Systems and methods for distributing gas in a chemical vapor deposition reactor

Information

  • Patent Grant
  • 8961689
  • Patent Number
    8,961,689
  • Date Filed
    Thursday, March 26, 2009
    15 years ago
  • Date Issued
    Tuesday, February 24, 2015
    9 years ago
Abstract
Systems and methods for the production of polysilicon or another material via chemical vapor deposition in a reactor are provided in which gas is distributed using a silicon standpipe. The silicon standpipe can be attached to the reactor system using a nozzle coupler such that precursor gases may be injected to various portions of the reaction chamber. As a result, gas flow can be improved throughout the reactor chamber, which can increase the yield of polysilicon, improve the quality of polysilicon, and reduce the consumption of energy.
Description
FIELD OF INVENTION

The subject invention is directed to systems and methods for the production of materials such as polysilicon via chemical vapor deposition in a reactor. More particularly, the subject invention relates to systems and methods for distributing gas to improve flow patterns in a chemical vapor deposition reactor using a silicon standpipe.


DESCRIPTION OF THE RELATED ART

Chemical vapor deposition (CVD) refers to reactions usually occurring in a reaction chamber that involve depositing a solid material from a gaseous phase. CVD can be used to produce high-purity, high-performance, solid materials such as polysilicon, silicon dioxide, and silicon nitride, for example. In the semiconductor and photovoltaic industries, CVD is often used to produce thin films and bulk semiconductor materials. For example, heated surfaces can be exposed to one or more gases. As the gases are delivered into the reaction chamber, they come into contact with heated surfaces. Once this occurs, reactions or decomposition of the gases then occurs forming a solid phase, which is deposited onto the substrate surface to produce the desired material. Critical to this process is the gas flow pattern which influences the rate at which these reactions will take place and the quality of the products.


In polysilicon chemical vapor deposition processes, for example, polycrystalline silicon can be deposited from silane (SiH4), dichlorosilane (SiH2Cl2), trichlorosilane (SiHCl3), and tetrachlorosilane (SiCl4) according to the respective reactions. These reactions are usually performed in a vacuum or a pressured CVD reactor, with either pure silicon-containing feedstock, or a mixture of silicon containing feedstock with other gases. The required temperatures for the reactions range from hundreds to over one thousand degrees Celsius. Polysilicon may also be grown directly with doping, if gases such as phosphine, arsine or diborane are added to the CVD chamber.


Gas flow pattern is therefore crucial not only to the growth of polysilicon and other materials, but it also impacts the production rate, product quality, and energy consumption of the overall CVD reactor system.


SUMMARY OF THE INVENTION

The subject invention relates to systems and methods for distributing gas in a chemical vapor deposition reactor, in particular, for improving gas flow in a CVD reactor. Thus, the subject invention can be used to increase efficiency of reactions within CVD reaction chambers, increase the output of solid deposit, improve product quality, and reduce overall operating costs. Also encompassed by the subject invention is that silicon deposited on standpipes in a CVD reactor can be used as additional polysilicon product.


In a reactor system and method according to the subject invention, in particular, a CVD reactor system and method, a standpipe is utilized. The standpipe can be used to inject various reactants into a reaction chamber. The standpipe preferably is made of silicon or other materials. These materials include, without limitation: metals, graphite, silicon carbide, and other suitable materials. The length of the standpipe can range from about 1-2 centimeters up to about a few meters depending on the application. The diameter of the pipe can range from about 1-2 millimeters up to tenths of centimeters depending on the gas flow rate. The thickness of the wall preferably is about 0.1 to about 5.0 millimeters.


The reactor system of the subject invention includes a reaction chamber having at least a base plate fixed within the reaction chamber and an enclosure operably connected to the base plate. One or more filaments are attached to the base plate within the chamber upon which various reactant gases are deposited during a chemical vapor deposition cycle. The filament may be a silicon filament or other desired solid to be fabricated. At least one gas inlet and one gas outlet are connected to the reaction chamber to allow gas flow through the reaction chamber. A window portion or viewing port for viewing an internal portion of the chamber also can be provided. An electrical current source preferably is connected to ends of the filament via electrical feedthroughs in the base plate for supplying a current to heat the filament directly during a CVD reaction cycle. A cooling system for lowering a temperature of the chemical vapor deposition system also can be employed having at least one fluid inlet and at least one fluid outlet.


The standpipe according to the subject invention preferably is operably connected to the at least one gas inlet for injecting gas flow to the reaction chamber. The standpipe preferably includes a nozzle coupler and a pipe body. The length and diameter of the pipe body can be selected based on at least a desired gas flow rate. The nozzle coupler further can include a sealing device such as a gasket for sealing the pipe body to the at least one gas inlet. The standpipe preferably has at least one injection tube within the chamber for distributing a process gas flow. The dimensions of the at least one injection tube are based on a desired flow rate. The injection tube material can be made of silicon or another material.


These and other aspects and advantages of the subject invention will become more readily apparent from the following description of the preferred embodiments taken in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

So that those skilled in the art to which the subject invention appertains will readily understand how to make and use the method and device of the subject invention without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:



FIG. 1 is a perspective view of a reaction chamber system of the subject invention;



FIG. 2 is an internal perspective view of the reaction chamber of FIG. 1;



FIG. 3A is an enlarged cutaway view of a standpipe according to the subject invention;



FIG. 3B is a detailed view of a nozzle coupler attached to a pipe body of the standpipe of FIG. 3A;



FIG. 3C is an enlarged view of a gasket of the nozzle coupler depicted in FIG. 3B; and



FIG. 4 is a partial cross-sectional view of the reaction chamber system of the subject invention incorporating multiple standpipes.





DETAILED DESCRIPTION OF THE INVENTION

Preferred embodiments of the subject invention are described below with reference to the accompanying drawings, in which like reference numerals represent the same or similar elements.


The subject invention relates to systems and methods for distributing gas in a reactor, in particular, for improving gas flow in a chemical vapor deposition (CVD) reactor. In particular, the subject invention is directed to a system and method for distributing gas in a CVD reactor using a standpipe. The benefits and advantages of the subject invention include, but are not limited to, increased production rates of a solid deposit (e.g. polysilicon), decreased energy consumption, and reduced overall operating costs. While the disclosure of the subject invention is directed toward an exemplary polysilicon CVD reactor system, the system and methods of the subject invention can be applied to any CVD reactor system for which increased gas distribution and improved gas flow patterns are desired, or any reactor system generally.


In an exemplary application, trichlorosilane gas reacts on rods or silicon tube filaments within a reaction chamber to form polysilicon deposits on the thin rods or filaments. The subject invention is not restricted to CVD reactors using polysilicon deposition involving a reaction of trichlorosilane but can be used for reactions involving silane, dichlorosilane, silicon tetrachloride, or other derivatives or combinations of gases, for example, by using thin rods or filaments with large surface area geometries and similar electrical resistivity properties in accordance with the invention. Filaments of various shapes and configurations can be utilized, for example, those disclosed in U.S. Patent Application Publication US 2007/0251455, which is incorporated herein by reference.


Referring to FIGS. 1 and 2, a chemical vapor deposition (CVD) reactor is shown, in which polysilicon is deposited onto thin rods or filaments according to the subject invention. A reactor system 10 includes a reaction chamber 12 having a base plate 30, a gas inlet nozzle 24 or process flange, a gas outlet nozzle 22 or exhaust flange, and electrical feedthroughs or conductors 20 for providing a current to directly heat one or more filaments 28 within the reaction chamber 12, as shown in FIG. 2. A fluid inlet nozzle 18 and a fluid outlet nozzle 14 are connected to a cooling system for providing fluid to the reaction chamber 10. In addition, a viewing port 16 or sight glass preferably allows visual inspection of the interior of the reaction chamber 12, and can optionally be used to obtain temperature measurements inside the reaction chamber 12.


According to a preferred embodiment of the subject invention as depicted in FIGS. 1 and 2, the reactor system 10 is configured for bulk production of polysilicon. The system includes the base plate 30 that may, for example, be a single plate or multiple opposing plates, preferably configured with filament supports, and an enclosure attachable to the base plate 30 so as to form a deposition chamber. As used herein, the term “enclosure” refers to an inside of the reaction chamber 12, where a CVD process can occur.


One or more silicon filaments 28 preferably are disposed within the reaction chamber 12 on filament supports (not shown), and an electrical current source is connectible to both ends of the filaments 28 via electrical feedthroughs 20 in the base plate 30, for supplying a current to directly heat the filaments. Further provided is at least one gas inlet nozzle 24 in the base plate 30 connectible to a source of silicon-containing gas, for example, and a gas outlet nozzle 22 in the base plate 30 whereby gas may be released from the reaction chamber 12.


Referring to FIG. 2, an exemplary standpipe 42 structure is shown, in which a pipe body 44 preferably is operably connected to at least one gas inlet nozzle 24 for injecting various gases into the reaction chamber 12 in conjunction with a CVD reaction occurring in the reaction chamber 12 (see also FIG. 3A). Although a single injection tube 42 is depicted in FIG. 2, one or more standpipes can be included in a reaction chamber. For example, referring to FIG. 4, the single standpipe can be replaced by standpipes 42. The dimensions of each standpipe or injection tube 42 may vary from about 1-2 cm in length up to a few meters, and about 1-2 mm in diameter to tenths of centimeters, depending upon a desired gas flow design.


The one or more standpipes 42 preferably are used to inject one or more gases to various parts of the reaction chamber 12, depending upon a desired flow pattern. The standpipe(s) 42 can be attached to the reactor by any known installation mechanism, for example, by screwing a pipe body 44 into an inlet nozzle coupler 25 of the reaction chamber 12 (see FIGS. 3A-3C, as described herein). Because gas flow patterns can be crucial to the growth, production rate, product quality, and energy consumption of polysilicon, the subject invention can be applied to polysilicon manufacturing processes and any other processes that involve silicon or silicon compound deposition. Specifically, it can also be applied to processes where corrosion, contamination, and deposition can occur on the pipe and other shapes of components.


Referring again to FIGS. 3A-3C, various components of the standpipe 42 preferably are made of silicon pipe. Silicon is used as an alternative to non-silicon materials such as stainless steel or other metals that can cause corrosion, contamination, melting and unwanted silicon deposition within the pipe body 44. At one end of the pipe body 44, the material from which the pipe body 44 is made is fused with materials that can be machined. These materials include metals, graphite, silicon carbide, and any other suitable material. At the other end, as shown in FIGS. 3A-3C, the pipe body 44 preferably is attached to the nozzle coupler 25 having an appropriate diameter. The nozzle coupler 25 preferably is formed with a gasket 26 for providing an airtight seal between the gas inlet nozzle 24 and a standpipe gas supply source. The length of the pipe body 44 can range from about a few centimeters to about a few meters depending on the application. The diameter of the pipe body 44 can range from about a few millimeters to tenths of centimeters depending on the gas flow rate. The thickness of the pipe body 44 wall preferably is on the order of about a few millimeters or less. The pipe body 44 preferably is made of silicon.


A method for depositing a material in a reactor can include steps of: providing a reaction chamber including at least a base plate fixed within the reaction chamber and an enclosure operably connected to the base plate; attaching at least one filament to the base plate; connecting an electrical current source to the reaction chamber for supplying a current to the filament; connecting a gas source to the reaction chamber to allow gas through the reaction chamber; connecting a standpipe to the gas source for distributing a gas flow within the reaction chamber; and operating the reactor to deposit the material on the at least one filament in the reaction chamber.


An additional benefit of a standpipe of the subject invention is that it can be reused or recycled. During the gas injection process, silicon is deposited on the pipe body 44. Once the silicon builds up, the silicon can be removed from the pipe bases and used as silicon product.


Although the subject invention has been described with respect to preferred embodiments, those skilled in the art will readily appreciated that changes or modifications thereto may be made without departing from the spirit or scope of the subject invention as defined by the appended claims.


INCORPORATION BY REFERENCE

The entire contents of all patents, published patent applications and other references cited herein are hereby expressly incorporated herein in their entireties by reference.

Claims
  • 1. A silicon reactor system, comprising: a reaction chamber including at least a base plate fixed within the reaction chamber and an enclosure operably connected to the base plate;at least one silicon filament attached to the base plate;an electrical current source connected to ends of the at least one filament for supplying a current to the at least one filament;a gas source operably connected to the reaction chamber to allow a silicon-containing gas to flow through the reaction chamber; anda standpipe comprising a pipe body having (i) an inlet end operably connected to the gas source and (ii) an outlet end exposed within the reaction chamber for directly injecting the gas flow into the reaction chamber, said outlet end being a termination of said pipe body that does not add structure to said pipe body, said outlet end being located at a height above the ends of the at least one filament that are connected to the electrical current source, said standpipe comprising silicon and being configured to receive deposits of polysilicon in the reaction chamber.
  • 2. The reactor system of claim 1, wherein the current is supplied directly to the filament through an electrical feedthrough in the base plate.
  • 3. The reactor system of claim 1, wherein the reaction chamber further comprises a viewing port for viewing an internal portion of the reaction chamber.
  • 4. The reactor system of claim 1, further comprising at least one additional standpipe received in the reaction chamber.
  • 5. The reactor system of claim 1, wherein the inlet end of the standpipe terminates in a nozzle coupler, the nozzle coupler being configured for connecting with the gas source.
  • 6. The reactor system of claim 5, wherein a diameter of the pipe body is selected based on at least a desired gas flow rate.
  • 7. The reactor system of claim 5, wherein the nozzle coupler further comprises a gasket for sealing the standpipe to the gas source.
  • 8. The reactor system of claim 1, wherein the reactor system is a chemical vapor deposition reactor system.
  • 9. The reactor system of claim 1, further comprising a cooling system having at least a fluid inlet and a fluid outlet operably connected to the reactor system.
  • 10. The silicon reactor system of claim 1, wherein the inlet end of the standpipe is operably connected to the gas source and to the base plate by a connecting mechanism that facilitates removal of the standpipe from the reactor.
  • 11. A reaction chamber, comprising: a base plate fixed within the reaction chamber;at least one filament having ends attached to the base plate, the reaction chamber being operably connected to an electrical current source and a gas source to allow deposition of a material on the at least one filament; anda standpipe comprising a pipe body having (i) an inlet end operably attached to the gas source and (ii) an outlet end exposed within the reaction chamber for directly distributing a gas flow within the reaction chamber, said outlet end being a termination of said pipe body that does not add structure to said pipe body, said outlet end being located at a height above the ends of the at least one filament that are attached to the base plate, said standpipe comprising the material to be deposited on the filament and being configured to receive deposits of the material in the reaction chamber.
  • 12. The reaction chamber of claim 11, wherein a current is supplied to the filament by the electrical current source.
  • 13. The reaction chamber of claim 12, wherein the current is supplied directly to the filament through an electrical feedthrough in the base plate.
  • 14. The reaction chamber of claim 11, further comprising at least a gas inlet and a gas outlet operably connected to the reaction chamber to allow gas flow through the reaction chamber.
  • 15. The reaction chamber of claim 11, further comprising a viewing port for viewing an internal portion of the reaction chamber.
  • 16. The reactor system of claim 11, wherein the inlet end of the standpipe is operably connected to the gas source and to the base plate by a connecting mechanism that facilitates removal of the standpipe from the reactor.
  • 17. A silicon reactor system, comprising: a reaction chamber including at least a base plate fixed within the reaction chamber and an enclosure operably connected to the base plate;at least one silicon filament attached to the base plate;an electrical current source connected to ends of the at least one filament for supplying a current to the at least one filament;a gas source operably connected to the reaction chamber to allow a silicon-containing gas to flow through the reaction chamber; anda standpipe comprising a pipe body having (i) an inlet end operably connected to the gas source and to the base plate by a mechanism that facilitates removal of the standpipe from the reactor, and (ii) an outlet end exposed within the reaction chamber for directly injecting the gas flow into the reaction chamber, said outlet end being a termination of said pipe body that does not add structure to said pipe body, said outlet end being located at a height above the ends of the at least one filament that are connected to the electrical current source, said standpipe comprising silicon and being configured to receive deposits of polysilicon in the reaction chamber.
Parent Case Info

This application is a national phase application filed under 35 USC §371 of PCT Application No. PCT/US2009/038393 with an International filing date of Mar. 26, 2009 which claims priority of U.S. Provisional Application Ser. No. 61/039,758 filed on Mar. 26, 2008. Each of these applications is herein incorporated by reference in their entirety for all purposes.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2009/038393 3/26/2009 WO 00 2/10/2011
Publishing Document Publishing Date Country Kind
WO2009/120862 10/1/2009 WO A
US Referenced Citations (77)
Number Name Date Kind
3058812 Chu et al. Oct 1962 A
3120451 Sirtl et al. Feb 1964 A
3293950 Kern et al. Dec 1966 A
3746496 Dietze et al. Jul 1973 A
3918396 Dietze et al. Nov 1975 A
3941900 Stut et al. Mar 1976 A
4023520 Reuschel May 1977 A
4062714 Griesshammer et al. Dec 1977 A
4068020 Reuschel Jan 1978 A
4125643 Reuschel et al. Nov 1978 A
4147814 Yatsurugi et al. Apr 1979 A
4148931 Reuschel et al. Apr 1979 A
4150168 Yatsurugi et al. Apr 1979 A
4173944 Koppl et al. Nov 1979 A
4179530 Koppl et al. Dec 1979 A
4255463 Rucha et al. Mar 1981 A
4311545 Bugl et al. Jan 1982 A
4374110 Darnell et al. Feb 1983 A
4409195 Darnell et al. Oct 1983 A
4426408 Dietze Jan 1984 A
4481232 Olson Nov 1984 A
4681652 Rogers et al. Jul 1987 A
4715317 Ishizuka Dec 1987 A
4805556 Hagan et al. Feb 1989 A
5064367 Philipossian Nov 1991 A
5327454 Ohtsuki et al. Jul 1994 A
5374413 Kim et al. Dec 1994 A
5382412 Kim et al. Jan 1995 A
5382419 Nagai et al. Jan 1995 A
5478396 Keck et al. Dec 1995 A
5545387 Keck et al. Aug 1996 A
5885358 Maydan et al. Mar 1999 A
6007869 Schreieder et al. Dec 1999 A
6073577 Lilleland et al. Jun 2000 A
6123775 Hao et al. Sep 2000 A
RE36936 Keck et al. Oct 2000 E
6221155 Keck et al. Apr 2001 B1
6284312 Chandra et al. Sep 2001 B1
6365225 Chandra et al. Apr 2002 B1
6544333 Keck et al. Apr 2003 B2
6639192 Hertlein et al. Oct 2003 B2
6716302 Carducci et al. Apr 2004 B2
6749824 Keck et al. Jun 2004 B2
6872259 Strang Mar 2005 B2
6902622 Johnsgard et al. Jun 2005 B2
7217336 Strang May 2007 B2
7323047 Sugawara et al. Jan 2008 B2
7645341 Kennedy et al. Jan 2010 B2
7923358 Kim et al. Apr 2011 B2
8034300 Ishii Oct 2011 B2
8043470 Hardin et al. Oct 2011 B2
8216643 Kim et al. Jul 2012 B2
8430959 Kim et al. Apr 2013 B2
8647432 Wan et al. Feb 2014 B2
8652258 Yokogawa et al. Feb 2014 B2
20020014197 Keck et al. Feb 2002 A1
20030021894 Inoue et al. Jan 2003 A1
20030127045 Keck et al. Jul 2003 A1
20040021068 Staats Feb 2004 A1
20060180275 Steger Aug 2006 A1
20060185589 Zehavi et al. Aug 2006 A1
20060196603 Lei et al. Sep 2006 A1
20070187363 Oka et al. Aug 2007 A1
20070251455 Wan et al. Nov 2007 A1
20080206970 Hugo et al. Aug 2008 A1
20090081380 Endoh et al. Mar 2009 A1
20090130333 Kim et al. May 2009 A1
20090191336 Chandra et al. Jul 2009 A1
20100040803 Kim et al. Feb 2010 A1
20100041215 Kim et al. Feb 2010 A1
20100221454 Kim et al. Sep 2010 A1
20100247766 Forrest et al. Sep 2010 A1
20110129621 Qin Jun 2011 A1
20110159214 Gum et al. Jun 2011 A1
20110229638 Qin Sep 2011 A1
20110274926 Oda et al. Nov 2011 A1
20130302528 Kurosawa et al. Nov 2013 A1
Foreign Referenced Citations (12)
Number Date Country
1162652 Dec 2001 EP
1162652 Dec 2001 EP
63074909 Apr 1988 JP
05139891 Jun 1993 JP
05293965 Nov 1993 JP
2002508294 Mar 2002 JP
2023050 Nov 1994 RU
2125620 Jan 1999 RU
WO-9931013 Jun 1999 WO
2006091413 Aug 2006 WO
WO-2006091413 Aug 2006 WO
WO 2007136209 Nov 2007 WO
Non-Patent Literature Citations (6)
Entry
Machine translation of JP 05293965 A.
International Search Report and Written Opinion for PCT/US09/038393 mailed Dec. 11, 2009, 9 pages.
Chinese Office action No. 1 on Patent Application No. 200980116944.2, dated Feb. 6, 2012, 8 pages.
Chinese Office action No. 2 on Patent Application No. 200980116944.2, dated Sep. 4, 2012, 12 pages.
Russian Office action on Patent Application No. 2010143559/02, dated Apr. 8, 2013, 5 pages.
Official Action for Japanese Application 2011-502054, dated Sep. 3, 2013, 2 pages.
Related Publications (1)
Number Date Country
20110129621 A1 Jun 2011 US
Provisional Applications (1)
Number Date Country
61039758 Mar 2008 US