All patents, patent applications, patent publications and publications cited herein are explicitly incorporated by reference herein in their entirety. In the event of a conflict between the teachings of the application and the teachings of the incorporated document, the teachings of the application shall control.
In the field of semiconductor processing, a number of techniques have been described to convert thin amorphous silicon films into polycrystalline films. One such technique is sequential lateral solidification (“SLS”). SLS is a pulsed-laser crystallization process that can produce polycrystalline films having elongated crystal grains on substrates, such as, but not limited to, substrates that are intolerant to heat (e.g., glass and plastics). Examples of SLS systems and processes are described in commonly-owned U.S. Pat. Nos. 6,322,625, 6,368,945, 6,555,449, and 6,573,531, the entire contents of which are incorporated herein by reference.
SLS uses location controlled laser pulses to melt a region of an amorphous or polycrystalline thin film on a substrate. The melted regions of film then laterally crystallize into a directionally solidified microstructure or a multitude of location-controlled large single-crystal regions. Generally, the melt/crystallization process is sequentially repeated over the surface of a thin film. One or more devices, such as image sensors, active-matrix liquid crystal displays (“AMLCD”), and active-matrix organic light-emitting diode (AMOLED) display devices, can then be fabricated from the crystallized film. In the AMLCD and AMOLED display devices, a regular array of thin-film transistors (“TFTs”) or TFT circuits is fabricated on a transparent substrate, and each transistor or circuit serves as a pixel controller.
In conventional SLS systems, one factor in successful crystallization is the precision of the stages that translate the sample with respect to the laser pulses. For current Gen-4 two dimensional (“2D”)-projection SLS systems, translation velocities of the stages are on the order of tens of cm/s, for example, 18 cm/s. Stages such as these have certain deviations from a perfectly straight line of motion. That deviation will be collectively referred to herein as stage wobble. As used herein, “stage wobble” refers to variations and deviations of the stage position from its intended position as it translates in the laser path. Such variations can be, for example, when the stage is moving in the x-direction, unintended small motion of the stage in the y-direction. A 2D projection system creates a two dimensionally patterned beam for performing SLS. Other methods can create line beams for performing SLS.
One issue related to stage wobble in conventional single-scan two-shot SLS is the non-equidistant spacing of long grain boundaries in material made from two sequential laser pulses, i.e., a two-shot material. A single scan SLS process refers to an SLS process that can fully crystallize a region on a substrate in a single scan. Two-shot SLS refers to a SLS process that fully crystallizes a given portion of such a region with two laser pulses. The wobble of the stages between two pulses can result in a non symmetric overlapping of the second pulse with the first pulse. Ideally, beamlets of the second pulse are centered between regions irradiated by beamlets of the first pulse so as to achieve a constant spacing between the grain boundaries created by the two-shot process. If the beamlets of the second pulse are not well positioned because of stage wobble, the grains in one column can be shorter than in the grains in a neighboring column and many grains can remain in the wider column that are not fully extending the width of the column (e.g., occluded grains). Furthermore, beamlet distortion, caused by various aberrations in the projection optics, also may result in locally non symmetric overlapping of the second pulse in the scan. As used herein “beam distortion” refers to aberrations in the projection optics that can result in non-uniform beamlet formation.
A non-periodic pulse SLS method and tool is described using position controlled sequential triggering of lasers. The system can implemented multiple lasers or a single laser to create distinct non-periodic laser pulses in the crystallization process, i.e., distinct in that each laser pulse results in a separate melting and solidification cycle. One or more lasers are used in a coordinated pulse sequence to irradiate and crystallize selected areas of a film in a single scan. For example, the rapid sequence of laser pulses from two different laser sources provides the capability of increasing the effective pulse rate in processing a local region, as compared to a single source pulse rate. It also permits a greater overlap between successive pulses without the need to decrease the stage translation speed. The overlap region of the film between the pulses from the two lasers can be greater than 70% or 95% and in some instances greater than 99% percent. This high degree of overlap can be used to alleviate issues of stage wobble and laser beam distortion.
In any of the embodiments, the disclosed systems and method for non-periodic pulse sequential lateral solidification relate to processing a thin film. The method for processing a thin film, while advancing a thin film in a selected direction, includes irradiating a first region of the thin film with a first laser pulse and a second laser pulse and irradiating a second region of the thin film with a third laser pulse and a fourth laser pulse, wherein the time interval between the first laser pulse and the second laser pulse is less than half the time interval between the first laser pulse and the third laser pulse. In some embodiments, each pulse provides a shaped beam and has a fluence that is sufficient to melt the thin film throughout its thickness to form molten zones that laterally crystallize upon cooling. In some embodiments, the first and second regions are adjacent to each other. In some embodiments, the first and second regions are spaced a distance apart.
In any of the embodiments, a first laser source generates the first laser pulse and the third laser pulse and a second laser source generates the second laser pulse and the fourth laser pulse. In some embodiments, the first and second laser sources pulse at a constant rate. In some embodiments, the first and second lasers are the same. In some embodiments, the first and second lasers are different. In some embodiment, the thin film is continuously advanced in the selected direction.
In any of the embodiments, the beams provided from each of the first and second laser pulses overlap in the first region of the thin film and the beams provided from each of the third and fourth laser pulses overlap in the second region of the thin film. The overlap in each of the regions can be greater than 90% overlap, for example, greater than 95% or greater than 99%.
In any of the, the shaped beam is obtained by directing laser pulses through a mask and/or includes a plurality of beamlets. In some embodiments, the beamlets can be positioned at an angle relative to an edge of the film. In some embodiments, an edge of the film can be positioned at an angle relative to the scan direction. In some embodiments, the shaped beam can be a dot pattern.
In any of the embodiments, the first and second regions are spaced apart from one another and separated by an unirradiated area of the film. In some embodiments, the first and second regions overlap, for example, by 10% or 1%.
In any of the embodiments, an electronic device is fabricated in each of the first region and the second region and the regions are sized to contain one circuit belonging to a node of a matrix-type electronic device.
In one aspect, the disclosure relates to a thin film processed according to the method described. The thin film can be used to make electronic devices including devices having thin film transistors in each of the first and second regions of the film.
In one aspect, the disclosure relates to a method for processing a thin film, while advancing the film at a constant velocity in a selected direction, including irradiating a first region of the thin film by a first beam provided by a laser pulse from a primary laser source, irradiating a second region of the thin film by a second beam provided by a laser pulse from a secondary laser source and irradiating a third region of the thin film by a third beam provided by a laser pulse from the primary laser source. In some embodiments, each beam of the first, second, and third beams has a fluence that is sufficient to melt a film throughout its thickness in an irradiated film region and laterally crystallize upon cooling to form one or more laterally grown crystals, and the overlap in irradiation between the first and second regions is larger than the overlap in irradiation between the second and third regions.
In one aspect, the disclosure relates to method for processing a thin film while advancing the thin film in a selected direction. The method can include at a first time, generating a first shaped beamlet from a laser pulse from a primary laser source and irradiating a first region of the film with the first shaped beamlet to form a first molten zone which laterally crystallizes upon cooling to form a first set of crystallized regions; at a second time, generating a second shaped beamlet from a laser pulse from a secondary laser source and irradiating the first region of the film with the second shaped beamlet to form a second molten zone which laterally crystallizes upon cooling to form a second set of crystallized regions; and at a third time, generating a third shaped beamlet from another laser pulse from the primary laser source and irradiating a second region of the film with the third shaped beamlet to form a third molten zone which laterally crystallizes upon cooling to form a third set of crystallized regions. In some embodiments, the time interval between the first time and the third time is more than two times the interval between the first time and the second time.
In one aspect, the disclosure relates to a system for processing a thin film including primary and secondary laser sources for generating laser pulses, a system for generating a shaped beamlet from the laser pulse, a work surface for securing a thin film on a substrate, a stage for moving the thin film with respect to the beam pulses and thereby creating a propagation direction of the laser beam pulses on the surface of the thin film, and a computer for processing instructions for stage synchronized laser pulsing to provide a first region of a thin film loaded into the moveable stage to be irradiated by a first set of one or more shaped beamlets provided by a laser pulse from the primary source, a second region of the thin film to be irradiated by a second set of one or more shaped beamlets provided by a laser pulse from the secondary source, and a third region of the thin film to be irradiated by a third set of one or more shaped beamlets provided by a laser pulse from the primary source. In some embodiments, the processing instructions are provided for moving the film with respect to the beam pulses in the propagation direction to irradiate the first and second regions and wherein the overlap in irradiation between the first and second regions is greater than the overlap in irradiation between the second and third regions. In some embodiments the system also includes a system for sample alignment.
The following description will be more readily understood with references to the following drawings in which:
A non-periodic pulse SLS method and tool is described using position controlled sequential triggering of multiple lasers. The multiple lasers can create distinct non-periodic laser pulses in the crystallization process, i.e., distinct in that each laser pulse results in a separate melting and solidification cycle. Two or more lasers are used in a coordinated pulse sequence to irradiate and crystallize selected areas of a film in a single scan. The rapid sequence of laser pulses from two different laser sources provides the capability of increasing the effective pulse rate in processing a local region, as compared to a single source pulse rate. It also permits a greater overlap between successive pulses without the need to decrease the stage translation speed. The overlap region of the film between the pulses from the two lasers can be greater than 70% or 95% and in some instances greater than 99% percent. This high degree of overlap can be used to alleviate issues of stage wobble and laser beam distortion.
Further, the non-periodic pulse SLS method and tool also can be used to perform selective area crystallization (SAC) of a film in order to crystallize only those areas of the film that will be formed into electronics. The non-periodic pulse SLS method and tool provides SAC by allowing overlap and in some cases substantial overlap (i.e., greater than 70% overlap) between the first pulses of the two or more lasers, resulting in elongated crystal growth in a first region of the film, followed by a break determined by the repetition rate of the lasers and then substantial overlap in the second pulses of the two or more lasers resulting in elongated crystal growth in a second region of the film. The timing between laser pulses giving rise to non periodic laser pulse sequences and substantial overlap in irradiated regions is illustrated in
Low-temperature polycrystalline Si (LTPS) technology is anticipated to be necessary for making large-diameter AMOLED displays with sufficient brightness and/or lifetime. SLS is one of laser-based LTPS technologies that are of interest to this development and, correspondingly, SLS systems are thus anticipated to need larger stages to process larger panels as well as have more laser power to achieve sufficient throughput (higher pulse repetition rates and/or higher energy per pulse). While faster stages and higher pulse repetition rates alone may already be beneficial in reducing the wobble and the effects thereof on the microstructure (inertness of the stages and less time between pulses), the need for larger stages and smaller grains will make stage design challenging and stages expensive. Non-periodic pulsing, on the other hand, can drastically reduce the time between two consecutive overlapping pulses to the point that there is virtually no change in stage deviation between two pulses, while significantly reducing stage design challenges.
Increasing the overlap between pulses has certain advantages in reducing the negative impact of stage wobble and image distortion on the proper overlap between beamlets therein. Non periodic pulse SLS can be implemented using beamlets oriented in any direction, with respect to the stage motion. In practice, however, beamlets that are oriented vertically, e.g., perpendicular to the direction of stage translation, can be used to provide increased pulse overlap, and thereby derive greater benefit from the method. For an SLS scheme using long rectangular beamlets, such as the two-shot SLS process, the largest degree of pulse overlap can be established by using predominantly vertically oriented beamlets. While horizontal beamlets may be used in accordance with the described non-periodic pulse SLS method, the use of vertical beamlets is preferred to achieve a high degree of overlap between pulses. Vertical beamlet alignment has been described in “Systems and Methods for Uniform Sequential Lateral Solidification of Thin Films Using High Frequency Lasers,” U.S. patent application Ser. No. 12/063,814, the entirety of the disclosure is explicitly incorporated by reference herein.
A single scan two-shot SLS is first described in order to better explain the features and advantages of non-periodic pulse SLS.
Laser crystallization systems that can be used in SLS processes have characteristics largely dictated by the laser source. For example, a high frequency laser (several kHz or more up to tens of kHz or more) with a low energy per pulse can be used to create a long narrow line to perform what is called “line-scan SLS.” The beam length is typically larger than the dimension of one or more displays and can be a fraction or equal to the dimension of a glass panel of which displays are cut. A fraction can be about one half to about one sixteenth of the panel, for example, one quarter of the panel. Lower frequency lasers having high power (for example 300 Hz or 600 Hz or more and 300 W or 600 W or more) are not amenable for this line-scan SLS scheme as the per-pulse energy is too high (on the order of 1 J) and instead rectangular beams are formed that are scanned in a serpentine style over the surface of the film. A particular type of SLS system using such lasers, as for example available from Japan Steel Works, LTD., Japan, uses a two-dimensional (2-D) projection system to generate the rectangular laser pulses with a typical short axis dimension of approximately 0.5 mm to 2.0 mm and a typical long axis dimension of approximately 15 mm to 30 mm. At least one dimension of the molten zones used for sequential lateral solidification is on the order of one to two times the lateral grain growth, e.g., about 2 μm to 6 μm. Hence, the rectangular laser beam may be masked to provide a plurality of such beamlets of smaller dimension. A plurality of beamlets of the appropriate dimension also can be provided using other means of optical manipulation of the beam instead of using a mask, such as generating an interference pattern that creates a light pattern similar to the mask.
In one SLS scheme using such plurality of beamlets that leads to a crystalline film with a high level of uniformity, a given region of a thin film is irradiated with two distinct laser pulses to fully crystallize the film, providing a relatively rapid way to produce polycrystalline semiconductor films. This scheme is commonly referred to as two-shot SLS. Further details of two-shot and other SLS methods and systems may be found in U.S. Pat. No. 6,368,945, entitled “Method and System for Providing a Continuous Motion Sequential Lateral Solidification,” the entire contents of which are incorporated herein by reference. Two-shot SLS can be performed in a single scan, referred to as single-scan SLS, where the beam pulse is patterned into arrays of beamlets, the long axes of which are typically aligned parallel to the scan direction, as discussed in U.S. Pat. No. 6,908,835, entitled “Method and System for Providing a Single-Scan, Continuous Motion Sequential Lateral Solidification,” the entirety of the disclosure of which is explicitly incorporated by reference herein.
In operation, a stage moves the film continuously in the negative x direction, so that the long axes of the slits in the mask of
The film continues to translate in the x direction and the second irradiation, resulting from irradiating the region with a second set of beamlets from the first array 215 of the mask, melts the remaining amorphous regions 223, 225, 227, 229 (shown in
Because the beamlets are relatively long, much of the crystallized area has crystal grains oriented in the y direction. In contrast, at the front and end regions 360 and 370 respectively, some of the crystals grow from the very ends of the region, so they extend substantially in the x direction (parallel to the scan), and others grow at an angle to the scan direction. These regions are known as “edge areas.” Here, artifacts may arise because the edge of the beam, which is reproduced in the molten portion, leads to lateral growth of grains extending in from the edges at angles that are skewed relative to the desired direction of the lateral growth.
According to the above-described method of sequential lateral solidification, an entire region can be crystallized using only two laser pulses. This method is hereinafter referred to as a “two-shot” process, alluding to the fact that only two laser pulses (“shots”) are required for complete crystallization. Further detail of the two-shot process is found in U.S. Pat. No. 6,555,449, entitled “Methods for Producing Uniform Large-Grained and Grain Boundary Location Manipulated Polycrystalline Thin Film Semiconductors Using Sequential Lateral Solidification,” which is incorporated in its entirety by reference.
The previously described two-shot SLS process can be used to crystallize silicon films for small diameter (e.g., for mobile applications) active-matrix display manufacturing that are made using for example glass panels sized about 730 mm by 920 mm. Processing on larger panels is required for making large diameter active-matrix displays (e.g., for monitor or TV applications), for example up to about 2200 mm by 2500 mm or even larger. An obstacle in developing tools for large-panel manufacturing is the linear stage used to translate the panel: it is not straightforward to have such large stages operate with the precision required in the conventional two-shot SLS process. The following is a description of some of the issues with performing above-described SLS using insufficiently precise stages, in particular describing the effects of stage wobble.
Stage wobble can cause a misalignment of the laser pulses between subsequent laser pulses, as illustrated by the misalignment in region 480 of
The misalignment of the laser pulses results in unevenly spaced long grain boundaries in the final product. The long grain boundary is the center line formed when two laterally growing crystal fronts meet.
As can be seen in
Another issue with the previously described two-shot SLS process is distortion. Lenses used in projection optics can have aberrations, e.g., astigmatism, that can result in distortion of the beam. Especially away from the center, the distortion in the beam may be noticeable in the crystallized film.
Non-Periodic Pulse SLS
Non-periodic pulse SLS offers a method to make the crystallization process more robust against poor overlapping of beamlets upon subsequent irradiations in arising from, for example, stage wobble, and/or image distortion.
The present system uses non-periodic laser pulses, i.e., pulses that are not equally spaced in the time domain. In one embodiment, the present system creates non-periodic laser pulses by using coordinated triggering of pulses from a plurality of laser sources (as is also possible using a single laser source having multiple laser cavities, e.g., tubes) to produce a series of pulses closely spaced in the time domain. A plurality of laser sources may be provided into a single laser system. A laser system is a computer controlled system that uses computer controlled techniques and one or more laser cavities to produce one or more laser beams. Each laser beam corresponds to one laser source. Each laser beam can be produced from a stand alone laser, or a laser cavity which is part of a plurality of laser cavities contained within one laser system.
An exemplary profile of non-periodic laser pulses is shown in
The delay range between the first pulse 510 and the second pulse 500 can be less than half of the time interval between the first pulse 510 and the third pulse 520. In some embodiments, the time interval between first pulse 510 and the second pulse 500 is less than one tenth or less than one twentieth or less than one hundredth the time interval between the first pulse 510 and the third pulse 520. The delay range between the first pulse 510 and the second pulse 510 can be about three microseconds to about one millisecond, about five microseconds to about 500 microseconds, and preferably about 8 microseconds to about 100 microseconds.
For example, the delay can be as small as a few microseconds (e.g., for a stage speed of 40 cm/s and a 3.5 um displacement, the timing would be 8.75 microseconds). If the stage speed is as high as 60 cm/s, then the timing would be 5.83 microseconds. In an n-shot process, i.e., in a process with more than two laser irradiations in a given region (for example, 3, 4, 5, or n radiations in a given region), the overlap may be larger. Such an n-shot SLS process is described in U.S. application Ser. No. 11/372,161, the entire contents of which are hereby incorporated by reference. For example, in an n-shot process, the timing could be 5 microseconds or even 3 microseconds. Because the lateral growth velocity is on the order of up to about 10 microns/second, when melting a 6 microns wide region with an approximately 0.3 microsecond full width half maximum (FWHM) pulse, the film is laterally crystallized in less than about 0.5 us.
In some embodiments, displacement may be more than 3.5 microns. Thus, the delay can be 10s of microseconds and up to 50 microseconds or even more than 100 microseconds and possibly, as high as a few 100 microseconds. The upper limit can be so high as to approach, but not equal, the repetition rate of two 600 Hz laser combined at 1200 Hz: i.e., 833 microseconds. For example, for 70% overlap the delay would be 500 microseconds. However, if two 300 Hz lasers are used, the delay would be 1 millisecond.
Tools having multiple laser cavities, e.g. tubes, have been disclosed previously to (1) increase the pulse energy by simultaneously triggering and subsequently combining multiple pulses and (2) increase the pulse duration by delayed triggering of various tubes and subsequently combining them, as discussed in U.S. Pat. No. 7,364,952, the entirety of the disclosure of which is explicitly incorporated by reference herein. In other words, pulses are combined to provide a modified single melting and solidification cycle. Non-periodic pulse SLS is different in that it uses the pulses of various lasers in separate melting/solidification cycles. However, the pulses are close enough in the time domain that they show significant overlap while the stage is traveling at high speed.
The two consecutive pulses in a pulse train need not be at the same energy density. For example, if the film is still hot from the first pulse, the second pulse could be at a lower energy density. Likewise, a higher energy density may be used to compensate for the changes in optical properties upon the first pulse (amorphous absorbing slightly better than crystalline). A proper choice for the energy density of the second pulse may thus take in account both effects and possibly others as well. Thus, as shown in
System for Performing Non-Periodic Pulse SLS
One method for performing non-periodic pulse SLS implements multiple laser sources, for example a dual laser source. The system for performing SLS using a dual laser source is shown in
The non-periodic laser pulse pattern is preferably obtained by the off-set firing of a plurality of lasers of the same repetition rate. Techniques to create non periodic laser pulse patterns using a single laser may exist but are at present considered less effective. In one technique, the triggering mechanism of a laser having a certain repetition rate is modified to create a non periodic pulse sequence having alternate short and long time intervals between consecutive pulses. Lasers such as excimer lasers have a maximum output power that increases with pulse repetition rate until a certain optimum pulse rate after which power starts to drop. In other words, beyond this optimum pulse rate, the maximum energy that a pulse can have will rapidly decrease. Thus, decreasing the time interval between two consecutive pulses for a given laser having a certain maximum pulse energy may result in degradation of the pulse energy, especially for the pulse following the short time interval.
In another technique to create non periodic laser pulse patterns using a single laser, the non-periodic pulse pattern is obtained from a single laser that is operated in a higher power/pulse rate mode, for example, having repetition rates of several kHz up to 10 kHz, adapted to provide downtime between short sequences, e.g., rapid bursts, of uninterrupted laser pulses. Exemplary laser systems suitable for use in the methods and systems described herein include high-frequency lasers, for example, lasers developed by Cymer (San Diego) and used in laser crystallization tools available from TCZ Pte. Ltd. (Singapore), and diode-pumped solid state lasers, for example, available from JENOPTIK Laser, Optik, Systeme GmbH and used in laser crystallization tools available from Innovavent GmbH. However, these high-frequency lasers have correspondingly lower energy per pulse and resultantly pulse dimensions are reduced compared to higher energy per pulse laser such as available from Coherent Inc. (Santa Clara).
The film 199 can be an amorphous or polycrystalline semiconductor film, for example a silicon film. The film can be a continuous film or a discontinuous film. For example, if the film is a discontinuous film, it can be a lithographically patterned film or a selectively deposited film. If the film is a selectively deposited film, it can be via a chemical vapor deposition, sputtered, or a solution processed thin film, for example ink jet printing of silicon based inks
Full Area Non-Periodic Pulse SLS
As described above with respect to previously discussed two shot SLS,
When scanning the sample (preferably at a constant stage velocity), the overlap between the first and second crystallized regions 711, 712 and the third and fourth crystallized regions 713, 714 is greater than about 50%. Preferably, the overlap between the first and second crystallized regions 711, 712 and the third and fourth crystallized regions 713, 714 is greater than about 70%, greater than about 90%, greater than about 95% or greater than about 99%. The first irradiation corresponding to region 711 melts the region throughout its thickness; the molten region then quickly laterally crystallizes from the solid edge to form a laterally crystallized region. The second irradiation generated by the first secondary laser pulse spans the unirradiated regions between the individual beamlet regions created by the first set of beamlets and overlap with the first crystallized regions 711. Upon cooling, the crystals in the second region grow from the edge of the second molten region to form crystal grains laterally extended substantially in the x direction (parallel to the direction to the scan). Thus, while the overlap can range from greater than 50% to about 99%, the overlap is selected so that the entire region is crystallized in two laser pulses. The area of the film that is fully crystallized in this manner is referred to as a “two-shot crystallized region.” In this example irradiation of the first crystallized region 711, followed by irradiation of second crystallized region 712 results in a first two shot crystallized region 715. Then, irradiation of the third crystallized region 713 and the fourth crystallized region results in a second two shot crystallized region 716. If more than two lasers pulses are used in the pulse train, the overlap can be selected so that the entire region is crystallized by the number of pulses in the pulse train.
The maximum overlap between the first two-shot crystallized region 715 and the second two-shot crystallized region 716 can be such that the first beamlet of the second pulse is positioned exactly between the first and second beamlets of the first pulse. This maximum overlap corresponds to a minimum displacement of half the beamlet pitch for vertically aligned beamlets. If the beamlets are tilted with respect to the vertical alignment (as discussed below), meaning they are not oriented perpendicularly to the scanning direction, the minimum displacement is half the beamlet pitch divided by the cosine of the tilt angle. In an n-shot process (as described above), the first beamlet of the second pulse may be positioned closer to the center line of first beamlet of the first pulse, and the maximum overlap is correspondingly larger. The first and second two shot crystallized regions 715, 716 can be narrower if the overlap between the first pulse and the second pulse is smaller. Where the overlap is smaller, there will be “wings” adjacent to the first and second two shot crystallized regions 715, 716 where those “wings” were irradiated by single non-overlapping beamlets only.
The smaller overlap can be used alone or in combination with adjustment of the second pulse energy density as described previously. Additionally, a smaller overlap can be beneficial to mitigate the effects of energy density non uniformity within the beam. As a process that relies on complete melting of the film, SLS is relatively immune to typical variations in the energy density from pulse to pulse or between various sections of the pulse. Energy density variation can result in some mild variation of the width of regions irradiated by a single beamlet. Hence, in a two-shot process, energy density variation can result in some mild variation in the overlap between molten regions and thus the microstructure that results. Thus, it is preferable that a portion of the film is irradiated with a lower energy density in one pulse is not irradiated with a lower energy density in the other pulse as well. For example, if a small section of the beam has a reduced energy density due to imperfections in the optical system, it is preferable to increase the displacement between the two pulses such that one portion in the film is not irradiated twice with this reduced energy density section of the beam.
In operation, a stage moves the film continuously along x direction to effect a pulse scanning direction indicated by arrow 720 in
The film velocity and the repetition rate (frequency) of the first and second laser pulse determine the location of subsequent two shot crystallized regions on the film. In one or more embodiments, the first and second two-shot crystallized regions 715 and 716 also can overlap at 745. Therefore, as the film is scanned in the x direction, the entire film surface can be crystallized. If the regions 711 and 712 are displaced only half the pitch of the beamlets (as illustrated in
The increased overlap of the first and second 711, 712 and third and fourth regions 713, 714 in
Tilted Scans Using Non-Periodic Pulse SLS
In some embodiments, when an array of TFTs is later fabricated on a film, it may be beneficial if the orientation of the long grain boundaries can be slightly tilted relative to the TFT channel orientation. If the TFTs are aligned parallel to the array orientation and/or the edges of the active-matrix device or the film, diagonal beamlets may for instance be used to do such tilt engineering (see “Polycrystalline TFT Uniformity Through Microstructure Mis-Alignment,” U.S. Pat. No. 7,160,763, the entirety of the disclosure of which is explicitly incorporated by reference herein) wherein the beamlets are tilted with respect to the channel regions so as to improve TFT uniformity.
The tilt angle can range from zero degrees to about 90 degrees. Given a certain tilt angle of the beamlets (for example, a with respect to the vertical, y, direction, i.e., the direction perpendicular to the scanning direction), a certain time delay may be calculated between the sequential pulses to provide a translation distance that is equal to d=0.5×(λ/cos α), wherein λ is the beamlet pitch.
For example, for a 75 degree tilt, as shown in
Once the film has been completely scanned in the x direction, the masked beam can be shifted in the y direction to scan the remainder of the film. As shown in
For non-horizontal beamlet alignments, beam edges also will exist at the top and bottom portions of the patterned beam shown by overlap 750. To ensure continuation of the microstructure from scan to scan, i.e., to ensure perfect stitching of the different regions formed upon scanning, these edge areas also are required to overlap in a proper manner, meaning, in a way that the center lines of beamlets overlap and that the tilt and length of beamlet is chosen such that overlap is minimized. Stage-synchronized control of the laser pulses is required to achieve precise stitching in the overlap area 750.
Variability in the positioning of pulses in the x direction may generally come from inaccuracies in the timing of pulses as well as from variation in the stage velocity, which may for example be sinusoidal. The overlapping between pulses may be affected by this variability in positioning. Inaccuracies in the timing of pulses is usually very small and is mostly the result of jitter, which corresponds to the inaccuracy in the pulse trigger electronics. Jitter may result on the order of a few nanoseconds or more. The shift in positioning of pulses on the film as a result of jitter is extremely small and is to be considered negligible for the present application. For example, a 10 ns delay in pulse, triggering causes a shift at the sample level of only 2 nm for a stage velocity of 20 cm/s. The shift in positioning of pulses on the film as a result of velocity variation may also be very small and is furthermore a gradual shift like in the case of wobble. Therefore, the close positioning in time of two pulses will be beneficial in order to minimize the impact on the microstructure uniformity resulting from such variations.
Beam Distortion
The methods and systems of the present disclosure also can alleviate the effects of beam distortion. In the disclosed non-periodic pulse SLS system and method, because the overlap between the first pulse and the second pulse within a two shot region is greater than about 70%, the overlapping portions of the first pulse and the second pulse in the two shot region are more closely located sections of the beam path such that they will be subject to a more similar degree of distortion. Hence, the final crystallized film should not be noticeably affected by such distortions.
Thus, the non-periodic SLS system and methods described above are applicable to full area crystallization of thin films. For example, non-periodic SLS can be used for a large area scan of a plurality of relatively closely spaced TFTs on a film.
Selective Area Crystallization Using Non-Periodic Pulse SLS
In some embodiments the non-periodic pulse sequence can further be used to selectively crystallize only certain regions of interest, for example, the pixel TFTs or circuits in an active-matrix device such as a display or a sensor array. In this selective area crystallization (SAC) embodiment, there is no overlap between the first and second two-shot crystallized regions such as there is between regions 715 and 716 shown in
In contrast to the embodiment shown in
The single-scan process using non-periodic pulses thus causes a non-periodic placement of pulses on the film with increased overlap between pulses in the regions of interest and decreased overlap outside of those regions. Such non-periodic placement of pulses in a single scan may also be established using periodic laser pulses by way of varying the scan velocity so as to have a low scan velocity during processing of a region of interest and a fast scan velocity between regions of interest. Such rapid acceleration and deceleration may be established for instance using optical means to rapidly redirect the pulses onto the regions of interest. Such optical means could include beam steering elements or rapidly shifting mirrors or an oscillating mask. Such an implementation of a single-scan SAC SLS process may be very demanding on such optical means and may thus be less preferable than the use of a non-periodic pulse system. Also, it does not have the benefits of the non-periodic pulse regarding reducing the errors associated with stage wobble.
Another single-scan SAC process using a periodic laser pulses involves splitting each patterned beam into two or more patterned segments each sufficiently large to crystallize one region of interest and placed a distance apart so that multiple segments simultaneously overlap multiple regions of interest. The scan proceeds at such a velocity that upon a subsequent irradiation the sample has moved a distance equal to an integer number times the pitch so that one segment of the pulse now overlaps with a region previously processed with another segment of the pulse. By proper design of the beam patterns in each segment, the second irradiation can provide lateral extension of crystals grown from the first irradiation. Creating the segments by blocking (masking) parts of the beam will be wasteful as a result of the large spacing between the segments. Rather, beam splitting techniques may be used to redirect portions of the beam either onto the same optical path or onto different optical paths. Such an implementation of a single-scan SAC SLS process does not have the benefits of closely overlapping portions of a patterned beam so as to reduce the effects of beam distortion. Also, it does not have the benefits of the non-periodic pulse regarding reducing the errors associated with stage wobble.
As described above, selective area crystallization involves crystallizing only the regions of interest in for example a matrix-type electronic device or circuit. Thus, the locations of crystallized regions need to be aligned with respect to the locations of the nodes in the matrix-type electronic device or circuit. The step of sample alignment may be achieved according to various techniques. In one technique, sample alignment may readily be established using a crystallization system that further has the ability to position the sample in such a manner that its position can be reproduced in further processing steps for making electronic devices. One common way is for example when the panel is provided with fiducials or alignment marks that are detected prior to crystallization and to which the crystallization process is aligned. Such methods of sample alignment are commonly used in lithographic procedures to make thin-film transistors where sub-micron accuracy is in overlaying various features of such devices. Sample alignment in SAC needs not be as accurate as in lithography. For example, the crystallized region can be larger than the region of interest by several microns or ten or more micron on each side.
In another technique, sample alignment is established by detecting the location of crystallized regions prior to fabricating the electronic devices. Such may be achieved through detection of the regions themselves wherein electronics are to be placed, or through detection of additional crystallized regions optimized for such alignment purposes, for example, fiducials. The use of a projection crystallization system may have benefits for such sample alignment. The system can be used to create fiducials or alignment marks on a film or substrate for later use in sample alignment. Patterned beamlets can be used to create well defined features that can be used in panel alignment in at least one, the first, of subsequent lithography steps, after which they may be replaced by lithographically defined fiducials. A benefit of complete melting and the associated lateral growth is that perpendicular long grain boundaries have protrusions associated with them that can be made visible using dark view microscopy. In addition, the phase change from amorphous to crystalline may be microscopically visible as a result to a change in optical properties.
A system for sample alignment can include an automated system for detecting fiducials and aligning the sample to a known position with respect to that fiducial. For example, the system can include a computing arrangement for controlling movement and responding to an optical detector that can detect the fiducials on the film. The optical detector can be, for example, a CCD camera.
Compared to previously discussed SLS methods, the beam width in non-periodic pulse SAC SLS may often be less; it need only be as wide as the width of the regions to be crystallized. Hence, surplus energy is available that can be used to increase the beam length. Longer beam length can be realized using larger diameter projection lenses and/or by splitting the beam into separate optical paths so as to simultaneously crystallize multiple regions in the film during scanning of the beam pulses. Increasing the length of the processed region upon a single scan can reduce the number of scans required to fully crystallize the film. The scan velocity may actually be less than for conventional SLS, adding a further benefit of relaxed design metrics for the stages. Relaxed design metrics is a common benefit of non-periodic pulse SLS as a result of the close spacing of the pulses in the time domain and the increased robustness against deviations such as stage wobble and beam distortion.
Maximizing the benefits of SAC using non-periodic pulse SLS requires optimizing the dimensions of the patterned beam as well as optimizing the layout of the pixel TFTs or circuits. Improvements in the pixel TFT and circuit design, for example, can be used for reducing the width of the areas that need to be crystallized. As illustrated in
SAC thus entails an increase in crystallization process by selectively crystallizing only certain regions of interest and skipping areas of the film in between. Likewise, the ability to irradiate on selected regions can further be used to avoid the need to do accurate scan-to-scan overlapping of the beamlets as described previously for complete area crystallization, thus eliminating the need for overlapped beam edges that further involve the use of edge engineering. The length of the beamlets can be closely matched to the corresponding dimension of the TFTs or circuits to be crystallized. Thus, the length of beamlets can be chosen such that an integer number of TFTs or circuits fit therein. Between neighboring pixel TFTs or circuits there will be some space left that need not be crystallized. This space is provided for example for the long electrodes connecting the nodes of the active matrix.
Additionally, the beamlets can be subdivided along their length to create sets of beamlets each having a length corresponding to a dimension of the pixel TFTs or circuits.
By only having slits in the masks where TFTs or circuits will be located on the film, the thermal load on the optics of the system can be reduced, especially with respect to the projection lens. As shown in
In SAC, the beam pulses can be made narrow, and the overlap between the first and the second pulses can in some embodiments be less than 50%, while the time to the next pulse is still considerably longer. The time between the pulses may thus still be very short and the benefits of non periodic scan SLS are maintained. In some SAC embodiments where the overlap between the first and second pulses is limited, while the two-shot crystallized regions do not overlap, the wings on either side of these regions may overlap with the wings of neighboring two-shot crystallized regions.
As discussed above, non-periodic pulse SLS using selective area crystallization can have a high throughput. Assuming a 1.2 kW laser having two tubes each radiating at 600 Hz (1 J/pulse) and creating a two times 5 cm×0.3 mm pulse dimension using two 50 mm field of view projection lenses, a display having a 660 micron pixel spacing made from a Gen8 panel can then be processed in 22 scans with each a 1 sec turn around time for a total of 22×250 cm/(600 Hz×660 μm)+21 or approximately 160 sec. The resultant scan velocity is then close to 40 cm/s. With a 30 sec loading and unloading time, this can result in a processing throughput of 30 days×24 hours×3 600 seconds×(1/(160+30) sec) or approximately 13.6 k panels/month. Further assuming an 85% uptime for the equipment, this can result in a throughput of 11.6 k panels/month.
Performing conventional SLS using a 1.2 kW laser produced from two tubes out of phase (i.e., combined into a periodic 1200 Hz pulse sequence) and a 5 cm×0.6 mm pulse dimension (a single 50 mm field of view projection lens) the stage velocity appropriate for achieving 50% overlap between pulses is 36 cm/s and the number of scans doubles (i.e. 44). Hence, processing time per panel using conventional SLS is more than double the processing time than that for the above example of SAC non-periodic pulse SLS.
While there have been shown and described examples of the present invention, it will be readily apparent to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the invention. By way of example, it is appreciated that advancing a thin film in a selected direction can be accomplished by holding the laser beam stationary and moving the film relative to the laser source as well as the embodiment wherein the film is stationary and the beam is moving.
This application is a continuation of and claims priority under 35 U.S.C. 120 to U.S. application Ser. No. 12/776,756, filed on May 10, 2010, entitled “SYSTEMS AND METHODS FOR NON-PERIODIC PULSE SEQUENTIAL LATERAL SOLIDIFICATION,” now U.S. Pat. No. 8,440,581, which is a continuation of and claims priority to PCT Application No. US 10/33565, filed on May 4, 2010, and also claims priority under 35 U.S.C. 119(e) to U.S. application Ser. No. 61/294,288, filed on Jan. 12, 2010, to U.S. Application Ser. No. 61/291,663, filed on Dec. 31, 2009, to U.S. Application Ser. No. 61/291,488, filed on Dec. 31, 2009, to U.S. Application Ser. No. 61/286,643, filed on Dec. 15, 2009, and to U.S. Application Ser. No. 61/264,082, filed on Nov. 24, 2009, the entirety of each of the disclosures of which are explicitly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3632205 | Marcy et al. | Jan 1972 | A |
4234358 | Celler et al. | Nov 1980 | A |
4309225 | Fan et al. | Jan 1982 | A |
4382658 | Shields et al. | May 1983 | A |
4456371 | Lin | Jun 1984 | A |
4639277 | Hawkins | Jan 1987 | A |
4691983 | Kobayashi et al. | Sep 1987 | A |
4727047 | Bozler et al. | Feb 1988 | A |
4758533 | Magee et al. | Jul 1988 | A |
4793694 | Liu | Dec 1988 | A |
4800179 | Mukai et al. | Jan 1989 | A |
4855014 | Kakimoto et al. | Aug 1989 | A |
4870031 | Sugahara et al. | Sep 1989 | A |
4940505 | Schachameyer et al. | Jul 1990 | A |
4970546 | Suzuki et al. | Nov 1990 | A |
4977104 | Sawada et al. | Dec 1990 | A |
5032233 | Yu et al. | Jul 1991 | A |
5061655 | Ipposhi et al. | Oct 1991 | A |
5076667 | Stewart | Dec 1991 | A |
RE33836 | Resor, III et al. | Mar 1992 | E |
5145808 | Sameshima et al. | Sep 1992 | A |
5173441 | Yu et al. | Dec 1992 | A |
5204659 | Sarma | Apr 1993 | A |
5233207 | Anzai et al. | Aug 1993 | A |
5247375 | Mochizuki | Sep 1993 | A |
5281840 | Sarma | Jan 1994 | A |
5285236 | Jain | Feb 1994 | A |
5291240 | Jain | Mar 1994 | A |
5294811 | Aoyama et al. | Mar 1994 | A |
5304357 | Sato et al. | Apr 1994 | A |
5338959 | Kim et al. | Aug 1994 | A |
5373803 | Noguchi et al. | Dec 1994 | A |
5395481 | McCarthy | Mar 1995 | A |
5409867 | Asano et al. | Apr 1995 | A |
5453594 | Konecny | Sep 1995 | A |
5456763 | Kaschmitter et al. | Oct 1995 | A |
5486237 | Sano et al. | Jan 1996 | A |
5496768 | Kudo et al. | Mar 1996 | A |
5512494 | Tanabe et al. | Apr 1996 | A |
5523193 | Nelson | Jun 1996 | A |
5529951 | Noguchi et al. | Jun 1996 | A |
5591668 | Maegawa et al. | Jan 1997 | A |
5663579 | Noguchi | Sep 1997 | A |
5683935 | Miyamoto | Nov 1997 | A |
5710050 | Makita et al. | Jan 1998 | A |
5721606 | Jain | Feb 1998 | A |
5742426 | York | Apr 1998 | A |
5756364 | Tanaka et al. | May 1998 | A |
5766989 | Maegawa et al. | Jun 1998 | A |
5767003 | Noguchi | Jun 1998 | A |
5817548 | Noguchi et al. | Oct 1998 | A |
5844588 | Anderson | Dec 1998 | A |
5858807 | Kawamura | Jan 1999 | A |
5861991 | Fork | Jan 1999 | A |
5893990 | Tanaka et al. | Apr 1999 | A |
5960323 | Wakita et al. | Sep 1999 | A |
5986807 | Fork | Nov 1999 | A |
6002523 | Tanaka | Dec 1999 | A |
6014944 | Aklufi et al. | Jan 2000 | A |
6020244 | Thompson et al. | Feb 2000 | A |
6045980 | Edelkind et al. | Apr 2000 | A |
6072631 | Guenther et al. | Jun 2000 | A |
6081381 | Shalapenok et al. | Jun 2000 | A |
6117752 | Suzuki et al. | Sep 2000 | A |
6120976 | Treadwell et al. | Sep 2000 | A |
6130009 | Smith et al. | Oct 2000 | A |
6130455 | Yoshinouchi et al. | Oct 2000 | A |
6136632 | Higashi | Oct 2000 | A |
6156997 | Yamazaki et al. | Dec 2000 | A |
6162711 | Ma et al. | Dec 2000 | A |
6169014 | McCulloch et al. | Jan 2001 | B1 |
6172820 | Kuwahara et al. | Jan 2001 | B1 |
6176922 | Aklufi et al. | Jan 2001 | B1 |
6177301 | Jung et al. | Jan 2001 | B1 |
6187088 | Okumura et al. | Feb 2001 | B1 |
6190985 | Buynoski | Feb 2001 | B1 |
6193796 | Yang et al. | Feb 2001 | B1 |
6203952 | O'Brien et al. | Mar 2001 | B1 |
6235614 | Yang et al. | May 2001 | B1 |
6242291 | Kusumoto et al. | Jun 2001 | B1 |
6274488 | Talwar et al. | Aug 2001 | B1 |
6285001 | Fleming et al. | Sep 2001 | B1 |
6300175 | Moon et al. | Oct 2001 | B1 |
6313435 | Shoemaker et al. | Nov 2001 | B1 |
6316338 | Jung et al. | Nov 2001 | B1 |
6320227 | Lee et al. | Nov 2001 | B1 |
6322625 | Im | Nov 2001 | B2 |
6326186 | Kirk et al. | Dec 2001 | B1 |
6326215 | Keen | Dec 2001 | B1 |
6326286 | Park et al. | Dec 2001 | B1 |
6333232 | Kunikiyo et al. | Dec 2001 | B1 |
6341042 | Matsunaka et al. | Jan 2002 | B1 |
6348990 | Igasaki et al. | Feb 2002 | B1 |
6353218 | Yamazaki et al. | Mar 2002 | B1 |
6358784 | Zhang et al. | Mar 2002 | B1 |
6368945 | Im | Apr 2002 | B1 |
6388146 | Onishi et al. | May 2002 | B1 |
6388386 | Kunii et al. | May 2002 | B1 |
6392810 | Tanaka et al. | May 2002 | B1 |
6393042 | Tanaka et al. | May 2002 | B1 |
6407012 | Miyasaka et al. | Jun 2002 | B1 |
6410373 | Chang et al. | Jun 2002 | B1 |
6429100 | Yoneda et al. | Aug 2002 | B2 |
6432758 | Cheng et al. | Aug 2002 | B1 |
6437284 | Okamoto et al. | Aug 2002 | B1 |
6444506 | Kusumoto et al. | Sep 2002 | B1 |
6445359 | Ho | Sep 2002 | B1 |
6448612 | Miyazaki et al. | Sep 2002 | B1 |
6451631 | Grigoropoulos et al. | Sep 2002 | B1 |
6455359 | Yamazaki et al. | Sep 2002 | B1 |
6468845 | Nakajima et al. | Oct 2002 | B1 |
6471772 | Tanaka | Oct 2002 | B1 |
6472684 | Yamazaki et al. | Oct 2002 | B1 |
6476447 | Yamazaki et al. | Nov 2002 | B1 |
6479837 | Ogawa et al. | Nov 2002 | B1 |
6482722 | Kunii et al. | Nov 2002 | B2 |
6493042 | Bozdagi et al. | Dec 2002 | B1 |
6495067 | Ono et al. | Dec 2002 | B1 |
6495405 | Voutsas et al. | Dec 2002 | B2 |
6501095 | Yamaguchi et al. | Dec 2002 | B2 |
6506636 | Yamazaki et al. | Jan 2003 | B2 |
6511718 | Paz de Araujo et al. | Jan 2003 | B1 |
6512634 | Tanaka et al. | Jan 2003 | B2 |
6516009 | Tanaka et al. | Feb 2003 | B1 |
6521492 | Miyasaka et al. | Feb 2003 | B2 |
6526585 | Hill | Mar 2003 | B1 |
6528359 | Kusumoto et al. | Mar 2003 | B2 |
6531681 | Markle et al. | Mar 2003 | B1 |
6535535 | Yamazaki et al. | Mar 2003 | B1 |
6555422 | Yamazaki et al. | Apr 2003 | B1 |
6555449 | Im et al. | Apr 2003 | B1 |
6563077 | Im | May 2003 | B2 |
6573163 | Voutsas et al. | Jun 2003 | B2 |
6573531 | Im et al. | Jun 2003 | B1 |
6577380 | Sposili et al. | Jun 2003 | B1 |
6582827 | Im | Jun 2003 | B1 |
6590228 | Voutsas et al. | Jul 2003 | B2 |
6608326 | Shinagawa et al. | Aug 2003 | B1 |
6621044 | Jain et al. | Sep 2003 | B2 |
6635554 | Im et al. | Oct 2003 | B1 |
6635932 | Grigoropoulos et al. | Oct 2003 | B2 |
6667198 | Shimoto et al. | Dec 2003 | B2 |
6693258 | Sugano et al. | Feb 2004 | B2 |
6734635 | Kunii et al. | May 2004 | B2 |
6741621 | Asano | May 2004 | B2 |
6750424 | Tanaka | Jun 2004 | B2 |
6755909 | Jung | Jun 2004 | B2 |
6784455 | Maekawa et al. | Aug 2004 | B2 |
6830993 | Im et al. | Dec 2004 | B1 |
6858477 | Deane et al. | Feb 2005 | B2 |
6908835 | Sposili et al. | Jun 2005 | B2 |
6916690 | Chang | Jul 2005 | B2 |
6961117 | Im | Nov 2005 | B2 |
6962860 | Yamazaki et al. | Nov 2005 | B2 |
6984573 | Yamazaki et al. | Jan 2006 | B2 |
7029996 | Im et al. | Apr 2006 | B2 |
7078281 | Tanaka et al. | Jul 2006 | B2 |
7078793 | Ruckerbauer et al. | Jul 2006 | B2 |
7091411 | Falk et al. | Aug 2006 | B2 |
7115503 | Im | Oct 2006 | B2 |
7119365 | Takafuji et al. | Oct 2006 | B2 |
7132204 | Jung | Nov 2006 | B2 |
7144793 | Gosain et al. | Dec 2006 | B2 |
7164152 | Im | Jan 2007 | B2 |
7183229 | Yamanaka | Feb 2007 | B2 |
7187016 | Arima | Mar 2007 | B2 |
7189624 | Ito | Mar 2007 | B2 |
7192479 | Mitani et al. | Mar 2007 | B2 |
7192818 | Lee et al. | Mar 2007 | B1 |
7199397 | Huang et al. | Apr 2007 | B2 |
7217605 | Kawasaki et al. | May 2007 | B2 |
7297982 | Suzuki et al. | Nov 2007 | B2 |
7311778 | Im et al. | Dec 2007 | B2 |
7318866 | Im | Jan 2008 | B2 |
7326876 | Jung | Feb 2008 | B2 |
7364952 | Im | Apr 2008 | B2 |
7399359 | Im et al. | Jul 2008 | B2 |
7645337 | Im et al. | Jan 2010 | B2 |
7700462 | Tanaka et al. | Apr 2010 | B2 |
7804647 | Mitani et al. | Sep 2010 | B2 |
20010001745 | Im et al. | May 2001 | A1 |
20010029089 | Tanaka | Oct 2001 | A1 |
20010030292 | Brotherton | Oct 2001 | A1 |
20010041426 | Im | Nov 2001 | A1 |
20020083557 | Jung | Jul 2002 | A1 |
20020104750 | Ito | Aug 2002 | A1 |
20020119609 | Hatano et al. | Aug 2002 | A1 |
20020151115 | Nakajima et al. | Oct 2002 | A1 |
20020197778 | Kasahara et al. | Dec 2002 | A1 |
20030000455 | Voutsas | Jan 2003 | A1 |
20030006221 | Hong et al. | Jan 2003 | A1 |
20030013278 | Jang et al. | Jan 2003 | A1 |
20030013280 | Yamanaka | Jan 2003 | A1 |
20030022471 | Taketomi et al. | Jan 2003 | A1 |
20030029212 | Im | Feb 2003 | A1 |
20030057418 | Asano | Mar 2003 | A1 |
20030060026 | Yamazaki et al. | Mar 2003 | A1 |
20030068836 | Hongo et al. | Apr 2003 | A1 |
20030088848 | Crowder | May 2003 | A1 |
20030096489 | Im et al. | May 2003 | A1 |
20030104682 | Hara | Jun 2003 | A1 |
20030119286 | Im et al. | Jun 2003 | A1 |
20030148565 | Yamanaka | Aug 2003 | A1 |
20030148594 | Yamazaki et al. | Aug 2003 | A1 |
20030183270 | Falk et al. | Oct 2003 | A1 |
20030194613 | Voutsas et al. | Oct 2003 | A1 |
20030196589 | Mitani et al. | Oct 2003 | A1 |
20030218171 | Isobe et al. | Nov 2003 | A1 |
20040041158 | Hongo et al. | Mar 2004 | A1 |
20040053450 | Sposili et al. | Mar 2004 | A1 |
20040061843 | Im | Apr 2004 | A1 |
20040127066 | Jung | Jul 2004 | A1 |
20040140470 | Kawasaki et al. | Jul 2004 | A1 |
20040169176 | Peterson et al. | Sep 2004 | A1 |
20040182838 | Das et al. | Sep 2004 | A1 |
20040209447 | Gosain et al. | Oct 2004 | A1 |
20040222187 | Lin | Nov 2004 | A1 |
20040224487 | Yang | Nov 2004 | A1 |
20050003591 | Takaoka et al. | Jan 2005 | A1 |
20050032249 | Im et al. | Feb 2005 | A1 |
20050034653 | Im et al. | Feb 2005 | A1 |
20050059222 | You | Mar 2005 | A1 |
20050059224 | Im | Mar 2005 | A1 |
20050059265 | Im | Mar 2005 | A1 |
20050112906 | Maekawa et al. | May 2005 | A1 |
20050139830 | Takeda et al. | Jun 2005 | A1 |
20050141580 | Partlo et al. | Jun 2005 | A1 |
20050142450 | Jung | Jun 2005 | A1 |
20050142451 | You | Jun 2005 | A1 |
20050202654 | Im | Sep 2005 | A1 |
20050235903 | Im et al. | Oct 2005 | A1 |
20050255640 | Im et al. | Nov 2005 | A1 |
20060030164 | Im | Feb 2006 | A1 |
20060035478 | You | Feb 2006 | A1 |
20060040512 | Im | Feb 2006 | A1 |
20060060130 | Im | Mar 2006 | A1 |
20060102901 | Im et al. | May 2006 | A1 |
20060125741 | Tanaka et al. | Jun 2006 | A1 |
20060134890 | Im | Jun 2006 | A1 |
20060211183 | Duan et al. | Sep 2006 | A1 |
20060254500 | Im et al. | Nov 2006 | A1 |
20070007242 | Im | Jan 2007 | A1 |
20070010074 | Im | Jan 2007 | A1 |
20070010104 | Im | Jan 2007 | A1 |
20070012664 | Im | Jan 2007 | A1 |
20070020942 | Im | Jan 2007 | A1 |
20070032096 | Im | Feb 2007 | A1 |
20070051302 | Gosain et al. | Mar 2007 | A1 |
20070054477 | Kim et al. | Mar 2007 | A1 |
20070108472 | Jeong et al. | May 2007 | A1 |
20070111349 | Im | May 2007 | A1 |
20070145017 | Im et al. | Jun 2007 | A1 |
20070184638 | Kang et al. | Aug 2007 | A1 |
20070215877 | Kato et al. | Sep 2007 | A1 |
20070215942 | Chen et al. | Sep 2007 | A1 |
20080035863 | Im et al. | Feb 2008 | A1 |
20080124526 | Im | May 2008 | A1 |
20080176414 | Im | Jul 2008 | A1 |
20090078940 | Afentakis et al. | Mar 2009 | A1 |
20090121157 | Moffatt et al. | May 2009 | A1 |
20090137105 | Im | May 2009 | A1 |
20090242805 | Im | Oct 2009 | A1 |
20090309104 | Im et al. | Dec 2009 | A1 |
20100024865 | Shah et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
1495848 | May 2004 | CN |
101111925 | Jan 2008 | CN |
19839718 | Mar 2000 | DE |
10103670 | Aug 2002 | DE |
102007025942 | Dec 2008 | DE |
655774 | May 1995 | EP |
681316 | Nov 1995 | EP |
1067593 | Jan 2001 | EP |
2338342 | Dec 1999 | GB |
2338343 | Dec 1999 | GB |
2338597 | Dec 1999 | GB |
S57-027035 | Feb 1982 | JP |
62160781 | Jul 1987 | JP |
62181419 | Aug 1987 | JP |
62216320 | Sep 1987 | JP |
H01-256114 | Oct 1989 | JP |
2081422 | Mar 1990 | JP |
2283036 | Nov 1990 | JP |
04033327 | Feb 1992 | JP |
04-279064 | Oct 1992 | JP |
H04-282869 | Oct 1992 | JP |
5041519 | Feb 1993 | JP |
5048190 | Feb 1993 | JP |
06-011729 | Jan 1994 | JP |
6252048 | Sep 1994 | JP |
H06-260502 | Sep 1994 | JP |
6283422 | Oct 1994 | JP |
7176757 | Jul 1995 | JP |
H08-078330 | Mar 1996 | JP |
H08-148423 | Jun 1996 | JP |
H09-007968 | Jan 1997 | JP |
9171971 | Jun 1997 | JP |
H09-270393 | Sep 1997 | JP |
9260681 | Oct 1997 | JP |
9321210 | Dec 1997 | JP |
10189998 | Jul 1998 | JP |
H10-244390 | Sep 1998 | JP |
H10-256178 | Sep 1998 | JP |
11025064 | Jan 1999 | JP |
11064883 | Mar 1999 | JP |
11-281997 | Oct 1999 | JP |
H11-297852 | Oct 1999 | JP |
11330000 | Nov 1999 | JP |
2000505241 | Apr 2000 | JP |
2000-133613 | May 2000 | JP |
2000-315652 | Nov 2000 | JP |
2000346618 | Dec 2000 | JP |
2001023920 | Jan 2001 | JP |
2000223425 | Aug 2002 | JP |
2002-353142 | Dec 2002 | JP |
2002353159 | Dec 2002 | JP |
2003-031496 | Jan 2003 | JP |
2004031809 | Jan 2003 | JP |
2003-037063 | Feb 2003 | JP |
2003-068644 | Mar 2003 | JP |
2003-509844 | Mar 2003 | JP |
2003-109912 | Apr 2003 | JP |
20003100653 | Apr 2003 | JP |
2003-133253 | May 2003 | JP |
2003-347208 | Dec 2003 | JP |
2004-311935 | Nov 2004 | JP |
2005-333117 | Dec 2005 | JP |
2007-005508 | Jan 2007 | JP |
457553 | Oct 2001 | TW |
464960 | Nov 2001 | TW |
564465 | Dec 2003 | TW |
569350 | Jan 2004 | TW |
WO-9745827 | Dec 1997 | WO |
WO-9824118 | Jun 1998 | WO |
WO-9931719 | Jun 1999 | WO |
WO-0014784 | Mar 2000 | WO |
WO-0118854 | Mar 2001 | WO |
WO-0118855 | Mar 2001 | WO |
WO-0171786 | Sep 2001 | WO |
WO-0171791 | Sep 2001 | WO |
WO-0173769 | Oct 2001 | WO |
WO-0231869 | Apr 2002 | WO |
WO-0242847 | May 2002 | WO |
WO-02086954 | Oct 2002 | WO |
WO-02086955 | Oct 2002 | WO |
WO-03018882 | Mar 2003 | WO |
WO-03046965 | Jun 2003 | WO |
WO-03084688 | Oct 2003 | WO |
WO-2004017381 | Feb 2004 | WO |
WO-2004017380 | Feb 2004 | WO |
WO-2004017382 | Apr 2004 | WO |
WO-2004075263 | Jan 2005 | WO |
WO-2005029551 | Mar 2005 | WO |
WO-2005029550 | Sep 2005 | WO |
WO-2004017379 | Dec 2005 | WO |
WO-2006055003 | May 2006 | WO |
WO-2006107926 | Oct 2006 | WO |
WO-2007022234 | Feb 2007 | WO |
WO-2005029548 | Apr 2009 | WO |
WO-2009067687 | May 2009 | WO |
WO-2005029546 | Jun 2009 | WO |
Entry |
---|
Andrä{umlaut over ( )} et al., “A new technology for crystalline silicon thin film solar cells on glass based on the laser crystallization,” IEEE, pp. 217-220 (2000). |
Andrä{umlaut over ( )} et al., “Multicrystalline LLC-SI thin film solar cells on low temperature glass,” Poster, 3rd world Conference on Photovoltaic Energy Conversion, Osaka, Japan, pp. 1174-1177, May 11-18, 2003. |
Bergmann, R. et al., Nucleation and Growth of Crystalline Silicon Films on Glass for Solar Cells, Phys. Stat. Sol., 1998, pp. 587-602, vol. 166, Germany. |
Biegelsen, D.K., L.E. Fennell and J.C. Zesch, Origin of oriented crystal growth of radiantly melted silicon on SiO/sub 2, Appl. Phys. Lett. 45, 546-548 (1984). |
Boyd, I. W., “Laser Processing of Thin Films and Microstructures, Oxidation, Deposition and Etching of Insulators,” (Springer—Verlag Berlin Heidelber, 1987. |
Broadbent et al., “Excimer Laser Processing of Al-1%Cu/TiW Interconnect Layers,” Proceedings, Sixth International IEEE VLSI Multilevel Interconnection Conference, Santa Clara, CA, Jun. 12-13, pp. 336-345 (1989). |
Brotherton et al., “Influence of Melt Depth in Laser Crystallized Poly-Si Thin Film Transistors,” Journal of Appl. Phys., 82:4086-4094 (1997). |
Brotherton, “Polycrystalline Silicon Thin Film Transistors,” Semicond. Sci. Tech., 10:721-738 (1995). |
Brotherton, S.D., et al., Characterisation of poly-Si TFTs in Directionally Solidified SLS Si, Asia Display/IDW'01, p. 387-390. |
International Search Report for corresponding International Patent Application No. PCT/US2010/033565, mailed Jul. 1, 2010, 1 page. |
International Search Report for corresponding International Patent Application No. PCT/US2010/055106, mailed Jan. 4, 2011, 1 page. |
Crowder et al., “Low-Temperature Single-Crystal Si TFT's Fabricated on Si Films Processed via Sequential Lateral Solidification,” IEEE Electron Device Letter, 19 (8): 306-308 (1998). |
Crowder et al., “Parametric Investigation of SLS-processed Poly-silicon Thin Films for TFT Applications,” Preparations and Characterization, Elsevier, Sequoia, NL, vol. 427, No. 1-2, Mar. 3, 2003, pp. 101-107, XP004417451. |
Crowder et al., “Sequential Lateral Solidification of PECVD and Sputter Deposited a-Si Films”, Mat. Res. Soc. Symp. Proc. 621:Q.9.7.1-9.7.6, 2000. |
Dassow, R. et al. Laser-Crystallized Polycrystalline Silicon on Glass for Photovoltaic Applications, Solid State Phenomena, pp. 193-198, vols. 67-68, Scitec Publications, Switzerland. (1999). |
Dassow, R. et al. Nd:YVO4 Laser Crystallization for Thin Film Transistors with a High Mobility, Mat. Res. Soc. Symp. Proc., 2000, Q9.3.1-Q9.3.6, vol. 621, Materials Research Society. |
Dassow, R. et al., Laser crystallization of silicon for high-performance thin-film transistors, Semicond. Sci. Technol., 2000, pp. L31-L34, vol. 15, UK. |
Dimitriadis, C.A., J. Stoemenos, P.A. Coxon, S. Friligkos, J. Antonopoulos and N.A. Economou, Effect of pressure on the growth of crystallites of low-pressure chemical-vapor-deposited polycrystalline silicon films and the effective electron mobility under high normal field in thin-film transistors, J. Appl. Phys. 73, 8402 (1993). |
Endert et al., “Excimer Laser: A New Tool for Precision Micromachining,” Optical and Quantum Electronics, 27:1319-1335 (1995). |
Extended European Search Report mailed on Oct. 23, 2013 for co-pending EP Application No. 10828974.5; 11 pages. |
Fogarassy et al., “Pulsed Laser Crystallization of Hydrogen-Free a-Si Thin Films for High-Mobility Poly-Si TFT Fabrication,” Applied Physics A—Solids and Surfaces, 56:365-373 (1993). |
Geis et al., “Crystallographic orientation of silicon on an amorphous substrate using an artificial surface-relief grating and laser crystallization,” Appl. Phys. Lett. 35(1) Jul. 1, 1979, 71-74. |
Geis et al., “Silicon graphoepitaxy using a strip-heater oven,” Appl. Phys. Lett. 37(5), Sep. 1, 1980, 454-456. |
Geis et al., “Zone-Melting recrystallization of SI Films with a moveable-strip heater oven,” J. Electro-Chem. Soc., 129: 2812-2818 (1982). |
Gosain et al., “Formation of (100)-Textured Si Film Using an Excimer Laser on a Glass Substrate,” Jpn. J. Appl. Phys., vol. 42 (2003) pp. L135-L137. |
Gupta et al., “Numerical Analysis of Excimer-laser induced melting and solidification of Si Thin Films”, Applied Phys. Lett., 71:99-101, 1997. |
Hau-Riege et al., “The Effects Microstructural Transitions at Width Transitions on interconnect reliability,” Journal of Applied Physics, 87(12): 8467-8472 (Jun. 15, 2000). |
Hawkins, W.G. et al., “Origin of lamellae in radiatively melted silicon flims,” Appl. Phys. Lett. 42(4), pp. 358-360, Feb. 15, 1983. |
Hayzelden, C. and J.L. Batstone, Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films, J. Appl. Phys. 73, 8279-8289 (1993). |
Im et al., “Controlled Super-Lateral Growth of Si Films for Microstructural Manipulation and Optimization,” Phys. Stat. Sol. (a), 166:603-617 (1998). |
Im et al., “Crystalline Si Films for Integrated Active-Matrix Liquid-Crystals Displays,” MRS Bulletin, 21:39-48 (1996). |
Im et al., “On the Super Lateral Growth Phenomenon Observed in Excimer Laser-Induced Crystallization of Thin Si Films,” Appl. Phys. Lett., 64 (17): 2303-2305 (1994). |
Im et al., “Phase Transformation Mechanisms Involved in Excimer Laser Crystallization of Amorphous Silicon Films,” Appl. Phys. Lett., 63 (14): 1969-1971 (1993). |
Im et al., “Single-Crystal Si Films for Thin-Film Transistor Devices,” Appl. Phys. Lett., 70(25): 3434-3436 (1997). |
Im et al., U.S. Appl. No. 11/141,815, filed Jun. 1, 2005, 30 pages. |
Im et al., U.S. Appl. No. 11/293,655, filed Dec. 2, 2005, 68 pages. |
Im, J.S., Method and system for producing crystalline thin films with a uniform crystalline orientation, U.S. Appl. No. 60/503,419; ref. file # 36013(BB); Columbia ref. M02-063. |
Ishida et al., “Ultra-shallow boxlike profiles fabricated by pulsed ultraviolet-laser doping process,” J. Vac. Sci. Technol. B 12(1): 399-403, (1994). |
Ishihara et al., “A Novel Double-Pulse Excimer-Laser Crystallization Method of Silicon Thin-Films,” Publication Office, Japanese Journal of Applied Physics, Tokyo, Japan, 34(8A): 3976-3981 (1995). |
Jeon et al., “New Excimer Laser Recrystalization of Poly-Si for Effective Grain Growth and Grain Boundary Arrangement,” Jpn. J. Appl. Phys. vol. 39 (2000) pp. 2012-2014, Part 1, No. 4B, Apr. 2000. |
Jeon et al., “Two-step laser recrystallization of poly-Si for effective control of grain boundaries,” Journal of Non Crystalline Solids, 266-269: 645-649 (2000). |
Jung, Y.H., et al., Low Temperature Polycrystalline Si TFTs Fabricated with Directionally Crystallized Si Film, Mat. Res. Soc. Symp. Proc. vol. 621, Z8.3.1-6, 2000. |
Jung, Y.H., et al., The Dependence of Poly-Si TFT Characteristics on the Relative Misorientation Between Grain Boundaries and the Active Channel, Mat. Res. Soc. Symp. Proc. vol. 621, Q9.14.1-6, 2000. |
Kahlert, H., “Creating Crystals,” OE Magazine, Nov. 2001, 33-35. |
Kim et al., “Grain Boundary Location-Controlled Poly-Si Films for TFT Devices Obtained Via Novel Excimer Laser Process,” Mat. Res. Soc. Symp. Proc., vol. 358,pp. 903-908 (1995). |
Kim et al., “Multiple Pulse Irradiation Effects in Excimer Laser-Induced Crystallization of Amorphous Si Films,” Mat. Res. Soc. Sym. Proc., 321:665-670 (1994). |
Kim, C. et al., Development of SLS-Based SOG Display, IDMC 2005, Thu-15-02, 252-255. |
Kim, “Excimer-Laser-Induced Crystallization of Amorphous Silicon Thin Films,” Ph. D. Dissertation Abstract, Columbia University, 1996. |
Kim, H. J. et al., “Excimer Laser Induced Crystallization of Thin Amorphous Si Films on SiO2: Implications of Crystallized Microstructures for Phase Transformation Mechanisms,” Mat. Res. Soc. Symp. Proc., vol. 283, pp. 703-708 (1993). |
Kim, H.-J., et al., “The effects of dopants on surface-energy-driven secondary grain growth in silicon films,” J. Appl. Phys. 67 (2), pp. 757-767 (Jan. 15, 1990). |
Kim, H.J. et al., “Multiple Pulse Irradiation Effects in Excimer Laser—Induced Crystallization of Amorphous Si Films,” Materials Research Society Symposium Proceedings, vol. 321, pp. 665-670, 1994. |
Kim, H.J. et al., “New Excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si Films for Thin Film Transistors”, Applied Phys. Lett., 68: 1513. |
Kimura, M. and K. Egami, Influence of as-deposited film structure on (100) texture in laser-recrystallized silicon on fused quartz, Appl. Phys. Lett. 44, 420-422 (1984). |
Knowles, D.S. et al., “P-59: Thin Beam Crystallization Method: a New Laser Annealing Tool with Lower Cost and Higher Yield for LTPS Panels,” SID 00 Digest, pp. 1-3. |
Kohler, J.R. et al., Large-grained polycrystalline silicon on glass by copper vapor laser annealing. Thin Solid Films, 1999, pp. 129-132, vol. 337, Elsevier. |
Kung, K.T.Y. and R. Reif, Implant-dose dependence of grain size and (110) texture enhancements in polycrystalline Si films by seed selection through ion channeling, J. Appl. Phys. 59, 2422-2428 (1986). |
Kung, K.T.Y., R.B. Iverson and R. Reif, Seed selection through ion channeling to modify crystallographic orientations of polycrystalline Si films on SiO/sub 2/:Implant angle dependence, Appl. Phys. Lett. 46, 683-685 (1985). |
Kuriyama, H., T. Nohda, S. Ishida, T. Kuwahara, S. Noguchi, S. Kiyama, S. Tsuda and S. Nakano, Lateral grain growth of poly-Si films with a specific orientation by an excimer laser annealing method, Jpn. J. Appl. Phys. 32, 6190-6195 (1993). |
Kuriyama, H., T. Nohda, Y. Aya, T. Kuwahara, K. Wakisaka, S. Kiyama and S. Tsuda, Comprehensive study of lateral grain growth in poly-Si films by excimer laser annealing and its application to thin film transistors, Jpn. J. Appl. Phys. 33, 5657-5662 (1994). |
Lee, S.-W. and S.-K. Joo, Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization, IEEE Electron Device Letters 17, 160-162 (1996). |
Lee, S.-W., Y.-C. Jeon and S.-K. Joo, Pd induced lateral crystallization of amorphous Si thin films, Appl. Phys. Lett. 66, 1671-1673 (1995). |
Leonard, J.P. et al, “Stochastic modeling of solid nucleation in supercooled liquids”, Appl. Phys. Lett. 78:22, May 28, 2001, 3454-3456. |
Limanov, A. et al., Single-Axis Projection Scheme for Conducting Sequential Lateral Solidification of Si Films for Large-Area Electronics, Mat. Res. Soc. Symp. Proc., 2001, D10.1.1-D10.1.7, vol. 685E, Materials Research Society. |
Limanov, A. et al., The Study of Silicon Films Obtained by Sequential Lateral Solidification by Means of a 3-k-Hz Excimer Laser with a Sheetlike Beam, Russian Microelectronics, 1999, pp. 30-39, vol. 28, No. 1, Russia. |
Limanov, A.B., et al., Development of Linear Sequential Lateral Solidification Technique to Fabricate Quasi-Single-Cyrstal Super-thin Si Films for High-Performance Thin Film Transistor Devices, Perspectives, Science, and Technologies for Novel Silicon on Insulator Devices, Eds. P.L.F. Hemment, Kluwer Academic Publishers 2000, pp. 55-61. |
Mariucci et al., “Grain boundary location control by patterned metal film in excimer laser crystallized polysilicon,” Proceedings of the Fifth International Conference on Polycrystalline Semiconductors, Schwabisch Gmund, Germany, 67-68: 175-180 (1998). |
McWilliams et al., “Wafer-Scale Laser Pantography: Fabrication of N-Metal-Oxide-Semiconductor Transistors and Small-Scale Integrated Circuits by Direct-Write Laser-Induced Pyrolytic Reactions,” Applied Physics Letters, American Institute of Physics, New York, US, 43(10): 946-948 (1983). |
MICRO/LAS Lasersystem GMBH, “Overview of Beam Delivery Systems for Excimer Lasers,” (1999). 20 pages. |
MICRO/LAS Lasersystem GMBH, “UV Optics Systems for Excimer Laser Based Micromachining and Marking,” (1999). 11 pages. |
Miyasaka, M., K. Makihira, T. Asano, E. Polychroniadis and J. Stoemenos, In situ observation of nickel metal-induced lateral crystallization of amorphous silicon thin films, Appl. Phys. Lett. 80, 944-946 (2002). |
Miyata et al, “Low-Temperature Polycrystalline Silicon Thin-Film Transistors for Large-Area Liquid Crystal Display,” Japanese J. of Applied Physics, Part 1—Regular Papers Short Notes & Review Papers, 31:4559-62 (1992). |
Nebel, “Laser Interference Structuring of A-SI:h” Amorphous Silicon Technology—1996, San Francisco, CA Apr. 8-12, Materials Research Society Symposium Proceedings, vol. 420, Pittsburgh, PA, pp. 117-128 (1996). |
Nerding, M., S. Christiansen, R. Dassow, K. Taretto, J.R. Kohler and H.P. Strunk, Tailoring texture in laser crystallization of silicon thin-films on glass, Solid State Phenom. 93, 173 (2003). |
Noguchi, “Appearance of Single-Crystalline Properties in Fine-Patterned Si Thin Film Transistors (TFTs) by Solid Phase Crystallization (SPC),” Jpn. J. Appl. Phys., 32:L1584-L1587 (1993). |
Ozawa et al., “Two-Dimensionally Position-Controlled Excimer-Laser-Crystallization of Silicon Thin Films on Glassy Substrate,” Jpn. J. Appl. Phys. 38(10):5700-5705 (1999). |
Sato et al., “Mobility anisotropy of electrons in inversion layers on oxidized silicon surfaces,” Physical Review B (State) 4, 1950 (1971). |
Sinke et al., “Explosive crystallization of amorphous silicon: Triggering and propagation,” Applied Surface Science, vol. 43, pp. 128-135 (1989). |
Smith, H.I. et al, “The Mechanism of Orientation in Si Graphoepitaxy by Laser Strip Heater Recrystallization,” J. Electrochem. Soc.: Solid-State Science and Technology, vol. 130, No. 10, Oct. 1983, pp. 2050-2053. |
Song et al., “Single Crystal Si Islands on SiO2 Obtained Via Excimer Laser Irradiation of a Patterned Si Film”, Applied Phys. Lett., 68:3165, 1996. |
Sposili et al., “Line-scan sequential lateral solidification of Si thin films”, Appl. Phys. A67, 273-6, 1998. |
Sposili et al., “Sequential Lateral Solidification of Thin Silicon Films on SiO2,” Appl. Phys. Lett., 69(19): 2864 (1996). |
Sposili et al., “Single-Crystal Si Films via a Low-Substrate-Temperature Excimer-Laser Crystallization Method,” Mat. Res. Soc. Symp. Proc., 452: 953-958 (1997). |
Thompson, C.V. and H.I. Smith, Surface-energy-driven secondary grain growth in ultrathin (<100 nm) films of silicon, Appl. Phys. Lett. 44, 603 (1984). |
Van Der Wilt, “A hybrid approach for obtaining orientation-controlled single-crystal Si regions on glass substrates,” Proc. of SPIE vol. 6106, 61060B-1 to B-15, (2006). |
van der Wilt, P.C. et al., “State-of-the-Art Laser Crystallization of Si for Flat Panel Displays,” PhAST, May 18, 2004, pp. 1-34. |
van der Wilt, P.C. et al., “The Commercialization of the SLS Technology,” Taiwan FPD, Jun. 11, 2004, pp. 1-12. |
van der Wilt, P.C., “Textured poly-Si films for hybrid SLS,” Jul. 2004, pp. 1-5. |
Voutsas, A. T., “Assessment of the Performance of Laser-Based Lateral-Crystallization Technology via Analysis and Modeling of Polysilicon Thin-Film-Transistor Mobility,” IEEE Transactions on Electronic Devices, vol. 50, No. 6, Jun. 2003. |
Voutsas, A.T., A new era of crystallization: advances in polysilicon crystallization and crystal engineering, Applied Surface Science 250-262, 2003. |
Voutsas, A.T., et al., Effect of process parameters on the structural characteristics of laterally grown, laser-annealed polycrystalline silicon films, Journal of Applied Physics, vol. 94, No. 12, p. 7445-7452, Dec. 15, 2003. |
Watanabe et al., “Crystallization Process of Polycrystalline Silicon by KrF Excimer Laser Annealing,” Japanese J. of Applied Physics, Part 1—Regular Papers Short Notes & Review Papers, 33:4491-98 (1994). |
Weiner, K. H. et al. “Laser-assisted, Self-aligned Silicide Formation,” A Verdant Technologies technical brief, Aug. 7, 1997, 1-9. |
Weiner, K. H. et al., “Ultrashallow Junction Formation Using Projection Gas Immersion Laser Doping (PGILD),” A Verdant Technologies Technical Brief, Aug. 20, 1997. |
Werner, J.H., et al. From polycrystalline to single crystalline silicon on glass, Thin Solid Films 383, 95-100, 2001. |
White et al., “Characterization of thin-oxide MNOS memory transistors,” IEEE Trans. Electron Devices ED-19, 1280 (1972). |
Yamamuchi et al., “Polycrystalline silicon thin films processed with silicon ion implantation and subsequent solid-phase crystallization: Theory, experiments, and thin-film transistor applications,” Journal of Applied Physics, 75(7):3235-3257 (1994). |
Yoshimoto et al., “Excimer-Laser-Produced and Two-Dimensionally Position-Controlled Giant Si Grains on Organic SOG Underlayer,” p. 285-286, AM-LCD (2000). |
Number | Date | Country | |
---|---|---|---|
20130280924 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61264082 | Nov 2009 | US | |
61286643 | Dec 2009 | US | |
61291488 | Dec 2009 | US | |
61291663 | Dec 2009 | US | |
61294288 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12776756 | May 2010 | US |
Child | 13892904 | US | |
Parent | PCT/US2010/033565 | May 2010 | US |
Child | 12776756 | US |