Yun | Nov 2008 | A1 |
20090052619 | Endoh | Feb 2009 | A1 |
20090092227 | David | Apr 2009 | A1 |
20090154640 | Baumann et al. | Jun 2009 | A1 |
20090316860 | Okunuki et al. | Dec 2009 | A1 |
20100012845 | Baeumer et al. | Jan 2010 | A1 |
20100027739 | Lantz et al. | Feb 2010 | A1 |
20100040202 | Lee | Feb 2010 | A1 |
20100046702 | Chen et al. | Feb 2010 | A1 |
20100061508 | Takahashi | Mar 2010 | A1 |
20100091947 | Niu | Apr 2010 | A1 |
20100141151 | Reinhold | Jun 2010 | A1 |
20100246765 | Murakoshi | Sep 2010 | A1 |
20100260315 | Sato et al. | Oct 2010 | A1 |
20100272239 | Lantz et al. | Oct 2010 | A1 |
20100284513 | Kawabe | Nov 2010 | A1 |
20110026680 | Sato | Feb 2011 | A1 |
20110038455 | Silver et al. | Feb 2011 | A1 |
20110058655 | Okumura et al. | Mar 2011 | A1 |
20110064191 | Toth et al. | Mar 2011 | A1 |
20110085644 | Verman | Apr 2011 | A1 |
20110135066 | Behling | Jun 2011 | A1 |
20110142204 | Zou et al. | Jun 2011 | A1 |
20110235781 | Aoki et al. | Sep 2011 | A1 |
20110243302 | Murakoshi | Oct 2011 | A1 |
20110268252 | Ozawa et al. | Nov 2011 | A1 |
20120041679 | Stampanoni | Feb 2012 | A1 |
20120057669 | Vogtmeier et al. | Mar 2012 | A1 |
20120163547 | Lee et al. | Jun 2012 | A1 |
20120163554 | Tada | Jun 2012 | A1 |
20120224670 | Kiyohara et al. | Sep 2012 | A1 |
20120228475 | Pang et al. | Sep 2012 | A1 |
20120269323 | Adler et al. | Oct 2012 | A1 |
20120269324 | Adler | Oct 2012 | A1 |
20120269325 | Adler et al. | Oct 2012 | A1 |
20120269326 | Adler et al. | Oct 2012 | A1 |
20120294420 | Nagai | Nov 2012 | A1 |
20130011040 | Kido et al. | Jan 2013 | A1 |
20130032727 | Kondoe | Feb 2013 | A1 |
20130039460 | Levy | Feb 2013 | A1 |
20130108012 | Sato | May 2013 | A1 |
20130108022 | Kugland et al. | May 2013 | A1 |
20130195246 | Tamura et al. | Aug 2013 | A1 |
20130223594 | Sprong et al. | Aug 2013 | A1 |
20130235976 | Jeong et al. | Sep 2013 | A1 |
20130259207 | Omote et al. | Oct 2013 | A1 |
20130279651 | Yokoyama | Oct 2013 | A1 |
20130308112 | Clube et al. | Nov 2013 | A1 |
20130308754 | Yamazaki et al. | Nov 2013 | A1 |
20140023973 | Marconi et al. | Jan 2014 | A1 |
20140037052 | Adler | Feb 2014 | A1 |
20140064445 | Adler | Mar 2014 | A1 |
20140072104 | Jacobsen et al. | Mar 2014 | A1 |
20140079188 | Hesselink et al. | Mar 2014 | A1 |
20140105363 | Chen et al. | Apr 2014 | A1 |
20140146945 | Fredenberg et al. | May 2014 | A1 |
20140153692 | Larkin et al. | Jun 2014 | A1 |
20140177800 | Sato et al. | Jun 2014 | A1 |
20140185778 | Lee et al. | Jul 2014 | A1 |
20140205057 | Koehler et al. | Jul 2014 | A1 |
20140211919 | Ogura et al. | Jul 2014 | A1 |
20140226785 | Stutman et al. | Aug 2014 | A1 |
20140241493 | Yokoyama | Aug 2014 | A1 |
20140270060 | Date et al. | Sep 2014 | A1 |
20140369469 | Ogura et al. | Dec 2014 | A1 |
20150030126 | Radicke | Jan 2015 | A1 |
20150030127 | Aoki et al. | Jan 2015 | A1 |
20150043713 | Chen | Feb 2015 | A1 |
20150049860 | Das | Feb 2015 | A1 |
20150055743 | Vedantham et al. | Feb 2015 | A1 |
20150055745 | Holzner et al. | Feb 2015 | A1 |
20150071402 | Handa | Mar 2015 | A1 |
20150092924 | Yun et al. | Apr 2015 | A1 |
20150110252 | Yun et al. | Apr 2015 | A1 |
20150117599 | Yun et al. | Apr 2015 | A1 |
20150194287 | Yun et al. | Jul 2015 | A1 |
20150243397 | Yun et al. | Aug 2015 | A1 |
20150247811 | Yun et al. | Sep 2015 | A1 |
20150260663 | Yun et al. | Sep 2015 | A1 |
20150323478 | Stutman | Nov 2015 | A1 |
20150357069 | Yun et al. | Dec 2015 | A1 |
20160064175 | Yun et al. | Mar 2016 | A1 |
20160066870 | Yun et al. | Mar 2016 | A1 |
20160106387 | Kahn | Apr 2016 | A1 |
20160178540 | Yun et al. | Jun 2016 | A1 |
20160178541 | Hwang et al. | Jun 2016 | A1 |
20160268094 | Yun et al. | Sep 2016 | A1 |
20160320320 | Yun et al. | Nov 2016 | A1 |
20160351370 | Yun et al. | Dec 2016 | A1 |
20170018392 | Cheng | Jan 2017 | A1 |
20170047191 | Yun et al. | Feb 2017 | A1 |
20170052128 | Yun et al. | Feb 2017 | A1 |
20170074809 | Ito | Mar 2017 | A1 |
20170162288 | Yun et al. | Jun 2017 | A1 |
20170162359 | Tang et al. | Jun 2017 | A1 |
20170227476 | Zhang et al. | Aug 2017 | A1 |
20170234811 | Zhang et al. | Aug 2017 | A1 |
20170261442 | Yun et al. | Sep 2017 | A1 |
20170336334 | Yun et al. | Nov 2017 | A1 |
20180144901 | Yun et al. | May 2018 | A1 |
20180202951 | Yun et al. | Jul 2018 | A1 |
20180261352 | Matsuyama et al. | Sep 2018 | A1 |
20180306734 | Morimoto et al. | Oct 2018 | A1 |
20180323032 | Strelec et al. | Nov 2018 | A1 |
20180344276 | DeFreitas et al. | Dec 2018 | A1 |
20180348151 | Kasper et al. | Dec 2018 | A1 |
20180356355 | Momose et al. | Dec 2018 | A1 |
20190017942 | Filevich | Jan 2019 | A1 |
20190017946 | Wack et al. | Jan 2019 | A1 |
20190018824 | Zarkadas | Jan 2019 | A1 |
20190019647 | Lee et al. | Jan 2019 | A1 |
20190027265 | Dey et al. | Jan 2019 | A1 |
20190043689 | Camus | Feb 2019 | A1 |
20190057832 | Durst et al. | Feb 2019 | A1 |
20190064084 | Ullom et al. | Feb 2019 | A1 |
20190086342 | Pois et al. | Mar 2019 | A1 |
20190088439 | Honda | Mar 2019 | A1 |
20190113466 | Karim et al. | Apr 2019 | A1 |
20190115184 | Zalubovsky | Apr 2019 | A1 |
20190131103 | Tuohimaa | May 2019 | A1 |
20190132936 | Steck et al. | May 2019 | A1 |
20190154892 | Moldovan | May 2019 | A1 |
20190172681 | Owen et al. | Jun 2019 | A1 |
20190189385 | Liang et al. | Jun 2019 | A1 |
20190204246 | Hegeman et al. | Jul 2019 | A1 |
20190204757 | Brussard et al. | Jul 2019 | A1 |
20190206652 | Akinwande et al. | Jul 2019 | A1 |
20190212281 | Shchgegrov | Jul 2019 | A1 |
20190214216 | Jeong et al. | Jul 2019 | A1 |
20190216416 | Koehler et al. | Jul 2019 | A1 |
20190219713 | Booker et al. | Jul 2019 | A1 |
20190261935 | Kitamura | Aug 2019 | A1 |
20190272929 | Omote et al. | Sep 2019 | A1 |
20190304735 | Safai et al. | Oct 2019 | A1 |
20190311874 | Tuohimma et al. | Oct 2019 | A1 |
20190317027 | Tsuboi et al. | Oct 2019 | A1 |
20190341219 | Zhang et al. | Nov 2019 | A1 |
20190341220 | Parker et al. | Nov 2019 | A1 |
20190353802 | Steinhauser et al. | Nov 2019 | A1 |
20190374182 | Karim et al. | Dec 2019 | A1 |
20190380193 | Matsuhana et al. | Dec 2019 | A1 |
20190387602 | Woywode et al. | Dec 2019 | A1 |
20190391087 | Matejka et al. | Dec 2019 | A1 |
20200003708 | Kobayashi et al. | Jan 2020 | A1 |
20200003712 | Kataoka et al. | Jan 2020 | A1 |
20200041429 | Cho et al. | Feb 2020 | A1 |
20200058462 | Suzuki | Feb 2020 | A1 |
20200088656 | Pois et al. | Mar 2020 | A1 |
20200090826 | Adler | Mar 2020 | A1 |
20200103358 | Wiell et al. | Apr 2020 | A1 |
20200105492 | Behling et al. | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
101257851 | Sep 2008 | CN |
101532969 | Sep 2009 | CN |
102124537 | Jul 2011 | CN |
102325498 | Jan 2012 | CN |
102551761 | Jul 2012 | CN |
0432568 | Jun 1991 | EP |
0751533 | Jan 1997 | EP |
1028451 | Aug 2000 | EP |
1169713 | Jan 2006 | EP |
3093867 | Nov 2016 | EP |
2548447 | Jan 1985 | FR |
H06-188092 | Jul 1994 | JP |
H07-056000 | Mar 1995 | JP |
H07-194592 | Aug 1995 | JP |
H08-184572 | Jul 1996 | JP |
H11-304728 | Nov 1999 | JP |
2000-306533 | Nov 2000 | JP |
2003-149392 | May 2003 | JP |
2003-288853 | Oct 2003 | JP |
2004-089445 | Mar 2004 | JP |
2007-218683 | Aug 2007 | JP |
2007-265981 | Oct 2007 | JP |
2007-311185 | Nov 2007 | JP |
2008-200359 | Apr 2008 | JP |
2008-145111 | Jun 2008 | JP |
2008-197495 | Aug 2008 | JP |
2009-195349 | Mar 2009 | JP |
2009-212058 | Sep 2009 | JP |
2010-236986 | Oct 2010 | JP |
2011-029072 | Feb 2011 | JP |
2011-218147 | Nov 2011 | JP |
2012-032387 | Feb 2012 | JP |
2012-187341 | Oct 2012 | JP |
2012-254294 | Dec 2012 | JP |
2013-508683 | Mar 2013 | JP |
2013-157269 | Aug 2013 | JP |
2013-160637 | Aug 2013 | JP |
2013-181811 | Sep 2013 | JP |
2013-239317 | Nov 2013 | JP |
2015-002074 | Jan 2015 | JP |
2015-047306 | Mar 2015 | JP |
2015-072263 | Apr 2015 | JP |
2015-077289 | Apr 2015 | JP |
10-2012-0091591 | Aug 2012 | KR |
WO 1995006952 | Mar 1995 | WO |
WO 1998011592 | Mar 1998 | WO |
WO 2002039792 | May 2002 | WO |
WO 2003081631 | Oct 2003 | WO |
WO 2005109969 | Nov 2005 | WO |
WO 2006096052 | Sep 2006 | WO |
WO 2007125833 | Nov 2007 | WO |
WO 2009098027 | Aug 2009 | WO |
WO 20091104560 | Aug 2009 | WO |
WO 2010109909 | Sep 2010 | WO |
WO 2011032572 | Mar 2011 | WO |
WO 2012032950 | Mar 2012 | WO |
WO 2013004574 | Jan 2013 | WO |
WO 2013111050 | Aug 2013 | WO |
WO 2013118593 | Aug 2013 | WO |
WO 2013160153 | Oct 2013 | WO |
WO 2013168468 | Nov 2013 | WO |
WO 2014054497 | Apr 2014 | WO |
WO 2015016019 | Feb 2015 | WO |
WO 2015034791 | Mar 2015 | WO |
WO 2015066333 | May 2015 | WO |
WO 2015084466 | Jun 2015 | WO |
WO 2015168473 | Nov 2015 | WO |
WO 2015176023 | Nov 2015 | WO |
WO 2015187219 | Dec 2015 | WO |
WO 2016187623 | Nov 2016 | WO |
WO 2017031740 | Mar 2017 | WO |
WO 2017204850 | Nov 2017 | WO |
WO 2017213996 | Dec 2017 | WO |
WO 2018122213 | Jul 2018 | WO |
WO 2018175570 | Sep 2018 | WO |
Entry |
---|
“Diamond,” Section 10.4.2 of Zorman et al., “Material Aspects of Micro-Nanoelectromechanical Systems,” Chapter 10 of Springer Handbook of Nanotechnology, 2nd ed., Barat Bushan, ed. (Springer Science + Business Media, Inc., New York, 2007), pp. 312-314. |
“Element Six CVD Diamond Handbook” (Element Six, Luxembourg, 2015). |
“High performance benchtop EDXRF spectrometer with Windows® software,” published by: Rigaku Corp., Tokyo, Japan; 2017. |
“Monochromatic Doubly Curved Crystal Optics,” published by: X-Ray Optical Systems, Inc. (XOS), East Greenbush, NY; 2017. |
“Optics and Detectors,” Section 4 of X-Ray Data Booklet, 3rd Ed., A.C. Thompson ed. (Lawrence Berkeley Nat'l Lab, Berkeley, CA, 2009). |
“Properties of Solids,” Ch. 12 of CRC Handbook of Chemistry and Physics, 90th ed., Devid R. Lide & W.M. “Mickey” Haynes, eds. (Crc Press, Boca Raton, FL, 2009), pp. 12-41-12-46; 12-203-12-212. |
“Science and Technology of Future Light Sources”, Arthur L. Robinson (LBNL) and Brad Plummer (SLAG), eds. Report Nos. ANL-08/39 / BNL-81895-2008 / LBNL-1090E-2009 / SLAC-R-917 (Lawrence Berkeley Nat'l Lab, Berkeley, CA, Dec. 2008). |
“Series 5000 Packaged X-ray Tubes,” Product Technical Data Sheet DS006 Rev. G, X-Ray Technologies Inc. (Oxford Instruments), Scotts Valley, CA (no date). |
“Toward Control of Matter: Energy Science Needs for a New Class of X-Ray Light Sources” (Lawrence Berkeley Nat'l Lab, Berkeley, CA, Sep. 2008). |
“X-ray Optics for BES Light Source Facilities,” Report of the Basic Energy Sciences Workshop on X-ray Optics for BES Light Source Facilities, D. Mills & H. Padmore, Co-Chairs, (U.S. Dept. of Energy, Office of Science, Potomac, MD, Mar. 2013). |
Abullian et al., “Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence,” Nov. 28, 2012, The Journal of Chemical Physics, vol. 137, pp. 204907-1 to 204907-8. |
Adachi et al., “Development of the 17-inch Direct-Conversion Dynamic Flat-panel X-ray Detector (FPD),” Digital R/F (Shimadzu Corp., 2 pages (no date, published—2004 with product release). |
Aharonovich et al., “Diamond Nanophotonics,” Adv. Op. Mat'ls vol. 2, Issue 10 (2014). |
Als-Nielsen et al., “Phase contrast imaging” Sect. 9.3 of Ch. 9 of “Elements of Modern X-ray Physics, Second Edition”, (John Wiley & Sons Ltd, Chichester, West Sussex, UK, 2011), pp. 318-329. |
Als-Nielsen et al., “Photoelectric Absorption,” Ch. 7 of “Elements of Modern X-ray Physics, Second Edition,” (John Wiley & Sons Ltd, Chichester, West Sussex, UK, 2011). |
Als-Nielsen et al., “Refraction and reflection from interfaces,” Ch. 3 of “Elements of Modern X-ray Physics, Second Edition,” (John Wiley & Sons Ltd., Chichester, West Sussex, UK, 2011), pp. 69-112. |
Als-Nielsen et al., “X-rays and their interaction with matter”, and “Sources”, Ch. 1 & 2 of “Elements of Modern X-ray Physics, Second Edition” (John Wiley & Sons Ltd, Chichester, West Sussex, UK, 2011). |
Altapova et al., “Phase contrast laminography based on Talbot interferometry,” Opt. Express, vol. 20, No. 6, (2012) pp. 6496-6508. |
Ando et al., “Smooth and high-rate reactive ion etching of diamond,” Diamond and Related Materials, vol. 11, (2002) pp. 824-827. |
Arfelli et al., “Mammography with Synchrotron Radiation: Phase-Detection Techniques,” Radiology vol. 215, (2000), pp. 286-293. |
Arndt et al., Focusing Mirrors for Use with Microfocus X-ray Tubes, 1998, Journal of Applied Crystallography, vol. 31, pp. 733-741. |
Bachucki et al., “Laboratory-based double X-ray spectrometer for simultaneous X-ray emission and X-ray absorption studies,” J. Anal. Atomic Spectr. DOI:10.1039/C9JA00159J (2019). |
Balaic et al., “X-ray optics of tapered capillaries,” Appl. Opt. vol. 34 (Nov. 1995) pp. 7263-7272. |
Baltes et al., “Coherent and incoherent grating reconstruction,” J. Opt. Soc. Am. A vol. 3(8), (1986), pp. 1268-1275. |
Barbee Jr., “Multilayers for x-ray optics,” Opt. Eng. vol. 25 (Aug. 1986) pp. 898-915. |
Baron et al., “A compact optical design for Bragg reflections near backscattering,” J. Synchrotron Rad., vol. 8 (2001), pp. 1127-1130. |
Bech, “In-vivo dark-field and phase-contrast x-ray imaging,” Scientific Reports 3, (2013), Article No. 03209. |
Bech, “X-ray imaging with a grating interferometer,” University of Copenhagen PhD. Thesis, (May 1, 2009). |
Bergamin et al., “Measuring small lattice distortions in Si-crystals by phase-contrast x-ray topography,” J. Phys. D: Appl. Phys. vol. 33 (2000-12-31) pp. 2678-2682. |
Bernstorff, “Grazing Incidence Small Angle X-ray Scattering (GISAXS),” Presentation at Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications, Apr. 2008, Trieste, Italy. |
Bilderback et al., “Single Capillaries,” Ch. 29 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Birkholz, “Chapter 4: Grazing Incidence Configurations,” Thin Film Analysis by X-ray Scattering (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006). |
Bjeoumikhov et al., “A modular system for XRF and XRD applications consisting of a microfocus X-ray source and different capillary optics,” X-ray Spectrometry, vol. 33 (2004), pp. 312-316. |
Bjeoumikhov et al., “Capillary Optics for X-Rays,” Ch. 18 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al., eds. (Springer, Berlin, Germany, 2008), pp. 287-306. |
Canberra Model S-5005 WinAxil X-Ray Analysis Software, published by: Canberra Eurisys Benelux N.V./S.A.,Zellik, Belgium; Jun. 2004. |
Cerrina, “The Schwarzschild Objective,” Ch. 27 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Chen et al., “Advance in detection of low sulfur content by wavelength dispersive XRF,” Proceedings of the Annual ISA Analysis Division Symposium (2002). |
Chen et al., “Doubly curved crystal (DCC) X-ray optics and applications,” Powder Diffraction, vol. 17(2) (2002), pp. 99-103. |
Chen et al., “Guiding and focusing neutron beams using capillary optics,” Nature vol. 357 (Jun. 4, 1992), pp. 391-393. |
Chervenak et al., “Experimental thick-target bremsstrahlung spectra from electrons in the range 10 to 30 keV”, Phys. Rev. A vol. 12 (1975), pp. 26-33. |
Chon, “Measurement of Roundness for an X-Ray Mono-Capillary Optic by Using Computed Tomography,” J. Korean Phys. Soc. vol. 74, No. 9, pp. 901-906 (May 2019). |
Coan et al., “In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs,” Phys. Med. Biol. vol. 55(24) (2010), pp. 7649-7662. |
Cockcroft et al., “Chapter 2: Experimental Setups,” Powder Diffraction: Theory and Practice, R.E. Dinnebier and S.J.L. Billinge, eds (Royal Society of Chemistry Publishing, London, UK, 2008). |
Cohen et al., “Tunable laboratory extended x-ray absorption fine structure system,” Rev. Sci. Instr. vol. 51, No. 3, Mar. 1980, pp. 273-277. |
Cong et al., “Fourier transform-based iterative method for differential phase-contrast computed tomography”, Opt. Lett. vol. 37 (2012), pp. 1784-1786. |
Cornaby et al., “Advances in X-ray Microfocusing with Monocapillary Optics at Chess,” Chess News Magazine (2009), pp. 63-66. |
Cornaby et al., “Design of Single-Bounce Monocapillary X-ray Optics,” Advances in X-ray Analysis: Proceedings of the 55th Annual Conference on Applications of X-ray Analysis, vol. 50, (International Centre for Diffraction Data (ICDD), 2007), pp. 194-200. |
Cornaby, “The Handbook of X-ray Single Bounce Monocapillary Optics, Including Optical Design and Synchrotron Applications” (PhD Dissertation, Cornell University, Ithaca, NY, May 2008). |
David et al., “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. vol. 84, (2007), pp. 1172-1177. |
David et al., “Hard X-ray phase imaging and tomography using a grating interferometer,” Spectrochimica Acta Part B vol. 62 (2007) pp. 626-630. |
Davis et al., “Bridging the Micro-to-Macro Gap: A New Application for Micro X-Ray Fluorescence,” Microsc Microanal., vol. 17(3) (Jun. 2011), pp. 410-417. |
Diaz et al., “Monte Carlo Simulation of Scatter Field for Calculation of Contrast of Discs in Synthetic CDMAM Images,” In: Digital Mammography, Proceedings 10th International Workshop IWDM 2010 (Springer Verlag, Berlin Heidelberg), (2010), pp. 628- 635 (9 pages). Jun. 18, 2010. |
Ding et al., “Reactive Ion Etching of CVD Diamond Films for MEMS Applications,” Micromachining and Microfabrication, Proc. SPIE vol. 4230 (2000), pp. 224-230. |
Dobrovinskaya et al., “Thermal Properties,” Sect. 2.1.5 of “Sapphire: Material, Manufacturing,, Applications” (Springer Science + Business Media, New York, 2009). |
Dong et al., “Improving Molecular Sensitivity in X-Ray Fluorescence Molecular Imaging (XFMI) of Iodine Distribution in Mouse-Sized Phantoms via Excitation Spectrum Optimization,” IEEE Access, vol. 6, pp. 56966-56976 (2018). |
Erko et al., “X-ray Optics,” Ch. 3 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin, Germany, 2006), pp. 85-198. |
Falcone et al., “New directions in X-ray microscopy,” Contemporary Physics, vol. 52, No. 4, (Jul.-Aug. 2010), pp. 293-318. |
Fernández-Ruiz, “TXRF Spectrometry as a Powerful Tool for the Study of Metallic Traces in Biological Systems,” Development in Analytical Chemistry, vol. 1 (2014), pp. 1-14. |
Freund, “Mirrors for Synchrotron Beamlines,” Ch. 26 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Ge et al., “Investigation of the partially coherent effects in a 2D Talbot interferometer,” Anal. Bioanal. Chem. vol. 401, (2011), pp. 865-870. Apr. 29, 2011 pub Jun. 14, 2011. |
Gibson et al., “Polycapillary Optics: An Enabling Technology for New Applications,” Advances in X-ray Analysis, vol. 45 (2002), pp. 286-297. |
Gonzales et al., “Angular Distribution of Bremsstrahlung Produced by 10-Key and 20 Key Electrons Incident on a Thick Au Target”, in Application of Accelerators in Research and Industry, AIP Conf. Proc. 1221 (2013), pp. 114-117. |
Gonzales et al., “Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag”, Phys. Rev. A vol. 84 (2011): 052726. |
Günther et al., “Full-field structured-illumination super-responution X-ray transmission microscopy,” Nature Comm. 10:2494 (2019) and supplementary information. |
Guttmann et al., “Ellipsoidal capillary as condenser for the BESSY full-field x-ray microscope,” J. Phys. Conf. Ser. vol. 186 (2009): 012064. |
Harasse et al., “Iterative reconstruction in x-ray computed laminography from differential phase measurements”, Opt. Express. vol. 19 (2011), pp. 16560-16573. |
Harasse et al., “X-ray Phase Laminography with a Grating Interferometer using Iterative Reconstruction”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Conf. Proc. vol. 1466, (2012), pp. 163-168. |
Harasse et al., “X-ray Phase Laminography with Talbot Interferometer”, in Developments in X-Ray Tomography VII, Proc. SPIE vol. 7804 (2010), 780411. |
Hasse et al., “New developments in laboratory-based x-ray sources and optics,” Adv. in Laboratory-based X-Ray Sources, Optics, and Applications VI, ed. A.M. Khounsary, Proc. SPIE vol. 10387, 103870B-1 (2017). |
Hemraj-Benny et al., “Near-Edge X-ray Absorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials,” Small, vol. 2(1), (2006), pp. 26-35. |
Henke et al., “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” Atomic Data and Nuclear Data Tables, vol. 54 (No. 2) (Jul. 1993), pp. 181-342. |
Hennekam et al., “Trace metal analysis of sediment cores using a novel X-ray fluorescence core scanning method,” Quaternary Int'l, https://doi.org/10.1016/j.quaint.2018.10.018 (2018). |
Honma et al., Full-automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at Spring-8, 2011, AIP Conference Proceedings 1234, pp. 13-16. |
Howard et al., “High-Definition X-ray Fluorescence Elemental Mapping of Paintings,” Anal. Chem., 2012, vol. 84(7), pp. 3278-3286. |
Howells, “Gratings and Monochromators in the VUV and Soft X-RAY Spectral Region,” Ch. 21 of Handbook of Optics vol. III, 2nd Ed. (McGraw Hill, New York, 2001). |
Howells, “Mirrors for Synchrotron-Radiation Beamlines,” Publication LBL-34750 (Lawrence Berkeley Laboratory, Berkeley, CA, Sep. 1993). |
Hrdy et al, “Diffractive-Refractive Optics: X-ray Crystal Monochromators with Profiled Diffracting Surfaces,” Ch. 20 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al., eds. (Springer, Berlin Heidelberg New York, 2008). |
Hwang et al, “New etching process for device fabrication using diamond,” Diamond & Related Materials, vol. 13 (2004) pp. 2207-2210. |
Ide-Ektessabi et al., “The role of trace metallic elements in neurodegenerative disorders: quantitative analysis using XRF and XANES spectroscopy,” Anal. Sci., vol. 21(7) (Jul. 2005), pp. 885-892. |
Ihsan et al., “A microfocus X-ray tube based on a microstructured X-ray target”, Nuclear Instruments and Methods in Physics Research B vol. 267 (2009) pp. 3566-3573. |
Ishisaka et al., “A New Method of Analyzing Edge Effect in Phase Contrast Imaging with Incoherent X-rays,” Optical Review, vol. 7, No. 6, (2000), pp. 566-572. |
Ito et al., “A Stable In-Laboratory EXAFS Measurement System,” Jap. J. Appl. Phys., vol. 22, No. 2, Feb. 1, 1983, pp. 357-360. |
Itoh et al., “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Op. Express, vol. 19, No. 4 (2011) pp. 3339-3346. |
Janssens et al, “Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis,” TrAC Trends in Analytical Chemistry 29.6 (Jun. 2010): 464-478. |
Jahrman et al., “Vacuum formed temporary spherically and toroidally bent crystal analyzers for x-ray absorption and x-ray emission spectroscopy,” Rev. Sci. Inst. vol. 90, 013106 (2019). |
Jiang et al., “X-Ray Phase-Contrast Imaging with Three 2D Gratings,” Int. J. Biomed. Imaging, (2008), 827152, 8 pages. |
Jin et al., “Development of an X-ray tube with two selective targets modulated by a magnetic field,” Rev. Sci. Inst. vol. 90, 083105 (2019). |
Joy, “Astronomical X-ray Optics,” Ch. 28 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Kalasová et al., “Characterization of a laboratory-based X-ray computed nonotomography system for propagation-based method of phase contrast imaging,” IEEE Trans. on Instr. and Meas., DOI 10.1109/TIM.2019.2910338 (2019). |
Keyrilainen et al., “Phase contrast X-ray imaging of breast,” Acta Radiologica, vol. 51 (8), (2010), pp. 866-884. Jan. 18, 2010 pub Jun. 15, 2010. |
Kidalov et al., “Thermal Conductivity of Diamond Composites,” Materials, vol. 2 (2009) pp. 2467-2495. |
Kido et al., “Bone Cartilage Imaging with X-ray Interferometry using a Practical X-ray Tube”, in Medical Imaging 2010: Physics of Medical Imaging, Proc. SPIE vol. 7622 (2010), 762240. |
Kim, “Talbot images of wavelength-scale amplitude gratings,” Opt. Express vol. 20(5), (2012), pp. 4904-4920. |
Kim et al., “Observation of the Talbot Effect at Beamline 6C Bio Medical Imaging of he Pohang Light Source—II,” J. Korean Phys. Soc., vol. 74, No. 10, pp. 935-940 (May 2019). |
Kirkpatrick et al., “Formation of Optical Images by X-Rays”, J. Opt. Soc. Am. vol. 38(9) (1948), pp. 766-774. |
Kirz, “Phase zone plates for x rays and the extreme uv,” J. Op. Soc. Am. vol. 64 (Mar. 1974), pp. 301-309. |
Kirz et al., “The History and Future of X-ray Microscopy”, J. Physics: Conden. Series vol. 186 (2009): 012001. |
Kiyohara et al., “Development of the Talbot-Lau Interferometry System Available for Clinical Use”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Cong. Proc. vol. 1466, (2012), pp. 97-102. |
Klockenkämper et al., “7.1 Instrumental Developments” and “7.3 Future Prospects by Combinations,” from Chapter 7 of Total Reflection X-ray Fluorescence Analysis and Related Methods 2nd Ed. (J. Wiley and Sons, Hoboken, NJ, 2015). |
Klockenkämper et al., “Chapter 3: Instrumentation for TXRF and GI-XRF,” Total Reflection X-ray Fluorescence Analysis and Related Methods 2nd Ed. (J. Wiley and Sons, Hoboken, NJ, 2015). |
Kottler et al., “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express vol. 15(3), (2007), pp. 1175-1181. |
Kottler et al., “Dual energy phase contrast x-ray imaging with Talbot-Lau interferometer,” J. Appl. Phys. vol. 108(11), (2010), 114906. Jul. 7, 2010 pub Dec. 7, 2010. |
Kumakhov et al., “Multiple reflection from surface X-ray optics,” Physics Reports, vol. 191(5), (1990), pp. 289-350. |
Kumakhov, “X-ray Capillary Optics. History of Development and Present Status” in Kumakhov Optics and Application, Proc. SPIE 4155 (2000), pp. 2-12. |
Kuwabara et al., “Hard-X-ray Phase-Difference Microscopy with a Low-Brilliance Laboratory X-ray Source”, Appl. Phys. Express vol. 4 (2011) 062502. |
Kuznetsov, “X-Ray Optics Calculator,” Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences (IMT RAS), Chernogolovka, Russia (6 pages submitted); 2016. |
Lagomarsino et al., “Reflective Optical Arrays,” Ch. 19 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al. eds. (Springer, Berlin, Germany, 2008), pp. 307-317. |
Lai, “X-Ray Microfocusing Optics,” Slide Presentation from Argonne National Laboratory, 71 slides, Cheiron Summer School 2007. |
Langhoff et al., “X-ray Sources,” Ch. 2 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin Heidelberg New York, 2006), pp. 33-82. |
Lechner et al., “Silicon drift detectors for high count rate X-ray spectroscopy at room temperature,” Nuclear Instruments and Methods, vol. 458A (2001), pp. 281-287. |
Leenaers et al., “Application of Glancing Incidence X-ray Analysis,” 1997, X-ray Spectrometry, vol. 26, pp. 115-121. |
Lengeler et al., “Refractive X-ray Optics,” Ch. 20 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001. |
Li et al., “Source-optic-crystal optimisation for compact monochromatic imaging,” Proc. SPIE 5537 (2004), pp. 105-114. |
Li et al., “X-ray phase-contrast imaging using cascade Talbot-Lau interferometers,” Proc. SPIE 10964 (2018), pp. 1096469-1-1096469-6. |
Li et al., “Study on High Thermal Conductivity of X-ray Anode with Composite Diamond Substrate,” J. Phys.: Conf. Ser., vol. 1300, 012115 (2019). |
Lohmann et al., “An interferometer based on the Talbot effect,” Optics Communications vol. 2 (1971), pp. 413-415. |
Lübcke et al., “Soft X-ray nanoscale imaging using a sub-pixel resolution charge coupled device (CCD) camera,” Ref. Sci. Instrum. vol. 90, 043111 (2019). |
Lühl et al., “Scanning transmission X-ray microscopy with efficient X-ray fluorescence detection (STXM-XRF) for biomedical applications in the soft and tender energy range,” J. Synch. Rad. vol. 26, https://doi.org/10.1107/S1600577518016879, (2019). |
MacDonald et al., “An Introduction to X-ray and Neutron Optics,” Ch. 19 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
MacDonald et al., “Polycapillary and Multichannel Plate X-Ray Optics,” Ch. 30 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
MacDonald et al., “Polycapillary X-ray Optics for Microdiffraction,” J. Appl. Cryst., vol. 32 (1999) pp. 160-167. |
MacDonald, “Focusing Polycapillary Optics and Their Applications,” X-Ray Optics and Instrumentation, vol. 2010, (Oct. 2010): 867049. |
Maj et al., “Etching methods for improving surface imperfections of diamonds used for x-ray monochromators,” Adv. X-ray Anal., vol. 48 (2005), pp. 176-182. |
Malgrange, “X-ray Optics for Synchrotron Radiation,” ACTA Physica Polonica A, vol. 82(1) (1992) pp. 13-32. |
Malzer et al., “A laboratory spectrometer for high throughput X-ray emission spectroscopy in catalysis research,” Rev. Sci. Inst. 89, 113111 (2018). |
Masuda et al., “Fabrication of Through-Hole Diamond Membranes by Plasma Etching Using Anodic Porous Alumina Mask,” Electrochemical and Solid-State Letters, vol. 4(11) (2001) pp. G101-G103. |
Matsushita, “Mirrors and Multilayers,” Slide Presentation from Photon Factor, Tsukuba, Japan, 65 slides, (Cheiron School 2009, Sprint-8, Japan, Nov. 2009). |
Matsushita, “X-ray monochromators,” Slide Presentation from Photon Factory, Tsukuba, Japan, 70 slides, (Cheiron School 2009, Spring-8, Japan, Nov. 2009). |
Matsuyama et al., “Wavefront measurement for a hard-X-ray nanobeam using single-grating interferometry”, Opt Express vol. 20 (2012), pp. 24977-24986. |
Miao et al., “Motionless phase stepping in X-ray phase contrast imaging with a compact source,” Proceedings of the National Academy of Sciences, vol. 110(48), (2013), pp. 19268-19272. |
Michette, “Zone and Phase Plates, Bragg-Fresnel Optics,” Ch. 23 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Mizutani et al., X-ray microscopy for neural circuit reconstruction in 9th International Conference on X-Ray Microscopy, J. Phys: Conf. Ser. 186 (2009) 012092. |
Modregger et al., “Grating-Based X-ray Phase Contrast Imaging,” Ch. 3 of Emerging Imaging Technologies in Medicine, M. Anastasio & P. La Riviera, ed., CRC Press, Boca Raton, FL, (2012), pp. 43-56. |
Momose et al., “Biomedical Imaging by Talbot-Type X-Ray Phase Tomography” in Developments in X-Ray Tomography V, Proc. SPIE vol. 6318 (2006) 63180T. |
Momose et al., “Grating-Based X-ray Phase Imaging Using Multiline X-ray Source”, Jpn. J. Appl. Phys. vol. 48 (2009), 076512. |
Momose et al., “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging” Jpn. J. Appl. Phys. vol. 45 2006 pp. 5254-5262. |
Momose et al., “Phase Tomography Using X-ray Talbot Interferometer”, in Synchrotron Radiation Instrumentation: Ninth International Conference, AIP Conf. Proc. vol. 879 (2007), pp. 1365-1368. |
Momose et al., “Phase-Contrast X-Ray Imaging Using an X-Ray Interferometer for Biological Imaging”, Analytical Sciences vol. 17 Supplement (2001), pp. i527-i530. |
Momose et al., “Sensitivity of X-ray Phase Imaging Based on Talbot Interferometry”, Jpn. J. Appl. Phys. vol. 47 (2008), pp. 8077-8080. |
Momose et al., “X-ray Phase Measurements with Talbot Interferometry and Its Applications”, in International Conference on Advanced Phase Measurement Methods in Optics and Imaging, AIP Conf. Proc. vol. 1236 (2010), pp. 195-199. |
Momose et al., “X-ray Phase Imaging—From Static Observation to Dynamic Observation—”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 67-77. |
Momose et al., “X-ray Phase Imaging Using Lau Effect”, Appl. Phys. Express vol. 4 (2011) 066603. |
Momose et al., “X-Ray Phase Imaging with Talbot Interferometry”, in “Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning, and Inverse Problems”, Y. Censor, M. Jiang & G.Wang, eds. (Medical Physics Publishing, Madison, WI, USA, 2010), pp. 281-320. |
Momose et al., “X-ray phase tomography with a Talbot interferometer in combination with an X-ray imaging microscope”, in 9th International Conference on X-Ray Microscopy, J. Phys: Conf. Ser. 186 (2009) 012044. |
Momose et al., “X-ray Talbot Interferometry with Capillary Plates”, Jpn. J. Appl. Phys. vol. 45 (2006), pp. 314-316. |
Momose et al., “Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm”, Opt. Express vol. 19 (2011), pp. 8423-8432. |
Momose et al., “High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation”, Opt. Express vol. 17 (2009), pp. 12540-12545. |
Momose et al., “Phase Imaging with an X-ray Talbot Interferometer”, Advances in X-ray Analysis vol. 49(3) (2006), pp. 21-30. |
Momose et al.,“Demonstration of X-Ray Talbot Interferometry”, Jpn. J. Appl. Phys. vol. 42 (2003), pp. L866-L868. |
Momose et al.,“Phase Tomography Using an X-ray Talbot Interferometer”, in Developments in X-Ray Tomography IV, Proc. SPIE vol. 5535 (2004), pp. 352-360. |
Momose, “Recent Advances in X-ray Phase Imaging”, Jpn. J. Appl. Phys. vol. 44 (2005), pp. 6355-6367. |
Montgomery, “Self Imaging Objects of Infinite Aperture,” J. Opt. Soc. Am. vol. 57(6), (1967), pp. 772-778. |
Morimoto et al., “Development of multiline embedded X-ray targets for X-ray phase contrast imaging,” XTOP 2012 Book of Abstracts, (Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 2012), pp. 74-75. |
Morimoto et al., “X-ray phase contrast imaging by compact Talbot-Lau interferometer with a signal transmission grating,” 2014, Optics Letters, vol. 39, No. 15, pp. 4297-4300. |
Morimoto et al., “Design and demonstration of phase gratings for 2D single grating interferometer,” Optics Express vol. 23, No. 23, 29399 (2015). |
Munro et al., Design of a novel phase contrast imaging system for mammography, 2010, Physics in Medicine and Biology, vol. 55, No. 14, pp. 4169-4185. |
Nango et al., “Talbot-defocus multiscan tomography using the synchrotron X-ray microscope to study the lacuno-canalicular network in mouse bone”, Biomed. Opt. Express vol. 4 (2013), pp. 917-923. |
Neuhausler et al., “Non-destructive high-resolution X-ray imaging of ULSI micro-electronics using keV X-ray microscopy in Zernike phase contrast,” Microelectronic Engineering, Elsevier Publishers. BV., Amsterdam, NO, vol. 83, No. 4-9 (Apr. 1, 2006) pp. 1043-1046. |
Newville, “Fundamentals of XAFS,” (Univ. of Chicago, Chicago, IL, Jul. 23, 2004). |
Noda et al., “Fabrication of Diffraction Grating with High Aspect Ratio Using X-ray Lithography Technique for X-ray Phase Imaging,” Jpn. J. Appl. Phys. vol. 46, (2007), pp. 849-851. |
Noda et al., “Fabrication of High Aspect Ratio X-ray Grating Using X-ray Lithography” J. Solid Mech_ Mater. Eng. vol. 3 (2009), pp. 416-423. |
Nojeh, “Carbon Nanotube Electron Sources: From Electron Beams to Energy Conversion and Optophononics”, ISRN Nanomaterials vol. 2014 (2014): 879827. |
Nuhn, “From storage rings to free electron lasers for hard x-rays”, J.A37 Phys.: Condens. Matter vol. 16 (2004), pp. S3413-S34121. |
Nykanen et al., “X-ray scattering in full-field digital mammography,” Med. Phys. vol. 30(7), (2003), pp. 1864-1873. |
Oji et al., Automatic XAFS measurement system developed at BL14B2 in SPring-8, Available online Nov. 15, 2011, Journal of Synchrotron Radiation, vol. 19, pp. 54-59. |
Olbinado et al., “Demonstration of Stroboscopic X-ray Talbot Interferometry Using Polychromatic Synchrotron and Laboratory X-ray Sources”, Appl. Phys. Express vol. 6 (2013), 096601. |
Ortega et al., “Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy,” J. Royal Society Interface vol. 6 suppl. 5 (Oct. 6, 2009), pp. 6S649-6S658. |
Otendal et al., A 9 keV electron-impact liquid-gallium-jet x-ray source, Rev. Sci. Instrum. vol. 79 (2008): 016102. |
Oxford Instruments Inc., Series 5000 Model XTF5011 X-ray Tube information, Jun. 1998, 3 pages. |
Parrill et al., “GISAXS—Glancing Incidence Small Angle X-ray Scattering,” Journal de Physique IV, vol. 3 (Dec. 1993), pp. 411-417. |
Paxscan Flat Panel X-ray Imaging, Varian Sales Brochure, (Varian Medical Systems, Palo Alto, CA, Nov. 11, 2004). |
Pfeiffer et al., “Hard-X-ray dark-field imaging using a grating interferometer,” Nature Materials vol. 7, (2008), pp. 134-137. |
Pfeiffer et al., “Hard x-ray phase tomography with low brilliance x-ray sources,” Phys. Rev. Lett. vol. 98, (2007), 108105. |
Pfeiffer et al., “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Physics vol. 2, (2006), pp. 258-261. |
Pfeiffer, “Milestones and basic principles of grating-based x-ray and neutron phase-contrast imaging,” in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 2-11. |
Pianetta et al., “Application of synchrotron radiation to Txrf analysis of metal contamination on silicon wafer surfaces,” Thin Solid Films, vol. 373(1-2), 2000, pp. 222-226. |
Potts, “Electron Probe Microanalysis”, Ch. 10 of “A Handbook of Silicate Rock Analysis” (Springer Science + Business Media, New York, 1987), pp. 326-382 (equation quoted from p. 336). |
Prewitt et al., “FIB Repair of 5X Reticles and Effects on IC Quality,” Integrated Circuit Metrology, Inspection, and Process Control VII, Proc. SPIE vol. 1926 (1993), pp. 517-526. |
Prewitt et al., “Focused ion beam repair: staining of photomasks and reticles,” J. Phys. D Appl. Phys. vol. 26 (1993), pp. 1135-1137. |
Prewitt et al., “Gallium Staining in FIB Repair of Photomasks,” Microelectronic Engineering, vol. 21 (1993), pp. 191-196. |
Pushie et al., “Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems,” Chem. Rev. 114:17, 8499-8541 (2014). |
Pushie et al., “Prion protein expression level alters regional copper, iron and zinc content in the mouse brain,” Metallomics vol. 3, 206-214 (2011). |
Qin et al., “Trace metal imaging with high spatial resolution: Applications in biomedicine,” Metallomics, vol. 3 (Jan. 2011), pp. 28-37. |
Rayleigh, “On copying diffraction gratings and some phenomena connected therewith,” Philos. Mag. vol. 11 (1881), pp. 196-205. |
Renaud et al., “Probing surface and interface morphology with Grazing Incidence Small Angle X-ray Scattering,” Surface Science Reports, vol. 64:8 (2009), pp. 255-380. |
Riege, “Electron Emission from Ferroelectrics—A Review”, CERN Report CERN AT/93-18 (CERN, Geneva, Switzerland, Jul. 1993). |
Rix et al., “Super-Resolution X-ray phase-contrast and dark-field imaging with a single 2D grating and electromagnetic source stepping,” Phys. Med. Biol. in press https://doi.org/10.1088/1361-6560/ab2ff5 (2019). |
Röntgen, “Ueber eine neue Art von Strahlen (Wurzburg Verlag, Wurzburg, Germany, 1896) also, in English, On a New Kind of Rays,” Nature vol. 53 (Jan. 23, 1896). pp. 274-276. |
Rovezzi, “Study of the local order around magnetic impurities in semiconductors for spintronics.” PhD Dissertation, Condensed Matter, Universite Joseph-Fourier—Grenoble I, 2009, English <tel-00442852>. |
Rutishauser, “X-ray grating interferometry for imaging and metrology,” 2003, Eth Zurich, Diss. ETH No. 20939. |
Sato et al., Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube, 2011, Optics Letters, vol. 36, No. 18, pp. 3551-3553. |
Scherer et al., “Bi-Directional X-Ray Phase-Contrast Mammography,” PLoS ONE, vol. 9, Issue 5 (May 2014) e93502. |
Scholz, “X-ray Tubes and Monochromators,” Technical Workshop EPIC, Universität Würzburg (2007); 41 slides, 2007. |
Scholze et al., “X-ray Detectors and XRF Detection Channels,” Ch. 4 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin Heidelberg, Germany, 2006), pp. 85-198. |
Scordo et al., “Pyrolitic Graphite Mosaic Drystal Thickness and Mosaicity Optimization for an Extended Source Von Hamos X-ray Spectrometer,” Condens. Matter Vo. 4, pp. 38-52 (2019). |
Scott, “Hybrid Semiconductor Detectors for High Spatial Resolution Phase-contrast X-ray Imaging,” Thesis, University of Waterloo, Department of Electrical and Computer Engineering, 2019. |
Sebert, “Flat-panel detectors:how much better are they?” Pediatr. Radiol. vol. 36 (Suppl 2), (2006), pp. 173-181. |
Seifert et al., “Talbot-Lau x-ray phase-contrast setup for fast scanning of large samples,” Sci. Rep. 9:4199, pp. 1-11 (2019). |
Shen, “Polarizing Crystal Optics,” Ch. 25 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Shields et al., “Overview of Polycapillary X-ray Optics,” Powder Diffraction, vol. 17(2) (Jun. 2002), pp. 70-80. |
Shimura et al., “Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets”, Opt. Lett. vol. 38(2) (2013), pp. 157-159. |
Siddons, “Crystal Monochromators and Bent Crystals,” Ch. 22 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Smith, “Fundamentals of Digital Mammography:Physics, Technology and Practical Considerations,” Publication R-BI-016 (Hologic, Inc., Bedford, MA, Mar. 2005). |
Snigirev et al., “Hard X-Ray Microoptics,” Ch. 17 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al., eds (Springer, Berlin, Germany, 2008), pp. 255-285. |
Sparks Jr., “X-ray Fluorescence Microprobe for Chemical Analysis,” in Synchrotron Radiation Research, H. Winick & S. Doniach, eds. (Plenum Press, New York, NY 1980), pp. 459-512. |
Spiller, “Multilayers,” Ch. 24 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Stampanoni et al., “The First Analysis and Clinical Evaluation of Native Breast Tissue Using Differential Phase-Contrast Mammography,” Investigative Radiology, vol. 46, pp. 801-806. pub Dec. 2011. |
Strüder et al., “Silicon Drift Detectors for X-ray Imaging,” Presentation at Detector Workshop on Synchrotron Radiation Instrumentation, 54 slides, (Argonne Nat'l Lab, Argonne, IL Dec. 8, 2005), available at: <http://www.aps.anl.gov/News/Gonferences/2005/Synchrotron_Radiation_Instrumentation/Presentations/Strueder.pdf>. |
Strüder et al., “X-Ray Detectors,” Ch. 4 of “X-ray Spectrometry: Recent Technological Advances,” K. Tsuji et al. eds. (John Wiley & Sons, Ltd. Chichester, West Sussex, UK, 2004), pp. 63-131. |
Stupple et al., “Modeling of Heat Transfer in an Aluminum X-Ray Anode Employing a Chemical Vapor Deposited Diamond Heat Spreader,” J. Heat Transfer, Vo. 140, 124501-1-5 (Dec. 2018). |
Sun et al., “Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source,” Nucl. Inst. and Methods in Phys. Res. A 802 (2015) pp. 5-9. |
Sun et al., “Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary,” Nucl. Inst. And Methods in Phys. Res. A746 (2014) pp. 33-38. |
Sunday et al., “X-ray Metrology for the Semiconductor Industry Tutorial,” J. Res. Nat'l Inst. Stan. vol. 124: 124003 (2019); https://doi.org/10.6028/jres.124.003. |
Suzuki et al., “Hard X-ray Imaging Microscopy using X-ray Guide Tube as Beam Condenser for Field Illumination,” J. Phys.: Conf. Ser. vol. 463 (2013): 012028. |
Suzuki, “Development of the DIGITEX Safire Cardiac System Equipped with Direct conversion Flat Panel Detector,” Digital Angio Technical Report (Shimadzu Corp., Kyoto, Japan, no date, published 2004 with product release). |
Takahama, “RADspeed safire Digital General Radiography System Equipped with New Direct-Conversion FPD,” Medical Now, No. 62 (2007). |
Takeda et al., “Differential Phase X-ray Imaging Microscopy with X-ray Talbot Interferometer” Appl. Phys. Express vol. 1 (2008) 117002. |
Takeda et al., “X-Ray Phase Imaging with Single Phase Grating”, Jpn. J. Appl. Phys. vol. 46 (2007), pp. L89-L91. |
Takeda et al., “In vivo physiological saline-infused hepatic vessel imaging using a two-crystal-interferometer-based phase-contrast X-ray technique”, J. Synchrotron Radiation vol. 19 (2012), pp. 252-256. |
Talbot, “Facts relating to optical science No. IV,” Philos. Mag. vol. 9 (1836), pp. 401-407. |
Tanaka et al., “Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot-Lau interferometry”, Z. Med. Phys. vol. 23 (2013), pp. 222-227. |
Tang et al., “Micro-computed tomography (Micro-CT): a novel approach for intraoperative breast cancer specimen imaging,” Breast Cancer Res. Treat. vol. 139, pp. 311-316 (2013). |
Taniguchi et al., “Diamond nanoimprint lithography,” Nanotechnology, vol. 13 (2002) pp. 592-596. |
Terzano et al., Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report), Pure Appl. Chem. 2019. |
Tkachuk et al., “High-resolution x-ray tomography using laboratory sources”, in Developments in X-Ray Tomography V, Proc. SPIE 6318 (2006): 631810. |
Tkachuk et al., “Multi-length scale x-ray tomography using laboratory and synchrotron sources”, Microsc. Microanal. vol. 13 (Suppl. 2) (2007), pp. 1570-1571. |
Töpperwien et al., “Multiscale x-ray phase-contrast tomography in a mouse model of transient focal cerebral ischemia,” Biomed. Op. Express, vol. 10, No. 1, Jan. 2019, pp. 92-103. |
Touzelbaev et al., “Applications of micron-scale passive diamond layers for the integrated circuits and microelectromechanical systems industries,” Diamond and Rel. Mat'ls, vol. 7 (1998) pp. 1-14. |
Tsuji et al., “X-Ray Spectrometry: Recent Technological Advances,” John Wiley & Sons Ltd. Chichester, West Susses, UK 2004), Chapters 1-7. |
Udagawa, “An Introduction to In-House EXAFS Facilities,” The Rigaku Journal, vol. 6, (1) (1989), pp. 20-27. |
Udagawa, “An Introduction to X-ray Absorption Fine Structure,” The Rigaku Journal, vol. 11(2)(1994), pp. 30-39. |
Uehara et al., “Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices”, J. Appl. Phys. vol. 114 (2013), 134901. |
Viermetz et al., “High resolution laboratory grating-based X-ray phase-contrast CT,” Scientific Reports 8:15884 (2018). |
Vogt, “X-ray Fluorescence Microscopy: A Tool for Biology, Life Science and Nanomedicine,” Presentation on May 16, 2012 at James Madison Univ., Harrisonburg, VA (31 slides), 2012. |
Wan et al.,“Fabrication of Multiple Slit Using Stacked-Sliced Method for Hard X-ray Talbot-Lau Interferometer”, Jpn. J. Appl. Phys. vol. 47 (2008), pp. 7412-7414. |
Wang et al., “Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy,” Biotech. Adv., vol. 31 (2013) pp. 387-392. |
Wang et al., “Non-invasive classification of microcalcifications with phase-contrast X-ray mammography,” Nature Comm. vol. 5:3797, pp. 1-9 (2014). |
Wang, On the single-photon-counting (SPC) modes of imaging using an XFEL source, presented at IWORLD2015. |
Wang et al., “Precise patterning of diamond films for MEMS application” Journal of Materials Processing Technology vol. 127 (2002), pp. 230-233. |
Wang et al., “Measuring the average slope error of a single-bounce ellopsoidal glass monocapillary X-ray condenser based on an X-ray source with an adjustable source size,” Nucl. Inst. And Meth. A934, 36-40 (2019). |
Wang et al., “High beam-current density of a 10-keV nano-focus X-ray source,” Nucl. Inst. and Meth. A940, 475-478 (2019). |
Wansleben et al., “Photon flux determination of a liquid-metal jet x-ray source by means of photon scattering,” arXiv:1903.06024v1, Mar. 14, 2019. |
Weitkamp et al., “Design aspects of X-ray grating interferometry,” In International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 84-89. |
Weitkamp et al., “Hard X-ray phase imaging and tomography with a grating interferometer,” Proc. SPIE vol. 5535, (2004), pp. 137-142. |
Weitkamp et al., “X-ray wavefront diagnostics with Talbot interferometers,” International Workshop on X-Ray Diagnostics and Scientific Application of the European XFEL, Ryn, Poland, (2010), 36 slides. |
Wen et al., “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology, vol. 251 (2009) pp. 910-918. |
Wen et al., “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Op. Lett. vol. 35, No. 12, (2010) pp. 1932-1934. |
Wittry et al., “Properties of fixed-position Bragg diffractors for parallel detection of x-ray spectra,” Rev. Sci. Instr. vol. 64, pp. 2195-2200 (1993). |
Wobrauschek et al., “Energy Dispersive, X-Ray Fluorescence Analysis,” Encyclopedia of Analytical Chemistry, R.A. Meyers, Ed. (Wiley 2010). |
Wobrauschek et al., “Micro XRF of light elements using a polycapillary lens and an ultra-thin window Silicon Drift Detector inside a vacuum chamber,” 2005, International Centre for Diffraction Data 2005, Advances in X-ray Analysis, vol. 48, pp. 229-235. |
Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken fur Rontgenstrahlen” [Grazing Incidence Reflector Systems as Imaging Optics for X-rays] Annalen der Physik vol. 445, Issue 1-2 (1952), pp. 94-114. |
X-ray-Optics.de Website, http://www.x-ray-optics.de/, accessed Feb. 13, 2016. |
Yakimchuk et al., “Ellipsoidal Concentrators for Laboratory X-ray Sources: Analytical approaches for optimization,” Mar. 22, 2013, Crystallography Reports, vol. 58, No. 2, pp. 355-364. |
Yamamoto, “Fundamental physics of vacuum electron sources”, Reports on Progress in Physics vol. 69, (2006), pp. 181-232. |
Yanagihara et al., “X-Ray Optics,” Ch. 3 of “X-ray Spectrometry: Recent Technological Advances,” K. Tsuji et al. eds. (John Wiley & Sons, Ltd. Chichester, West Sussex, UK, 2004), pp. 63-131. |
Yang et al., “Analysis of Intrinsic Stress in Diamond Films by X-ray Diffraction,” Advances in X-ray Analysis, vol. 43 (2000), pp. 151-156. |
Yashiro et al., “Distribution of unresolvable anisotropic microstructures revealed in visibility-contrast images using x-ray Talbot interferometry”, Phys. Rev. B vol. 84 (2011), 094106. |
Yashiro et al., “Hard x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating”, Phys. Rev. A vol. 82 (2010), 043822. |
Yashiro et al., “Theoretical Aspect of X-ray Phase Microscopy with Transmission Gratings” in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Conf. Proc. vol. 1466, (2012), pp. 144-149. |
Yashiro et al., “X-ray Phase Imaging and Tomography Using a Fresnel Zone Plate and a Transmission Grating”, in “The 10th International Conference on X-ray Microscopy Radiation Instrumentation”, AIP Conf. Proc. vol. 1365 (2011) pp. 317-320. |
Yashiro et al., “Efficiency of capturing a phase image using cone-beam x-ray Talbot interferometry”, J. Opt. Soc. Am. A vol. 25 (2008), pp. 2025-2039. |
Yashiro et al., “On the origin of visibility contrast in x-ray Talbot interferometry”, Opt. Express (2010), pp. 16890-16901. |
Yashiro et al., “Optimal Design of Transmission Grating for X-ray Talbot Interferometer”, Advances in X-ray Analysis vol. 49(3) (2006), pp. 375-379. |
Yashiro et al., “X-ray Phase Imaging Microscopy using a Fresnel Zone Plate and a Transmission Grating”, in the 10th International Conference on Synchrotron Radiation Instrumentation, AIP Conf. Proc. vol. 1234 (2010), pp. 473-476. |
Yashiro et. al., “Hard-X-Ray Phase-Difference Microscopy Using a Fresnel Zone Plate and a Transmission Grating”, Phys. Rev. Lett. vol. 103 (2009), 180801. |
Yu et al., “Morphology and Microstructure of Tungsten Films by Magnetron Sputtering,” Mat. Sci. Forum, vol. 913, pp. 416-423 (2018). |
Zanette et al., “Two-Dimensional X-Ray Grating interferometer,” Phys. Rev. Lett. vol. 105 (2010) pp. 248102-1 248102-4. |
Zeeshan et al., “In-house setup for laboratory-based x-ray absorption fine structure spectroscopy measurements,” Rev. Sci. Inst. 90, 073105 (2019). |
Zeng et al., “Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes,” Appl. Opt. vol. 47 (May 2008), pp. 2376-2381. |
Zeng et al., “Glass Monocapillary X-ray Optics and Their Applications in X-Ray Microscopy,” X-ray Optics and Microanalysis: Proceedings of the 20th International Congress, AIP Conf. Proc. vol. 1221, (2010), pp. 41-47. |
Zhang et al., “Application of confocal X-ray fluorescence based on capillary X-ray optics in nondestructively measuring the inner diameter of monocapillary optics,” Optics Comm. (2018) https://doi.org/10.1016/j.optcom.2018.11.064. |
Zhang et al., “Fabrication of Diamond Microstructures by Using Dry and Wet Etching Methods”, Plasma Science and Technology vol. 15(6) (Jun. 2013), pp. 552-554. |
Zhang et al., “Measurement of the inner diameter of monocapillary with confocal X-ray scattering technology based on capillary X-ray optics,” Appl. Opt. (Jan. 8, 2019), doc ID 351489, pp. 1-10. |
Akan et al., “Metal-Assisted Chemical Etching and Electroless Deposition for Fabrication of Hard X-ray Pd/Si Zone Plates,” Micromachines, vol. 11, 301; doi:10.3390/mi11030301 (2020). |
Hashimoto et al., “Improved reconstruction method for phase stepping data with stepping errors and dose fluctuations,” Optics Express, vol. 28, No. 11, pp. 16363-16384 (2020). |
Momose et al., “Recent Progress in X-ray and Neutron Phase Imaging with Gratings,” Quantum Beam Science, vol. 4, No. 9; doi:10.3390/qubs4010009 (2020). |
Takeo et al., “Soft x-ray nanobeam formed by an ellipsoidal mirror,” Appl. Phys. Lett., vol. 116, 121102 (2020). |
Wang et al., “Double-spherically bent crystal high-resolution X-ray spectroscopy of spatially extended sources,” Chinese Optics Lett., vol. 18(6), 061101 (2020). |
Yamada et al., “Compact full-field hard x-ray microscope based on advanced Kirkpatrick-Baez mirrors,” Optica, vol. 7, No. 4 pp. 367-370 (2020). |
Yoshioka et al., “Imaging evaluation of the cartilage in rheumatoid arthritis patients with an x-ray phase imaging apparatus based on Talbot-Lau interferometry,” Scientific Reports, 10:6561, https://doi.org/10.1038/s41598-020-63155-9 (2020). |
International Search Report and Written Opinion in corresponding PCT Application No. PCT/US2019/048808, dated Dec. 18, 2019, in 11 pages. |
Behling, “Medical X-ray sources Now and for the Future,” Nucl. Inst. and Methods in Physics Research A 873, pp. 43-50 (2017). |
Chang et al., “Ultra-high aspect ratio high-resolution nanofabrication of hard X-ray diffractive optics,” Nature Comm. 5:4243, doi: 10.1038/ncomms5243 (2014). |
Dittler et al., “A mail-in and user facility for X-ray absorption near-edge structure: the CEI-Xanes laboratory X-ray spectrometer at University of Washington,” J. Synch. Rad. vol. 26, eight pages, (2019). |
Huang et al., “Theoretical analysis and optimization of highly efficient multilayer-coated blazed gratings with high fix-focus constant for the tender X-ray region,” Op. Express Vo. 28, No. 2, pp. 821-845 (2020). |
Kim et al., “A Simulation Study on the Transfer Characteristics of the Talbot Pattern Through Scintillation Screens in the Grating Interferometer,” J. Rad. Sci. and Tech. 42(1), pp. 67-75 (2019). |
Kulow et al., “On the Way to Full-Field X-ray Fluorescence Spectroscopy Imaging with Coded Apertures,” J. Anal. At. Spectrom. Doi: 10.1039/C9JA00232D (2019). |
Li et al., “Production and Heat Properties of an X-ray Reflective Anode Based on a Diamond Heat Buffer Layer,” Materials vol. 13, p. 241 (2020). |
Weitkamp et al., Tomography with grating interferometers at low-brilliance sources, 2006, SPIE, vol. 6318, pp. 0S-1 to 0S-10. |
Weitkamp et al., “X-ray phase imaging with a grating interferometer,” Opt. Express vol. 13(16), (2005), pp. 6296-6304. |
Weitkamp et al., “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. vol. 86, (2005), 054101. |
Zhou et al., “Quasi-parallel X-ray microbeam obtained using a parabolic monocapillary X-ray lens with an embedded square-shaped lead occluder,” arXiv:2001.04667 (2020). |
Number | Date | Country | |
---|---|---|---|
20200072770 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62794281 | Jan 2019 | US | |
62726776 | Sep 2018 | US |