Systems, methods, and compositions for RNA-guided RNA-targeting CRISPR effectors

Information

  • Patent Grant
  • 12012621
  • Patent Number
    12,012,621
  • Date Filed
    Thursday, July 1, 2021
    3 years ago
  • Date Issued
    Tuesday, June 18, 2024
    6 months ago
Abstract
This disclosure provides systems, methods, and compositions for RNA-guided RNA-targeting CRISPR effectors for the treatment of diseases as well as diagnostics. In some embodiments, nucleotide deaminase functionalized CRISPR systems for RNA editing RNA knockdown, viral resistance, splicing modulation, RNA tracking, translation modulation, and epi-transcriptomic modifications are disclosed.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Dec. 7, 2022, is named 719269_083474-015 SL.txt and is 912,373 bytes in size.


TECHNOLOGY FIELD

The subject matter disclosed herein is generally related to systems, methods, and compositions for RNA-guided RNA-targeting CRISPR effectors for the treatment of diseases and diagnostics.


BACKGROUND

RNA targeting tools for genetic engineering are important to study RNA biology and develop RNA therapeutics. These tools can regulate intracellular and intercellular target-gene functions and expressions and manipulate specific target-genomic information. In contrast to DNA targeting tools, only a few RNA targeting tools for CRISPR applications have been developed, and these RNA specific tools present challenges. For instance, protein complexes for CRISPR RNA editing can have a weak activity in mammalian cells and present collateral effects which can be toxic in some cell types. Also, the size of the RNA editing tools can be a significant barrier to their use, as technologies such as programmable activation cannot be delivered in mouse models using common methods such as adeno-associated vectors (AAV). Development of effective gene and cell therapies requires genome editing tools and delivery technologies that can meet the demands for cell type specificity, large payload sizes, and efficient integration of diverse and large sequences. Many applications, including single-vector homology directed repair (HDR), CRISPR base editing, gene activation, and large gene delivery, are limited by AAV size restrictions. Thus, there remains a need for more effective tools for gene correction and delivery.


SUMMARY

The present invention is directed to systems, methods, and compositions for RNA-guided RNA-targeting CRISPR effectors for the treatment of diseases and diagnostics. It also pertains to nucleotide deaminase functionalized CRISPR systems for RNA editing RNA knockdown, viral resistance, splicing modulation, RNA tracking, translation modulation, and epi-transcriptomic modifications.


In one aspect, a composition that cleaves an RNA target is discussed, which comprises a guide RNA that specifically hybridizes to the RNA target, and a polypeptide comprising an amino acid sequence 85% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-32 and 632. The amino acid sequence can be SEQ ID NO: 1. The polypeptide can comprise a glutamate at a position corresponding to position 70 of SEQ ID NO:1, an aspartate at a position corresponding to position 429 of SEQ ID NO:1, an aspartate at a position corresponding to position 487 of SEQ ID NO:1, and/or an aspartate at a position corresponding to position 654 of SEQ ID NO:1. If desired, the polypeptide can comprise an amino acid sequence 90% identical to the amino acid sequence of SEQ ID NO:1. If desired, the polypeptide can comprise an amino acid sequence 95% identical to the amino acid sequence of SEQ ID NO:1. If desired, the polypeptide can comprise an amino acid sequence 99% identical to the amino acid sequence of SEQ ID NO:1. If desired, the polypeptide can be the amino acid sequence of SEQ ID NO:1.


Yet in another aspect, the guide RNA comprises a mismatch distance that is 20-65% of the length of the guide. If desired, the guide RNA can comprise a mismatch that is about 20 to about 30 nucleotides from the non-pairing C of the guide RNA. If desired, the guide RNA can have a sequence with a length of from about 20 to about 53 nucleotides (nt), preferably from about 25 to about 53 nt, more preferably from about 29 to about 53 nt or from about 40 to about 50 nt. If desired, the guide RNA can be a pre-crRNA. If desired, the guide RNA can be a mature crRNA.


Yet in another aspect, the RNA target can be a single-strand RNA (ssRNA). If desired, the RNA target can be in a cell. The cell can be a prokaryotic cell. The cell can be a eukaryotic cell. The eukaryotic cell can be a mammalian cell. The mammalian cell can be a human cell.


Yet in another aspect, the polypeptide can comprise a deaminase domain. The deaminase can be selected from the group consisting of an adenosine deaminase, a cytidine deaminase, and a catalytic domain thereof. If desired, the deaminase can be an adenosine deaminase. If desired, the deaminase domain can comprise an amino acid sequence 85% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 25-31. If desired, the deaminase domain can comprise an amino acid sequence 85% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 32-42.


Yet in another aspect, a nucleic acid molecule encoding the polypeptide is discussed. The nucleic acid molecule can encode the guide RNA.


Yet in another aspect, a vector comprising the nucleic acid molecule is discussed.


Yet in another aspect, a cell comprising the composition, the nucleic acid molecule or the vector is discussed. If desired, the cell can be a prokaryotic cell. If desired, the cell can be a eukaryotic cell. The eukaryotic cell can be a mammalian cell. The mammalian cell can be a human cell.


Yet in another aspect, a method of cleaving an RNA target in a cell is discussed, which comprises providing to the cell the composition, the nucleic acid molecule or the vector. If desired, the RNA target can be an ssRNA.


Yet in another aspect, a method of stabilizing an RNA target in a cell is discussed, which comprises providing to the cell the composition, the nucleic acid molecule or the vector. If desired, the RNA target can be an ssRNA.


Yet in another aspect, a method of affecting translation of an RNA target in a cell is discussed, which comprises providing to the cell the composition, the nucleic acid molecule or the vector. If desired, the RNA target can be an ssRNA.


Yet in another aspect, a method of treating a genetically inherited disease in a subject in need thereof is discussed, which comprises administering to the subject an effective amount of the composition, the nucleic acid molecule or the vector, wherein the genetically inherited disease involves a guanosine to adenosine change in the genome of the subject. The genetically inherited disease can be selected from the group consisting of Meier-Gorlin syndrome; Seckel syndrome 4; Joubert syndrome 5; Leber congenital amaurosis 10; Charcot-Marie-Tooth disease, type 2; leukoencephalopathy; Usher syndrome, type 2C; spinocerebellar ataxia 28; glycogen storage disease type III; primary hyperoxaluria, type I; long QT syndrome 2; Sjogren-Larsson syndrome; hereditary fructosuria; neuroblastoma; amyotrophic lateral sclerosis type 9; Kallmann syndrome 1; limb-girdle muscular dystrophy, type 2L; familial adenomatous polyposis 1; familial type 3 hyperlipoproteinemia; Alzheimer's disease, type 1; metachromatic leukodystrophy; and cancer.


Yet in another aspect, a method of treating a genetically inherited disease in a subject in need thereof is discussed, which comprises administering to the subject an effective amount of the composition, the nucleic acid molecule or the vector, wherein the genetically inherited disease is a pre-termination disease.


Yet in another aspect, a method of altering splicing of a pre-mRNA in a cell is discussed, which comprises administering to the cell an effective amount of the composition, the nucleic acid molecule or the vector.


Yet in another aspect, a method of changing microRNA targets in a subject in need is discussed, which comprises administering to the subject an effective amount of the composition, the nucleic acid molecule or the vector.


Yet in another aspect, a method of increasing RNA stability in a cell is discussed, which comprises administering to the cell an effective amount of the composition, the nucleic acid molecule or the vector.


Yet in another aspect, a method of modulating translation in a cell is discussed, which comprises administering to the cell an effective amount of the composition, the nucleic acid molecule or the vector.


Yet in another aspect, a method of detecting a bacterium or derivative thereof in a sample is discussed, the method comprises adding to the sample an effective amount of the composition, the nucleic acid molecule or the vector, and detecting a reporter specific to the bacterium or derivative thereof.


Yet in another aspect, a method of detecting a virus or derivative thereof in a sample is discussed, the method comprises adding to the sample an effective amount of the composition, the nucleic acid molecule or the vector, and detecting a reporter specific to the virus or derivative thereof.


These and other aspects of the applicants' teaching are set forth herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Aspects, features, benefits and advantages of the embodiments described herein will be apparent with regard to the following description, appended claims, and accompanying drawings where:



FIG. 1A is a schematic representation of RNA editing via dDisCas7-11a-NES-ADAR2 fusions that are programmed to target a specific adenosine via a cytidine mismatch for A to I editing in the guide:target RNA duplex according to embodiments of the present teachings;



FIG. 1B is a schematic of Cas7-11 expression, processing, and interference against ssRNA viruses and other ssRNA targets according to embodiments of the present teachings;



FIG. 1C illustrates the comparison of Cas7-11 features to characteristics of Cas13 and type III-A/B/C systems according to embodiments of the present teachings;



FIG. 1D illustrates hypothetical scenario for the evolution of a single-protein CRISPR-Cas effector from a multi-subunit effector complex according to embodiments of the present teachings;



FIG. 1E shows type III-E family members and type III-D2 loci architecture and multiple alignment of representative orthologs, wherein CRISPR array symbols are not representative of the number of spacers in the array according to embodiments of the present teachings;



FIG. 1F illustrates multiple alignments of representative Cas7-11 orthologs showing conservation of the residues involved in catalysis (D177) according to embodiments of the present teachings. Figure discloses SEQ ID NOS 451-475, respectively, in order of appearance;



FIG. 1G illustrates multiple alignments of representative Cas7-11 orthologs showing conservation of the residues involved in catalysis (D429) according to embodiments of the present teachings. Figure discloses SEQ ID NOS 476-502, respectively, in order of appearance;



FIG. 1H illustrates multiple alignments of representative Cas7-11 orthologs showing conservation of the residues involved in catalysis (D654) according to embodiments of the present teachings. Figure discloses SEQ ID NOS 503-529, respectively, in order of appearance;



FIG. 1I illustrates multiple alignments of representative Cas7-11 orthologs showing conservation of the residues involved in catalysis (D745, D758) according to embodiments of the present teachings. Figure discloses SEQ ID NOS 530-556, respectively, in order of appearance;



FIG. 1J illustrates multiple alignments of representative Cas7-11 orthologs showing conservation of the residues involved in catalysis (E959) according to embodiments of the present teachings. Figure discloses SEQ ID NOS 557-583, respectively, in order of appearance;



FIG. 1K illustrates multiple alignments of representative Cas7-11 orthologs showing conservation of the residues involved in catalysis (E998) according to embodiments of the present teachings. Figure discloses SEQ ID NOS 584-610, respectively, in order of appearance;



FIG. 2A illustrates tree of type III-D2 and III-E effectors based on Cas7-11 and Cas7×3 multiple alignment via a computational discovery pipeline according to embodiments of the present teachings;



FIG. 2B is a schematic of a typical type III-E Cas7-11 locus and type III-D2 Cas7×3 locus wherein the inset shows the multiple Cas7-like domains of Cas7-11 including a putative small subunit Cas11 domain and an uncharacterized insertion in the Cas7-like domain 5 according to embodiments of the present teachings;



FIG. 2C illustrates a native expression of a CRISPR array associated with DisCas7-11 according to embodiments of the present teachings. Figure discloses SEQ ID NO: 633;



FIG. 2D is a schematic representation of a DR secondary structure and a scissor denoting the cleavage site for processing and maturation according to embodiments of the present teachings. Figure discloses SEQ ID NO: 634;



FIG. 3A illustrates the CRISPR array screen of RNA-guided RNA-targeting Cas7-11 for all crRNAs targeting the MS2 phage genome according to embodiments of the present teachings;



FIG. 3B is a diagram showing results of the MS2 interference screen (for the MAS targeting spacers) according to embodiments of the present teachings;



FIG. 3C is a diagram showing results of the MS2 interference screen (for the non-targeting spacers) according to embodiments of the present teachings;



FIG. 3D are images of plaque dilution assays for MS2 targeting spacer and non-targeting spacer according to embodiments of the present teachings;



FIG. 3E is a diagram of the number of DisCas7-11a spacers that display survival enrichment over a threshold of 1.7 across different phage dilution conditions according to embodiments of the present teachings;



FIG. 3F is a diagram showing Quantification of resistance conferred by top MS2-targeting DisCas7-11 spacers compared against a panel of 4 non-targeting spacers according to embodiments of the present teachings;



FIG. 3G is a diagram showing the quantification of resistance conferred by two MS2-targeting DisCas7-11 spacers compared against a panel of 6 non-targeting spacers according to embodiments of the present teachings;



FIG. 3H illustrates the RFP knockdown assay containing a DisCas7-11 and spacers expression vector co-transformed with an RFP-expressing vector according to embodiments of the present teachings;



FIG. 3I is a diagram of the DisCas7-11-mediate RFP knockdown by multiple targeting spacers normalized to a non-targeting condition as determined by flow cytometry according to embodiments of the present teachings;



FIG. 3J is a schematic of the DisCas7-11a full locus with TPR-CHAT nearby and DisCas7-11a effector expressed alone with TPR-CHAT according to embodiments of the present teachings;



FIG. 3K is a diagram of the MS2 interference activity of DisCas7-1 lain the full locus and as a single effector with and without Csx29 expression according to embodiments of the present teachings;



FIG. 4A illustrates a CRISPR array processing assay for DisCas7-11 according to embodiments of the present teachings;



FIG. 4B illustrates the in vitori cleavage of ssRNA 1 target according to embodiments of the present teachings;



FIG. 4C illustrates the cleavage of EGFP ssRNA at multiple sites with tiled crRNAs according to embodiments of the present teachings;



FIG. 4D illustrates the protospacer flanking site (PFS) sequence screen showing in vitro cleavage of randomized PFS targets and lack of sequence preference flanking the target site for DisCas7-11 cleavage according to embodiments of the present teachings. Figure discloses SEQ ID NOS 635-636, respectively, in order of appearance;



FIG. 4E is a diagram of the kinetics of fluorescence due to RnaseAlert collateral cleavage by DisCas7-11 or LwaCas13a targeting and non-targeting guides against the MS2 RNA target according to embodiments of the present teachings;



FIG. 4F illustrates the processing activity of a synthetic DisCas7-11 CRISPR array by DisCas7-11 protein with predicted catalytic processing mutants in the protein insert region with a characteristic K×Y×H catalytic according to embodiments of the present teachings;



FIG. 4G is the graph showing the measurement of bacterial growth (OD600) during target interference by DisCas7-11 and LwaCas13 according to embodiments of the present teachings;



FIG. 5A is a schematic of the protein domains of DisCas7-11 with putative catalytic residues highlighted in Cas7-like domains 3 and 4 according to embodiments of the present teachings;



FIG. 5B illustrates that the cleavage of synthetic ssRNA target with two cRNAs and wild type, D429A, D654A, and D429A/D654A DisCas7-11 proteins according to embodiments of the present teachings;



FIG. 5C illustrates the processing of a synthetic DisCas7-11 CRISPR array by catalytic DisCas7-11 mutants according to embodiments of the present teachings;



FIG. 5D is a diagram showing the MS2 phage interference in bacteria according to embodiments of the present teachings;



FIG. 5E is a diagram showing the RFP knockdown in E. coli that is prevented by the catalytic mutation D429A/D654A in DisCas7-11 according to embodiments of the present teachings;



FIG. 5F illustrates the DisCas7-11:crRNA complex binding to a complementary MS2 ssRNA target that is determined by electrophoretic mobility shift assay (EMSA) according to embodiments of the present teachings;



FIG. 6A illustrates DisCas7-11 guides targeting multiple sites on a synthetic 100 nt EGFP ssRNA according to embodiments of the present teachings;



FIG. 6B are images of cleavage patterns of each EGFP-targeting guide incubated with DisCas7-11 on a 3′ labeled EGFP ssRNA according to embodiments of the present teachings;



FIG. 6C illustrates DisCas7-11 that is incubated with a panel of crRNAs targeting either MS2 ssRNA or ssRNA target 2, two targets of equivalent length (153 nt) according to embodiments of the present teachings;



FIG. 6D are images of cleavage patterns of each guide incubated with MS2 ssRNA or ssRNA target 2 according to embodiments of the present teachings;



FIG. 7A tbc is a schematic of three Cas7-11 orthologs (GwCas7-11, CjcCas7-11, and DisCas7-11) according to embodiments of the present teachings;



FIG. 7B illustrates multiple sequence alignments of the DR sequences for GwCas7-11, CjcCas7-11, and DisCas7-11 according to embodiments of the present teachings. Figure discloses SEQ ID NOS 637, 638, and 634, respectively, in order of appearance;



FIG. 7C illustrates the activity of Cas7-11 from Candidatus Jettenia caeni (CjcCas7-11) according to embodiments of the present teachings;



FIG. 7D illustrates the activity of Cas7-11 from groundwater metagenomes (GwCas7-11) according to embodiments of the present teachings;



FIG. 7E illustrates the MS2 ssRNA target cleavage by GwCas7-11 and CjcCas7-11 incubated with their cognate crRNAs complementary to the MS2 ssRNA target according to embodiments of the present teachings;



FIG. 7F illustrates the incubation of GwCas7×3 and CjcCas7-11 proteins with their cognate crRNAs complementary to the MS2 ssRNA target at varying positions along the target according to embodiments of the present teachings;



FIG. 8A is a schematic of a luciferase reporter assay for RNA knockdown using a vector expressing human codon-optimized DisCas7-11 and guide RNA according to embodiments of the present teachings;



FIG. 8B is a diagram of the knockdown activity of DisCas7-11 against the Gaussia luciferase (Gluc) transcript normalized to two non-targeting conditions according to embodiments of the present teachings;



FIG. 8C is a diagram showing the knockdown activity of DisCas7-11 against the multiple endogenous transcripts normalized to two non-targeting according to embodiments of the present teachings;



FIG. 8D is a schematic of the DisCas7-11a guide design for programmable A-to-I editing according to embodiments of the present teachings. Figure discloses SEQ ID NOS 639-640, respectively, in order of appearance;



FIG. 8E is a diagram showing the RNA A-to-I editing of Cypridina luciferase (Cluc) mRNA W85X mutation in mammalian cells by dead DisCas7-11a-NES-ADAR2 according to embodiments of the present teachings;



FIG. 8F is a diagram showing the RNA A-to-I editing of Cypridina luciferase (Cluc) mRNA W85X mutation in mammalian cells by dead DisCas7-11a-NES-ADAR2 according to embodiments of the present teachings;



FIG. 8G is a graph illustrating the RFP knockdown by DisCas7-11 or LwaCas13a in E. coli bacteria according to embodiments of the present teachings;



FIG. 8H is a bar graph illustrating the knockdown of Gluc mRNA in mammalian cell by DisCas7-11 with a panel of guides containing the mature DR sequence according to embodiments of the present teachings;



FIG. 8I is a bar graph illustrating knockdown of Gluc mRNA in mammalian cells by DisCas7-11 with a panel of guides of different lengths according to embodiments of the present teachings;



FIG. 8J is a bar graph comparing the number of significant off-targets when targeting the Gluc transcript in HEK293FT and U87 cells by DisCas7-11, shRNA, LwaCas13a, PspCas13b, and RfxCas13d using transcriptome-wide RNA-sequencing data according to embodiments of the present teachings;



FIG. 8K is a bar graph comparing the number of significant off-targets when targeting the Gluc transcript in HEK293FT and U87 cells by DisCas7-11, shRNA, LwaCas13a, PspCas13b, and RfxCas13d using transcriptome-wide RNA sequencing data according to embodiments of the present teachings;



FIG. 8L is a bar graph showing the knockdown activity in HEK293FT cells of DisCas7-11, shRNA, LwaCas13a, PspCas13b, and RfxCas13d against the Gaussia luciferase (Gluc) transcript normalized to corresponding non-targeting controls according to the embodiments of the present teachings;



FIG. 8M shows the transcriptome wide specificity in HEK293FT cells of RNA knockdown by DisCas7-11, RfxCas13d, and shRNA against the Gaussia luciferase (Gluc) transcript, wherein the analysis off targets is performed via significance testing (y-axis) of differentially expressed transcripts (x-axis) between targeting and non-targeting guide conditions (n=3) and the number of significant off-targets is displayed according to embodiments of the present teachings;



FIG. 8N is a bar graph showing the cell viability of HEK293FT cells during RNA knockdown by DisCas7-11, shRNA, LwaCas13a, PspCas13b, and RfxCas13d against the Gaussia luciferase (Gluc) transcript according to embodiments of the present teachings;



FIG. 8O is a bar graph of the knockdown activity in U87 glioblastoma cells of DisCas7-11, shRNA, LwaCas13a, PspCas13b, and RfxCas13d against the Gaussia luciferase (Gluc) transcript normalized to corresponding non-targeting controls according to embodiments of the present teachings;



FIG. 8P is showing the transcriptome wide specificity in U87 glioblastoma cells of RNA knockdown by DisCas7-11, PspCas13b, and RfxCas13d against the Gaussia luciferase (Gluc) transcript, wherein the analysis off targets is performed via significance testing (y-axis) of differentially expressed transcripts (x-axis) between the targeting guide condition and cells only expressing EGFP (n=3) and the number of significant off-targets is displayed according to embodiments of the present teachings;



FIG. 8Q is a graph of the cell viability of U87 glioblastoma cells during RNA knockdown by DisCas7-11, shRNA, LwaCas13a, PspCas13b, and RfxCas13d against the Gaussia luciferase (Gluc) transcript, wherein the data are mean (n=3)±s.e.m. according to embodiments of the present teachings;



FIG. 8R is a graph showing the knockdown activity in HEK293FT cells of DisCas7-11, LwaCas13a, PspCas13b, and RfxCas13d against the KRAS transcript normalized to corresponding non-targeting controls according to embodiments of the present teachings;



FIG. 8S is a graph showing the knockdown activity in HEK293FT cells of DisCas7-11, LwaCas13a, PspCas13b, and RfxCas13d against the PPIB transcript normalized to corresponding non-targeting controls according to embodiments of the present teachings;



FIG. 8T is a graph showing the knockdown activity in HEK293FT cells of DisCas7-11, LwaCas13a, PspCas13b, and RfxCas13d against the MALAT transcript normalized to corresponding non-targeting controls according to embodiments of the present teachings;



FIG. 8U is a schematic of type III-E loci from Hydrothermal vent microbial metagenome sample, Hydrothermal sediment microbial communities metagenome sample, and Deltaproteobacteria bacterium, containing HvsCas7-11, HsmCas7-11, and DpbaCas7-11 respectively according to embodiments of the present teachings;



FIG. 8V is a graph showing the knockdown activity in HEK293FT cells of HvsCas7-11, HsmCas7-11, DpbaCas7-11, and DisCas7-11 against the Gaussia luciferase (Gluc) transcript normalized to corresponding non-targeting controls, wherein for HvsCas7-11, HsmCas7-11, and DpbaCas7-11, two DR orientations (“F” and “R”) were tested, and wherein significance tests are measured by a Student's t-test (*, p-value <0.05; **, p-value <0.01) according to embodiments of the present teachings;



FIG. 8W is a graph showing the knockdown activity in HEK293FT cells of HvsCas7-11 and DisCas7-11 with two distinct target guides, with and without catalytic mutations in the Cas7-11 proteins according to embodiments of the present teachings;



FIG. 8X is a graph showing the knockdown activity in HEK293FT cells of HvsCas7-11 against the PPIB transcript normalized to corresponding non-targeting controls according to embodiments of the present teachings;



FIG. 8Y is a graph showing the knockdown activity in HEK293FT, HepG2, and primary neuron cultures of HvsCas7-11 delivered as a two vector AAV system targeting the Gaussia luciferase (Gluc) transcript, wherein values are normalized to corresponding non-targeting controls, and wherein significance tests are measured by a Student's t-test (*, p-value <0.05; **, p-value <0.01) according to embodiments of the present teachings;



FIG. 8Z is a graph showing the knockdown activity in mouse embryonic stem cells (ESCs) of DisCas7-11, HvsCas7-11, PspCas13b, and RfxCas13d against the Gaussia luciferase (Gluc) transcript normalized to corresponding non-targeting controls according to embodiments of the present teachings;



FIG. 8AA is a graph showing the ribosomal RNA integrity analysis measured by BioAnalyzer traces in U87 cells treated with DisCas7-11, shRNA, LwaCas13a, and PspCas13b targeting Gluc transcripts for knockdown (the normalized area under the curves for the 18S and 28S bands) according to embodiments of the present teachings;



FIG. 8AB are graph showing the comparison of DisCas7-11 and RfCas13d knockdown activity across multiple guides in HepG2 cells along with data on collateral activity as measured by Cluc levels, cell health (live stain), and cell toxicity (dead stain), wherein data are mean (n=3)±s.e.m according to embodiments of the present teachings;



FIG. 8AC is a graph showing the collateral activity in mouse embryonic stem cells as measured by Cluc levels during Gluc RNA knockdown by DisCas7-11, HvsCas7-11, PspCas13b, and RfxCas13d, wherein the asterisks indicate significant as measured by a Student's t-test between the targeting and non-targeting conditions of a listed ortholog condition (**, p-value <0.01), and wherein data are mean (n=3)±s.e.m according to embodiments of the present teachings;



FIG. 9A illustrates the Desulfonema ishimotonii Type III-E full locus matures crRNAs in E. coli according to embodiments of the present teachings;



FIG. 9B illustrates the single effector protein DisCas7-11 matures crRNAs in E. coli according to embodiments of the present teachings;



FIG. 9C illustrates the expression of the DisCas7-11 CRISPR array without any effector or accessory proteins according to embodiments of the present teachings;



FIG. 9D illustrates types III-E and III-D2 loci containing Cas7-11 and Cas7×3 respectively according to embodiments of the present teachings;



FIG. 10 are images of MS2 plaque dilution assays for MS2 targeting spacers, non-targeting spacers and RFP targeting spacers with DisCas7-11 according to embodiments of the present teachings;



FIG. 11A illustrates the Type III-E locus of the Desulfonema ishimotonii according to embodiments of the present teachings;



FIG. 11B is a diagram showing the phage plaque assay of the Type III-E DisCas7-11 CRISPR-Cas locus according to embodiments of the present teachings;



FIG. 11C is a diagram showing the phage plaque assay of the individual gene knock-in together with of the Type III-E DisCas7-11 CRISPR-Cas system according to embodiments of the present teachings;



FIG. 12A illustrates the in vitro transcription of pre-crRNA and processing by DisCas7-11 according to embodiments of the present teachings;



FIG. 12B is a sequence of a single spacer CRISPR array showing locations of mutated bases according to embodiments of the present teachings. Figure discloses SEQ ID NO: 641;



FIG. 12C is an image of the processing of transcribed pre-crRNA showing the effect of single position mutations on processing according to embodiments of the present teachings;



FIG. 12D is an image of the processing of transcribed pre-crRNA showing the effect of consecutive double mutations on processing according to embodiments of the present teachings;



FIG. 13A illustrates the processing of pre-crRNA by DisCas7-11 in the presence of different ions or chelating agents according to embodiments of the present teachings;



FIG. 13B is a schematic of in vitro cleavage of ssRNA target with DisCas7-11 and crRNA 5 according to embodiments of the present teachings;



FIG. 13C illustrates the incubation of ssRNA target with DisCas7-11 and targeting or non-targeting crRNA in the presence of different ions or chelating agents according to embodiments of the present teachings;



FIG. 13D illustrates the cleavage of ssRNA target with increasing amounts of DisCas7-11-crRNA complex from 0 nM to 233 nM according to embodiments of the present teachings;



FIG. 13E illustrates the cleavage of ssRNA target at increasing incubation periods from 0 minutes to 180 minutes according to embodiments of the present teachings;



FIG. 14A is a schematic showing sequence of DisCas7-11 crRNA 5, targeting the ssRNA target according to embodiments of the present teachings. Figure discloses SEQ ID NO: 642;



FIG. 14B illustrates the cleavage of ssRNA target with crRNA of varying DR and spacer lengths according to embodiments of the present teachings;



FIG. 14C is a sequence of DisCas7-11 crRNA 1 targeting the MS2 target according to embodiments of the present teachings. Figure discloses SEQ ID NO: 643;



FIG. 14D illustrates the cleavage of the MS2 target according to embodiments of the present teachings;



FIG. 15 is a diagram of the fluorescence of RnaseAlert reporter incubated with either DisCas7-11 or LwaCas13a targeting and non-targeting guides against MS2 ssRNA target according to embodiments of the present teachings;



FIG. 16A is a schematic showing positions of DisCas7-11 crRNA 1 and crRNA 2 targeting the MS2 target according to embodiments of the present teachings;



FIG. 16B illustrates the cleavage of a synthetic MS2 ssRNA target with two cRNAs and wild type, D429A, D654A, and D429A/D654A DisCas7-11 proteins according to embodiments of the present teachings;



FIG. 17A illustrates an EMSA assay for targeting crRNA in the absence of DisCas7-11 according to embodiments of the present teachings;



FIG. 17B illustrates the quantification of band intensities for EMSA gels according to embodiments of the present teachings;



FIG. 17C illustrates the quantification of band intensities for EMSA gels according to embodiments of the present teachings;



FIG. 17D illustrates the quantification of band intensities for EMSA gels according to embodiments of the present teachings;



FIG. 17E illustrates the quantification of band intensities for EMSA gels according to embodiments of the present teachings;



FIG. 17F illustrates the quantification of band intensities for EMSA gels according to embodiments of the present teachings;



FIG. 18A illustrates DisCas7-11 incubated with a panel of crRNAs targeting either MS2 ssRNA or ssRNA target 2, two targets of equivalent length (153 nt) according to embodiments of the present teachings;



FIG. 18B illustrates the cleavage of ssRNA 1 and MS2 ssRNA at multiple sites with tiled crRNAs, showing a varying cleavage pattern based on target position according embodiments of the present disclosures;



FIG. 18C shows the schematic of the position of the tested crRNAs along the SARS-CoV-2 ssRNA and the results from the cleavage of synthetic SARS-CoV-2 ssRNA at multiple sites with tiled crRNAs showing a varying cleavage pattern based on target position according to embodiments of the present teachings;



FIG. 18D shows the schematic of the position of the tested crRNAs along the Influenza A ssRNA target and the results from the cleavage of synthetic influenza A segment 4 HA gene ssRNA at multiple sites with tiled crRNAs according to embodiments of the present teachings;



FIG. 18E illustrates DisCas7-11a incubated with a crRNA targeting a crRNA site flanked by different sequences according to embodiments of the present teachings;



FIG. 18F illustrates DisCas7-11a incubated with a crRNA targeting a double-stranded (dsDNA) target with 5′ labeling of the bottom strand according to embodiments of the present teachings;



FIG. 18G illustrates DisCas7-11a incubated with a crRNA targeting a double-stranded (dsDNA) target with 5′ labeling of the top strand according to embodiments of the present teachings;



FIG. 19A shows the schematic of the position of the tested crRNAs along the 100 nt EGFP ssRNA target and the biochemical characterization of programmable DisCas7-11 RNA cleavage of 100 nt long and 3′ fluorescently labeled EGFP ssRNA target with tiling crRNAs according to embodiments of the present teachings;



FIG. 19B shows the schematic of the position of the tested crRNAs along the 200 nt EGFP ssRNA target and the biochemical characterization of the programmable DisCas7-11 RNA cleavage of 200 nt long and 3′ fluorescently labeled EGFP ssRNA target with tiling crRNAs according to embodiments of the present teachings;



FIG. 19C shows the schematic of the position of the tested crRNAs along the 600 nt EGFP ssRNA target and the biochemical characterization of the programmable DisCas7-11 RNA cleavage of 600 nt long and 3′ fluorescently labeled EGFP ssRNA target with tiling crRNAs according to embodiments of the present teachings;



FIG. 19D shows the DNA sequencing analysis of selected EGFP targeting crRNA conditions on an unlabeled 400 nt EGFP ssRNA target according to embodiments of the present teachings;



FIG. 19E shows the in vitro cleavage of ssRNA 1 at 37° C. with DisCas7-11 incubated with a crRNA against the 60 nt MS2 target labeled with a 5′ or 3′ Cy5 molecule, wherein the target cleavage is assessed with and without crRNA, DisCas7-11 protein, and Mg+2, and arrows on the target schematic show estimated cleavage positions of DisCas7-11 cleavage according to embodiments of the present teachings;



FIG. 19F shows cleavage of MS2 ssRNA at multiple sites with tiled crRNAs via incubation with DisCas7-11 protein, wherein MS2 ssRNA target is 5′ labeled with Cy5 according to embodiments of the present teachings; and



FIG. 19G shows in vitro cleavage of MS2 ssRNA at 37° C. with varying concentrations of DisCas7-11 incubated with a crRNA against the target with and without Csx29 protein, wherein MS2 ssRNA target is 5′ labeled with Cy5 and cleavage bands are marked by asterisks according to embodiments of the present teachings.



FIG. 20 illustrates the heterologous expression of the Candidatus Jettenia caeni Type III-E CRISPR-Cas system and associated CRISPR array in E. coli. according to embodiments of the present teachings. Figure discloses SEQ ID NO: 644;



FIG. 21A illustrates the processing of DisCas7-11 ortholog according to embodiments of the present teachings;



FIG. 21B illustrates the processing of GwCas7-11 ortholog according to embodiments of the present teachings.



FIG. 21C illustrates the processing of CjcCas7-11 ortholog according to embodiments of the present teachings;



FIG. 21D illustrates a comparison of target cleavages between active CjcCas7-11 and dead CjcCas7-11 according to embodiments of the present teachings;



FIG. 22A illustrates the DisCas7-11 guide design for RNA editing according to embodiments of the present teachings. Figure discloses SEQ ID NOS 639-640, respectively, in order of appearance;



FIG. 22B is a table showing the DisCas7-11 ADAR guide designs for according to embodiments of the present teachings. Figure discloses SEQ ID NOS 425-446, 645-647, and 411, respectively, in order of appearance;



FIG. 22C is diagram showing the dDisCas7-11 correction of Cluc W85X RNA according to embodiments of the present teachings;



FIG. 22D is a diagram showing the dDisCas7-11 correction of RNA as measured by sequencing according to embodiments of the present teachings;



FIG. 22E is a diagram showing the luciferase correction that correlates to the correction percent according to embodiments of the present teachings;



FIG. 23A illustrates the modulation of protein function that requires temporal A to G modulation according to embodiments of the present teachings;



FIG. 23B illustrates the correction of mendelian disease that requires temporal A to G modulation according to embodiments of the present teachings;



FIG. 23C illustrates a slicing modulation that requires temporal A to G modulation according to embodiments of the present teachings;



FIG. 24A illustrates the initial and edited codon for protein modifications with A to G RNA editing according to embodiments of the present teachings;



FIG. 24B illustrates first, second and third position codon modifications in RNA editing according to embodiments of the present teachings;



FIG. 25 illustrates the initial codon, final codon and potential function in protein modifications with C to U RNA editing according to embodiments of the present teachings;



FIG. 26A illustrates the correction of mendelian disease that requires C to U RNA editing according to embodiments of the present teachings;



FIG. 26B illustrates the multiplexed creation of disease-protective alleles that requires C to U RNA editing according to embodiments of the present teachings;



FIG. 26C illustrates the modulation of catalytic activity that requires C to U RNA editing according to embodiments of the present teachings;



FIG. 26D illustrates alter post-translation modifications that requires C to U RNA editing according to embodiments of the present teachings;



FIG. 27A-27C are tables of Cas7-11 effectors according to embodiments of the present teachings;



FIG. 28A illustrates the targeting of DisCas7-11 RNA target in beta-lactamase (ampicillin resistance gene) and the resulting PFS determined by 20 depleted targets according to embodiments of the present teachings;



FIG. 28B illustrates the targeting of DisCas7-11 DNA target in a plasmid, with a motif corresponding to no significantly depleted PFS sequences according to embodiments of the present teachings;



FIG. 28C is a diagram showing the PFS analysis of top spacers from the MS2 phage screen (e-5 condition) in the 8 bp flanking the target region to the left according to embodiments of the present teachings;



FIG. 28D is a diagram showing the PFS analysis of top spacers from the MS2 phage screen (e-5 condition) in the 8 bp flanking the target region to the right according to embodiments of the present teachings;



FIG. 28E is a schematic of the heterologous type III-E locus of the Desulfonema ishimotonii according to embodiments of the present teachings;



FIG. 28F is a bar graph showing the phage plaque assay of the Type III-E DisCas7-11 effector alone and as part of it entire locus according to embodiments of the present teachings;



FIG. 28G is a bar graph showing the phage plaque assay of E. coli transformed with the DisCas7-11 locus containing according to embodiments of the present teachings;



FIG. 29 illustrates the DisCas7-11a cleavage of synthetic 31 nt MS2 ssRNA with a 31 nt crRNA according to embodiments of the present teachings;



FIG. 30A shows the secondary structure folding prediction of the DisCas7-11a DR according to embodiments of the present teachings. Figure discloses SEQ ID NO: 634;



FIG. 30B shows the secondary structure folding prediction of the CjcCas7-11b DR according to embodiments of the present teachings. Figure discloses SEQ ID NO: 638;



FIG. 30C shows the structure folding prediction of the GwCas7-11c DR in accordance with embodiments of the present teachings. Figure discloses SEQ ID NO: 637;



FIG. 31A illustrates the comparison of knockdown activity of Gluc mRNA in mammalian cells between active DisCas7-11a, catalytically inactive D429A/D654A DisCas7-11a, and GFP according to embodiments of the present teachings;



FIG. 31B illustrate the comparison of knockdown activity of endogenous mRNA in mammalian cells between active DisCas7-11a, catalytically inactive D429A/D654A DisCas7-11a, and GFP according to embodiments of the present teachings;



FIG. 32A is a diagram of the RNA A-to-I editing of Cypridinia luciferase (cluc) mRNA W85X mutation in mammalian cells by active DisCas7-11a-NES-ADAR2 or dead DisCas7-11a-NES-ADAR2 according to embodiments of the present teachings;



FIG. 32B is a diagram of the RNA A-to-I editing of Cypridinia luciferase (cluc) mRNA W85X mutation in mammalian cells by active DisCas7-11a-NES-ADAR2 or dead DisCas7-11a-NES-ADAR2 according to embodiments of the present teachings;



FIG. 33A shows the cleavage of 3′ labeled targeted by incubation with RNase H according to embodiments of the present teachings;



FIG. 33B shows the cleavage of 5′ labeled targeted by incubation with RNase H according to embodiments of the present teachings;



FIG. 34A shows domains and section 1 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34B shows section 2 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34C shows section 3 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34D shows section 4 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34E shows section 5 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34F shows section 6 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34G shows section 7 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34H shows section 8 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34I shows section 9 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34J shows section 10 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34K shows section 11 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34L shows section 12 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34M shows section 13 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance;



FIG. 34N shows section 14 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance; and



FIG. 34O shows section 15 of sequence alignments of Cas nucleases according to embodiments of the present teachings. FIGS. 34A-O disclose SEQ ID NOS 611-631, respectively, in order of appearance.





DETAILED DESCRIPTION

It will be appreciated that for clarity, the following discussion will describe various aspects of embodiments of the applicant's teachings. It should be noted that the specific embodiments are not intended as an exhaustive description or as a limitation to the broader aspects discussed herein. One aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced with any other embodiment(s). Reference throughout this specification to “one embodiment”, “an embodiment,” “an example embodiment,” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” or “an example embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention. For example, in the appended claims, any of the claimed embodiments can be used in any combination.


General Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. Definitions of common terms and techniques in molecular biology may be found in Molecular Cloning: A Laboratory Manual, 2nd edition (1989) (Sambrook, Fritsch, and Maniatis); Molecular Cloning: A Laboratory Manual, 4th edition (2012) (Green and Sambrook); Current Protocols in Molecular Biology (1987) (F. M. Ausubel et al. eds.); the series Methods in Enzymology (Academic Press, Inc.): PCR 2: A Practical Approach (1995) (M. J. MacPherson, B. D. Hames, and G. R. Taylor eds.): Antibodies, A Laboratory Manual (1988) (Harlow and Lane, eds.): Antibodies A Laboratory Manual, 2nd edition 2013 (E. A. Greenfield ed.); Animal Cell Culture (1987) (R. I. Freshney, ed.); Benjamin Lewin, Genes IX, published by Jones and Bartlet, 2008 (ISBN 0763752223); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0632021829); Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 9780471185710); Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992); and Marten H. Hofker and Jan van Deursen, Transgenic Mouse Methods and Protocols, 2nd edition (2011).


As used herein, the singular forms “a”, “an,” and “the” include both singular and plural referents unless the context clearly dictates otherwise.


The term “optional” or “optionally” means that the subsequent described event, circumstance or substituent may or may not occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.


The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints.


The terms “about” or “approximately” as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, are meant to encompass variations of and from the specified value, such as variations of +/−10% or less, +/−5% or less, +/−1% or less, +/−0.5% or less, and +/−0.1% or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier “about” or “approximately” refers is itself also specifically, and preferably, disclosed.


Overview


The embodiments disclosed herein provide (non-naturally occurring or engineered) constructs, compositions, systems, and methods for site-directed RNA editing of RNA molecules. For example, the present invention provides (non-naturally occurring or engineered) methods for inhibiting intra and inter-cellular signaling pathways by modification of post-translational modification sites on select target RNA molecules. In certain example embodiments, the present invention provides (non-naturally occurring or engineered) methods for inhibiting intracellular phosphorylation of serine, threonine and tyrosine residues by editing the genetic codon of these amino acids by means of site-directed RNA editing or RNA molecules. Embodiments disclosed herein further provide methods of inhibiting pathological activation of cell signaling mediated by post-translational modifications, such as phosphorylation, which are involved in many diseases, including cancer, immunodeficiency, infectious diseases, inflammatory disorders and neurodegenerative disorders. The RNA-editing modification may be aimed at a single post-translational modification site of a single gene, but can also be multiplexed by targeting multiple sites on the same or different genes to increase efficacy. These approaches may be further combined with other treatments such as radiation, chemotherapy, targeted therapy based on antibodies or small molecules, and immunotherapy, which may have a synergistic effect.


The embodiments disclosed herein provide (non-naturally occurring or engineered) systems, constructs, and methods for targeted base editing. In general, the systems disclosed herein comprise a targeting component and a base editing component. The targeting component may function to specifically target the base editing component to a target nucleotide sequence in which one or more nucleotides are to be edited. The base editing component may then catalyze a chemical reaction to convert a first nucleotide in the target sequence to a second nucleotide. For example, the base editor may catalyze conversion of an adenine such that it is read as guanine by a cell's transcription or translation machinery, or vice versa. Likewise, the base editing component may catalyze conversion of cytidine to an uracil, or vice versa. In certain example embodiments, the base editor may be derived by starting with a known base editor, such as an adenine deaminase or cytidine deaminase, and modified using methods such as directed evolution to derive new functionalities. Directed evolution techniques are known in the art and may include those described in WO 2015/184016 “High-Throughput Assembly of Genetic Permutations.”


Compositions and Systems


The present disclosure provides (non-naturally occurring or engineered) systems for editing a nucleic acid such as a gene or a product thereof (e.g., the encoded RNA or protein). In some embodiments, the systems may be an engineered, non-naturally occurring system suitable for modifying post-translational modification sites on proteins encoded by a target nucleic acid sequence. In certain cases, the target nucleic acid sequence is RNA, e.g., mRNA or a fragment thereof. In certain cases, the target nucleic acid sequence is DNA, e.g., a gene or a fragment thereof. In general, the system may comprise one or more of a catalytic inactive (dead) Cas protein (e.g., dead Cas7-11), a nucleotide deaminase protein or catalytic domain thereof, and a guide molecule. In certain examples, the nucleotide deaminase protein may be an adenosine deaminase. In certain examples, the nucleotide deaminase protein may be a cytidine deaminase. The guide sequence may be designed to have a degree of complementarity with a target sequence at one or more codons comprising an adenine or cytidine and that is post-translationally modified.


CRISPR-Cas


Some embodiments disclosed herein are directed to CRISPR-Cas (clustered regularly interspaced short palindromic repeats associated proteins) systems. In the conflict between bacterial hosts and their associated viruses, CRISPR-Cas systems provide an adaptive defense mechanism that utilizes programmed immune memory. CRISPR-Cas systems provide their defense through three stages: adaptation, the integration of short nucleic acid sequences into the CRISPR array that serves as memory of past infections; expression, the transcription of the CRISPR array into a pre-crRNA (CRISPR RNA) transcript and processing of the pre-crRNA into functional crRNA species targeting foreign nucleic acids; and interference, the programming of CRISPR effectors by crRNA to cleave nucleic acid of foreign threats. Across all CRISPR-Cas systems, these fundamental stages display enormous variation, including the identity of the target nucleic acid (either RNA, DNA, or both) and the diverse domains and proteins involved in the effector ribonucleoprotein complex of the system.


CRISPR-Cas systems can be broadly split into two classes based on the architecture of the effector modules involved in pre-crRNA processing and interference. Class 1 systems have multi-subunit effector complexes composed of many proteins, whereas Class 2 systems rely on single-effector proteins with multi-domain capabilities for crRNA binding and interference; Class 2 effectors often provide pre-crRNA processing activity as well. Class 1 systems contain 3 types (type I, III, and IV) and 33 subtypes, including the RNA and DNA targeting type III-systems. Class 2 CRISPR families encompass 3 types (type II, V, and VI) and 17 subtypes of systems, including the RNA-guided DNases Cas9 and Cas12 and the RNA-guided RNase Cas13. Continual sequencing of novel bacterial genomes and metagenomes uncovers new diversity of CRISPR-Cas systems and their evolutionary relationships, necessitating experimental work that reveals the function of these systems and develops them into new tools.


Among the currently known CRISPR-Cas systems, only the type III and type VI systems have been demonstrated to bind and target RNA, and these two systems have substantially different properties, the most distinguishing being their membership in Class 1 and Class 2, respectively. Characterized subtypes of type III, which span type III-A, B, and C systems, target both RNA and DNA species through an effector complex containing multiple Cas7 (Csm3/5 or Cmr1/4/6) RNA nuclease units in association with a single Cas10 (Csm1 or Cmr2) DNA nuclease. The RNA nuclease activity of Cas7 is mediated through acidic residues in the repeat-associated mysterious proteins (RAMP) domains, which cut at stereotyped intervals in the guide:target duplex. Type III systems also have a target restriction, and cannot efficiently target protospacers in vivo if there is extended homology between the 5′ “tag” of the crRNA and the “anti-tag” 3′ of the protospacer in the target, although this binding does not block RNA cleavage in vitro. In type III systems, pre-crRNA processing is carried out by either host factors or the associated Cas6 family protein, which can physically complex with the effector machinery.


In contrast to type III systems, type VI systems contain a single CRISPR effector Cas13 that can only effect RNA interference, mediated through basic catalytic residues of dual HEPN domains. This interference requires a protospacer flanking sequence (PFS), although the influence of the PFS varies between orthologs and families. Importantly, the RNA cleavage activity of Cas13, once triggered by crRNA:target duplex formation, is indiscriminate, and activated Cas13 enzymes will cleave other RNA species in vitro, in bacterial hosts, and mammalian cells. This activity, termed the collateral effect, has been applied to CRISPR-based nucleic acid detection technologies. In addition to the RNA interference activity, the Cas13 family members contain pre-crRNA processing activity. Just as single-effector DNA targeting systems have given rise to numerous genome editing applications, Cas13 family members have been applied to a suite of RNA-targeting technologies in both bacterial and eukaryotic cells, including RNA knockdown, RNA editing, RNA tracking, epitranscriptome editing, translational upregulation, epi-transcriptomic reading and writing via N6-Methyladenosine, and isoform modulation.


The novel type III-E system was recently identified from genomes of 8 bacterial species and is characterized as a fusion of several Cas7 proteins and a putative Cas11 (Csm2)-like small subunit. The domain composition suggests the fusion of multiple type III effector module domains involved in crRNA binding into a single protein effector that is predicted to process pre-crRNA given its homology with Cas5 (Csm4) and conserved aspartates. The lack of other putative effector nucleases in these CRISPR loci raise the additional possibility that this fusion protein is capable of crRNA-directed RNA cleavage. If so, this system would blur the distinction of Class 1 and Class 2 systems, as it would have domains homologous to other Class 1 systems, but possess a single effector module characteristic of Class 2 systems. Beyond the single effector module present in all subtype III-E loci, a majority of type III-E family members contain a putative ancillary gene with a CHAT domain, which is a caspase family protease associated with programmed cell death (PCD), suggesting involvement of PCD-mediated antiviral strategies, as has been observed with type III and VI systems.


Type III-E system associated effector, interchangeably termed Cas15 and Cas7-11 herein, is a programmable RNase (FIGS. 1A-1D). This system can provide defense against RNA phage and be programmed to target exogenous mRNA species when expressed heterologously in bacteria. Orthologs of Cas7-11 are capable of both processing of pre-crRNA and crRNA-directed cleavage of RNA targets, and determine catalytic residues underlying programmed RNA cleavage. A direct evolutionary path of Cas7-11 can be traced from individual Cas7 and Cas11 effector proteins of subtype III-D1 variant, through an intermediate, a partially fused effector Cas7×3 of the subtype III-D2 variant, to the singe-effector architecture of subtype III-E that is so far unique among the Class 1 CRISPR-Cas systems (FIG. 1D). Cas7-11 most likely originated from two type III-D variants. Three Cas7 domains (domains 3, 4 and 5) are derived from subtype III-D2 that contains a the Cas7×3 effector protein along with Cas10 and another Cas7-like domain fused to a Cas5-like domain. The origin of the N-terminal Cas7 and putative Cas11 domain of Cas7-11 is most likely derived from a III-D1 variant, where both genes are stand-alone.


Cas7-11 differs substantially from Cas13, in terms of both domain organization and activity (FIG. 1C). Cas13 RNA cleavage is enacted by dual HEPN domains with basic catalytic residues, and this cleavage, once triggered, is indiscriminate. In contrast, Cas7-11 utilizes at least two of four Cas7-like domains with acidic catalytic residues to generate stereotyped cleavage at the target binding site in cis. Furthermore, Cas13 targeting is restricted by the requirement for a PFS, which Cas7-11 does not require, and the DR of Cas7-11-associated crRNA is substantially shorter. Because of these unique features, Cas7-11 may have distinct advantages for RNA targeting and transcriptome engineering biotechnology applications.


Regulation of interference by accessory proteins has been observed in both type III and type VI systems, and other proteins in the D. ishimotonii type III-E locus can regulate activity of DisCas7-11a. Notably, TPR-CHAT had a strong inhibitory effect on DisCas7-11a phage interference, raising the possibility that unrestricted DisCas7-11a activity could be detrimental for the host. Alternatively, as TPR-CHAT is a caspase family protease associated with programmed cell death (PCD), it is possible that TPR-CHAT is activated by DisCas7-11a and leads to host death, which could mimic death due to phage in these assays. TPR-CHAT caspase activity could be activated by DisCas7-11a and cause PCD through general proteolysis, analogous to PCD triggered by Cas13 collateral activity.


Similar to Class 2 CRISPR effectors such as Cas9, Cas12, and Cas13, Cas7-11 is highly active in mammalian cells, with substantial knockdown activity on both reporter and endogenous transcripts. Moreover, via inactivation of active sites through mutagenesis, the catalytically inactive dCas7-11 enzyme can be used to recruit ADAR2DD for efficient site-specific A-to-I editing on transcripts. These applications establish Cas7-11 as the basis for an RNA-targeting toolbox that has several benefits compared to Cas13, including the lack of sequence preferences and collateral activity, the latter of which has been shown to induce toxicity in certain cell types. A Cas7-11 toolbox may serve as the basis for multiple RNA technologies, including RNA knockdown, RNA editing, translation modulation, RNA recruitment, RNA tracking, splicing control, RNA stabilization, and potentially even diagnostics.


AD-Functionalized CRISPR Systems


In some embodiments, the systems may be AD-functionalized CRISPR system. The term “AD-functionalized CRISPR system” as used here refers to a nucleic acid targeting and editing system comprising (a) a CRISPR-Cas protein, more particularly a Cas7-11 protein which is catalytically active or inactive; (b) a guide molecule which comprises a guide sequence; and (c) an adenosine deaminase (AD) protein or catalytic domain thereof; wherein the adenosine deaminase protein or catalytic domain thereof is covalently or non-covalently linked to the CRISPR-Cas protein or the guide molecule or is adapted to link thereto after delivery; wherein the guide sequence is substantially complementary to the target sequence but comprises a non-pairing C corresponding to the A being targeted for deamination, resulting in an A-C mismatch in an RNA duplex formed by the guide sequence and the target sequence. In some embodiments, the CRISPR-Cas protein and/or the adenosine deaminase comprise one or more heterologous nuclear export signal(s) (NES(s)) or nuclear localization signal(s) (NLS(s)). For application in eukaryotic cells, the CRISPR-Cas protein and/or the adenosine deaminase can be NES-tagged or NLS-tagged.


One skilled in the art would appreciate that the components (a), (b) and (c) can be delivered to the cell as a ribonucleoprotein complex. The ribonucleoprotein complex can be delivered via one or more lipid nanoparticles. One skilled in the art would appreciate that the components (a), (b) and (c) can be delivered to the cell as one or more RNA molecules, such as one or more guide RNAs and one or more mRNA molecules encoding the CRISPR-Cas protein, the adenosine deaminase protein, and optionally the adaptor protein. The RNA molecules can be delivered via one or more lipid nanoparticles. One skilled in the art would appreciate that the components (a), (b) and (c) can be delivered to the cell as one or more DNA molecules. The one or more DNA molecules can be comprised within one or more vectors such as viral vectors (e.g., AAV). The one or more DNA molecules can comprise one or more regulatory elements operably configured to express the CRISPR-Cas protein, the guide molecule, and the adenosine deaminase protein or catalytic domain thereof, optionally wherein the one or more regulatory elements comprise inducible promoters.


In some embodiments, the CRISPR-Cas protein is a dead Cas7-11. In some embodiments, the dead Cas7-11 comprises one or more mutations in the Cas7-like domains, including D429A and D654A as well as many other mutations (see table 1).


In some embodiments, the guide molecule is capable of hybridizing with a target sequence comprising the Adenine to be deaminated within an RNA sequence to form an RNA duplex which comprises a non-pairing Cytosine opposite to said Adenine. Upon RNA duplex formation, the guide molecule forms a complex with the Cas7-11 protein and directs the complex to bind the RNA polynucleotide at the target RNA sequence of interest. Details on the aspect of the guide of the AD-functionalized CRISPR-Cas system are provided herein below.


In at least a first design, the AD-functionalized CRISPR system comprises: (a) an adenosine deaminase fused or linked to a CRISPR-Cas protein, wherein the CRISPR-Cas protein is catalytically inactive; and (b) a guide molecule comprising a guide sequence designed to introduce an A-C mismatch in an RNA duplex formed between the guide sequence and the target sequence. In some embodiments, the CRISPR-Cas protein and/or the adenosine deaminase can be NLS-tagged, on either the N- or C-terminus or both.


In at least a second design, the AD-functionalized CRISPR system comprises: (a) a CRISPR-Cas protein that is catalytically inactive; (b) a guide molecule comprising a guide sequence designed to introduce an A-C mismatch in an RNA duplex formed between the guide sequence and the target sequence, and an aptamer sequence (e.g., MS2 RNA motif or PP7 RNA motif) capable of binding to an adaptor protein (e.g., MS2 coating protein or PP7 coat protein); and (c) an adenosine deaminase fused or linked to an adaptor protein, wherein the binding of the aptamer and the adaptor protein recruits the adenosine deaminase to the RNA duplex formed between the guide sequence and the target sequence for targeted deamination at the A of the A-C mismatch. In some embodiments, the adaptor protein and/or the adenosine deaminase can be NLS-tagged, on either the N- or C-terminus or both. The CRISPR-Cas protein can also be NLS-tagged. The CRISPR-Cas protein can also be NLS-tagged.


The use of different aptamers and corresponding adaptor proteins also allows orthogonal gene editing to be implemented. In one example in which adenosine deaminase are used in combination with cytidine deaminase for orthogonal gene editing/deamination, sgRNA targeting different loci are modified with distinct RNA loops in order to recruit MS2-adenosine deaminase and PP7-cytidine deaminase (or PP7-adenosine deaminase and MS2-cytidine deaminase), respectively, resulting in orthogonal deamination of A or C at the target loci of interested, respectively. PP7 is the RNA-binding coat protein of the bacteriophage Pseudomonas. Like MS2, it binds a specific RNA sequence and secondary structure. The PP7 RNA-recognition motif is distinct from that of MS2. Consequently, PP7 and MS2 can be multiplexed to mediate distinct effects at different genomic loci simultaneously. For example, an sgRNA targeting locus A can be modified with MS2 loops, recruiting MS2-adenosine deaminase, while another sgRNA targeting locus B can be modified with PP7 loops, recruiting PP7-cytidine deaminase. In the same cell, orthogonal, locus-specific modifications are thus realized. This principle can be extended to incorporate other orthogonal RNA-binding proteins.


In at least a third design, the AD-functionalized CRISPR system comprises: (a) an adenosine deaminase inserted into an internal loop or unstructured region of a CRISPR-Cas protein, wherein the CRISPR-Cas protein is catalytically inactive or a nickase; and (b) a guide molecule comprising a guide sequence designed to introduce an A-C mismatch in an RNA duplex formed between the guide sequence and the target sequence.


The AD-functionalized CRISPR system described herein can be used to target a specific Adenine within an RNA polynucleotide sequence for deamination. For example, the guide molecule can form a complex with the CRISPR-Cas protein and directs the complex to bind a target RNA sequence in the RNA polynucleotide of interest. Because the guide sequence is designed to have a non-pairing C, the RNA duplex formed between the guide sequence and the target sequence comprises an A-C mismatch, which directs the adenosine deaminase to contact and deaminate the A opposite to the non-pairing C, converting it to an Inosine (I). Since Inosine (I) base pairs with C and functions like G in cellular processes, the targeted deamination of A described herein are useful for correction of undesirable G-A and C-T mutations, as well as for obtaining desirable A-G and T-C mutations.


In some embodiments, the AD-functionalized CRISPR system is used for targeted deamination in an RNA polynucleotide molecule in vitro. In some embodiments, the AD-functionalized CRISPR system is used for targeted deamination in a DNA molecule and/or RNA molecule within a cell. The cell can be an eukaryotic cell such as a bacteria or cyanobacteria. The cell can be a eukaryotic cell, such as an animal cell, a mammalian cell, a human, or a plant cell.


The invention also relates to a (non-naturally occurring or engineered) method for treating or preventing a disease by the targeted deamination using the AD-functionalized CRISPR system, wherein the deamination of the A, which remedies a disease caused by transcripts containing a pathogenic G→A or C→T point mutation. Examples of disease that can be treated or prevented with the present invention include cancer, Meier-Gorlin syndrome, Seckel syndrome 4, Joubert syndrome 5, Leber congenital amaurosis 10; Charcot-Marie-Tooth disease, type 2; Charcot-Marie-Tooth disease, type 2; Usher syndrome, type 2C; Spinocerebellar ataxia 28; Spinocerebellar ataxia 28; Spinocerebellar ataxia 28; Long QT syndrome 2; Sjogren-Larsson syndrome; Hereditary fructosuria; Hereditary fructosuria; Neuroblastoma; Neuroblastoma; Kallmann syndrome 1; Kallmann syndrome 1; Kallmann syndrome 1; Metachromatic leukodystrophy.


AD-functionalized CRISPR system for RNA editing can be used for translation upregulation or downregulation, improving RNA stability and diagnostics. For example, for application in diagnostics, TPR-Chat is an accessory protein that interacts with Cas7-11 interference. Cas7-11 can activate TPR-Chat caspase activity which can then activate a reporter. While this can be used for inducing cell death based on RNA detection (e.g. in cancer cells), it also can be useful for general RNA diagnostics (i.e. molecular diagnostics for bacteria, viruses, and derivatives thereof) in samples. Furthermore, Cas7-11 can re-constitute a split protein like GFP on a specific transcript.


AD-functionalized CRISPR system for RNA editing can be used to treat or prevent premature termination diseases. Pre-termination diseases are characterized by mutations in early stop codons, either through single nucleotide polymorphisms that introduce termination, indels that change the translational frame of the protein and generate new stop codons, or alternative splicing that preferentially introduces exons that have early termination. By removing stop codons generated in these ways via A to I editing, RNA editing with ADAR could rescue diseases involving premature termination. In cases where SNPs are not G to A, but generate nonsense mutations, clinical benefit could be derived from changing nonsense mutations into missense mutations.


AD-functionalized CRISPR system for RNA editing can be used to change fertility mutations without germline editing. One advantage of RNA editing over DNA editing is in cases of SNPs affecting fertility, where correction with genome editing would necessarily result in germline editing, with potential ethical or safety implications. RNA editing could correct these mutations without permanent effects on the genome, thereby circumventing these issues.


AD-functionalized CRISPR system for RNA editing can be used for splicing alteration. Pre-mRNA requires specific splice donor and acceptor sequences in order to undergo processing by the spliceosome. Splice acceptor sites contain an invariant AG sequence that is necessary for acceptance of the attack by the splice donor sequence and intron removal. By targeting Cas7-11-ADAR fusions to pre-mRNA and editing AG splice acceptor sites to IG, it can be possible to inactivate the splice acceptor site, resulting in skipping of the downstream exon. This approach to splicing alteration has advantages over the current method of exon skipping with chemically modified anti-sense oligos. Cas7-11-ADAR can be genetically encoded, allowing for long-term exon skipping. Additionally, Cas7-11-ADAR creates a mutation to promote skipping, which can be more robust than masking of the splice donor/acceptor site by a double stranded RNA, as is done with anti-sense oligos.


AD-functionalized CRISPR system for RNA editing can be used to alter neoantigens. Neoantigens in cancer are novel antigens that are expressed in tumor cells due to mutations that arise because of defective mismatch repair. Engineering T cells against neoantigens is advantageous because the T cells will have no off-target activity and thus toxicity since the antigens are only expressed in the tumor cells. With RNA base editors, the Cas7-11-ADAR fusions can be targeted to cancer cells to introduce mutations in transcripts that would introduce amino acid changes and new antigens that can be targeted using chimeric antigen receptor T cells. This approach is better than DNA base editors because it is transient and thus the risk of editing non-tumor cells permanently due to off-target delivery is minimal.


AD-functionalized CRISPR system for RNA editing can be used to change microRNA targets for tumor suppressors. ADAR naturally edits mRNA to generate or remove microRNA targets, thereby modulating expression. Programmable RNA editing can be used to up- or down-regulate microRNA targets via altering of targeting regions. Additionally, microRNAs themselves are natural substrates for ADAR, and programmable RNA editing of micoRNAs can reduce or enhance the function on their corresponding targets.


AD-functionalized CRISPR system for RNA editing can be used to make multiple edits along a region. The Cas7-11-ADAR fusions can be precisely targeted to edit specific adenosines by introducing a mismatch in the guide region across from the desired adenosine target and creating a bubble that is favorable for A-to-I editing. By introducing multiple of these mismatches across different adenosine sites in the guide/target duplex, it can be possible to introduce multiple mutations at once.


AD-functionalized CRISPR system for RNA editing can be used for the reversal of TAA (double A to G) for PTC. Many diseases that involve pretermination codon changes involve a TAA stop codon, which would require A-to-I changes to correct rather than the TAG or TGA stop codons which only need one A-to-I edit. Two approaches can be used to reverse the TAA stop codon. (1) As described in the previous section, two mismatches can be introduced in the guide against the two adenosines in the TAA codon. (2) A two-guide array can be used to convert each of the adenosines to inosine sequentially. The first guide in the array can contain a mutation against the first adenosine and the second guide can then have complementarity to this change and have a mismatch against the second adenosine in the stop codon.


AD-functionalized CRISPR system for RNA editing can be used to treat or prevent cancer (GOF, LOF mutation reversal). Many oncogenic changes in cancer involve G to A mutations that introduce gain of function or loss of function phenotypes to the mutated proteins. The RNA base editors are well positioned to correct these changes and reduce oncogenesis.


RNA editing with ADAR can be used for the design of new base preferences. Current ADAR1/2 proteins have been found to have surrounding base preferences for catalytic activity, which may pose constraints for certain applications. Rational mutagenesis or directed evolution of ADAR variants with altered or relaxed base preferences can increase the versatility of programmable RNA editing.


AD-functionalized CRISPR system for RNA editing can comprise ADAR mutants with increased activity in human cells. Although ADAR mutants with altered activity in vitro or in yeast have been previously reported, screening or rational design of mutants with increased activity in the context of human cells can improve the efficiency or specificity of ADAR-based programmable RNA editing constructs.


AD-functionalized CRISPR system for RNA editing can be used in biological applications of inosine generation. The RNA editing with ADAR generates inosine, which, when occurring multiple times in a transcript, can interact with endogenous biological pathways to increase inflammation in cells and tissues. Generation of multiple inosine bases can increase inflammation, especially in cells where inflammation can lead to clearance. Additional inosine generation could also be used to destabilize transcripts.


AD-functionalized CRISPR system for RNA editing can be used in removing upstream start codons to promote protein expression of downstream ORF (ATG mutation). Anti-sense oligos have been used for blocking upstream start codon sites to promote protein expression at downstream start codons. This allows the boosting of endogenous protein levels for therapeutic purposes. Cas7-11-ADAR fusions could accomplish a similar effect by converting ATG sites to ITG (GTG) sites and thus remove upstream codons in endogenous transcripts and thus boost protein translation. So far, most therapeutic applications discussed have been for correcting G to A mutations or removing pre-termination sites. This would be an application that allows for boosting gene expression. A good example is boosting fetal hemoglobin levels in sickle cell disease and thalassemias.


AD-functionalized CRISPR system for RNA editing can comprise the mutagenesis of ADAR for C to U or any transition. It is possible through rational mutagenesis or directed evolution that the ADARs listed in the ortholog section could be made into C to U editors or editors of any base transition.



FIGS. 23-26 illustrates codon changes and their effects when RNA editors are used. FIG. 23A shows that modulation can be used for modifying protein function through amino acid changes that affect enzyme domains, such as kinases. FIG. 23B shows that modulation can be used for correction of Mendelian disease mutations. FIG. 23C shows the splicing modulation of transcripts by modifying the splice acceptor site. FIGS. 24A-B show potential codon transitions enabled by A>I editing. FIG. 25 shows show potential codon transitions and function enabled by C>U editing. Adapted and modified based on J. D. Watson, Molecular biology of the gene. (Pearson, Boston, ed. Seventh edition, 2014), pp. xxxiv, 872 pages (38). FIG. 66C). FIG. 26A shows that C-U modulation can be used for correction of Mendelian disease mutations. FIG. 26B shows the multiplexed creation of disease-protective alleles that requires C to U RNA editing. FIG. 26C shows the modulation of catalytic activity that requires C to U RNA editing. FIG. 26D shows alter post-translational modifications that requires C to U RNA editing.


In particular embodiments, the compositions described herein can be used in therapy. This implies that the methods can be performed in vivo, ex vivo or in vitro. In particular embodiments, the methods can be not methods of treatment of the animal or human body or a method for modifying the germ line genetic identity of a human cell. In particular embodiments, when carrying out the method, the target RNA can be not comprised within a human or animal cell. In particular embodiments, when the target is a human or animal target, the method can be carried out ex vivo or in vitro.


CRISPR-Cas Proteins and Guides


In some embodiments, the system comprises one or more components of a CRISPR-Cas system. For example, the system may comprise a Cas protein, a guide molecule, or a combination thereof.


In the methods and systems of the present invention use is made of a CRISPR-Cas protein and corresponding guide molecule. More particularly, the CRISPR-Cas protein is a class 2 CRISPR-Cas protein. In certain embodiments, said CRISPR-Cas protein is a Cas7-11. The Cas7-11 may be Cas7-11a, Cas7-11b, Cas7-11c, or Cas7-11d. The CRISPR-Cas system does not require the generation of customized proteins to target specific sequences but rather a single Cas protein can be programmed by guide molecule to recognize a specific nucleic acid target, in other words the Cas enzyme protein can be recruited to a specific nucleic acid target locus of interest using said guide molecule.


CRISPR-Cas Proteins


In some embodiments, the systems may comprise a CRISPR-Cas protein. In certain examples, the CRISPR-Cas protein may be a catalytically inactive (dead) Cas protein. The catalytically inactive (dead) Cas protein may have impaired (e.g., reduced or no) nuclease activity. In some cases, the dead Cas protein may have nickase activity. In some cases, the dead Cas protein may be dead Cas 15 protein. For example, the dead Cas 15 may be dead Cas7-11a, dead Cas7-11b, dead Cas7-11c, or dead Cas7-11d. In some embodiments, the system may comprise a nucleotide sequence encoding the dead Cas protein.


In its unmodified form, a CRISPR-Cas protein is a catalytically active protein. This implies that upon formation of a nucleic acid-targeting complex (comprising a guide RNA hybridized to a target sequence) one or both DNA strands in or near (e.g., within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence is modified (e.g. cleaved). As used herein the term “sequence(s) associated with a target locus of interest” refers to sequences near the vicinity of the target sequence (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from the target sequence, wherein the target sequence is comprised within a target locus of interest). The unmodified catalytically active Cas7-11 protein generates a staggered cut, whereby the cut sites are typically within the target sequence. More particularly, the staggered cut is typically 13-23 nucleotides distal to the PAM. In particular embodiments, the cut on the non-target strand is 17 nucleotides downstream of the PAM (i.e. between nucleotide 17 and 18 downstream of the PAM), while the cut on the target strand (i.e. strand hybridizing with the guide sequence) occurs a further 4 nucleotides further from the sequence complementary to the PAM (this is 21 nucleotides upstream of the complement of the PAM on the 3′ strand or between nucleotide 21 and 22 upstream of the complement of the PAM).


In the methods according to the present invention, the CRISPR-Cas protein is preferably mutated with respect to a corresponding wild-type enzyme such that the mutated CRISPR-Cas protein lacks the ability to cleave one or both DNA strands of a target locus containing a target sequence. In particular embodiments, one or more catalytic domains of the Cas7-11 protein are mutated to produce a mutated Cas protein which cleaves only one DNA strand of a target sequence.


In particular embodiments, the CRISPR-Cas protein may be mutated with respect to a corresponding wild-type enzyme such that the mutated CRISPR-Cas protein lacks substantially all DNA cleavage activity. In some embodiments, a CRISPR-Cas protein may be considered to substantially lack all DNA and/or RNA cleavage activity when the cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the nucleic acid cleavage activity of the non-mutated form of the enzyme; an example can be when the nucleic acid cleavage activity of the mutated form is nil or negligible as compared with the non-mutated form.


In certain embodiments of the methods provided herein the CRISPR-Cas protein is a mutated CRISPR-Cas protein which cleaves only one DNA strand, i.e. a nickase. More particularly, in the context of the present invention, the nickase ensures cleavage within the non-target sequence, i.e. the sequence which is on the opposite DNA strand of the target sequence and which is 3′ of the PAM sequence.


In some embodiments, a CRISPR-Cas protein is considered to substantially lack all DNA cleavage activity when the DNA cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the DNA cleavage activity of the non-mutated form of the enzyme; an example can be when the DNA cleavage activity of the mutated form is nil or negligible as compared with the non-mutated form. In these embodiments, the CRISPR-Cas protein is used as a generic DNA binding protein. The mutations may be artificially introduced mutations or gain- or loss-of-function mutations.


In addition to the mutations described above, the CRISPR-Cas protein may be additionally modified. As used herein, the term “modified” with regard to a CRISPR-Cas protein generally refers to a CRISPR-Cas protein having one or more modifications or mutations (including point mutations, truncations, insertions, deletions, chimeras, fusion proteins, etc.) compared to the wild type Cas protein from which it is derived. By derived is meant that the derived enzyme is largely based, in the sense of having a high degree of sequence homology with, a wildtype enzyme, but that it has been mutated (modified) in some way as known in the art or as described herein. The modification can be fusions of effectors like fluorophore, proteins involved in translation modulation (e.g. eIF4E, eIF4A, and eIF4G) and proteins involved with epitranscriptomic modulation (e.g. pseudouridine synthase and m6a writer/readers), and splicing factors involved with changing splicing. Cas7-11 could also be used for sensing RNA for diagnostic purposes. In some embodiments, the C-terminus of the Cas7-11 effector can be truncated. For example, at least 20 amino acids, at least 40 amino acids, at least 50 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 150 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 250 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas 13 effector. For example, up to 120 amino acids, up to 140 amino acids, up to 160 amino acids, up to 180 amino acids, up to 200 amino acids, up to 250 amino acids, up to 300 amino acids, up to 350 amino acids, or up to 400 amino acids may be truncated at the C-terminus of the Cas 15 effector.


In some embodiments, the N-terminus of the Cas7-11 effector protein may be truncated. For example, at least 20 amino acids, at least 40 amino acids, at least 50 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 150 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 250 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For examples, up to 120 amino acids, up to 140 amino acids, up to 160 amino acids, up to 180 amino acids, up to 200 amino acids, up to 250 amino acids, up to 300 amino acids, up to 350 amino acids, up to 400 amino acids may be truncated at the N-terminus of the Cas7-11 effector.


In some embodiments, both the N- and the C-termini of the Cas7-11 effector protein may be truncated. For example, at least 20 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 40 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 60 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 80 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 100 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 120 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 140 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 160 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 180 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 200 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 220 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 240 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 260 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 280 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 300 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector. For example, at least 20 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 40 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 60 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 80 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 100 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 120 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 140 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 160 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 180 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 200 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 220 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 240 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 260 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 280 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 300 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector. For example, at least 350 amino acids may be truncated at the N-terminus of the Cas7-11 effector, and at least 20 amino acids, at least 40 amino acids, at least 60 amino acids, at least 80 amino acids, at least 100 amino acids, at least 120 amino acids, at least 140 amino acids, at least 160 amino acids, at least 180 amino acids, at least 200 amino acids, at least 220 amino acids, at least 240 amino acids, at least 260 amino acids, at least 300 amino acids, or at least 350 amino acids may be truncated at the C-terminus of the Cas7-11 effector.


The additional modifications of the CRISPR-Cas protein may or may not cause an altered functionality. By means of example, and in particular with reference to CRISPR-Cas protein, modifications which do not result in an altered functionality include for instance codon optimization for expression into a particular host, or providing the nuclease with a particular marker (e.g. for visualization). Modifications with may result in altered functionality may also include mutations, including point mutations, insertions, deletions, truncations (including split nucleases), etc. Fusion proteins may without limitation include for instance fusions with heterologous domains or functional domains (e.g. localization signals, catalytic domains, etc.). In certain embodiments, various modifications may be combined (e.g. a mutated nuclease which is catalytically inactive and which further is fused to a functional domain, such as for instance to induce DNA methylation or another nucleic acid modification, such as including without limitation a break (e.g. by a different nuclease (domain)), a mutation, a deletion, an insertion, a replacement, a ligation, a digestion, a break or a recombination). As used herein, “altered functionality” includes without limitation an altered specificity (e.g. altered target recognition, increased (e.g. “enhanced” Cas proteins) or decreased specificity, or altered PAM recognition), altered activity (e.g. increased or decreased catalytic activity, including catalytically inactive nucleases or nickases), and/or altered stability (e.g. fusions with destabilization domains). Suitable heterologous domains include without limitation a nuclease, a ligase, a repair protein, a methyltransferase, (viral) integrase, a recombinase, a transposase, an argonaute, a cytidine deaminase, a retron, a group II intron, a phosphatase, a phosphorylase, a sulpfurylase, a kinase, a polymerase, an exonuclease, etc. Examples of all these modifications are known in the art. It will be understood that a “modified” nuclease as referred to herein, and in particular a “modified” Cas or “modified” CRISPR-Cas system or complex preferably still has the capacity to interact with or bind to the polynucleic acid (e.g. in complex with the guide molecule). Such modified Cas protein can be combined with the deaminase protein or active domain thereof as described herein.


In certain embodiments, CRISPR-Cas protein may comprise one or more modifications resulting in enhanced activity and/or specificity, such as including mutating residues that stabilize the targeted or non-targeted strand (e.g. eCas9; “Rationally engineered Cas9 nucleases with improved specificity”, Slaymaker et al. (2016), Science, 351(6268):84-88, incorporated herewith in its entirety by reference). In certain embodiments, the altered or modified activity of the engineered CRISPR protein comprises increased targeting efficiency or decreased off-target binding. In certain embodiments, the altered activity of the engineered CRISPR protein comprises modified cleavage activity. In certain embodiments, the altered activity comprises increased cleavage activity as to the target polynucleotide loci. In certain embodiments, the altered activity comprises decreased cleavage activity as to the target polynucleotide loci. In certain embodiments, the altered activity comprises decreased cleavage activity as to off-target polynucleotide loci. In certain embodiments, the altered or modified activity of the modified nuclease comprises altered helicase kinetics. In certain embodiments, the modified nuclease comprises a modification that alters association of the protein with the nucleic acid molecule comprising RNA (in the case of a Cas protein), or a strand of the target polynucleotide loci, or a strand of off-target polynucleotide loci. In an aspect of the invention, the engineered CRISPR protein comprises a modification that alters formation of the CRISPR complex. In certain embodiments, the altered activity comprises increased cleavage activity as to off-target polynucleotide loci. Accordingly, in certain embodiments, there is increased specificity for target polynucleotide loci as compared to off-target polynucleotide loci. In other embodiments, there is reduced specificity for target polynucleotide loci as compared to off-target polynucleotide loci. In certain embodiments, the mutations result in decreased off-target effects (e.g. cleavage or binding properties, activity, or kinetics), such as in case for Cas proteins for instance resulting in a lower tolerance for mismatches between target and guide RNA. Other mutations may lead to increased off-target effects (e.g. cleavage or binding properties, activity, or kinetics). Other mutations may lead to increased or decreased on-target effects (e.g. cleavage or binding properties, activity, or kinetics). In certain embodiments, the mutations result in altered (e.g. increased or decreased) helicase activity, association or formation of the functional nuclease complex (e.g. CRISPR-Cas complex). In certain embodiments, as described above, the mutations result in an altered PAM recognition, i.e. a different PAM may be (in addition or in the alternative) be recognized, compared to the unmodified Cas protein. Particularly preferred mutations include positively charged residues and/or (evolutionary) conserved residues, such as conserved positively charged residues, in order to enhance specificity. In certain embodiments, such residues may be mutated to uncharged residues, such as alanine.


Type-III CRISPR-Cas Proteins


The application describes methods using Type-III CRISPR-Cas proteins. This is exemplified herein with Cas7-11, whereby a number of orthologs or homologs have been identified. It will be apparent to the skilled person that further orthologs or homologs can be identified and that any of the functionalities described herein may be engineered into other orthologs, including chimeric enzymes comprising fragments from multiple orthologs.


Computational methods of identifying novel CRISPR-Cas loci are described in EP3009511 or US2016208243 and may comprise the following steps: detecting all contigs encoding the Cast protein; identifying all predicted protein coding genes within 20 kB of the casl gene; comparing the identified genes with Cas protein-specific profiles and predicting CRISPR arrays; selecting unclassified candidate CRISPR-Cas loci containing proteins larger than 500 amino acids (>500 aa); analyzing selected candidates using methods such as PSI-BLAST and HHPred to screen for known protein domains, thereby identifying novel Class 2 CRISPR-Cas loci (see also Schmakov et al. 2015, Mol Cell. 60(3):385-97). In addition to the above-mentioned steps, additional analysis of the candidates may be conducted by searching metagenomics databases for additional homologs. Additionally or alternatively, to expand the search to non-autonomous CRISPR-Cas systems, the same procedure can be performed with the CRISPR array used as the seed.


In one aspect the detecting all contigs encoding the Cas1 protein is performed by GenemarkS, a gene prediction program as further described in “GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions.” John Besemer, Alexandre Lomsadze and Mark Borodovsky, Nucleic Acids Research (2001) 29, pp 2607-2618, herein incorporated by reference.


In one aspect the identifying all predicted protein coding genes is carried out by comparing the identified genes with Cas protein-specific profiles and annotating them according to NCBI Conserved Domain Database (CDD) which is a protein annotation resource that consists of a collection of well-annotated multiple sequence alignment models for ancient domains and full-length proteins. These are available as position-specific score matrices (PSSMs) for fast identification of conserved domains in protein sequences via RPS-BLAST. CDD content includes NCBI-curated domains, which use 3D-structure information to explicitly define domain boundaries and provide insights into sequence/structure/function relationships, as well as domain models imported from a number of external source databases (Pfam, SMART, COG, PRK, TIGRFAM). In a further aspect, CRISPR arrays were predicted using a PILER-CR program which is a public domain software for finding CRISPR repeats as described in “PILER-CR: fast and accurate identification of CRISPR repeats,” Edgar, R. C., BMC Bioinformatics, January 20; 8:18 (2007), herein incorporated by reference.


In a further aspect, the case by case analysis is performed using PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool). PSI-BLAST derives a position-specific scoring matrix (PSSM) or profile from the multiple sequence alignment of sequences detected above a given score threshold using protein-protein BLAST. This PSSM is used to further search the database for new matches, and is updated for subsequent iterations with these newly detected sequences. Thus, PSI-BLAST provides a means of detecting distant relationships between proteins.


In another aspect, the case by case analysis is performed using HHpred, a method for sequence database searching and structure prediction that is as easy to use as BLAST or PSI-BLAST and that is at the same time much more sensitive in finding remote homologs. In fact, HHpred's sensitivity is competitive with the most powerful servers for structure prediction currently available. HHpred is the first server that is based on the pairwise comparison of profile hidden Markov models (HMMs). Whereas most conventional sequence search methods search sequence databases such as UniProt or the NR, HHpred searches alignment databases, like Pfam or SMART. This greatly simplifies the list of hits to a number of sequence families instead of a clutter of single sequences. All major publicly available profile and alignment databases are available through HHpred. HHpred accepts a single query sequence or a multiple alignment as input. Within only a few minutes it returns the search results in an easy-to-read format similar to that of PSI-BLAST. Search options include local or global alignment and scoring secondary structure similarity. HHpred can produce pairwise query-template sequence alignments, merged query-template multiple alignments (e.g. for transitive searches), as well as 3D structural models calculated by the MODELLER software from HHpred alignments.


Deactivated/Inactivated Cas7-11 Proteins


Where the Cas7-11 protein has nuclease activity, the Cas7-11 protein may be modified to have diminished nuclease activity e.g., nuclease inactivation of at least 70%, at least 80%, at least 90%, at least 95%, at least 97%, or 100% as compared with the wild type enzyme; or to put in another way, a Cas7-11 enzyme having advantageously about 0% of the nuclease activity of the non-mutated or wild type Cas7-11 enzyme or CRISPR-Cas protein, or no more than about 3% or about 5% or about 10% of the nuclease activity of the non-mutated or wild type Cas7-11 enzyme.


Modified Cas7-11 Enzymes


In particular embodiments, it is of interest to make use of an engineered Cas7-11 protein as defined herein, such as Cas7-11, wherein the protein complexes with a nucleic acid molecule comprising RNA to form a CRISPR complex, wherein when in the CRISPR complex, the nucleic acid molecule targets one or more target polynucleotide loci, the protein comprises at least one modification compared to unmodified Cas7-11 protein, and wherein the CRISPR complex comprising the modified protein has altered activity as compared to the complex comprising the unmodified Cas7-11 protein. It is to be understood that when referring herein to CRISPR “protein,” the Cas7-11 protein is an unmodified or modified CRISPR-Cas protein (e.g. having increased or decreased or the same (or no) enzymatic activity, such as without limitation including Cas7-11. The term “CRISPR protein” may be used interchangeably with “CRISPR-Cas protein”, irrespective of whether the CRISPR protein has altered, such as increased or decreased (or no) enzymatic activity, compared to the wild type CRISPR protein.


Computational analysis of the primary structure of Cas7-11 nucleases reveals 5 distinct domain regions.


Based on the above information, mutants can be generated which lead to inactivation of the enzyme or which modify the double strand nuclease to nickase activity. In alternative embodiments, this information is used to develop enzymes with reduced off-target effects.


In certain of the above-described Cas7-11 enzymes, the enzyme is modified by mutation of one or more residues (in the Cas7-like domains as well as the small subunit) including but not limited to positions listed in table 1.


Orthologs of Cas7-11


The terms “orthologue” (also referred to as “ortholog” herein) and “homologue” (also referred to as “homolog” herein) are well known in the art. By means of further guidance, a “homologue” of a protein as used herein is a protein of the same species which performs the same or a similar function as the protein it is a homologue of. Homologous proteins may but need not be structurally related, or are only partially structurally related. An “orthologue” of a protein as used herein is a protein of a different species which performs the same or a similar function as the protein it is an orthologue of Orthologous proteins may but need not be structurally related, or are only partially structurally related. Homologs and orthologs may be identified by homology modelling (see, e.g., Greer, Science vol. 228 (1985) 1055, and Blundell et al. Eur J Biochem vol 172 (1988), 513) or “structural BLAST” (Dey F, Cliff Zhang Q, Petrey D, Honig B. Toward a “structural BLAST”: using structural relationships to infer function. Protein Sci. 2013 April; 22(4):359-66. doi: 10.1002/pro.2225.). See also Shmakov et al. (2015) for application in the field of CRISPR-Cas loci. Homologous proteins may but need not be structurally related, or are only partially structurally related.


The present invention encompasses the use of a Cas7-11 effector protein, derived from a Cas7-11 locus denoted as subtype III-E. Herein such effector proteins are also referred to as “Cas7-11p”, e.g., a Cas7-11 protein (and such effector protein or Cas7-11 protein or protein derived from a Cas7-11 locus is also called “CRISPR-Cas protein”).


In particular embodiments, the effector protein is a Cas7-11 effector protein from an organism from a genus comprising Candidatus Jettenia caeni, Candidatus Scalindua brodae, Desulfobacteraceae, Candidatus Magnetomorum, Desulfonema ishimotonii, Candidatus Brocadia, Deltaproteobacteria, Syntrophorhabdaceae, or Nitrospirae.


Example Cas Proteins


In certain example embodiments, the CRISPR effector protein is a Cas7-11 type III-D/III-E ortholog selected from Table 1 and FIG. 27A-27C.










TABLE 1





SEQ ID NO &



Protein



ID/Contig
Sequence







SEQ ID NO: 1
MHTILPIHLTFLEPYRLAEWHAKADRKKNKRYLRGMSFAQWHKDKDGIGKPYITGTL


WP_007220849
LRSAVLNAAEELISLNQGMWAKEPCCNGKFETEKDKPAVLRKRPTIQWKTGRPAICD



PEKQEKKDACPLCMLLGRFDKAGKRHRDNKYDKHDYDIHFDNLNLITDKKFSHPDDI



ASERILNRVDYTTGKAHDYFKVWEVDDDQWWQFTGTITMHDDCSKAKGLLLASLCF



VDKLCGALCRIEVTGNNSQDENKEYAHPDTGIITSLNLKYQNNSTIHQDAVPLSGSAH



DNDEPPVHDNDSSLDNDTITLLSMKAKEIVGAFRESGKIEKARTLADVIRAMRLQKPD



IWEKLPKGINDKHHLWDREVNGKKLRNILEELWRLMNKRNAWRTFCEVLGNELYRC



YKEKTGGIVLRFRTLGETEYYPEPEKTEPCLISDNSIPITPLGGVKEWIIIGRLKAETPFY



FGVQSSFDSTQDDLDLVPDIVNTDEKLEANEQTSFRILMDKKGRYRIPRSLIRGVLRRD



LRTAFGGSGCIVELGRMIPCDCKVCAIMRKITVMDSRSENIELPDIRYRIRLNPYTATV



DEGALFDMEIGPEGITFPFVFRYRGEDALPRELWSVIRYWMDGMAWLGGSGSTGKG



RFALIDIKVFEWDLCNEEGLKAYICSRGLRGIEKEVLLENKTIAEITNLFKTEEVKFFES



YSKHIKQLCHECIINQISFLWGLRSYYEYLGPLWTEVKYEIKIASPLLSSDTISALLNKD



NIDCIAYEKRKWENGGIKFVPTIKGETIRGIVRMAVGKRSGDLGMDDHEDCSCTLCTI



FGNEHEAGKLRFEDLEVVEEKLPSEQNSDSNKIPFGPVQDGDGNREKECVTAVKSYK



KKLIDHVAIDRFHGGAEDKMKFNTLPLAGSFEKPIILKGRFWIKKDIVKDYKKKIEDA



MVDIRDGLYPIGGKTGIGYGWVTDLTILNPQSGFQIPVKKDISPEPGTYSTYPSHSTPSL



NKGHIYYPHYFLAPANTVHREQEMIGHEQFHKEQKGELLVSGKIVCTLKTVTPLIIPDT



ENEDAFGLQNTYSGHKNYQFFHINDEIMVPGSEIRGMISSVYEAITNSCFRVYDETKYI



TRRLSPEKKDESNDKNKSQDDASQKIRKGLVKKTDEGFSIIEVERYSMKTKGGTKLV



DKVYRLPLYDSEAVIASIQFEQYGEKNEKRNAKIRAAIKRNEVIAEVARKNLIFLRSLT



PEELKKVLQGEILVKFSLKSGKNPNDYLAELHENGTERGLIKFTGLNMVNIKNVNEED



KDFNDTWDWEKLNIFHNAHEKRNSLKQGYPRPVLKFIKDRVEYTIPKRCERIFCIPVK



NTIEYKVSSKVCKQYKDVLSDYEKNFGHINKIFTTKIQKRELTDGDLVYFIPNEGADK



TVQAIMPVPLSRITDSRTLGERLPHKNLLPCVHEVNEGLLSGILDSLDKKLLSIHPEGLC



PTCRLFGTTYYKGRVRFGFANLMNKPKWLTERENGCGGYVTLPLLERPRLTWSVPSD



KCDVPGRKFYIHHNGWQEVLRNNDITPKTENNRTVEPLAADNRFTFDVYFENLREWE



LGLLCYCLELEPGMGHKLGMGKPMGFGSVKIAIERLQTFTVHQDGINWKPSENEIGV



YVQKGREKLVEWFTPSAPHKNMEWNGVKHIKDLRSLLSIPGDKPTVKYPTLNKDAE



GAISDYTYERLSDTKLLPHDKRVEYLRTPWSPWNAFVKEAEYSPSEKSDEKGRETIRT



KPKSLPSVKSIGKVKWFDEGKGFGILIMDDGKEVSISKNSIRGNILLKKGQKVTFHIVQ



GLIPKAEDIEIAK





SEQ ID NO: 2
MNITVELTFFEPYRLVEWFDWDARKKSHSAMRGQAFAQWTWKGKGRTAGKSFITGT


KHE91659
LVRSAVIKAVEELLSLNNGKWEGVPCCNGSFQTDESKGKKPSFLRKRHTLQWQANN



KNICDKEEACPFCILLGRFDNAGKVHERNKDYDIHFSNFDLDHKQEKNDLRLVDIASG



RILNRVDFDTGKAKDYFRTWEADYETYGTYTGRITLRNEHAKKLLLASLGFVDKLCG



ALCRIEVIKKSESPLPSDTKEQSYTKDDTVEVLSEDHNDELRKQAEVIVEAFKQNDKL



EKIRILADAIRTLRLHGEGVIEKDELPDGKEERDKGHHLWDIKVQGTALRTKLKELWQ



SNKDIGWRKFTEMLGSNLYLIYKKETGGVSTRFRILGDTEYYSKAHDSEGSDLFIPVTP



PEGIETKEWIIVGRLKAATPFYFGVQQPSDSIPGKEKKSEDSLVINEHTSFNILLDKENR



YRIPRSALRGALRRDLRTAFGSGCNVSLGGQILCNCKVCIEMRRITLKDSVSDFSEPPEI



RYRIAKNPGTATVEDGSLFDIEVGPEGLTFPFVLRYRGHKFPEQLSSVIRYWEENDGK



NGMAWLGGLDSTGKGRFALKDIKIFEWDLNQKINEYIKERGMRGKEKELLEMGESSL



PDGLIPYKFFEERECLFPYKENLKPQWSEVQYTIEVGSPLLTADTISALTEPGNRDAIAY



KKRVYNDGNNAIEPEPRFAVKSETHRGIFRTAVGRRTGDLGKEDHEDCTCDMCIIFGN



EHESSKIRFEDLELINGNEFEKLEKHIDHVAIDRFTGGALDKAKFDTYPLAGSPKKPLK



LKGRFWIKKGFSGDHKLLITTALSDIRDGLYPLGSKGGVGYGWVAGISIDDNVPDDFK



EMINKTEMPLPEEVEESNNGPINNDYVHPGHQSPKQDHKNKNIYYPHYFLDSGSKVY



REKDIITHEEFTEELLSGKINCKLETLTPLIIPDTSDENGLKLQGNKPGHKNYKFFNING



ELMIPGSELRGMLRTHFEALTKSCFAIFGEDSTLSWRMNADEKDYKIDSNSIRKMESQ



RNPKYRIPDELQKELRNSGNGLFNRLYTSERRFWSDVSNKFENSIDYKREILRCAGRP



KNYKGGIIRQRKDSLMAEELKVHRLPLYDNFDIPDSAYKANDHCRKSATCSTSRGCR



ERFTCGIKVRDKNRVFLNAANNNRQYLNNIKKSNHDLYLQYLKGEKKIRFNSKVITG



SERSPIDVIAELNERGRQTGFIKLSGLNNSNKSQGNTGTTFNSGWDRFELNILLDDLET



RPSKSDYPRPRLLFTKDQYEYNITKRCERVFEIDKGNKTGYPVDDQIKKNYEDILDSY



DGIKDQEVAERFDTFTRGSKLKVGDLVYFHIDGDNKIDSLIPVRISRKCASKTLGGKLD



KALHPCTGLSDGLCPGCHLFGTTDYKGRVKFGFAKYENGPEWLITRGNNPERSLTLG



VLESPRPAFSIPDDESEIPGRKFYLHHNGWRIIRQKQLEIRETVQPERNVTTEVMDKGN



VFSFDVRFENLREWELGLLLQSLDPGKNIAHKLGKGKPYGFGSVKIKIDSLHTFKINSN



NDKIKRVPQSDIREYINKGYQKLIEWSGNNSIQKGNVLPQWHVIPHIDKLYKLLWVPF



LNDSKLEPDVRYPVLNEESKGYIEGSDYTYKKLGDKDNLPYKTRVKGLTTPWSPWNP



FQVIAEHEEQEVNVTGSRPSVTDKIERDGKMV





SEQ ID NO: 3
MKITLRFLEPFRMLDWIRPEERISGNKAFQRGLTFARWHKSKADDKGKPFITGTLLRS


OQY58162
AVIRAAEHLLVLSKGKVGEKACCPGKFLTETDTETNKAPTMFLRKRPTLKWTDRKGC



DPDFPCPLCELLGPGAVGKKEGEAGINSYVNFGNLSFPGDTGYSNAREIAVRRVVNRV



DYASGKAHDFFRIFEVDHIAFPCFHGEIAFGENVSSQARNLLQDSLRFTDRLCGALCVI



RYDGDIPKCGKTAPLPETESIQNAAEETARAIVRVFHGGRKDPEQAQIDKAEQIQLLSA



AVRELGRDKKKVSALPLNHEGKEDHYLWDKKAGGETIRTILKAAAEKEAVANQWR



QFCIELSEELYKEAKKAHGGLEPARRIMGDAEFSDKSVPDTVSHSIGISVEKETIIMGTL



KAETPFFFGIESKEKKQTDLMLLLDGQNHYRIPRSALRGILRRDIRSVLGTGCNAEVGG



RPCLCPVCRIMKNITVMDTRSSTDTLPEVRPRIRLNPFTGSVQEKALFNMEMGTEGIEF



PFVLSYRGKKTLPKELRNVLNWWTEGKAFLGGAASTGKSIFQLSDIHAFSSDLSDETA



RESYLSNHGWRGIMENSIVHESPLEGGAGGCSFGLSDLPKLGWHAEDLKLSDIEKYKP



FHRQKISVKITLNSPFLNGDPVRALTEDVADIVSFKKYTQGGEKIIYAYKSESFRGVVR



TALGLRNQGNDDITGKKNVPLIALTHQDCECMLCRFFGSEYEAGRLYFEDLTFESEPE



PRRFDHVAIDRFTGGAVNQKKFDDRSLVPGKEGFMTLIGCFWMRKDKELSRNEIEEL



GKAFADIRDGLYPLGAKGSMGYGQVAELSIVDDEDSDDENNPAKLLAESMKNASPSL



GTPTSLKKKDAGLSLRFDENADYYPYYFLEPEKSVHRDPVPPGHEEAFRGGLLTGRIT



CRLTVRTPLIVPNTETDDAFNMKEKAGKKKDAYHKSYRFFTLNRVPMIPGSEIRGMIS



SVFEALSNSCFRIFDEKYRLSWRMDADVKELEQFKPGRVADDGKRIEEMKEIRYPFYD



RTYPERNAQNGYFRWDARISLTDNSMRKMEKDGVPRNVIYKLNTLKNKAYKSEKSF



LFDLKNKAGGVGRYKKLVLKHAEVRGGEIPYYSHPTPTDCKLLSLVGPNRQLCRQDT



LVQYRIIKHRRGAKPEEDFMFVGTPSENQKGHKENNDHGGGYLKISGPNKIEKENVLT



SGVPSVPENMGAVVHNCPPRLVEVTVRCGRKQEEECKRKRLVPEYVCADPEKKVTY



TMTKRCERIFLEKSRRIIPFTNDAVDKFEILVKEYRRNAEQQDTPEAFQTILPENGTVNP



GDLLYFREEKGKAAEIVPVRISRKVDDRHIGKRIDPELRPCHGEWIEDGDLSKLDAYP



AEKKLLTRHPKGLCPACRVFGTGSYKSRVRFGFAALKGTPKWLKEDPAEPSQGKGIT



LPLLERPRPTWAVLHNDKENSEIPGRKFYVHHNGWKGISEGIHPISGENIEPDENNRTV



EVLDKGNRFVFELSFENLEPRELGLLIHSLQLEKGLAHKLGMAKSMGFGSVEIDVESV



RVKHRSGEWDYKDGETVDGWIEEGKRGVAAKGKANDLRKLLYLPGEKQNPHVHYP



TLKKEKKGDPPGYEDLKKSFREKKLNRRKMLTTLWEPWHK





SEQ ID NO: 4
MLKLKVKITYFQPFRVIPWIKEDDRNSDRNYLRGGTFARWHKDKKDDIHGKPYITGT


KPA14974
LLRSALFTEIEKIKIHHSDFIHCCNAIDRTEGKHQPSFLRKRPVYTENKNIQACNKCPLC



LIMGRGDDRGEDLKKKKHYNGKHYQNWTVHFSNFDTQATFYWKDIVQKRILNRVD



QTCGKAKDFFKVCEVDHIACPTLNGIIRINDEKLSQEEISKIKQLIAVGLAQIESLAGGIC



RIDITNQNHDDLIKSFFETKPSKILQPNLKESGEERFELAKLELLAEYLTQSFDANQKEQ



QLRRLADAIRDLRKYSPDYLKDLPKGKKGGRTSIWNKKVADDFTLRDCLKNQKIPNE



LWRQFCEGLGREVYKISKNISNRSDAKPRLLGETEYAGLPLRKEDEKEYSPTYQNQES



LPKTKWIISGELQAITPFYIGHVNKTSHTRSTIFLNMNGQFCIPRSTLRGALRRDLRLVF



GDSCNTPVGSRVCYCQVCQIMRCIKFEDALSDVDSPPEVRHRIRLNCHTGVVEEGALF



DMETGFQGMIFPFRLYYESKNEIMSQHLYEVLNNWTNGQAFFGGEAGTGFGRFKLLN



NEVFLWEIDGEEEDYLQYLFSRGYKGIETDEIKKVADPIKWKTLFTKLEIPPEKIPLTQL



NYTLTIDSPLISRDPIAAMLDNRNPDAVMVKKTILVYEQDSSTHKNVPKEVPKYFIKSE



TIRGLLRSIISRTEIKLEDGKKERIFNLDHEDCDCLQCRLFGNVHQQGILRFEDAEITNK



NVSDCCIDHVAIDRFTGGGVEKMKFNDYPLSASPKNCLNLKGSIWITSALKDSEKEAL



SKALSELKYGYASLGGLSAIGYGRVKELTLEENDIIQLTEITESNLNSQSRLSLKPDVK



KELSNNHFYYPHYFIKPAPKEVVRESRLISHVQGHDTEGEFLLTGKIKCRLQTLGPLFI



ANNDKGDDYFELQHNNPGHLNYAFFRINDHIAIPGASIRGMISSVFETLTHSCFRVMD



DKKYLTRRVIPESETTQKRKSGRYQVEESDPDLFPGRVQKKGNKYKIEKMDEIVRLPI



YDNFSLVERIREYHYSEECASYVPSVKKAIDYNRMLAQAADSNREFLYNHPEAKSILQ



GKKEVYYILHKQESKNRGKTKEINPNARYACLTDENTPGSRKGFIKFTGPDMVTVNK



ELKSKIAPIYDPEWEKDIPDWERSNQESNHKYSFILHNEIEMRSSQKKKYPRPVFICKK



NGVEYRMQKRCERIFDFTKEEEKDKEIVIPQKVVSQYNAILKDNKENTETIPGLENSK



MVNKELEDGDLVYFKYKEGKVTELTPVAISRKTDNKPMGKRFPKISINGKMKPNDSL



RSCSHTCTEDCDDCPNLCESVKDYFKPHPDGLCPACHLFGTTFYKSRLSFGLAWLEN



NAKWYISNDFQQKDSKKEKGGKLTLPLLERPRPTWSMPNNNAEVPGRKFYVHHPWS



VENIKNNQGNQKDISLKPDSDAIKIKENNRTIEPLGKDNVFNFEISFNNLRDWELGLLL



YAIELEDHLAHKLGMAKAFGMGSVKIEIKNLLIKGSINDISKAELIKKGFKKLGIDSLE



KDDLSEYLHIKQLREILWFSDKPVGTIEYPKLENKTNSRIPSYTDFVQEKDHETGFKNP



KYQNLKSRLHILQNPWNAWWKNEE





SEQ ID NO: 5
MTTTMKISIEFLEPFRMTKWQESTRRNKNNKEFVRGQAFARWHRNKKDNTKGRPYIT


WP_124327589
GTLLRSAVIRSAENLLTLSDGKISEKTCCPGKFDTEDKDRLLQLRQRSTLRWTDKNPC



PDNAETYCPFCELLGRSGNDGKKAEKKDWRFRIHFGNLSLPGKPDFDGPKAIGSQRV



LNRVDFKSGKAHDFFKAYEVDHTRFPRFEGEITIDNKVSAEARKLLCDSLKFTDRLCG



ALCVIRFDEYTPAADSGKQTENVQAEPNANLAEKTAEQIISILDDNKKTEYTRLLADAI



RSLRRSSKLVAGLPKDHDGKDDHYLWDIGKKKKDENSVTIRQILTTSADTKELKNAG



KWREFCEKLGEALYLKSKDMSGGLKITRRILGDAEFHGKPDRLEKSRSVSIGSVLKET



VVCGELVAKTPFFFGAIDEDAKQTDLQVLLTPDNKYRLPRSAVRGILRRDLQTYFDSP



CNAELGGRPCMCKTCRIMRGITVMDARSEYNAPPEIRHRTRINPFTGTVAEGALFNME



VAPEGIVFPFQLRYRGSEDGLPDALKTVLKWWAEGQAFMSGAASTGKGRFRMENAK



YETLDLSDENQRNDYLKNWGWRDEKGLEELKKRLNSGLPEPGNYRDPKWHEINVSI



EMASPFINGDPIRAAVDKRGTDVVTFVKYKAEGEEAKPVCAYKAESFRGVIRSAVARI



HMEDGVPLTELTHSDCECLLCQIFGSEYEAGKIRFEDLVFESDPEPVTFDHVAIDRFTG



GAADKKKFDDSPLPGSPARPLMLKGSFWIRRDVLEDEEYCKALGKALADVNNGLYP



LGGKSAIGYGQVKSLGIKGDDKRISRLMNPAFDETDVAVPEKPKTDAEVRIEAEKVY



YPHYFVEPHKKVEREEKPCGHQKFHEGRLTGKIRCKLITKTPLIVPDTSNDDFFRPADK



EARKEKDEYHKSYAFFRLHKQIMIPGSELRGMVSSVYETVTNSCFRIFDETKRLSWRM



DADHQNVLQDFLPGRVTADGKHIQKFSETARVPFYDKTQKHFDILDEQEIAGEKPVR



MWVKRFIKRLSLVDPAKHPQKKQDNKWKRRKEGIATFIEQKNGSYYFNVVTNNGCT



SFHLWHKPDNFDQEKLEGIQNGEKLDCWVRDSRYQKAFQEIPENDPDGWECKEGYL



HVVGPSKVEFSDKKGDVINNFQGTLPSVPNDWKTIRTNDFKNRKRKNEPVFCCEDDK



GNYYTMAKYCETFFFDLKENEEYEIPEKARIKYKELLRVYNNNPQAVPESVFQSRVA



RENVEKLKSGDLVYFKHNEKYVEDIVPVRISRTVDDRMIGKRMSADLRPCHGDWVE



DGDLSALNAYPEKRLLLRHPKGLCPACRLFGTGSYKGRVRFGFASLENDPEWLIPGK



NPGDPFHGGPVMLSLLERPRPTWSIPGSDNKFKVPGRKFYVHHHAWKTIKDGNHPTT



GKAIEQSPNNRTVEALAGGNSFSFEIAFENLKEWELGLLIHSLQLEKGLAHKLGMAKS



MGFGSVEIDVESVRLRKDWKQWRNGNSEIPNWLGKGFAKLKEWFRDELDFIENLKK



LLWFPEGDQAPRVCYPMLRKKDDPNGNSGYEELKDGEFKKEDRQKKLTTPWTPWA





SEQ ID NO: 6
MSKTDDKIDIKLTFLEPYRMVNWLENGLRMTDPRYLRGLSFARWHRNKNGKAGRPY


KKO18793
ITGTLLRSAVIRAAEELLSLNLGKWGKQLCCPGQFETEREMRKNKTFLRRRPTPAWSA



ETKKEICTTHGSACAFCLLLGRRLHGGKEDVNEDAPGSCRKPVGFGNLSLPFQPTKRQ



IQDVCKERVLNRVDFRTGKAQDYFRVFEIDHEDWGVYTGEITITEPRVQEMLEASLKF



VDTLCGALCRIEIVGSADETKRTTSSKEGCPASTTTRDCSSSENDDTSPEDPVREDLKK



IAHVIANAFQNSGNREKVHALADAIRAMRLEESSIINTLPKGKSEKTTEQIEVNKHYL



WDEIPVNDTSVRHILIEQWRRWQSKKDDPEWWKFCDFLGECLYKEYKKLTSGIQSRA



RVMGETEYYGALGMPDKVIPLLKSDKTKEWILVGSLKAETPFFFGLETEQTEEVEHTS



LRLVMDKKGRFRIPRSVLRGALRRDMRIAFDSGCDVKLGSPLPCDCSVCQVMRSITIK



DSRSEAGKLPQIRHRIRLNPFSGTVDEGALFDIEVAPEGVIFPFVMRYRGEEFPPALLSV



IRYWQDGKAWLGGEGATGKGRFALAKDLKMYEWKLEDKSLHAYIDTYGHRGNEH



AIGTGQGIDGFRSGSLSDLLSDISKESFRDPLASYHNYLDKRWIKVGYQITIGAPLLSAD



PIGALLDPNNVDAIVFEKMKLDGDQVKYLPAIKGETIRGIVRTALGKRNNLLAKNDH



DDCTCSLCAIFGNENETGKIRFEDLEVYDKDIAKKIDHVAIDRFTGGARDQMKFDTLP



LIGSPERPLRLKGLFWMRRDVSPDEKARILLAFLEIREGLYPIGGKTGSGYGWVSDLEF



DGDAPEAFKEMNSKRGKQASFKEKISFRYPSGAPKHIQNLKATSFYYPHYFLEPGSKV



IREQKMIGHEQYYESYPSGASGEKLLSGRIICSMTTHTPLIVPDTGVIKDPENKHATYD



FFQMNNAIMIPGSEIRGMISAVYEAMTNSCFRIFHEKQYLTRRISPEDKELREFIPGIVRI



INGDVYIEKAEREYRLPLYDDVHIITNYEELEYEKYIKKNPGREQKIKNAHRFNKNIAR



IAESNRNYLCSLDRAVRREILSGRKKVNFRLVKVNDNKNPDKEAVELCKTGPLEGLV



KFSGLNAVNISNLRPGTAEEGFDAKWDMWSLNIILNRMDVRNSQKKEYPRPALHFNH



DGKEYTIPKRCERVFVRAEAGKRAETEGSYKVPRKVQEQYQNILRDYESNIGHIDNTF



RTLIENCGLNNGSLVYFKPDNSRKEVVAITPVKISRKTDRLPQGDRFPHTSSDLRPCVR



DCLDTEGDIRMLENSPFKRLFHIHPEGLCPACQLFGTTNYRGRVRFGFASLSDGPKWF



RKDEGNETCHITLPLLERPRPTWSMPDDTSTIPGRKFYVHHMGYETVKKNQRTLVKT



ENNRTVKALDKENEFTFEVFFENLREWELGLLLHCLELEPEMGHKLGMGKPLGFGSV



KIRIDKLQKCVVNVKDGCVLWEPEEDKIQHYIAKGLGKLTTWFGKEWDRLEHIQGLR



SLQRLLPL





SEQ ID NO: 7
FESYARWCKSNSGLWKPYIPGTLLRSAVLESVEYLLALIGSKNKVEICPGLYTQSENN


RLC14096B
PDTKYLRRRPWYELHAQKEICKTRDTACPLCLLMRTKLDNDGDGETEKNVKFGNLY



PTSPLEPLQKIRPRILNRMDPGTSKARDYFRVFEIENQLCSQFRGWIWLSGDLPNMELV



KSLLAAGLSNVATLAGAVCRIRIVSTDNPSMKQDLTTQDLIDDFTNYYLKGDTPPANL



AASGKGDAFPRFSPGSGDHPDTTGVSHADMASSHEGTALAKDIAEKCKDILSQISASE



QLRRLADIMRDLRQDSNREIMYRQVAEENHEKASLLYKKTKKGDSIAALIAGKTEGM



DAETWRRLCEFLGQTFYGEAKEAGLVETPVPRILGESERYSLQKKPTVRTDLAAELVP



DIEFIIKGNLIAETPFFFGTDIATETHTDLPILLTSDRHFRIPRSVLRGILRRDLRLVTGSG



CSVKLGRSEPCACDVCQIMRSLTMRDCVSSCKVPPEIRHRIRLNPVTETVEEGALFDM



EIGPQGISFPFVLRSRGVNSSFSTRLKNVLTWWSEGKIFMGGDKGTGKGRFTLAELEA



YYFRITTKRIGKNVWVIGNYLKSQGWRGAELETHFDSLKEWKSLSFSDSDVKVFTW



HKITWKVSFEGPVLTNDPIAADIRNESDAVFYQKSVAGEKGPVYALKGEGLRGIVSSS



LCKKKNLSSNLHEDCECLRCKIFGSKHQEGNIRFEDMTVSQESEVREKLFDHVSIDRFT



GGAANKLKFDDKPLVGNPLVFQGVFWVHQSIGNNEKTQEALSDAFKDVRDGLYPVG



AKGSIGYGWIKGIEVVEGPDWLKDALSAEKTVEAGIASEESEYKLPDLPWISLLPKGR



AIYNPHYFLGIPKVTPEREREPVGHDRFQTDLHTGRIICTLKTITPLIIPDTENDKAFEVE



NASADHERFKFMRMGSQAAIPGSAIRSMTSSVFEALTNSCFRVLDQKSHLSWRMEAD



DAGDYKPGRFEKKDDKAVIRKFKKKARFPFYAGPDTREAFTSDQIMGKEKVTLWVK



DFEASLTVPDEIGWKKKRGYLKVTGPNKVEIDTENISENNPSPPDSWQDVRINDDGTIP



DKKNRKFICQYGTTTYTVDKWCEAFFCDEEKDPYELAPDVERKYRLLMDSYHNNPQ



APPQIFRSLPLFSETGPKKTLEHGDLVYFRLSEVNKQSQSKKQVRERVTDIVPVSISRIA



NNQPIGKHIAAAFRPCAYVCIEECEPCDAKTCPIPVYREGYPIKGLCRACHLFGTTGYK



GRVRFSFAKLNGDAVWAKGAGGKDYFTLPLLEKPRPTWTMPNEGAKIPGRKFYVHH



NEWKTVQEGKNPIDQKAIRPNPNNSSVEVLNLGNEFQFEVSFENLEEWELGLLLYCLE



LEPGLAHKLGRGKAFGFGSIEAEVSKIEMRIKSGTWKNETSGKEKFIQSGLSQVPSFFK



QDEKQWNKVEQVKNIRKLLQLSWNKGNAVEPEVRYPALREKDDENKRPGYVELKD



NGYDAGKKLVSPWAPWHPIKK





SEQ ID NO: 8
MTKKPGTEDKATLWGKESASKSVKTILEESIQGFTVEQKRSFFANLADQLVSRAGEQ


OGR07205
GAKSVRSQGLIIGRKENYAKPSAQEPTRHHLYRQPSNASAFLATGWLIAETPFFIGSGT



EGQKQTDDQAESLHLRTLRDGHGRFRIPFTTIRGVMDKELRDILQAGCAKGRSLRAPC



PCQVCTLMRRIQVRDAIAADILPPDLRMRTRIDPSHGTVAHLFSLEMAPQGLKLPFFLK



LKGVETIDPDKELLEILNDWSAGQCFLGGLWGTGKGRFRLDDLQWHRLELDNADYY



TPLLQDRFFAGETISDLRQGLQSINIQPERIPAQTPSRNMPYCRVDCILEFKSPVLSGDP



VAALFESDAPDNVAYKKPVVQYDETGRLRTTDPGPVEMLTCLKGEGVRGVVAYLAG



KAYDQHDLSHDSCNCTFCQAFGNGQKAGSLRFDDFMPVQFESDQAGNFSWSPHTPH



AMRSDRVALDVFGGAMPEAKFDDRPLAASPGKPLNFKSTIWYREDMGKEAGKALKR



ALIDLQNNMAAIGSGGGIGRGWVSRVCFEGDIPDFLEDFPEPITVTEPEQDSQLLKNQA



VADETAVSACDTADAPHPLAVTLEPGARYFPRVIIPRAPTVKRDECVTGQRYHTGRLS



GKIFCELNTLGPLFVPDTDYSAGVPVPISDEQLAECQLQAVFENTSKFNEFFATYPEET



VTKLKDLLCAADDKWILAVKDITADLRQEIGEDTFQRIIRKAGHKTQRFHQINDEIGLP



GASLRGMVLSNYQILTNSCYRNLKATEEITRRMPADEAKYRKAGRVTVSGDGAQKK



YSIQEMEVLRLPIYDNMNTPDNMPDVAKQATTAKRCNNLMNEAAKTSRVELKARW



REGQSKIKYQIIDALNKVDPIIQVISSSKQINPNNGKTGWGYVKYTGANVFAKSLVAPI



DCLRKKDAGHVCCQVNLNPAWEASNFDILINEKCPVERQSGPRPTLRCKGQDSAWY



TLTKRSERIFTDKKPVPDPINIPPREVKRYNELRDSYKKNTAHVPKPLQTFFNQESLAN



GDLVYFEVNQFGEASQLTPVSISRTTDLFPIGGRLPQGHKDLFPCTAMCLSECKNCVP



ASFCEFHSRSHEKLCPACSLAGTTGNRGRIKFSEAWLSGLPKWHSVSQDNVGRGLGV



TMPRLERSRRTWHLPTKDAYLLGQSIYLNHPVPAILPSDQVPSENNQTVEPLGPKNIFS



FQLAFDNLSIEELGLLLYSLELESGMAHRLGRGRALGMGSVQISVKDIQIRDNKSFLFS



SNISKKSEWIQCGKDEFAQEAWFGESWDNIDHIQRLRQALTIPVKGDVGCIRYPKLEA



EGGMPDYIKLRKRLTPLCDREEPVRYRINPVQLARMILPFVPWHGACPALLNEQVMIE



AKRLTELXXXDRANWPC





SEQ ID NO: 9
ASEDDDTPTLRKVLKDEINGQEDMWRKFCEALGNSLYDLSKKAKERKRTEALPRLLG


RLC14096
ETEIYGLPMRENKEDEPLPSSLTYKFKWLIAGELRAETPFFFGTEVQEGQTSATILLNR



DGYFRLPRSVIRGALRRDLRLVMGNDGCNMPIGGQMCECGVCRVMRHIVIEDGLSDC



KIPPEVRHRIRLNCHTGTVEEGALFDMETGYQGMTFPFRLYCETENSDLDSYLWEVL



NNWQNGQSLFGGDTGTGFGRFELTEPKVFLWNFSKKEKHEAYLLNRGFKGQMPVQD



VKTKSFKTKTWFQIHRELDISPKKLPWYSTDYRFNVTSPLISRDPIGAMLDPRNTDAIM



VRKTVFCPDPNAKNRPAPATVYMIKGESIRGILRSIVVRNEELYDTDHEDCDCILCRLF



GSIHQQGSLRFEDAEVQNSVSDKKMDHVAIDRFTGGGVDQMKFDDYPLPGCPAQPLI



LEGKFWVKDDIDDESKSALEKAFADFRDGLVSLGGLGAIGYGQIGDFELIGGSADWL



NLPKPEENRTDVPCGDRSAQGPEIKISLDADKIYHPHFFLKPSDKNVYRERELVSHAK



KKGPDGKSLFTGKITCRLSTEGPVFIPDTDLGEDYFEMQASHKKHKNYGFFRINGNVA



IPGSSIRGMISSVFEALTNSCFRVFDQERYLSRSEKPDPTELTKYYPGKVKRDGNKFFIL



KMKDFFRLPLYDFDFEGEAESLRPNYDEDRNEEENKGKNKNTQKVKNAVEFNIKMA



GFAKHNRDFLKKYKEQEIKDIFMGKKKVYFTAGKHKPNEAHDNDKIALLTKGSNKK



AEKGYFKFTGPGMVNVKAGVEGEECDFHIDESDPDVYWNMSSILPHNQIKWRPSQK



KEYPRPVLKCVKDGTEYVMLKRSEHVFAEASSEDSYPVPGKVRKQFNSISRDNVQNT



DHLSSMFQSRRLHDELSHGDLVYFRHDEKRKVTDIAYVRVSRTVDDRPMGKRFKNE



SLRPCNHVCVEGCDECPDRCKELEDYFSPHPEGLCPACHLFGTTDYKGRVSFGLGWH



ESNTPKWYMPEDNSQKGSHLTLPLLERPRPTWSMPNKKSEIPGRKFYVHHPWSVDKI



RNRQFDPAKEKQPDDVIKPNENNRTVEPLGKGNEFTFEVRFNNLREWELGLLLYSLEL



EDNMAHKLGMGKALGMGSARIKAEAIELRCESAGQNAELKDKAAFVRKGFEFLEID



KPGENDPMNFDHIRQLRELLWFLPENVSANVRYPMLEKEDDGTPGYTDFIKQEEPST



GKRNPSYLSSEKRRNILQTPWKHWYLIPPFQASAQSETVFEGTVKWFDDKKGFGFIKI



NDGGKDVFVHHSSIVGTGFKSLNEGDSVAFKMGVGPKGPCAEKVKKIGN





SEQ ID NO: 10
MRRQRLLGDAEYYGGTGREQPASIVISTDSDPDHKVYEWIITGQLKAETGFFFGTKAG


OPY65763
AGGHTDLSILLGKDGHYRVPRSVFRGALRRDLRVAFGAGCRVEVGRERPCECPVCKV



MRQITVMDTISSYREAPEIRQRIRLNPYTGTVDKGALFDMEVGPEGIEFPFVLRFRGSK



SFPSELAAVIGSWTKGTAWLGGAAATGKGRFSLLGLSIHKWNLSTAEGRKSYLAAYG



LRDAADKTVKRLSIDKGGKGDVGLPAGLERDALPSSVREPLWKKLVCTVDFSSPLLL



ADPIAALLGVEGDERIGFDNIAYEKRRYNGETNTTESIPAVKGETFRGIVRTALGKRHG



NLTRDHEDCRCRLCAVFGKEQEAGKIRFEDLMPVGAWTRKHLDHVAIDRFHGGAEE



NMKFDTYALAASPTNPLRMKGLIWVRSDLFETGHDGPTPPYVKDIIDALADVKRGLY



PVGGKTGSGYGWIKDVTIDGLPQGLSLPPAEERVDGVNEVPPYNYSAPPDLPSAAEGE



YFFPHVFIKPYDKVDRVSRLTGHDRFRQGRITGRITCTLKTLTPLIIPDSEGIQTDATGH



KMCKFFSVAGKPMIPGSEIRGMISSVYEALTNSCFRVFDEEKYLTRRVQPKKGAKSSE



LVPGIIVWGQNGGLAVQQVKNAYRVPLYDDPAVTSAIPTEAQKNKERWESVPSVNL



QGALDWNLTTANIARDNRTFLNSRPEEKDAILSGTKPISFELEGTNPNDMLVRLVPDG



VDGAHSGYLKFTGLNMVLKANKKTSRKLAPSEEDVRTLAILHNDFDSRRDWRRPPNS



QRYFPRSVLRFSLERSTYTIPKRCERVFEGTCGEPYSVPSDVERQYNSIIDDISKNYGRIS



ETYLTKTANRKLTVGDLVYFIADLDKNMATHILPVFISRISDEKPLGELLPFSGKLIPCE



GEPPTILKKMAPSLLTEAWRTLISTHLEGFCPACRLFGTTSYKGRIRFGFAEHTGTPKW



LREELDWARPFLTLPIQERPRPTWSVPDDKSEVPGRKFYLHHHGGNRIVESNLRNRPE



VNQTKNNSSVEPISAGNTFTFDVCFENLEAWELGLLLYCLELSPKLAHKLGRAKAFGF



GSVKIHVERIEERTTDGAYQDVTAVKKNGWITTGHDKLREWFHRDDWEDVDHIRNL



RTVLRFPDADQEHDVRYPELKANNGVSGYVELRDKMTASERQESLRTPWYRWFPQN



GTGGSGRHEQAATSQEQDTAKDESVLSATQRRQAVIDVSDPDERLSGTVESFDRQKG



DGYIGCGVRQFYVRLEDIRSRTALCEGQVVTFRARKEWEGHEAYDVEIDQ





SEQ ID NO: 11
MLEKALADFRDGVVSLGGLGAIGYGRIGDFEVAEESGTWLKIPEKKLPEDSVQCGER


RLC02083
YRFSSDPATRFEKEKIYYPHYFLKPSDEDVRRETRLVSHVYQEDTDGKTRLLTGTIRC



RLTTEGPIFIPDTDDPKEDYFQMEIEGHKSYGFFRINEQVAIPGSSIRGMVSSVFEALTN



SCFRVFDQKRYLSRSTKPDPRELEKYLPGKVKRIDNKWVLLELEDIFRLPLYDLKDVG



PKSLDSAYGLEKFKNEKRFRLKKIENAVAFNKKMAGYAKHTREFLKNNYTETELGKI



LRGEMKVWFTIGHKPNSAHDNDKIALLTKKTNKRAKSGFIKFTGPSMVNIKADASNS



DCEECRFDMKSEDKDGLIFHNAIECRPSQKKEYPRPVLKCVKEAVEYTMIKRCEQVFS



EGKKPPRSYSIPDKSRRQYNGILKDNRDNTEHIPSFFRNRMKNKELSDEDLVYFRYKG



KKVTNIAPVRVSR





SEQ ID NO: 12
QYNLPLNPDAFPKFRWIVTGHLRAETPFFFGRGEIKDRTIEEETEQTSKTILLNKDNFFR


RLC02082
LPRSVIRGALRRDLRLVIGNGCNTPVGGKFCECDVCRIMRHVVVEDTISSCRKPPEIRY



NIRLNGHTRTVEEGALFDTETGYQGMRFPFRLCFETRASEFDPDTSEPIPKFDPYLSEV



MKHWKAGQAVFGGDTGAGFGRFRLEGDIRFFSMDVAKKEEYDPYLLARGFKGMSS



QEILEKIGSGRTYDWNSVPKIALNIPPNKLPWKEICYTIEVISPLISRDPIRAMMDPRNT



DTIMIRKRVFVPDGKGGTLPEPESRYFIKSETLRGILRSLVGGNKTADGEYLCDLDHED



CDCVQCRLFGSIHQQGCLRFEDAEVWNSVRDKKMDHVAIDRFTGGALDQMKFDDYP



LLGCPEYPVILGGRFWIRDDISDKEKEIA





SEQ ID NO: 13
MESIPVTLTFLEPYRVVEWYANEDRRSAERYLRGQSFARWHRKKNDKKGRPYITGTL


OPY65764
LRSAAIRAAEELLSLSGGVWDGQHCCKGQFLSGGVKPEYMRKRPTYIWAEKEGACS



APDYCPFCIFLGDRDQAEKKAESQNGYPDKSYHIRFGNLSLPDPPPLLDLKEVAVERT



LNRVDFQTAKAHDYFKVWEISHEDLGVYTGQIVIHYTGPWQEKVKSLLEGSLRFVDR



LCGALCKIEMAPKPARPLPKSLSVDMTEHAKIIVTAFDDAKKAEKVRGLADAMRSMG



SKGPTILDKLPAGHDDRDHHTWDVTIVDKTPLRTYLKGVLRADDAASWPALCKALG



NALYDVSQG





SEQ ID NO: 14
EKQGFRDKGFNIVGSLKDAIGKEIGLREISLRPAKEETMPRWQCVEYTIIVNSPLHTAD


RME63343
PIEALLHSGNYDSVVYKKTVVRNGNIKQIPVFKGETIRGIVRTAFARILRTENVEFDEE



HEDCTCPLCQVFGNEHRAGRVRFEDLVIEGYTSEKKFDHVSIDRFTGGAAEKRKFDD



LSLKGSPRRPIVLRGKVWIRNDMDSKGIEKLKQAFMDIRDGLYPLGSRGGIGYGWVT



DLKIENTEVEEFRLDKVSTTEGSGPATEEFNFPSLPEIQLNKDAVYHPHYFIRPHEKVN



REIRPVGHERFHDDLLTGRIKCTLKTLTPLIIPDTEDPDAFGLQAEHKGHQNFRFFR





SEQ ID NO: 15
MKSIPITLTFLEPYRILPWAEKGKRDKKEYLRGANYVRLHKDKNGKFKPYITGTLIRS


Ga0190306_
AVLSAIEMLLDITNGEWNGKECCLAKFHTEGEKPSFLRKKPIYIRAEKDEICTSRETAC


10003932
PLCLILGRFDKAEKKEKDKEKFDVHFSNLNLYSSKEFSTIEELAPKRALNRIEQYTGKA



QDYFTVYEALNKEFWTFKGRIRIKEDIYDKVTDLLFSALRCVEKIAGALCRIEIDKEPS



QQKGFVKRQLSKQAKEDIEKIFQVVKDAQKLRLLSDCFRELTRMANKDELALPLGPE



DDGHYLWDKIKVEGKTLRIFLRNCFSQYKDNWLCFCDEASKKGYQKYREKRHKLTD



RELPTATPKHFAEKKDPQISPIYIDKDDKVYEWIIVGRLIAQTPFHFGDEEKAEGAILLT



PDNRFRLPRTALRGILRRDLKLAGASACEVEVGRSEPCPCDVCKIMRRVTLLDTVSED



LRDFLPELRKRIRINPQSGTVAEGALFDTEVGPEGLSFPFVLRYKCEKLPDSLTTVLCW



WQEGLAFLSGESATGKGRFRLEINGAFVWDLQKGLFNYIKNHGFRGEERLFLEGNEA



ELEKMGIQINTELLQPEMIKKEKNFTDFPYDLIKYQLNISSPLLLNDPIRAIALYEGEGK



APDAVFFKKYVFENGKIEEKPCFKAESIRGIFRTAVGRIKNVLTKNHEDCICVLCHLFG



NVHETGRLKFEDLKIVSGQEEKFFDHVAIDRFLGGAKEKYKFDDKPIIGAPDTPIVLEG



KIWVKKDINDEAKETLSQAFSDINTGIYYLGANGSIGYGWIEEVKALKAPSWLKIKEK



PNFEKDTSLNISAIMNEFKKDIQTLNLDKTYLPYGFLKLLEKVKRTSSPITHERFYENH



LTGFIECSLKVLSPLIIPDTETPEKEENGHKYYHFLKIDNKPIIPGAEIRGAVSSIYEALTN



SCFRVFGEKKVLSWRMEGKDAKEFMPGRVSKKKGKLYMVKMQALRLPVYDNPALA



NEIRSGSIYEKYKNSKVEIIFFQTVEGIRKFLRGNFNNVEWKKVLVTGIDPLAILPSQKIP



GNDKWVKNLQSKISPVRGYFKFTGPNKIETKRREEEKDEKLRTKANKVSCLQKDKW



YEAMHNHVEYKQDYTPPNSPKTEPLERPRNIPCFVCSDKEKIYRMTKRCERVFVSLGE



NAPKYEIPISAIKRYEVILSAYRENWERNKTPELFRTRLPGDGRTLNEDDLVYFRADEN



EKVKDIIPVCISRIVDEVPLIKRLSQELWPCVLAECPLLGFECKKCELEGLPEKIWFRIN



KDGLCPACRLFGTQIYKSRVRFSFAYAKNWKFYDGYITLPRLESPRATWLILKEKDKH



YIKYKVCGRKFYLHNSTYEDIINNSKKEKEKKTENNASFEVLKEGEFTFKVYFENLEN



WELGLLLLSLTGLGEAIKIGHAKPLGFGSVKIEAKKIYFREEAGKFHPCEKADEYLKK



GLNKLTSWFGKNEINEHMRNLLLFMTYYQNLPKVKYPDFDGYAKWRCSYVEQDKV



EYFQNRWIVAS





SEQ ID NO: 16
MIINITVKFLGPFRMLEWTDPDNRNRKNREFMRGQAFARWHNSNPQKGSQPYITGTL


Ga0193932_
VRSAVIRSAENLLMLSEGKVGKEKCCPGEFRTENRKKRDAMLHLRQRSTLQWKTDK


104825
PLCNGKSLCPICELLGRRIGKTDEVKKKGDFRIHFGNLTPLNRYDDPSDIGTQRTLNRV



DYATGKAHDFFKVWEIDHSLLSVFQGKISIADNIGDGATKLLEDSLRFTDRLCGAICVI



SYDCIENSDGKENGKTGEAAHIMGESDAGKTDAENIANAIADMMGTAGEPEKLRILA



DAVRALRIGKNTVSQLPLDHEGKENHHLWDIGEGKSIRELLLEKAESLPSDQWRKFCE



DVGEILYLKSKDPTGGLTVSQRILGDEAFWSKADRQLNPSAVSIPVTTETLICGKLISET



PFFFGTEIEDAKHTNLKVLLDRQNRYRLPRSAIRGVLRRDLRTAFGGKGCNVELGGRP



CLCDVCRIMRGITIMDARSEYAEPPEIRHRIRLNPYTGTVAEGALFDMELGPQGLSFDF



ILRYRGKGKSIPKALRNVLKWWTKGQAFLSGAASTGKGIFRLDDLKYISFDLSDKDK



RKDYLDNYGWRNRIEALSLEKMPLDRMNDYAEPLWQKVSVEIEIGSPFLNGDPIRALI



EKDGSDIVSFRKYADDSGKEVYAYKAESFRGVVRAALARQHFDKEGKPLDKEGKPL



LTLIHQDCECLICRLFGSEHETGRLRFEDLLFDPQPEPMIFDHVAIDRFTGGAVDKKKF



DDCSLPGTPGHPLTLKGCFWIRKELEKPDEDKSEREALSKALADIHNGLYPLGGKGAI



GYGQVMNLKIKGAGDVIKAALQSESSRMSASEPEHKKPDSGLKLSFDDKKAVYYPH



YFLKPAAEEVNRKPIPTGHETLNSGLLTGKIRCRLTTRTPLIVPDTSNDDFFQTGVEGH



ESYAFFSVNGDIMLPGSEIRGMLSSVYEALTNSCFRVFDEGYRLSWRMEADRNVLMQ



FKPGRVTDNGLRIEEMKEYRYPFYDRDCSDKKSQEAYFDEWERSITLTDDSLEKMAE



RKGDISPKDLKVLKSLKGKNYKSTEGLLAAFKDKGGDTGGNILGLIFKYAERIGDVPR



YEHPTDTDRMMLSLSEYNRNQKSDGKRAYKIIKPASKLGKGAYFMFAGTSVENKRIC



NPACTDKANKSVKGYLKISGPNKLEKYNISEPELDGVPEDRNCQIIHNRIYLRKIFVAN



AKKRKERDRLVGEFACYDPEKKVTYSMTKRCERIFIKDRGRTLPITHEASELFEILVQE



YRENAKRQDTPEVFQTLLPDNGRLNPGDLVYFREEKGKTVEIIPVRISRKIDDSPIGKR



LREDLRPCHGEWIEGDDLSQLSEYPEKKLFTRNTEGLCPACRLFGTGAYKGRLRFGFA



KLENDPKWLMKNSDGPSHGGPLTLPLLERPRPTWSMPDDTLNRLKKDGKQEPKKQK



GKKGPQVPGRKFYVHHDGWKEINCGCHPTTKENIVQNQNNRTVEPLDKGNTFSFEIC



FENLEPYELGLLLYTLELEKGLAHKLGMAKPMGFGSIDIEVENVSLRTDSGQWKDAN



EQISEWTDKGKKDAGKWFKTDWEAAEHIKNLKKLLFLPGEEQNPRVIYPALKQKDIP



NSRLPGYEELKKNLNMEKRKEMLTTPWAPWHPIKK





SEQ ID NO: 17
MTQITIQVTFFHPFRVVPWNHRDHRKTDRKYLRGGTFAKWHCTASEGKSGRPYITGT


Ga0190283_
LLRSALFAEIEKLIAFHDPFKCCRGKDKTENGNAKPLFLRRRPRADCDPCGTCPLCLL


10011062
MGRSDTVRRDAKKQKKDWSVHFCNLREATERSFNWKETAIERIVNRVDPSSGKAKD



YMRIWEIDPLVCSQFNGIITINLDTDNAGKVKLLMAAGLAQINILAGSICRADIISEDHD



ALIKQFMAIDVREPEVSTSFPLQDDELNNAPAGCGDDEISTDQPVGHNLVDRVRISKIA



ESIEDVESQEQKAQQLRRMADAIRDLRRSKPDETTLDALPKGKTDKDNSVWDKPLKK



DILPSPRMPASEDDDTPTLRKVLKDEINGQEDMWRKFCEALGNSLYDLSKKAKERKR



TEALPRLLGETEIYGLPMRENKEDEPLPSSLTYKFKWLIAGELRAETPFFFGTEVQEGQ



TSATILLNRDGYFRLPRSVIRGALRRDLRLVMGNDGCNMPIGGQMCECGVCRVMRHI



VIEDGLSDCKIPPEVRHRIRLNCHTGTVEEGALFDMETGYQGMTFPFRLYCETENSDL



DSYLWEVLNNWQNGQSLFGGDTGTGFGRFELTEPKVFLWNFSKKEKHEAYLLNRGF



KGQMPVQDVKTKSFKTKTWFQIHRELDISPKKLPWYSTDYRFNVTSPLISRDPIGAML



DPRNTDAIMVRKTVFCPDPNAKNRPAPATVYMIKGESIRGILRSIVVRNEELYDTDHE



DCDCILCRLFGSIHQQGSLRFEDAEVQNSVSDKKMDHVAIDRFTGGGVDQMKFDDYP



LPGCPAQPLILEGKFWVKDDIDDESKSALEKAFADFRDGLVSLGGLGAIGYGQIGDFE



LIGGSADWLNLPKPEENRTDVPCGDRSAQGPEIKISLDADKIYHPHFFLKPSDKNVYRE



RELVSHAKKKGPDGKSLFTGKITCRLSTEGPVFIPDTDLGEDYFEMQASHKKHKNYGF



FRINGNVAIPGSSIRGMISSVFEALTNSCFRVFDQERYLSRSEKPDPTELTKYYPGKVKR



DGNKFFILKMKDFFRLPLYDFDFEGEAESLRPNYDEDRNEEENKGKNKNTQKVKNAV



EFNIKMAGFAKHNRDFLKKYKEQEIKDIFMGKKKVYFTAGKHKPNEAHDNDKIALLT



KGSNKKAEKGYFKFTGPGMVNVKAGVEGEECDFHIDESDPDVYWNMSSILPHNQIK



WRPSQKKEYPRPVLKCVKDGTEYVMLKRSEHVFAEASSEDSYPVPGKVRKQFNSISR



DNVQNTDHLSSMFQSRRLHDELSHGDLVYFRHDEKRKVTDIAYVRVSRTVDDRPMG



KRFKNESLRPCNHVCVEGCDECPDRCKELEDYFSPHPEGLCPACHLFGTTDYKGRVSF



GLGWHESNTPKWYMPEDNSQKGSHLTLPLLERPRPTWSMPNKKSEIPGRKFYVHHP



WSVDKIRNRQFDPAKEKQPDDVIKPNENNRTVEPLGKGNEFTFEVRFNNLREWELGL



LLYSLELEDNMAHKLGMGKALGMGSARIKAEAIELRCESAGQNAELKDKAAFVRKG



FEFLEIDKPGENDPMNFDHIRQLRELLWFLPENVSANVRYPMLEKEDDGTPGYTDFIK



QEEPSTGKRNPSYLSSEKRRNILQTPWKHWYLIPPFQASAQSETVFEGTVKWFDDKKG



FGFIKINDGGKDVFVHHSSIVGTGFKSLNEGDSVAFKMGVGPKGPCAEKVKKIGN





SEQ ID NO: 18
MTKIPISLTFLEPFRLVDWVSESERDKSEFLRGLSFARWHRIKNQREDENQGRPYITGT


Ga0073580_
LLRSAVIKAAEELIFLNGGKWQSEECCNGQFKGSKAKYRKVECPRRRHRATLKWTD


1036305
NTCSDYHNACPFCLLLGCLKPNSKENSDIHFSNLSLPNKQIFKNPPEIGIRRILNRVDFT



TGKAQDYFYVWEVEHSMCPKFQGTVKINEDMPKYNVVKDLLISSIQFVDKLCGALC



VIEIGKTKNYICQSFSSNIPEEEIKKLAQEIRDILKGEDALDKMRVLADTVLQMRTKGP



EIVNELPRGIEKKGGHWLWDKLRLRKKFKEIANNYKDSWQELCEKLGNELYISYKEL



TGGIAVKKRIIGETEYRKIPEQEISFLPSKAGYSYEWIILGKLISENPFFFGKETKTEEQID



MQILLTKDGRYRLPRSVLRGALRRDLRLVIGSGCDVELGSKRPCPCPVCRIMRRVTLK



DARSDYCKPPEVRKRIRINPLTGTVQKGALFTMEVAPEGISFPFQLRFRGEDKFHDAL



QNVLVWWKEGKLFLGGGASTGKGRFKLEIEHVLKWDLKNNFHSYLQYKGLRDKGD



FNSIKEIEGLKVETEEFKVKKPFPWSCVEYTIFIESPFVSGDPVEAVLDSSNTDLVTFKK



YKLEESKEVFAIKGESIRGVFRTAVGKNEGKLTTENEHEDCTCILCRLFGNEHETGKV



RFEDLELINDSAPKRLDHVAIDRFTGGAKEQAKFDDSPLIGSPDSPLEFTGIVWVRDDI



DEEEKKALKSAFLDIKSGYYPLGGKKGVGYGWVSNLKIESGPEWLRLEVQEKSSQEN



VLSPVILSEVMDIEFNPPKIDENGVYFPYAFLRPLNEVKRTREPIGHNEWKKSLISGYLT



CRLELLTPLIIPDTSEEVIKEKVNNGEHPVYKFFRLGGHLCIPAAEIRGMISSVYEALTN



SCFRVFDEKRLISWRMTAEEAKRPDPKKSEEQNRMRFRPGRIIKKDKKFYAQEMLEL



RIPVYDNKDKRNEISQNDPTRPSEYNHPTEPERIFFSNAEKIRNFLKRNSNYLHGSTPLL



FRQWSISNRYDKIALIGNKSQGHLKFTGPNKIEVSEGTKCPKYETIPGRDEWDKAVHN



YVEPGKFVTVISRKKGQKPKAVQRRRNVPAFCCYDYNTNRCFVMNKRCERVFKVSR



DKPKYEIPPDAIRRYEHVLRKYRENWERYDIPEVFRTRLPGDGETLNEGDLVYFRLDE



NNRVLDIIPVSISRISDTQYLGRRLPDHLRSCVRECLYEGWGDCKPCKLSLFPEKMWIR



INPEGLCPACHLFGTQVYKGRVRFGFARAGSNWKFREEQLTLPRFETPRPTWVIPKRK



DEYQIPGRKFYLHHNGWEEIYKKNKKNEIKKEKNNATFEVLKQGTFYFKVFFENLEL



WELGLLIFSAELGGEEFAHKLGHGKALGFGSVKISVDKIILRRDPGQFEQRGQKFKRD



AVDKGFCVLENRFGKTNFKIYLNNFLQLLYWPNNKKVKVRYPYLRQEDDPEKLPGY



VELKKHQMLKDDNRYSLFARPRAVWLKWTEMVQRDKS





SEQ ID NO: 19
MSVEEFYVRLTFLEPFRVVPWVRNGDERKGDRIYQRGGTYARWHKINDSHGQPYITG


Iso3TCLC_
TMLRSAVLREIENTLTLHNTYGCCPGGTRTTEGKLEKPLYLRRRDGFEFENHAEKPCS


1001005823
EEDPCPLCLIQGRFDKLRRDEKKQFVRQGNISFCSVNFSNLNISSGIKSFSWEEIAVSRV



VNRVDPNSGKAKDFFRVWEIDHKLCPNFLGKMSISLSEKLEDVKALLAVGLAQVNVL



SGALCRVDIIDPETQKDTVHQHLIQQFVTRIQDKEKGDAADIPAFTLPPAGLSPSSNEW



NDTIKSLAEKIRKIKELEQGQKLRQMADVIRELRRKTPAYLDQLPAGKPEGRESIWEK



TPTGETLTLRQLLKSANVPGESWRAFCEELGEQLYRLEKNLYSHARPLPRLLGETEFY



GQPARKSDDPPMIRASYRAFPSYVWVLDGILRAETPFYFGTETSEGQTSQAIILCPDGS



YRLPRSLLRGVIRRDLRAILGTGCNVSLGKVRPCSCPVCEIMRRITVQQGVSSYREPAE



VRQRIRSNPHTGTVEEGALFDLETGPQGMTFPFRLYFRTRSPYIDRALWLTINHWQEG



KAIFGGDIGVGMGRFRLENLQIRSADLVSRRDFSLYLRARGLKGLSREEVTRIGLNEE



QWEAVMADDPGTHYNPFPWEKISYTLLIHSPLISNDPIAAMLDHDNKDAVMVQKTVL



FVDESGNYSQMPHHFLKGSGIRGACRFLLGRKDAPNENGLTYFEADHEECDCLLCSL



FGSKHYQGKLRFEDAELQDEVEAIKCDHVAIDRFHGGTVHRMKYDDYPLPGSPNRPL



RIKGNIWVKRDLSDTEKEAVKDVLTELRDGLIPLGANGGAGYGRIQRLMIDDGPGWL



ALPERKEDERPQPSFSPVSLGPVHVNLKSGSDTADVYYYHPHYFLEPPSQTVSRELDII



SHARTRDSGGEALLTGRILCRLITRGPIFIPDTNNDNAFGLEGGIGHKNYRFFRINDELA



IPGSELRGMVSSVYEALTNSCFRIMEEGRYLSRRMGADEFKDFHPGIVVDGAKIREMK



RYRLPLYDTPDKTSRTKEMTCPELFTRKDGRPERAKKFNEEIAKVAVQNRAYLLSLD



EKERREVLLGNREVTFDECPDDEYSDDEYSELKYAQKYKDFIAVLKKNGQKRGYIKF



TGPNTANKKNEDAPDKNYRSDWDPFKLNILLESDPECRVSNIHCYPRPLLVCIKDKAE



YRIHKRCEAIFCSIGSPSDLYDIPQKVSNQYRTILQDYNDNTGKIVEIFRTQIKHDQLTT



GDLVYFKPAANGQVNAVIPVSISRKTDENPLAKRFKNDSLRPCAGLCVEDCNECPAR



CKKVADYFNPHPRGLCPACHLFGTTFYKGRVRFGFAWLTGEDGAPRWYKGPDPCDS



GKGRPMTIPLLERPRPTWSIPDNSFDIPGRKFYVHHPYSVDGIDGETRTPNNRTIEPLAE



GNEFVFDIDFENLRDWELGLLLYSLELEDSLAHKLGLGKPLGFGTVQINIRGISLKNGS



KGWDTKTGDDKNQWIKKGFAHLGIDIKEANERPYIKQLRELLWVPTGDNLPHVRYPE



LESKTKDVPGYTSLLKEKDLADRVSLLKAPWKPWKPWSGTAPHPDKGTNRLRASIVE



RDRIQRKTDTAKPEKKEETKVGKSSSSDIEKRYVGTVKWFNDKKGYGFILYGTDEEIF



VHRSGVADNSIPKEGQKVGFRIERGARGSHAVEVKAIE





SEQ ID NO: 20
MPRFQLSLTFFDEPFRLIEWTDKSNRNSANTQWMRGQGFARWHKITLEKGFPFVTGT


SESD01000293.1
AVRSKIIREVEALLSRNKGTWNGIPCCSGFFDTKGPSPTHLRYRPTLEWEYGKTVCTSE



ADVCPLCLLLGRFDQAGKKSDTPCQSTDYHVHWENLSAGVAQYRLEDIAQKRTSNR



VDFFSKKAHDHYGVWEVTAVKNLLGYIYISDAITESHQKTVISLLKAALSFTDTLCGA



NCKLELSDEPVDSIHSNQSASNFNPHSGAAPSQCSQSMPPFNMDQETKELANTLCKAF



TGNMRHLRTLADAVREMRRMSPGISSLPRGRLNKEGEITAHYLWDERIDEKTIRQVLE



DTIELSPARSIIYKNWISFCNQLGQKLYERAKDNDPILERKRPLGEAAFSKVPTSSHAPR



HDMNSRVKGGFTREWIIVGTLRALTPFYMGTGSQAGKQTSMPTLQDSNDHFRLPRTA



LRGALRRDINQASDGMGCVVELGPHNLCSCPVCQVLRQIRLLDTKSKFSMPPAIRQKI



CKNPVLSIVNEGSLFDVELGIEGETFPFVMRYRGGAKIPDTIITVLSWWKNERLFIGGE



SGTGRGRFVLECPRIFCWDVEKGQNDYIQYHGFRNKEDELLSVYSTVSGLAEKNDVN



LNNARDFSFDKICWEVQFDGPVLTGDPLAALFHGNTDSVFYKKPILKSGEKEPSYQW



AIKSDTVRGLIRSAFGKRDALLIKSHEDCDCLLCEAFGSKHHEGKLRFEDLTPKSDEIK



TYRMDHVAIDRISGGAVDQCKYDDEPLVGTSKHPLVFKGMFWINRDSSVEMQRALIA



AFKEIRDGLYPLGSNGGTGYGWISHLAITNGPDWLNLEEVPLPQPTADIPVEECTAEPY



PKFQKPDLDQNAVYYPHYFLQPGKPAERERHPVSHDHIDDKLLTGRLVCTLTTKTPLI



IPDTQTNTMLPPNDAPEGHKSFRFFRIDDEVLIPGSEIRGMVSTVFEALTGSCFRVINQK



AHLSWRINADMAKHYRPGRIIQNNEKMFIQPYKMFRLPFYAGFDPRNCLSEKQLLGIE



PVKLWVKDFVASLVKPQTDIDIEWKEKIGFVRVTGPNKVEVDSSNTPDPSLPECESDW



KDIHITEDGSTPSKNDRVYRCQLKGVTYTVAKWCEAFWVKDEGKKPITVNAEAINRY



HLIMKSYQDNPQSPPIIFRSLPVLNYKQDQKIIGSMIFYRESAKSDKIVNEIIPVKISRTA



DTELLAKHLPNNDFLPCAATCLNECDTCNAKTCKFLPLYREGYPVNGLCPSCHLFGTT



GYQGRVRFGFAKMNGNAKFCQGGERPEDRAVTLPLQERPKLTWVMPNENSTIPGRK



FFLHHQGWKKIVDEGKNPINGDVIEPDANNRTVEPLAAGNDFSFEVFFENLREWELGL



LRYTLELESELAHKLGMGKAFGFGSVKIKIKSVDLRKQGEWEKATNTLVSEDKKSSW



YNIHTVNNLRTALYYVEDDKIQVNYPKLKKDNESDNRPGYVEMKKTAFPVRDILTTP



WWPWWPPTPPPMNQSGNQSYARSEEPARITESQPEVYKTGTVKFYKHDKKFGFITM



DGRENIHFAGNQICRPETSLQSGDKVKFIEGENYKGPTALKVERLKG





SEQ ID NO: 21
MRLKINIHFLEPFRLIEWHEQDRRNKGNSRWQRGQSFARWHRRKDNDQGRPYITGTL


OBJA01001127
LRSVVIRAVEEELARPDTAWQSCGGLFITPDGQTKPQHLRHRATVRARQTAKDKCAD



RQSACPFCLLLGRFDQVGKDGDKKGEGLRFDVRFSNLDLPKDFSPRDFDGPQEIGSRR



TINRVDDETGKAHDFFSIWEVDAVREFQGEIVLAADLPSRDQVESLLHHALGFVDRLC



GARCVISIADQKPAEREERTVAAGDEKATIADYDQVKGLPYTRLRPLADAVRNLRQL



DLAELNKPDGKFLPPGRVNKDGRRVPHYVWDIPLGKGDTLRKRLEFLAASCEGDQA



KWRNICESEGQALYEKSKKLKDSPAAPGRHLGAAEQVRPPQPPVSYSEESINSDLPLA



EWIITGTLRAETPFAIGMDAPIDDDQTSSRTLVDRDGRYRLPRSTLRGILRRDLSLASG



DQGCQVRLGPERPCTCPVCLILRQVVIADTVSETTVPADIRQRIRRNPITGTAADGGLF



DTERGPKGAGFPFSLRYRGHAPMPKALRTVLQWWSAGKCFAGSDGGVGCGRFALD



NLEVYRWDLGTFAFRQAYSENNGLRSPEEEFDLAVIHELAEGLAKEDGQKILKGTEPF



TCWQERSWQFSFTGPLLQGDPLAALNSDTADIISFRRTVVDNGEVLREPVLRGEGLRG



LLRTAVGRVAGDDLLTRSHQDCKCEICQLFGSEHRAGILRFEDLPPVSPTTVADKRLD



HVAIDRFDQSVVEKYDDRPLVGSPKQPLVFKGCFWVQTSGMTHQLTELLAQAWRDI



AAGHYPVGGKGGIGYGWINSLVVDGEKITCRPDGDSISLTTVTGDIPPRPALTPPAGAI



YYPHYFLPPNPEHKPKRSDKIIGHHTFATDPDSFTGRITCKLEVVTPLIVPDTEGEQPKD



QHKNFPFFKINDEIMLPGAPLWAAVSQVYEALTNSCFRVMKQKRFLSWRMEAEDYK



DFYPGRVLDGGKQIKKMGDKAIRMPLYDDSTATGSIKDDQLISDCCPKSDEKLQKAL



ATNQKIALAAKHNQEYLAQLSPDEREEALQGLKKVSFWTESLANNEAPPFLIAKLGEE



RGKPKRAGYLKITGPNNANIANTNNPDDGGYIPSWKDQFDYSFRLLGPPRCLPNTKG



NREYPRPGFTCVIDGKEYSLTKRCERIFEDISGGENQVVRAVTERVREQYREILASYRA



NAAGIAEGFRTRMYDTEELRENDLVYFKTAKQADGKERVVAISPVCISREADDRPLG



KRLPAGFQPCSHVCLEDCNTCSAKNCPVPLYREGWPVNGLCPACRLFGAQMYKGRV



NFGFARLPDDKQPETKTLTLPLLERPRPTWVLPKSVKGSNTEDATIPGRKFYLRHDGW



RIVMAGTNPITGESIEKTANNATVEAIMPGATFTFDIVCENLDQQELGLLLYSLELEEG



MSHTLGRGKPLGFGNVRIKVEKIEKRLSDGSRREMIPPKGAGLFMTDKVQDALRGLT



EGGDWHQRPHISGLRRLLTRYPEIKARYPKLSQGEDKEPGYIELKSQKDENGVPIYNP



NRELRVSENGPLPWFLLAKK





SEQ ID NO: 22
MSNQTRWIIEGTLELITPLHIGTGLDEKERDENKETRWLEAVALDHKGQPYIPGASLK


OBEQ011807420
GALRALAKRHDFRNLFDNKEVDGDFVRQAEFLSAWCVPDTDKGRLIQPRVAIDRVT



GTAQDKKLFQTRLITPGTRFAMKIVVQNAVENEIADLLGLLNLLPDDPQFSLGAYANQ



GQGRVQWFGKIQTRCFGINEAKAWYEEIRKDESKCWTAFAKPKNVSTPPTPAKEAQL



TLPLNLAFHTPFLVKQAGIKADDADAVPRRTHDDKIVLPASSLRGRLRTQSERILRTLG



CETPQGHTAPAYRKGQPHDDLAVLLFGAAGWRGIVQTSDCIVEDKSIKTRRHEMLAI



DRFTGGGKDGAKFNVDYVECPTLAGKLSLDLARLKNAKLKGGKDALLPALGLMTL



MLRDLAEGDIPFGYGISKGYGQCRASSALGDWAELLKQHLGADSADTTVQALREYL



GNPKGQELKLDPPSADATQAGVPAQQNAAKTQAQGAQEKFHNPYHFIPLSKPDISQW



PEPQKLTEKGHSHDRYASLSGRIVCRLTTQTPLFIGSEQTTPTNPQAPKSLHPFKLNNG



LAIPATSLRGMISSLFESVSNSNFRVLDEKTYSMRKTMQQSLSAMGRIVRHDQKLYLL



PLTLPTLPQGPHGVYDLGEKWSAVFDWQPPPLRIYFDPPPRRTYQSQQPCYMKLSTV



KYSESNPNQIIAGENLGALRFPRGNQNTQFLIGQSNQDECPITQAEYAQKSEDERNEYT



SGWVRTLVKPGRDLPRSVKHHVFLPDVFIDAPPPVNDLYPIPDSVIQRFHDLADQVLA



SMNLKPEEIVDSTNLLPYTPVGRRSDSDCRDTRLQAGDLIFFDIDPPLHPGEKSQITEISF



SSIWRSGIGKDHLLTTPDLLTNFDVNLQPHGMPGRTQSLSPAELLFGLVGTQNDQATT



AYAGKVRIGFGLPEEGHNPRLDARITLKELSSPKPPSPALYFRKKSGKDEYVSKANLA



DKPEDYILRGRKMYLHAWRKNEQVVELSDTGHDGGVRPPWVSKFDESADEGNKRR



VSIEPIAKDESFYFEVDFHNLSRTELAQLCATLYPNEKFEHRLGMGKPLGLGSIKITPLS



LFLVNRSQRYATDGLDKPRYHAVWHTGTASEPRWPDHLQREQQGIAFEGVSTAPTV



MSLAAEAKVSDDVKRALELLGNPDEITVPVHYPQLHNGLMESKQFDWFVQNDKSGR



DQPANNRQHLSSFTKDTEKLEPLIRIMRR





SEQ ID NO: 23
MTTPSAPKSSLPALHWLIRAELEVLTPLHLGTGTDQRITPDAPDADPYWQADIALDAD


OVOO01000106
GRPYLPGASLKGALKALARRRQVDAPCLPLFGDLNRGGAPHPDCIPPRRTRAGLAEFR



DALQSHATQADGPDTAQPRIAIDRITGSVVDKKLFHTQTVPVGTRFSVEIILRRADQNL



AAQLVALLQHGPTDPDFRLGAHANLGFGRVGLYGNIDTRRFGPQQAQHWFAAAQTQ



ADARWTDFAEAVTLTAPAPAPAQPAPHRLALPLSLTFHTPFLVKQPEHKHRKPQDNA



PDGTPRQRGDRALLPGASLRGRLRSQAERILRTLGCKVAQGHAVPPVKNNTCPDPAT



LLFGTAGWRGLLRTDDCTGTAPATLVDHDMLAIDRFTGGGKDGAKFKLRYAECPTL



EGQLSLDLSRLRSARLDGANAADTPWIALGLLTLVLRDLAEGDIPFGHGSAKGYGRC



RAQGLPDRWRQALEAHFGPNADARALAALRAWCRTHATAALDAPCSLAGSAPTPA



AAAPSGQAAPADAFHNPYHFIPFSQPDIDRWLSPDAHRKTGGHSRYRGLSGRLVCAL



TTVTPLFVGAAARTPASDQHPKPVAGFALQNQPAIPATSLRGLLSSLFESISGSNLRVL



HPTPYSIRKTTKEALSAIGRIVERNGELKLYPLTLPTIHQNADNAYPVPARWRKVFYW



ESPVPLRVYFGSRKQTYDSRQPHYLPIQELSYLPNDSDCIAPDQGDLRFPSRDRDRKFL



IGQCPISRYDCPIPETDLPKLSPQERPRYTRGWVRSLWTSNREKELPHTVKHQLFIPDP



VETPAADDLLPIPQGVLDTFHALADLALAGQHWGKDETPADDQLLPFTPAGRQRHD



ADRPPRDADRQTRLQPGDLVCFDLGDDGAVSEISFSSIWREGLRLAGKPNLATTADLL



AQVSPHLLPLGMPGRSARLSPVEQLFGVVEYRPPQTAKGTRKPTDAPAAYALAGKLQ



VGFGRPARPFEREPAVTLKELSTPKPPSPALYFRPKAGDGYVSKAKLASQPQDYAPAG



RKHYLHALRRQGQVARLDNSGHVPSDGSGRPPWQSRFDGQEDSGNKRRVRVEPIPA



GETFHFEIDFDNLSPTELEQLCATLLPHPAFEHRLGMGKPIGLGSVKLAVEGLLLVDRP



RRYAEDEPNAPRHHRGWRANADAGWPDHLQGDSPAAPLEATEQPAALAERAMARV



PADVRRALQLLGNPGAVAAPVHYPQVKDAQIEEKHYLWFVANDDEKTAGGNRHLP



RLHANSPGLPTLPRLVKREKDHSSNTGKPRRK





SEQ ID NO: 24
MIPDLRSLVVHISFLTPYRQAPWFPPEKRRNNNRDWLRMQSYARWHKVAPEEGHPFI


PDWI01005922.1
TGTLLRSRVIRAVEEELCLANGIWRGVACCPGEFNSQAKKKPKHLRRRTTLQWYPEG



AKSCSKQDGRENACPFCLLLDRFGGEKSEEGRKKNNDYDVHFSNLNPFYPGSSPKVW



SGPEEIGRLRTLNRIDRLTTKAQDFFRIYEVDQVRDFFGTITLAGDLPRKVDVEFLLRR



GLGFVSTLCGAQCEIKVVDLKKKQNNKEDSILPVSEVPFFLEPEVLAKMCQDVFPSGK



LRMLADVILRLREEGPDNLTLPMGSQGLGGRLPHHLWDVPLVSKDRETQTLRSCLEK



IAAQCKSEQTQFRLFCQKLGSSLFRINKGVYLAPNSKISPEPCLDPSKTIRTKGPVPGKQ



KHRFSLLPPFEWIITGTLKAQTPFFIPDEQGSHDHTSRKILLTRDFYYRLPRSLLRGIIRR



DLHEATDKGGCRVELAPDVPCTCQVCRLLGRMLLADTTSTTKVAPDMRHRVGVDRS



CGIVRDGALFDTEYGIEGVCFPLEIRYRGNKDLEGPIRQLLSWWQQGLLFLGGDFGIG



KGRFRLENMKIHRWDLRDESARADYVQKCGLRRGVGDDTAINLEKDLSLNLPESGY



PWKKHAWKLSFQVPLLTADPIMAQTRHEEDSVYFQKRIFTSDGRVVLVPALRGEGLR



GLLRTAVSRAYGISLINDEHEDCDCPLCKIFGNEHHAGMLRFDDMVPVGTWNDKKID



HVSCSRFDASVVNKFDDRSLVGSPDSPLHFEGTFWLHRDFQNDVEIKTALQDFADGL



YSIGGKGGIGYGWLFDMEIPRSLRKLNSGFREASSIQDALLDSAKEIPLSAPLTFTPVKG



AVYNPYYYLPFPAEKPERCLVPPSHARLQSDRYTGCLTCELETVSPLLLPDTCREKDG



NYKEYPSFRLNNTPMIPGAGLRAAVSQVYEVLTNSCIRIMDQGQTLSWRMSTSEHKD



YQPGKITDNGRKIQPMGKQAIRLPLYDEVIHHVSTPGDTDDLEKLKAIVLELTRPWKE



LPEEQKKKRFEKCKNILDGRMLQQKELRALENSGFAYWRDKTSLTFDSFLKDAIEQE



YPRYSGDYQRIKALVVNITLPWKLLKKEERHKRFDKCRRILKGQQPLTKDERKALEES



GFANWHGRELLFDRFLKDENSCLIKAETTDRVIASVAKNNRDYLFEIKQQDFARYKRI



IQGLERVPFSLRSLAKSKETSFQIACLGLRRGRFLRKGYLKISGPNNANVEISGGSHSNS



GYSDIWDDPLDFSFRLSGKSELRPNTQKTREYPRPSFTCTVDGKQYTVNKRCERVFED



SAAPAIELPRMVREGYKGILTDYEQNAKHIPQGFQTRFSSYRELNDGDLVYYKTDSQG



RVTDLAPVCLSRLADDRPLGKRLPEEYRPCAHVCLEECDPCTGKDCPVPIYREGYPAR



GFCPACQLFGTQMYKGRVRFSFGVPVNSTRSPQLKYVTLPSQERPRPTWVLPESCKG



KEKDVPGRKFYLRHDGWREMWGDDDKPDSRPSSEECQDIIEGIGPGEKFHFRVAFEN



LDKNELGRLLYSLELDAGMNHHLGRGKAFGFGQVKIRVTKLERRLEPGQWRSEKICT



DLPVTSSELVISSLKKVEERRKLLRLVMTPYKGLTACYPGLERENGRPGYTDLKMLAT



YDPYRELVVQIGSNQPLRPWYEPGKSFKPSPGNDCTGRGGSVSKSLISEPKVVPAIAPF



CEGVVKWFNSVKGFGFIETKEQRDIFVHFSAIRGEGYKILEPGEKVRFEIGEGRKGPQA



INVIRIR





SEQ ID NO: 25
MKMNKTWPFREHWEISGYLRTVTPLHIGSGRTVTRPELTVADRDELVDINAVVTDYT


VAPF01001339.1
GKPYLPGSTIKGALHAWLQKRLKEESRTCLIQLFGQEEEAEEKKKNNHGGKAEFFDA



RVIFPHTGPGSLPYWDDCRQTYVAATVAIDNITRTARHRHLIHAEMVPPGVTFALTLA



GPLDEEDIGLLLAALQGFNESPPALVIGAHTANGLGRFSWELSTVRRFGKEHLQGWLE



AETRAMRTEAMQPLSREGVEDLLQDGIAQIDHNEDQVRLGLELCFDGPFLVNDPPTK



KEQDDKKKRRSNTPNLRPLRDAIGRPCLPESSVRGALRAQAERIIRTMEGTCSEDNPA



YKKEIHTDAEIEELSAVCRVFGAPGWKSLLEISDFEFVDGEDCDNIQEFVAIDRFTGGA



KDKAKFNAEYIGSPRFTGTIALDKRRDLPDWGKGLLYLVLRDLAEGDITLGFGRSKG



YGVCRAKIKNLDLLLPEKSVAALHKKFAISPADDKPATDQIAEDTTSGNLGISAGGPA



QKTTESYEPPNPSGPGTFHNPYHFVPVVKPSAADRQHWLDKGILPSASENKTQHTHA



CYLDTTNGKKIYHGRIVCRLQAETPMFIGGRHRENTEPTEILPFTLGGKPAIPATSLRG



MLSSIAEAASNSSLRVLEDKTLSYRKSMRANRNEDKPLSALGMIKKIETGDKVEYRLL



PLTLPTLVKRGQYYILPEEYQTMFPDGRAKLKVYLNSNYTASDGTNQDFLKGKKSWR



LPHGEIYYMKLCQDFSLQNGQLTFDSQNQNMLHFPKNRNNFVVGQRSIDNTPPMTKA



EWRTNHQTGVPGMLRIMQASGRNFPTGRYHEIFIPVPTKKDCKQLYPVDEKAVERFL



DLAGEQTKSQQNEKNLKQYQILPYHPVGTKRNTDPETNDRYMDLNSGDIVYFRPDAT



GTKVEEISFSSIWRDRVEDDNHNRAGVHAFFGNIDKELLPFNPKRAEISPAELLFGFVE



ERERGKVDDGQAPAFAGKVRVSFGRLSSEKKPDTIFQDQVTLKALSSPKPPSPALYFT



GNGNGSIAKPDLTLSRHSPQGRKFYLHAWQEENEIIKFLSNGKKTSPTVINGLYPWES



KSNLSRQLPDKHAKLKSAITPIKKGTVFYFHVDFDNLSEWELGLLCYALQPGKEFRHK



LGMGKPIGLGSIHIEPAGLYLVHRGNRYSLDGVPDNSRYNGGIWQSEDKRLQEWQEL



YPRESTAAASSAAASPADFALKFSGTMTPSVQQALKRLGDPDNVVAPVHYPQVEGA



DLEEETYKWFVANDVGSQTKVGNRTTCTEEAARKSMLPLAGRGPLPRLKRYKWCP





SEQ ID NO: 26
MAAVQDRWTLMDQQGNELKRFRITAELETASSLHIGASETVEHDLIKNDDGTPVQIN


DRKI01000155.1
ALITGAGGLPIIPGSTIKGRFLARLRERGVDSALLETLFGKGHDRETEDQGRGGRAEFH



DAPLCHRLSGARHFPYWRPERQIWVKAQTAVDRHRGTALRRSLRYTEMVPPGVRFR



LTITGCMTDAEADVLFALLEDLGDPRQACSFGGAGADGNGTMRLFGRPEVYCLDRS



GILGWLASFEKGGNGGMAMTAAALLQADTVQRRADKVRQAWQPPDVGPRLHVELR



FSGPFLVNDPSRNTPDITQAPDMVPLVDEDGNPMLPASSFRGALRAQAERIIRTLGGRC



CDTSSPCRPLGSSDKVGELCLACQVFGAPGWGTTLHIQGFTCTSVFRREQEQTFVAID



RFHGGCKEGALYTIRHAESPRFEGHLVIDPRMPAWGRGLLALVFRDLREGDITFGLGA



GKGYGVVDAAVVQDMAELEPYVEAFREQCRQHQGMADCHSAPSPQPLRDHDLAEIP



PAEEAPGETFLNPYHFVPIREPDTGSWLARDELDSSCCHSHGFYRQQVDDRPLYHGRL



TCLLETETPLFIGATGDSSVPSRIENYRLGNRIAIPAASLRGMLSSLAEAASNSAMRVL



HQGILSYRKKAKNALREIGMIVLRDGKRFILPLVPLMEVTKLRHAYTDPAMKHFLDD



KNSWSPRCNRVYYLGRDGNQIPAETRGAGMRPGILRLLGREGRHDALQNKKHEYFIE



IPERYVDQDHCFDYRMFIRDRARNGTLVPISPVAWERYHCLAEERTLSQKNDPELRED



KACASLKWLPFHPKGRVRERDPENDVCHLSLRHGDLVFYAEQNRVVSEISFSAIWRS



RVETSDSYQAVTVDCFVPKELRPFNRDRRAISPAELLFGFVELDESEHSTEKSRYEQM



AFAGKVRLSAGLPVEDVEDSALLEPKPIVLKALSSPKPPSPPFYFVMRDGSGAYIAKK



DLSPDRHRIKGRKHYLHGLRQRGNPDRVQSLDRYGHATETAANPPWETCHPEERPQI



KVRVQPVRRKTKFFFHLDFSNLSRWELGLLCYVLRPTACFRHKLGMGKPLGLGSVRI



DIASLQLIDRVRRYGTDDLTAGRYNMGGHFNASCLDLLPQQDSPAPDDSGAAPDPGT



LRQDFVKTMDETVFRALDLLGNPAHVQRPVHYPQVREMDIEDQTFLWFVDNDKQW



KDALQPLTSSSTQLPPLTRRNKR





SEQ ID NO: 27
MTTVKEKSWAFTGLKRWKIITTLETQTPLHIGSGEVAEIEINDSQGDRRQVQANAIIRG


DRNY01000543.1
KDDKPIIPGSTLKGKLRSHFESCLDHSKALERVFGKEYQSDEEQGRGGLAEFHDAVCS



YVAPGNSYYPNWNEARNTYIEASTTIDCHTGTAADATLHYNECVPPGTRFLVTVTGA



MSDKDAALIVAALQAFGDETNPIHLGAEEANGKGRMGLFGNVEVSCLDHDDIIAWIS



QGSDARMATDKFKPLGKEKVNDLAKNITTPTATGGAQRQHFGIELKFDGPFLVNDPS



KYSKGDGDQPAVHQPLTDRSNNPILPARSFRGAIRAQAERIIRTMGGACCDTQSPCQN



SGQLCIACQMFGTTGWKTTLSISDFTYDGEYRPAKTQQFVAIDRFHGGGKDGALFSIK



YFERPVLKGGISLKLRNQNADELSWRKGLLALLFRDLQEGDITFGFGANKGYGGVEE



ACITNADVISTADIEAFRAKCHANHADSWCSPVSKPTNRDDKSSLPSINPATGAGHAF



HNPYHFIPIKAPDTSTWLDKHKLATPGSPHSHAYYRSCSDDDKPLHHGRITCKLTAET



PLFVGSGDAENQLTDSEAKLKEHYQLNNKLAIPATSLRGLISSLAEAASNSALRVLDN



GVLSYRKPASRALRKIGILFKREEQWRLVQMEGNLANAIKLKSAYTNQKMMDFLAN



KQSWSPEHNVVYYLSADFRPGDVPQETYLAGRICGILRILGGKDGDRKNELENKKHE



LFIRVDEQYVDTEINRFDYEEYVRQGGIPVSPSAVERYTELADQRSLSQKNSRDLKGD



NNCCSDKWLPFHLKGAARYKKEKACLLPLREYDLVYFDSDGTQVTEISFSAIWRDRV



ADKVHAFFPEELRPFNQKRKWISPAELLFGFVELNDNKDERDHAQAFTGKVRVAAG



VLSPDDSIRQGDLQEHEPIMLKALSSPKLPSPALYFKQKSGDHRYIAKPDLKKASHQA



QGRKIYLHALRDQKDDVQKLNTKGQPANGNGAHLPWKTADEDERPQLKVRIRPLKP



GTSFYFHLDYNNLTEWELGLLCYVLQPSETFRHKLGMGKPIGLGTVKIEIATLQTIDR



QKRYREAGANEHRHNGSNWVNESLRDELERLPGTVELSPDRQPEAKLRPDELRQSFI



ATMDNDIYRAIELLGDPHNIKYPVHYPQVRNKSIEQENFKWFVANDSGSGDQRKGTG



IDAKEEPMRSIDQISTTIPTLNRYEWNGD





SEQ ID NO: 28
MARNNKQYHFIPRWEIKVNLTTRSFLHIGCDEFTDRPGLEIEQKDGSKVKAEINAFIKD


DTXS01000070.1
SNGKPYLPGSTIKGNIRKWLETNKKADEETCKLFNTLLGFTVKMQDEGCGGSAEFHN



AVISSPLEDGNNFPYWDVDLQTSVETSTVIDRVTGTVVDGRLFSTEVVPPEVSFTLIITG



AMTEQQVSLLTAVIKDGFAEDCPTPITIGADSGNGFGRFRFDSIHMKCLGTGEVLNWL



EDGSQDMAATAMRSLSPDDIEQHIIKGRNYLKSPSVSDTVTIEFGFAGPFLVNDPSRKK



RKEDIDHQPLRDSAGNARLPAKSIRGAMRSQAEKIIRTLGGWCCDPVNPCPSVFSVVEI



NDRLCLACRVFGATGWKSRISIQKVEYKGTAESTRQETVQDFVAIDRFHGGGKETAK



FDASFSWRPQYSILMHIPSDLEGWAKGLLALTFRDFKEGDIFLGYGRSKGYGRVDSDS



VKPGIDTMLTESNLELFRRKCDDNPGEYPCKTRQPPNLVQPVERNNLTEAADEGSFH



NPYHFIPTPKPMIESWLAKEDFDETMHDSHALYRDVDENEEPLYHGKISCTLTTETPV



FVGGKHDPRNDTEPQQVDHYTENGEIAIPATTLRGLLSSLSEAASNSSMRVLDDGMM



SYRQPVGSGSLSAIGMVVIRDGKKFIYPLALPIFGERDKLPQEYHIMFPYTQKAPLKVY



LERAYLAGNMKSFLDKQNSWNLLNEKIFYLPVPEFSFSRVHTMGAENRDVLKISRRG



NLILGARLPVNLCPRSKEKALPGDIPGILRILGKEGRDGEVPVGKKHELFIPVSDGFASN



PRSFIDNLTSKELFKIPDEVVDRFEELADDRTTQQIKHPGNVKNNNQWLPFHLKGCTR



NDGLTGKDEKRLRVQEGDLMYFRPSPQSPQVAEISFSAVWRGRVNKTVHNYFPPELV



QFNKNREKISPAELLFGFVQQDKHEKSLSFAGKVVLSSGKQLRETESVSRENEVTLKIL



ASPKLPSPSLYFKRENYIEGGNYIAKNEMNNSSNIKPRGRKQYLHALSNSEDPKGVQK



ISRTGSVDDGGNYPWQSMNNDNIKQKVCIRPVSKDGCFTFEMEFENCTEWELGMLLY



ALRPSQQYRHKIGMGKSIGLGTVRIDINNLQFIHRKNRYNAGIIDVPRYNYEAGHDMD



YFHNKFADTIMPEIKNSIELLGDPRNVRFPVHYPQVHGADIEDKTYQWFVANDSGTN



NGQNGAAYKKNKAEESSLTELDEISNTIPGLERHEWLGR





SEQ ID NO: 29
MALKTWTLNGEERWHISVVLETVTPLHIGSGEFCYRPELTNADQKPVDINACIKGAN


JABFST010000317.1
NLPIIPGSTVKGKFNAWLTARQVDTPLLEAIFGKGHNPDDDDQGSGGKVEFHDAWIST



KIKDTSTWPYWQVATQTFIDAATAIDRHSRTALDASLHYTECVPPGVQFTLNITGVM



QEHEAALIIAALDRFDQHDDQPYFGAGDANGQGQLILVGHLAVKVMGKTEITEWLA



HFNNKASDMAMSHARSLGAEDIAGLIKLGQTLLKPVPPTVSLGIQLQFAGPFLVNDPY



AVKKLEADPKTKIDHYPLLDNHKKPRLPSASIRGVLRSQAERIIRSLGVHCCDTRDPCP



SLYKHQDLSQLCLACQIFGAAGWKSVINISDFTCVDANELKTQEFIAIDRFHGGGKDG



AKFNAKHSERPYFQGRITLSPRMANHQLDWGKGLLALVIRDLQEGDLSFGFGANKGY



GALESVLITGIDQLQTDAIEAFRRLCVTQAAPQAFITPTSAVVIGDKAPLVVTDKKLPD



NSFHNPYHFIPINSPDTRHWLPTETDLAESHHSHAYYRQQPELFHGQLICRLYTETPTFI



GASKKDDTLPAELDNYRLNGQLAIPATSLRGMISSLAEAASNSAMRVLDNGLLSYRK



DASLALSKIGITFINRQGQWQLIPMEKIKLKNAYSAENMRLFVEQSHSWSPDYNTVYY



FSEKAGAFDVPQRTPKPGWQPGILRLLGKEGRSQELENKKHEWFIPVPENYIDKQLNA



FKYQEYLKDNSSKAIDIPAPVLNRYNELAYQRTLSQKKDTELVADGDSPAWLPFHLK



GQQRQPQMVGKHLVYTLPMTEYSLVYYAATNKVATEISYSSIWRGRVQDDADQAAT



VNHFIPDDLLPFNPKRTSLSPAELLFGFTELDPDKHSNDPTRSFAGKVRIGAATLAAYP



SNDSDLLAPEHITLKALSSPKLPSPALYFRTLQGNNSNVYIPKHELNPNHHTAKGRKY



YLHATRTPDQKRILKLSDQGHPPQNNAVKLPWLSHQETKNLQLKVKIKPIKPKQSFYF



QVDFNNLTAWELGLLCYALRPTIDFRHRIGMGKPLGLGSVKIDILALQTLDRQKRYA



QDSQDSARYNQHRWVNSSVTDMLAQAGYDVIEPTANPLVPKDLKTLFSQTMAANID



RALTLLGEPQHVKQPVHYPQVRDTAIQVRDTAIEEESYQWFVANDNLSDNSSAAKQT



LHDITETSEGLPTLIRHQKKKETQP





SEQ ID NO: 30
MSDTQKQAIHENKWHFRGIKRWEISAYLKTLSPLHIGDGGTIPVTIKDTQGKNREVEV


PDPY01000001.1
NSVITGKAALPIIPGSTIKGRLRHYFSKHFSDKALLNKVFGEESDATDDDQGRGGLAEF



HDAKWNPEKNRNLQGRYPYWNNTRKTYIEVSTAINRHTGAAKDKSLHHTECVPPGT



VFEIKITGSMDDRCAALVVAALEAIQTTGSRIFLGAEDANGNGRIGLTGKITVKQMDQ



AHIIQWLQKDSTTCVASFSNVKAENETQVKQMVQRHIAPKLNSVVSAAGPSYDITLHF



DGPFVVNDSDKCKAEDTPDIYPLEEKNGVPAFPVRSFRGAIRSQAERIIRTIGGQCCDG



SINNTCKNPKNLCIACEMFGSTGWKTSIEMDPFLCVDRELKPFIIQEFVAIDRFHGGGK



DEAKFNAAHYQAPVFKGKVRVSQRVGNDISWRKGLLALIFRDLKEGDIYFGFGTNKG



YGAVKKAEINPDGNASDFSESDIEAFINKCREKKGLYNCNPIKKPGKTKVSKNLPPAIV



PLDRTDSKFYNPYHFIPVKKPNTSSWAEKTAFGTADSPHSHGFYRKQTNEQQPLYSGR



LICMLTSETPFFIGAQAESDPTENENQASLRHPYQLDGEPAIPSTSLRGLISTMTEAAAN



CAMRVLDSEIISYRKPMNPSHILSALGMVTKRGEDFWLIPLAMPALSLNDEEHNYKLD



KRYRTMFPDGLAKLKVYLEKAYSNNVMKTFLNNENTWTLAQSKIHYLPLTPIQMQN



GGINSYYNNLRTPSRSNNFLIGQTVAHGNGIPASGPGAGMVPGILRILGKEHRQNDLP



QNKKHELFIPVPDAFVADPKTFLDTATAFLIPRNVIDAFEKIAEKQTQSQKQDKLKHD



EERLPFHLKGTRREQNHTLQIKTGDLVYFRPNAKGDEVEEIAFSSIWRGKTSGTTADFF



PDKELLPFNRNRSRVSPAELLFGFTENNPKEMKIDRGLAFAGKIRISAGTLSDKFSDTT



ESDLFEPETTLKALSSPKPPSPALYFKEKKSGTQYIKKQDLNPGKHEIQGRKIYLHALR



NENNQNVQRITSQGKFDNAANRTQPWVSQNEERNHLKTKCKPLKSGLNFFFHIDENN



LTQWELGLLCYALRPCETFRHKIGMGKPIGLGTVKIDIAVLQTIDRYARYTDTTQDSE



RYNQGAWISQELQNEIPNQYKGKGISNKKGMLSPEDCRKVEMETMDADIQRAIELLG



DPGNVTSPVHYPQLDRKNIETKNYEWFKQNEIEQQVLKPITKNTTHLTPFARWEQG





SEQ ID NO: 31
MNLPTWKLNNEKRWHISIVLTTATPLHIGSGEFCEHDDVKNNDGEPVKINACIKGSKG


NZ_JMLA01000001.1
RPIIPGSTIKGKLYEWLKTRNTEENLLEKLFGKGHNSVSQDQGRGGKAEFHDAEIIEPL



TGSQPWPYWREEHQAFIAASTAIDRHKQVALQQSLHYMETVPAGIRFKFTFTGVMRD



EEAALLIAALDSFDKNQNQPCFGVDRANAYGRMELHGHLHVKVMGATEISSWLNSF



SENDKKMAMESARNLEQQEINTLIKQGNALFKASCDEVKLGLTLKFKGPFLVNDPYA



VKILSSNENAKTDHYPLLDKNRNPYLPVSSFRGVLRSQAERIIRTLGGKCCSTDDPCKP



IFDKGDLSKLCLACQIFGASGWKTVINIHDFKAINKSKKTKQDFVAIDRFHGGGKDGA



KFDATHFERPEFEGAISFSPRMANNDLDWGKGLLALVLRDMQEGDMTFGYGANKGY



GGLESASITGIEQITSDIQAFRDKCVASPQTWLCDEAVKPANQQDKIPPAGIQVANSGF



HNPYQFIPSKDPDTGHWLPVLGLNADSHHSHAFYRDQTDNGEKLYHGRLICCLNTET



PIFIGADKKKDTEPAEINNYRLNGELAIPATSLRGMISSLAEAASNSAMRVLDNGLLSY



RKTADDALRKVGMVIYVDNKSFIIKLNDAIKLKQTYTPGNMKDFIEKSNSWSPEHNT



VYYLDNNQIPQESYMNGMKPGILRILGKEGREQELENKLHELFIPVPLEYVDTENNKF



DYQAYKKAFLYRAIEIPEPVLKRYSELADQRTMSQKSNKELKKDDTCQSVGWLPFHL



KGTKRQLDDKHKVGKLQIDEYDLIYYEASGKEVTEVAFSSIWRGRVETNSSQANKVY



SFIPGELLPFNESRKKVSPAELLFGFTQINKDGSKADDKAQAFAGKVRISAGTISEYPES



EANLLEQEVTLKALSTPKLPSPALYFRTINGNGSAYISKQELEPSKHLAKGRKYYLHA



LRTGDNKVQKLGSQGETANGGDSKLPWVTHNPDERPQLKVKIKPIKAEFIFSLDENNL



TEWELGLLCYALRPTDSFRHRIGMGKPLGLGSVKIDIMALQTINRQQRYAQDGLEEN



RFNRHNWVNPPHQPRLDKAGYSISLSSTPLNPEILRATFTKTMNADIYRTLELLGNPQ



NVKRPVHYPQVENHNIEQENYKWFVANDQGSGKGRNKIDPAEKALKILTENSDCLPT



LSRLDWRDE





SEQ ID NO: 32
MNNKGSNMTDTVKSGRWIITGQFQLVTPMHIGTGLDEEMDKQSGESVDKKQNNSWI


NZ_FOGH01000010.1
QAIALDLNKKPYIPGASIKGALKALARRYYCASNLNIFGDTIDTKDGDNKRKSVTVAG



QAEFLNAWYAADQEDKPFDTITRVAIDRVTGTAEDRKLFNTRRVNPGVCFNYKIIIQN



ACETEIQYLLDLLRKAAKDPSFSLGAGANQSQGKVRCLSSCVRYFGKQEMHDWFRAI



QNGKQEHWQIFAKPSNIKYADLERPDIIANSLNLPLTLDFHTPFLVKASKKKDEAKNE



ADAKPRTNHQGQVILPASSLRGRLRAQAEKILRTMGQDIPQGHAAPAYDGIAHRDLIS



LLFGTAGWKGIVCASDLIHSIPEYALQFNGVRETISDLSDTVKSCIIVDLVKTSTAAEKT



EEQLHIRIVDSAGSLIVHKSENSSWANDTFRDASVKDNFKARLKEIADPQDLSDALRA



DIKKRAFQLATLTRHEMVAIDRFTGGGKEGAKFNVDYIECPTLTGAIYLDLHRLKQA



QLKNDEDALKPALGLISLLLRDLAEGDIAFGFGANKGYGQCREHAVLDNWEERLKKI



GAGLTIDGALQALRDTVALEPPAEFPPEIEKTTDDNQPEAPDFNLKPASNGFHNPYHFI



PLNNPKIGDWPEAKAETLKANREGHDQYHTGKFSGRIVCSLTTQTPLFIGAETKPSTS



DREPSEARPFKLNGKHAIPATSLRGMLSSLFESVSNSNFRVLHPEHYSVRKSLDDYVA



LSAMGRIVDDQGELKLQPLTLPTLFGNRNNVPAKWEKIFGTPSEDDFLRIYFDDIPSKF



SSNKRYFYNCKATELKDFIKSDKYFIGKRTPTVFPKSSTEKSHLESLEFIDVEKFKKAV



ENLEITPGNNPYIHGWVRNLKDEFREDIPDNVKHHVFLPDTTKRVSPLEIPPHVKKRFH



ELADLALAGLHLKQGETIASPYKILPYTPIGRNKLENHIHRVPNDLTCYMTRLKKGDL



VFFDVDNDGQITEISFSSIWRAGIGTKNKLQTTADLLSQRDPNLVQLGMGVRTKNTDR



FKLSPAERLFGVVEHRDDDNTTVENVNQPNDKAQAFAFAGKVRIGFGLPDKKTTVN



GVSPVTLKELSSPKPPSPAFYLKRKNNDDFVSKKVAAECSETMTLRGRKCYLHAWRE



QNGNVMKLDAIGVNSGGSTCKPPWKTHKPAANDQKEFEEDKNKFITSRQVKIAPISE



NTPFYFEIDFNNLDATELAQLCATLQPAPKFEHRLGMGKPLGLGSVKIEPVGLFLINRH



QRYTTDSTNCDRYHYAWLKGEHAAWDWPEYFRQNVVTADCTQTFNDTFDKLVQN



GLAGTDADIKHALQLLGDPQYIGVPVHYPIAGNSTLENKHFEWFGNNDKASVLRQKA



QANSKNHHYQPKQQATPEEPQYLHTITKDSKQISLLKKNKIEDIENRDQQKHRYSNHR



R





SEQ ID NO: 632
MFPKGRQMRRQRLLGDAEYYGGTGREQPASIVISTDSDPDHKVYEWIITGQLKAETG


MVRP01000104.1
FFFGTKAGAGGHTDLSILLGKDGHYRVPRSVFRGALRRDLRVAFGAGCRVEVGRERP



CECPVCKVMRQITVMDTISSYREAPEIRQRIRLNPYTGTVDKGALFDMEVGPEGIEFPF



VLRFRGSKSFPSELAAVIGSWTKGTAWLGGAAATGKGRFSLLGLSIHKWNLSTAEGR



KSYLAAYGLRDAADKTVKRLSIDKGGKGDVGLPAGLERDALPSSVREPLWKKLVCT



VDFSSPLLLADPIAALLGVEGDERIGFDNIAYEKRRYNGETNTTESIPAVKGETFRGIVR



TALGKRHGNLTRDHEDCRCRLCAVFGKEQEAGKIRFEDLMPVGAWTRKHLDHVAID



RFHGGAEENMKFDTYALAASPTNPLRMKGLIWVRSDLFETGHDGPTPPYVKDIIDAL



ADVKRGLYPVGGKTGSGYGWIKDVTIDGLPQGLSLPPAEERVDGVNEVPPYNYSAPP



DLPSAAEGEYFFPHVFIKPYDKVDRVSRLTGHDRFRQGRITGRITCTLKTLTPLIIPDSE



GIQTDATGHKMCKFFSVAGKPMIPGSEIRGMISSVYEALTNSCFRVFDEEKYLTRRVQ



PKKGAKSSELVPGIIVWGQNGGLAVQQVKNAYRVPLYDDPAVTSAIPTEAQKNKER



WESVPSVNLQGALDWNLTTANIARDNRTFLNSRPEEKDAILSGTKPISFELEGTNPND



MLVRLVPDGVDGAHSGYLKFTGLNMVLKANKKTSRKLAPSEEDVRTLAILHNDFDS



RRDWRRPPNSQRYFPRSVLRFSLERSTYTIPKRCERVFEGTCGEPYSVPSDVERQYNSII



DDISKNYGRISETYLTKTANRKLTVGDLVYFIADLDKNMATHILPVFISRISDEKPLGE



LLPFSGKLIPCEGEPPTILKKMAPSLLTEAWRTLISTHLEGFCPACRLFGTTSYKGRIRF



GFAEHTGTPKWLREELDWARPFLTLPIQERPRPTWSVPDDKSEVPGRKFYLHHHGGN



RIVESNLRNRPEVNQTKNNSSVEPISAGNTFTFDVCFENLEAWELGLLLYCLELSPKLA



HKLGRAKAFGFGSVKIHVERIEERTTDGAYQDVTAVKKNGWITTGHDKLREWFHRD



DWEDVDHIRNLRTVLRFPDADQEHDVRYPELKANNGVSGYVELRDKMTASERQESL



RTPWYRWFPQNGTGGSGRHEQAATSQEQDTAKDESVLSATQRRQAVIDVSDPDERL



SGTVESFDRQKGDGYIGCGVRQFYVRLEDIRSRTALCEGQVVTFRARKEWEGHEAYD



VEIDQ









Guide Molecules


The system may comprise a guide molecule. The guide molecule may comprise a guide sequence. In certain cases, the guide sequence may be linked to a direct repeat sequence. In some cases, the system may comprise a nucleotide sequence encoding the guide molecule. The guide molecule may form a complex with the dead Cas7-11 protein and directs the complex to bind the target RNA sequence at one or more codons encoding an amino acid that is post-translationally modified. The guide sequence may be capable of hybridizing with a target RNA sequence comprising an Adenine or Cytidine encoding said amino acid to form an RNA duplex, wherein said guide sequence comprises a non-pairing nucleotide at a position corresponding to said Adenine or Cytidine resulting in a mismatch in the RNA duplex formed. The guide sequence may comprise one or more mismatch corresponding to different adenosine sites in the target sequence. In certain cases, guide sequence may comprise multiple mismatches corresponding to different adenosine sites in the target sequence. In cases where two guide molecules are used, the guide sequence of each of the guide molecules may comprise a mismatch corresponding to a different adenosine sites in the target sequence.


In general, a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence. In the context of formation of a CRISPR complex, “target sequence” refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target DNA sequence and a guide sequence promotes the formation of a CRISPR complex.


In certain embodiments, the target sequence should be associated with a PAM (protospacer adjacent motif) or PFS (protospacer flanking sequence or site); that is, a short sequence recognized by the CRISPR complex. Depending on the nature of the CRISPR-Cas protein, the target sequence should be selected such that its complementary sequence in the DNA duplex (also referred to herein as the non-target sequence) is upstream or downstream of the PAM. The precise sequence and length requirements for the PAM differ depending on the Cas7-11 protein used, but PAMs are typically 2-8 base pair sequences adjacent the protospacer (that is, the target sequence). Examples of the natural PAM sequences for different Cas7-11 orthologues are provided herein below and the skilled person will be able to identify further PAM sequences for use with a given Cas7-11 protein. In certain embodiments, the Cas7-11 protein has been modified to recognize a non-natural PAM, such as recognizing a PAM having a sequence or comprising a sequence YCN, YCV, AYV, TYV, RYN, RCN, TGYV, NTTN, TTN, TRTN, TYTV, TYCT, TYCN, TRTN, NTTN, TACT, TYCC, TRTC, TATV, NTTV, TTV, TSTG, TVTS, TYYS, TCYS, TBYS, TCYS, TNYS, TYYS, TNTN, TSTG, TTCC, TCCC, TATC, TGTG, TCTG, TYCV, or TCTC.


The terms “guide molecule” and “guide RNA” are used interchangeably herein to refer to RNA-based molecules that are capable of forming a complex with a CRISPR-Cas protein and comprises a guide sequence having sufficient complementarity with a target nucleic acid sequence to hybridize with the target nucleic acid sequence and direct sequence-specific binding of the complex to the target nucleic acid sequence. The guide molecule or guide RNA specifically encompasses RNA-based molecules having one or more chemically modifications (e.g., by chemical linking two ribonucleotides or by replacement of one or more ribonucleotides with one or more deoxyribonucleotides), as described herein.


As used herein, the term “guide sequence” in the context of a CRISPR-Cas system, comprises any polynucleotide sequence having sufficient complementarity with a target nucleic acid sequence to hybridize with the target nucleic acid sequence and direct sequence-specific binding of a nucleic acid-targeting complex to the target nucleic acid sequence. In the context of the present invention the target nucleic acid sequence or target sequence is the sequence comprising the target adenosine to be deaminated also referred to herein as the “target adenosine”. In some embodiments, except for the intended dA-C mismatch, the degree of complementarity, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g., the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, CA), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net). The ability of a guide sequence (within a nucleic acid-targeting guide RNA) to direct sequence-specific binding of a nucleic acid-targeting complex to a target nucleic acid sequence may be assessed by any suitable assay. For example, the components of a nucleic acid-targeting CRISPR system sufficient to form a nucleic acid-targeting complex, including the guide sequence to be tested, may be provided to a host cell having the corresponding target nucleic acid sequence, such as by transfection with vectors encoding the components of the nucleic acid-targeting complex, followed by an assessment of preferential targeting (e.g., cleavage) within the target nucleic acid sequence, such as by Surveyor assay as described herein. Similarly, cleavage of a target nucleic acid sequence (or a sequence in the vicinity thereof) may be evaluated in a test tube by providing the target nucleic acid sequence, components of a nucleic acid-targeting complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at or in the vicinity of the target sequence between the test and control guide sequence reactions. Other assays are possible, and will occur to those skilled in the art. A guide sequence, and hence a nucleic acid-targeting guide RNA may be selected to target any target nucleic acid sequence.


In some embodiments, the guide molecule comprises a guide sequence that is designed to have at least one mismatch with the target sequence, such that an RNA duplex formed between the guide sequence and the target sequence comprises a non-pairing C in the guide sequence opposite to the target A for deamination on the target sequence. In some embodiments, aside from this A-C mismatch, the degree of complementarity, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. In some cases, the distance between the non-pairing C and the 5′ end of the guide sequence is from about 10 to about 50, e.g., from about 10 to about 20, from about 15 to about 25, from about 20 to about 30, from about 25 to about 35, from about 30 to about 40, from about 35 to about 45, or from about 40 to about 50 nucleotides (nt) in length. In certain example. In some cases, the distance between the non-pairing C and the 3′ end of the guide sequence is from about 10 to about 50, e.g., from about 10 to about 20, from about 15 to about 25, from about 20 to about 30, from about 25 to about 35, from about 30 to about 40, from about 35 to about 45, or from about 40 to about 50 nucleotides (nt) in length. In one example, the distance between the non-pairing C and the 5′ end of said guide sequence is from about 20 to about 30 nucleotides.


In certain embodiments, the guide sequence or spacer length of the guide molecules is from 15 to 50 nt. In certain embodiments, the spacer length of the guide RNA is at least 15 nucleotides. In certain embodiments, the spacer length is from 15 to 17 nt, e.g., 15, 16, or 17 nt, from 17 to 20 nt, e.g., 17, 18, 19, or 20 nt, from 20 to 24 nt, e.g., 20, 21, 22, 23, or 24 nt, from 23 to 25 nt, e.g., 23, 24, or 25 nt, from 24 to 27 nt, e.g., 24, 25, 26, or 27 nt, from 27-30 nt, e.g., 27, 28, 29, or 30 nt, from 30-35 nt, e.g., 30, 31, 32, 33, 34, or 35 nt, or 35 nt or longer. In certain example embodiment, the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 40, 41, 42, 43, 44, 45, 46, 47 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 nt.


In some embodiments, the guide sequence has a length from about 10 to about 100, e.g., from about 20 to about 60, from about 20 to about 55, from about 20 to about 53, from about 25 to about 53, from about 29 to about 53, from about 20 to about 30, from about 25 to about 35, from about 30 to about 40, from about 35 to about 45, from about 40 to about 50, from about 45 to about 55, from about 50 to about 60, from about 55 to about 65, from about 60 to about 70, from about 70 to about 80, from about 80 to about 90, or from about 90 to about 100 nucleotides (nt) long that is capable of forming an RNA duplex with a target sequence. In certain example, the guide sequence has a length from about 20 to about 53 nt capable of forming said RNA duplex with said target sequence. In certain example, the guide sequence has a length from about 25 to about 53 nt capable of forming said RNA duplex with said target sequence. In certain example, the guide sequence has a length from about 29 to about 53 nt capable of forming said RNA duplex with said target sequence. In certain example, the guide sequence has a length from about 40 to about 50 nt capable of forming said RNA duplex with said target sequence. In some examples, the guide sequence comprises a non-pairing Cytosine at a position corresponding to said Adenine resulting in an A-C mismatch in the RNA duplex formed. The guide sequence is selected so as to ensure that it hybridizes to the target sequence comprising the adenosine to be deaminated.


In some embodiments, the guide sequence is about 10 nt to about 100 nt long and hybridizes to the target DNA strand to form an almost perfectly matched duplex, except for having a dA-C mismatch at the target adenosine site. Particularly, in some embodiments, the dA-C mismatch is located close to the center of the target sequence (and thus the center of the duplex upon hybridization of the guide sequence to the target sequence), thereby restricting the nucleotide deaminase to a narrow editing window (e.g., about 4 bp wide). In some embodiments, the target sequence may comprise more than one target adenosine to be deaminated. In further embodiments, the target sequence may further comprise one or more dA-C mismatch 3′ to the target adenosine site. In some embodiments, to avoid off-target editing at an unintended Adenine site in the target sequence, the guide sequence can be designed to comprise a non-pairing Guanine at a position corresponding to said unintended Adenine to introduce a dA-G mismatch, which is catalytically unfavorable for certain nucleotide deaminases such as ADAR1 and ADAR2. See Wong et al., RNA 7:846-858 (2001), which is incorporated herein by reference in its entirety.


In some embodiments, the sequence of the guide molecule (direct repeat and/or spacer) is selected to reduce the degree secondary structure within the guide molecule. In some embodiments, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%), 1%), or fewer of the nucleotides of the nucleic acid-targeting guide RNA participate in self-complementary base pairing when optimally folded. Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148). Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g., A. R. Gruber et al., 2008, Cell 106(1): 23-24; and PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151-62).


In some embodiments, it is of interest to reduce the susceptibility of the guide molecule to RNA cleavage, such as to cleavage by Cas7-11. Accordingly, in particular embodiments, the guide molecule is adjusted to avoid cleavage by Cas7-11 or other RNA-cleaving enzymes.


In some embodiments, the guide molecule is modified, e.g., by one or more aptamer(s) designed to improve guide molecule delivery, including delivery across the cellular membrane, to intracellular compartments, or into the nucleus. Such a structure can include, either in addition to the one or more aptamer(s) or without such one or more aptamer(s), moiety(ies) so as to render the guide molecule deliverable, inducible or responsive to a selected effector. The invention accordingly comprehends a guide molecule that responds to normal or pathological physiological conditions, including without limitation pH, hypoxia, O2 concentration, temperature, protein concentration, enzymatic concentration, lipid structure, light exposure, mechanical disruption (e.g. ultrasound waves), magnetic fields, electric fields, or electromagnetic radiation.


Adenosine Deaminase


The system may further comprise an adenosine deaminase or catalytic domain thereof. The adenosine deaminase protein or catalytic domain thereof deaminates an Adenine or Cytidine at the one or more codons thereby changing the codon to encode for an amino acid that is not post-translationally modified. The term “adenosine deaminase” or “adenosine deaminase protein” as used herein refers to a protein, a polypeptide, or one or more functional domain(s) of a protein or a polypeptide that is capable of catalyzing a hydrolytic deamination reaction that converts an adenine (or an adenine moiety of a molecule) to a hypoxanthine (or a hypoxanthine moiety of a molecule), as shown below. In some embodiments, the adenine-containing molecule is an adenosine (A), and the hypoxanthine-containing molecule is an inosine (I). The adenine-containing molecule can be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).




embedded image


According to the present disclosure, adenosine deaminases that can be used in connection with the present disclosure include, but are not limited to, members of the enzyme family known as adenosine deaminases that act on RNA (ADARs), members of the enzyme family known as adenosine deaminases that act on tRNA (ADATs), and other adenosine deaminase domain-containing (AD AD) family members. According to the present disclosure, the adenosine deaminase is capable of targeting adenine in a RNA/DNA and RNA duplexes. Indeed, Zheng et al. (Nucleic Acids Res. 2017, 45(6): 3369-3377) demonstrate that ADARs can carry out adenosine to inosine editing reactions on RNA/DNA and RNA/RNA duplexes. The adenosine deaminase can be modified to increase its ability to edit DNA in a RNA/DNAn RNA duplex.


In some embodiments, the adenosine deaminase is derived from one or more metazoa species, including but not limited to, mammals, birds, frogs, squids, fish, flies and worms. In some embodiments, the adenosine deaminase is a human, cephalopod (e.g., squid) or Drosophila adenosine deaminase. In certain examples, the adenosine deaminase is a human adenosine deaminase. In certain examples, the adenosine deaminase is a cephalopod adenosine deaminase. In certain examples, the adenosine deaminase is a Drosophila adenosine deaminase.


Cytidine Deaminase


The term “cytidine deaminase” or “cytidine deaminase protein” as used herein refers to a protein, a polypeptide, or one or more functional domain(s) of a protein or a polypeptide that is capable of catalyzing a hydrolytic deamination reaction that converts a cytosine (or a cytosine moiety of a molecule) to an uracil (or an uracil moiety of a molecule), as shown below. In some embodiments, the cytosine-containing molecule is a cytidine (C), and the uracil-containing molecule is an uridine (U). The cytosine-containing molecule can be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).




embedded image


According to the present disclosure, cytidine deaminases that can be used in connection with the present disclosure include, but are not limited to, members of the enzyme family known as apolipoprotein B mRNA-editing complex (APOBEC) family deaminase, an activation-induced deaminase (AID), or a cytidine deaminase 1 (CDA1). In particular embodiments, the deaminase in an APOBEC 1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC3B deaminase, an APOBEC3C deaminase, and APOBEC3D deaminase, an APOBEC3E deaminase, an APOBEC3F deaminase an APOBEC3G deaminase, an APOBEC3H deaminase, or an APOBEC4 deaminase. The cytidine deaminase can be modified to increase its ability to edit DNA in a RNA/DNAn RNA duplex.


In some embodiments, the cytidine deaminase is derived from one or more metazoa species, including but not limited to, mammals, birds, frogs, squids, fish, flies and worms. In some embodiments, the cytidine deaminase is a human, primate, cow, dog, rat or mouse cytidine deaminase.


CD (cytidine deaminase)-functionalized CRISPR system for RNA editing can be used for C to U conversions. In some embodiments, the cytidine deaminase protein or catalytic domain thereof is a human, rat or lamprey cytidine deaminase protein or catalytic domain thereof. In some embodiments, the cytidine deaminase protein or catalytic domain thereof is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase, an activation-induced deaminase (AID), or a cytidine deaminase 1 (CDA1). In some embodiments, the cytidine deaminase protein or catalytic domain thereof is an APOBEC1 deaminase comprising one or more mutations corresponding to W90A, W90Y, R118A, H121R, H122R, R126A, R126E, or R132E in rat APOBEC1, or an APOBEC3G deaminase comprising one or more mutations corresponding to W285A, W285Y, R313A, D316R, D317R, R320A, R320E, or R326E in human APOBEC3G. In some embodiments, the cytidine deaminase protein or catalytic domain thereof is delivered together with an uracil glycosylase inhibitor (UGI), where said UGI is covalently linked to said cytidine deaminase protein or catalytic domain thereof and/or said catalytically inactive Cas7-11 protein.


Cas7-11-APOBEC fusions can perform C-to-U editing of RNA. APOBEC substrates are ssRNA and the Cas7-11-APOBEC can therefore target regions of the RNA around the guide/target duplex. Cas7-11-APOBEC fusions can perform C to U knockdown via stop codon introduction. In addition to correcting pathogenic U to C mutations that arise during the cellular life cycle, Cas7-11-APOBEC fusions can lead to the introduction of stop codons by converting a CAA, CGA, or CAG to TAA, TGA, or TAG, respectively. APOBEC orthologs in fusion with Cas7-11 can increase the efficiency of C-to-U editing, or can allow for additional types of base conversions. Mutating the APOBEC from the Cas7-11-APOBEC can lead to fusions with specific dsRNA activity, base flip activity and increased activity.


In certain example embodiments, the deaminase is selected from Table 2.










TABLE 2





SEQ ID NO &



Deaminase Name
Protein Sequence







SEQ ID NO: 33
QLHLPQVLADAVSRLVLGKFGDLTDNFSSPHARRKVLAGVVMTTGTDVKDAKV



Homo

ISVSTGTKCINGEYMSDRGLALNDCHAEIISRRSLLRFLYTQLELYLNNKDDQKRS



sapiens_ADAR2_E_Q_

IFQKSERGGFRLKENVQFHLYISTSPCGDARIFSPHEPILEEPADRHPNRKARGQLR


Mutant
TKIESGQGTIPVRSNASIQTWDGVLQGERLLTMSCSDKIARWNVVGIQGSLLSIFV



EPIYFSSIILGSLYHGDHLSRAMYQRISNIEDLPPLYTLNKPLLSGISNAEARQPGKA



PNFSVNWTVGDSAIEVINATTGKDELGRASRLCKHALYCRWMRVHGKVPSHLL



RSKITKPNVYHESKLAAKEYQAAKARLFTAFIKAGLGAWVEKPTEQDQFSLT*





SEQ ID NO: 34
SLGTGNRCVKGDSLSLKGETVNDCHAEIISRRGFIRFLYSELMKYNSQTAKDSIFE



Homo

PAKGGEKLQIKKTVSFHLYISTAPCGDGALFDKSCSDRAMESTESRHYPVFENPK



sapiens_ADARI_E_Q_

QGKLRTKVENGQGTIPVESSDIVPTWDGIRLGERLRTMSCSDKILRWNVLGLQGA


Mutant
LLTHFLQPIYLKSVTLGYLFSQGHLTRAICCRVTRDGSAFEDGLRHPFIVNHPKVG



RVSIYDSKRQSGKTKETSVNWCLADGYDLEILDGTRGTVDGPRNELSRVSKKNIF



LLFKKLCSFRYRRDLLRLSYGEAKKAARDYETAKNYFKKGLKDMGYGNWISKP



QEEKNF





SEQ ID NO: 35
SVGTGNRCLTGDHLSLEGNSVNDSHAEMITRRGFLRYLYRHLLEYDAEVPNDLF



Octopus

EKGERSICRIKTNITFHLYISTAPCGDGALFSPRDTDSSNAKMEEENKHIHNPTFSS



vulgaris_ADARI_E_Q_

SVQGLLRTKVEGGQGTIPIDADFTEQTWDGIQRGERLRTMSCSDKICRWNVVGL


Mutant
QGALLSHFIEPIYLDSLTLGYLYDHGHLARAVCCRIERGEASVNQLLPEGYRLNH



PWLGRVTACDPPRETQKTKSLSINWCYDDEKSEVLDGTAGICYTAIEKNLFSRLT



KHNLYEEFKRVCRKFDRNDLLTAPSYNKAKMMATPFQTAKNVMLKKLKENNC



GTWVSKPIEEEMF





SEQ ID NO: 36
SVGTGNRCLTGDRLSLEGNSVNDSHAEMVTRRGFLRYLYKHLLEYDPEKPHDLF


Sepia_ADARI_E_Q_
EKGERSLCRIKTNITFHLYISTAPCGDGALFSPRDTDSSNVKVDEENKHVHNPTFS


Mutant
SSVQGLLRTKVEGGQGTIPIDADFTEQTWDGIQRGERLRTMSCSDKICRWNVVGL



QGALLSHFVEPIYLESLTLGYLYDHGHLARAVCCRIERGEASVNQLLPEGYRLNH



PWLGRVTACDPPRETQKTKSLSINWCYDDEKSEVLDGTAGICYTAIEKNLFSRLT



KHSLYEEFKKVCQKFEREDLLNVTSYNKAKMMAIPFQTAKNVMLKKLKENNCG



TWVSKPIEEEMF





SEQ ID NO: 37
GIGTGTKCINGEHMSDRGFGVNDCHAEIIARRCFLRYIYDQLELHLSDNSDVRNSS



Octopus

IFELRDKGGYQLKENIQFHLYISTAPCGDARIFSPHGQDVETGDRHPNRKARGQL



vulgaris_ADAR2_E_Q_

RTKIESGQGTIPVRTSGVIQTWDGVLEGERLLTMSCSDKIARWNVLGIQGSLLSHF


Mutant
MNPIYLESIILGSLYHSDHLSRAMYSRISIIENLPEPFHLNRPFLSGISSPESRQPGKA



PNFGINWRKEDETFEVINAMTGRVEGGSVSRICKQALFGRFMSLYGKLSSLTGQS



VTTRPTHYSDAKAAVMEYQLAKQCVFQAFQKAGLGNWVQKPIEQDQF





SEQ ID NO: 38
GIGTGTKCINGEYMNDRGFAVNDCHAEIIARRCFLRFIYDQLEMHLSEDPEVRGQ


Sepia_ADAR2_E_Q_
SVFELRDGGGYKLKPNIHFHLYISTAPCGDARIFSPHGQDVETGDRHPNRKARGQ


Mutant
LRTKIESGQGTIPVRSSGFIQTWDGVLEGERLLTMSCSDKIARWNVLGIQGALLCH



FMHPIYLESIILGSLYHSDHLSRAVYCRIASIENLPDLFQLNRPFLSGISSPESRQPG



KAPNFGINWRRNDDTFEVINAMTGRVEGGNMSRICKQALFDRFMNLYGRLSSLT



GQSVTTRPTLYSEAKAAVMEYQLAKQCVFQAFQKAGLGNWVQKPIEQDQF





SEQ ID NO: 39
GIGTGTKCINGEYMNDRGFAVNDCHAEIIARRCFLRFIYDQLELHLSDNAEVRGQ



Doryteusthis

SIFELRDAGGYKLKPNIQFHLYISTAPCGDARIFSPHGQDVETGDRHPNRKARGQL



opalescens_ADAR2_E_

RTKIESGQGTIPVRSSGFIQTWDGVLEGERLLTMSCSDKIARWNVLGVQGALLCH


Q_Mutant
FMHPIYLESIILGSLYHSDHLSRAVYCRIAAIENLPDLFRLNRPFLSGISSPESRQPG



KAPNFGINWRRNDDSFEVINAMTGRVEGGSMSRICKQALFDRFMNLYGKLSSLT



GQSVTTRPALYSEAKATVMEYQLAKQCVFQAFQKAGLGNWVQKPIEQDQF





SEQ ID NO: 40
MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSG


APOBECI
KNTTNHVEVNFIKKFTSERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVT



LVIYVARLFWHMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPPGDE



AHWPQYPPLWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNCHYQTIP



PHILLATGLIHPSVAWR





SEQ ID NO: 41
MAQKEEAAVATEAASQNGEDLENLDDPEKLKELIELPPFEIVTGERLPANFFKFQ


APOBEC2
FRNVEYSSGRNKTFLCYVVEAQGKGGQVQASRGYLEDEHAAAHAEEAFFNTILP



AFDPALRYNVTWYVSSSPCAACADRIIKTLSKTKNLRLLILVGRLFMWEEPEIQA



ALKKLKEAGCKLRIMKPQDFEYVWQNFVEQEEGESKAFQPWEDIQENFLYYEEK



LADILK





SEQ ID NO: 42
MEASPASGPRHLMDPHIFTSNFNNGIGRHKTYLCYEVERLDNGTSVKMDQHRGF


APOBEC3A
LHNQAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWFISWSPCFSWGCAG



EVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFKHCW



DTFVDHQGCPFQPWDGLDEHSQALSGRLRAILQNQGN





SEQ ID NO: 43
MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGV


APOBEC3B
FRGQVYFEPQYHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFL



SEHPNVTLTISAARLYYYWERDYRRALCRLSQAGARVKIMDYEEFAYCWENFV



YNEGQQFMPWYKFDENYAFLHRTLKEILRLRIFSVAFTAAMRSCASWTWFLLCS



WTRPRSTGSLGSSPGAPASPGAVPGKCVRSFRRTHT





SEQ ID NO: 44
MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVSWKTG


APOBEC3C
VFRNQVDSETHCHAERCFLSWFCDDILSPNTKYQVTWYTSWSPCPDCAGEVAEF



LARHSNVNLTIFTARLYYFQYPCYQEGLRSLSQEGVAVEIMDYEDFKYCWENFV



YNDNEPFKPWKGLKTNFRLLKRRLRESLQ





SEQ ID NO: 45
MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGV


APOBEC3D
FRGPVLPKRQSNHRQEVYFRFENHAEMCFLSWFCGNRLPANRRFQITWFVSWNP



CLPCVVKVTKFLAEHPNVTLTISAARLYYYRDRDWRWVLLRLHKAGARVKIMD



YEGERCRGQGSMTGRNSLRDGWICNAMAGGVPGQPAGVGLALIATDSQETRPG



RAGPGSGESLSASHLFISDFAYCWENFVCNEGQPFMPWYKFDDNYASLHRTLKEI



LRNPMEAMYPHIFYFHFKNLLKACGRNESWLCFTMEVTKHHSAVFRKRGVFRN



QVDPETHCHAERCFLSWFCDDILSPNTNYEVTWYTSWSPCPECAGEVAEFLARH



SNVNLTIFTARLCYFWDTDYQEGLCSLSQEGASVKIMGYKDFVSCWKNFVYSDD



EPFKPWKGLQTNFRLLKRRLREILQ





SEQ ID NO: 46
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPRLDAKIF


APOBEC3F
RGQVYSQPEHHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFL



AEHPNVTLTISAARLYYYWERDYRRALCRLSQAGARVKIMDDEEFAYCWENFV



YSEGQPFMPWYKFDDNYAFLHRTLKEILRNPMEAMYPHIFYFHFKNLRKAYGRN



ESWLCFTMEVVKHHSPVSWKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTN



YEVTWYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLYYFWDTDYQEGLRSLS



QEGASVEIMGYKDFKYCWENFVYNDDEPFKPWKGLKYNFLFLDSKLQEILE





SEQ ID NO: 47
MELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDP


APOBEC3G
KVTLTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFV



YSQRELFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYL



CYEVERMHNDTWVLLNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDL



DQDYRVTCFTSWSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTL



AEAGAKISIMTYSEFKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQNQ



EN





SEQ ID NO: 48
MALLTAETFRLQFNNKRRLRRPYYPRKALLCYQLTPQNGSTPTRGYFENKKKCH


APOBEC3H
AEICFINEIKSMGLDETQCYQVTCYLTWSPCSSCAWELVDFIKAHDHLNLRIFASR



LYYHWCKPQQDGLRLLCGSQVPVEVMGFPDSRGTCAGSLHGYIV





SEQ ID NO: 49
MEPIYEEYLANHGTIVKPYYWLSFSLDCSNCPYHIRTGEEARVSLTEFCQIFGFPY


APOBEC4
GTTFPQTKHLTFYELKTSSGSLVQKGHASSCTGNYIHPESMLFEMNGYLDSAIYN



NDSIRHIILYSNNSPCNEANHCCISKMYNFLITYPGITLSIYFSQLYHTEMDFPASA



WNREALRSLASLWPRVVLSPISGGIWHSVLHSFISGVSGSHVFQPILTGRALADRH



NAYEINAITGVKPYFTDVLLQTKRNPNTKAQEALESYPLNNAFPGQFFQMPSGQL



QPNLPPDLRAPVVFVLVPLRDLPPMHMGQNPNKPRNIVRHLNMPQMSFQETKDL



GRLPTGRSVEIVEITEQFASSKEADEKKKKKGKK





SEQ ID NO: 50
MDSLLMNRKFLYQFKNVRWAKGRRETYLCYVVERRDSATSFSLDFGYLRNKNG


Activation-induced
CHVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRI


cytidine deaminase
FTARLYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAW


(AID)
BGLHENSVRLSRQLRRILL









EXAMPLES

While several experimental Examples are contemplated, these Examples are intended non-limiting.


Materials

Table 3 below shows examples of bacterial plasmids.











TABLE 3





Plasmid




number
Name
Benchling link







pDF0038
DsiCas7-11a full locus with CRISPR array
https://benchling.com/s/seq-




72T3bYt8Ff9QNtG7aE2X


pDF0039
DsiCas7-11a only expression with
https://benchling.com/s/seq-



CRISPR array
uiS8cQyZLi2NrqfhxWF2


pDF0044
CjcCas7-11b full locus with synthetic array
https://benchling.com/s/seq-




GXIXQfFqwbN2vu7g6NUV


pDF0118
DsiCas7-11a bacterial expression with
https://benchling.com/s/seq-



Twinstrep-SUMO-Codon
PSpbXxlK66yLBw0TbxnY


pDF0163
GwCas7-11c bacterial expression with
https://benchling.com/s/seq-



Twinstrep-SUMO-Codon
CsMaJRrLeJ15XtHvMFd1


pDF0191
CjcCas7-11b bacterial expression with
https://benchling.com/s/seq-



Twinstrep-SUMO-Codon
lLOOF2Yl8T6v2jUuQ9Q3


pDF0229
DsiCas7-11a expression vcetor with
https://benchling.com/s/seq-



golden gate site for guides
mPWeEpoNVZVKxJwlIhVj









Table 4 below shows examples of bacterial spacers.











TABLE 4





SEQ ID NO
Spacer sequence
Target







SEQ ID NO: 51
CTTTGTTGTCTTCGACATGGGTAATCCTCAT
MS2 targeting 1





SEQ ID NO: 52
TAAAGAGTTGAACTTCTTTGTTGTCTTCGAC
MS2 targeting 3





SEQ ID NO: 53
GTACCTTCGTACGGACGACCTTCACCTTCAC
RFP targeting 1





SEQ ID NO: 54
CAGGATGTCCCAAGCGAACGGCAGCGGACC
RFP targeting 2



A






SEQ ID NO: 55
CAGGGAGGAGTCCTGGGTAACGGTAACAAC
RFP targeting 3



A






SEQ ID NO: 56
CATGAACTCTTTGATAACGTCTTCGCTACTC
RFP targeting 4





SEQ ID NO: 57
TCGGAGGTAGCCCGACTCGCTCCGGTTCGTA
non-targeting 1





SEQ ID NO: 58
TGAAAGTTGGCGCCTTTTTTCATACGTCGAG
non-targeting 2









Table 5 below shows examples of targets and pre-crRNA.










TABLE 5





Target
Sequence







SEQ ID NO: 59
GGGCGAAAUCGGUAUUUCCAAUGAAAUCACUCAGGUUGGAAAGCCGGUUUUC


DsiCas7-11 array
UUUGAUGUCACGGAACCGCCAAUAUAACAAUACAGGUAUUAUAGUUGGGUUG


(4DR-3S)
GAAAGCCGGUUUUCUUUGAUGUCACGGAACAUUGUAAACUGCAUAUCUGUGU



UUGCCGUCUGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGAACUCACGUGA



GUCAGUCUUAGUUCUAUACUUCUUUAGGGUUGGAAAGCCGGUUUUCUUUGAU



GUCACGGAACAGGAACUUGAACAACAUCGUUACUAACGAG





SEQ ID NO: 60
GGGGGCCAGUGAAUUCGAGCUCGGUACCCGGGGAUCCUCUAGAAAUAUGGAU


ssRNA 1 target
UACUUGGUAGAACAGCAAUCUACUCGACCUGCAGGCAUGCAAGCUUGGCGUA



AUCAUGGUCAUAGCUGUUUCCUGUGUUUAUCCGCUCACAAUUCCACACAACA



UACGAGCCGGAAGCAUAAAG





SEQ ID NO: 61
GGGGCAAACUCCGGCAUCUACUAAUAGACGCCGGCCAUUCAAACAUGAGGAU


MS2 target for
UACCCAUGUCGAAGACAACAAAGAAGUUCAACUCUUUAUGUAUUGAUCUUCC


body labeling
UCGCGAUCUUUCUCUCGAAAUUUACCAAUCAAUUGCUUCUGUCGCUACU





SEQ ID NO: 62
GGGGGCCAGUGAAUUCGAGCUCGGUACCCGGGGAUCCUCUAGAAAUAUGGAU


SSRNA 2 target
UACUUGGUAGAACAGCAAUCUACUCGACCUGCAGGCAUGCAAGCUUGGCGUA



AUCAUGGUCAUAGCUGUUUCCUGUGUUUAUCCGCUCACAAUUCCACACA





SEQ ID NO: 63
GGCCAGUGAAUUCGAGCUCGGUACCCGGGGAUCCUCUAGAAAUAUGGAUUAC


fixed crRNA
UUGGGUCGAAGACAACAAAGAAGUUCAACUCUUUAUAGAACAGCAAUCUACU


target 1
CGACCUGCAGGCAUGCAAGCUUGGCGUAAUCAUGGUCAUAGCUGUU





SEQ ID NO: 64
AUGCCCGCCAUGAAGAUCGAGUGCCGCAUCACCGGCACCCUGAACGGCGUGGA


fixed crRNA
GUUGUCGAAGACAACAAAGAAGUUCAACUCUUUACGAGCUGGUGGGCGGCGG


target 2
AGAGGGCACCCCCGAGCAGGGCCGCAUGACCAACAAGAUGAAGAG





SEQ ID NO: 65
AUUCUAUGUCUGGUUUUCGCUCAAAAACUUCCCGGAAAUGACAACAGCACGG


fixed crRNA
CAACGUCGAAGACAACAAAGAAGUUCAACUCUUUAGCUGUGCCUUGGGCACC


target 3
AUGCAGUACCAAACGGAACGAUAGUGAAAACAAUCACGAAUGACCA





SEQ ID NO: 66
AUUCUAUGUCUGGUUUUCGCUCAAAAACUUCCCGGAAAUGACAACAGCACGG


fixed crRNA
CAACGUCGAAGACAACAAAGAAGUUCAACUCUUUAGCUGUGCCUUGGGCACC


target 4
AUGCAGUACCAAACGGAACGAUAGUGAAAACAAUCACGAAUGACCA





SEQ ID NO: 67
GCUGUGCCUUGGGCACCAUGCAGUACCAAACGGAACGAUAGUGAAAACAAUC


fixed crRNA
ACGAAUGACCAGUCGAAGACAACAAAGAAGUUCAACUCUUUAAUUCUAUGUC


target 5
UGGUUUUCGCUCAAAAACUUCCCGGAAAUGACAACAGCACGGCAAC





SEQ ID NO: 68
GGGGUUUGGAAGCCGGGUCGAAGUCAGGCCCGUUAAGACCGAGUAGAUUGCU


GwCas7-11
GUUCUACCAAGUAAUCCAGUUUGGAAGCCGGGUCGAAGUCAGGCCCGUUAAG


array (3DR-2S)
ACUAUGCUUCCGGCUCGUAUGUUGUGUGGAAUUGUUUGGAAGCCGGGUCGAA



GUCAGGCCCGUUAAGAC





SEQ ID NO: 69
GGGGCUAGCUCAGUCCUAGGUAUAAUGCUAGCGCUGAUUUAGGCAAAAACGG


CjcCas7-11 array
CUUGAAGACUAAAGGAAGGAAUUAAUGUCACGGUACGACUAAAUGGCACCAC


(3DR-2S)
UAAUUGUUGCCUUCUAAGUUCCUUCUUGAAGACUAAAGGAAGGAAUUAAUGU



CACGGUACGUUUGUUUAACCACAUGAGGCACACCGCCCUCGUGAGCUUGAAG



ACUAAAGGAAGGAAUUAAUGUCACGGUACAAUCUCCGCCCCGUUCGUAAGC





SEQ ID NO: 70
AUGCCCGCCAUGAAGAUCGAGUGCCGCAUCACCGGCACCCUGAACGGCGUGGA


EGFP ssRNA
GUUCGAGCUGGUGGGCGGCGGAGAGGGCACCCCCGAGCAGGGCCGCAUGACC


400 nt
AACAAGAUGAAGAGCACCAAAGGCGCCCUGACCUUCAGCCCCUACCUGCUGAG



CCACGUGAUGGGCUACGGCUUCUACCACUUCGGCACCUACCCCAGCGGCUACG



AGAACCCCUUCCUGCACGCCAUCAACAACGGCGGCUACACCAACACCCGCAUC



GAGAAGUACGAGGACGGCGGCGUGCUGCACGUGAGCUUCAGCUACCGCUACG



AGGCCGGCCGCGUGAUCGGCGACUUCAAGGUGGUGGGCACCGGCUUCCCCGAG



GACAGCGUGAUCUUCACCGACAAGAUCAUCC





SEQ ID NO: 71
GGGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGAAC


(mini array) WT






SEQ ID NO: 72
GGCGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUCGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGAAC


(mini array)



mutant pos 1






SEQ ID NO: 73
GGGGAUGGAAAGCCGGUUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGAUGGAAAGCCGGUUUUCUUUGAUGUCACGGAAC


(mini array)



mutant pos 3






SEQ ID NO: 74
GGGGUUCGAAAGCCGGUUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUCGAAAGCCGGUUUUCUUUGAUGUCACGGAAC


(mini array)



mutant pos 5






SEQ ID NO: 75
GGGGUUGGUAAGCCGGUUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGUAAGCCGGUUUUCUUUGAUGUCACGGAAC


(mini array)



mutant pos 7






SEQ ID NO: 76
GGGGUUGGAAUGCCGGUUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAUGCCGGUUUUCUUUGAUGUCACGGAAC


(mini array)



mutant pos 9






SEQ ID NO: 77
GGGGUUGGAAAGGCGGUUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGGCGGUUUUCUUUGAUGUCACGGAAC


(mini array)



mutant pos 11






SEQ ID NO: 78
GGGGUUGGAAAGCCCGUUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCCGUUUUCUUUGAUGUCACGGAAC


(mini array)



mutant pos 13






SEQ ID NO: 79
GGGGUUGGAAAGCCGGAUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGAUUUCUUUGAUGUCACGGAAC


(mini array)



mutant pos 15






SEQ ID NO: 80
GGGGUUGGAAAGCCGGUUAUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUAUCUUUGAUGUCACGGAAC


(mini array)



mutant pos 17






SEQ ID NO: 81
GGGGUUGGAAAGCCGGUUUUGUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUGUUUGAUGUCACGGAAC


(mini array)



mutant pos 19






SEQ ID NO: 82
GGGGUUGGAAAGCCGGUUUUCUAUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUAUGAUGUCACGGAAC


(mini array)



mutant pos 21






SEQ ID NO: 83
GGGGUUGGAAAGCCGGUUUUCUUUCAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUCAUGUCACGGAAC


(mini array)



mutant pos 23






SEQ ID NO: 84
GGGGUUGGAAAGCCGGUUUUCUUUGAAGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAAGUCACGGAAC


(mini array)



mutant pos 25






SEQ ID NO: 85
GGGGUUGGAAAGCCGGUUUUCUUUGAUGACACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAUGACACGGAAC


(mini array)



mutant pos 27






SEQ ID NO: 86
GGGGUUGGAAAGCCGGUUUUCUUUGAUGUCUCGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAUGUCUCGGAAC


(mini array)



mutant pos 29






SEQ ID NO: 87
GGGGUUGGAAAGCCGGUUUUCUUUGAUGUCACCGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAUGUCACCGAAC


(mini array)



mutant pos 31






SEQ ID NO: 88
GGGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGUACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGUAC


(mini array)



mutant pos 33






SEQ ID NO: 89
GGGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGUAGCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGUAG


(mini array)



mutant pos 35






SEQ ID NO: 90
GGGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGAAC


(mini array) WT






SEQ ID NO: 91
GGGGUUGGAAAGGGGGUUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGGGGGUUUUCUUUGAUGUCACGGAAC


(mini array)



double mutant



pos 11






SEQ ID NO: 92
GGGGUUGGAAAGCCGCAUUUCUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGCAUUUCUUUGAUGUCACGGAAC


(mini array)



double mutant



pos 14






SEQ ID NO: 93
GGGGUUGGAAAGCCGGUUAACUUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUAACUUUGAUGUCACGGAAC


(mini array)



double mutant



pos 17






SEQ ID NO: 94
GGGGUUGGAAAGCCGGUUUUGAUUGAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUGAUUGAUGUCACGGAAC


(mini array)



double mutant



pos 19






SEQ ID NO: 95
GGGGUUGGAAAGCCGGUUUUCUUACAUGUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUACAUGUCACGGAAC


(mini array)



double mutant



pos 22






SEQ ID NO: 96
GGGGUUGGAAAGCCGGUUUUCUUUGAACUCACGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAACUCACGGAAC


(mini array)



double mutant



pos 25






SEQ ID NO: 97
GGGGUUGGAAAGCCGGUUUUCUUUGAUGUGUCGGAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAUGUGUCGGAAC


(mini array)



double mutant



pos 28






SEQ ID NO: 98
GGGGUUGGAAAGCCGGUUUUCUUUGAUGUCACCCAACCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAUGUCACCCAAC


(mini array)



double mutant



pos 31






SEQ ID NO: 99
GGGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGAUGCUUUGUUGUCUUCGA


MS2 crRNA 1
CAUGGGUAAUCCUCAUGGUUGGAAAGCCGGUUUUCUUUGAUGUCACGGAUG


(mini array)



double mutant



pos 34






SEQ ID NO: 100
GGGAAAUCAGCGAAAUGCACCCCGCAUUACGUUUGGUGGACCCUCAGAUUCA


SARS-COV2
ACUGGCAGUAACCAGAAUGGAGAACGCAGUGGGGCGCGAUCAAAACAACGUC


SSRNA
GGCCCCAAGGUUUACCCAAUAAUACUGCGUCUUGGUUCACCGCUCUCAC





SEQ ID NO: 101
GGGAUUCUAUGUCUGGUUUUCGCUCAAAAACUUCCCGGAAAUGACAACAGCA


Influenza A
CGGCAACGCUGUGCCUUGGGCACCAUGCAGUACCAAACGGAACGAUAGUGAA


segment 4 HA
AACAAUCACGAAUGACCAAAUUGAAGUCACUAAUGCUACUGAACUGGUU


gene






SEQ ID NO: 102
GGGATGAGGATTACCCATGTCGAAGACAACAAAG


34-nt MS2



ssRNA target






SEQ ID NO: 103
AUGCCCGCCAUGAAGAUCGAGUGCCGCAUCACCGGCACCCUGAACGGCGUGGA


EGFP ssRNA
GUUCGAGCUGGUGGGCGGCGGAGAGGGCACCCCCGAGCAGGGCCGCA


100 nt






SEQ ID NO: 104
AUGCCCGCCAUGAAGAUCGAGUGCCGCAUCACCGGCACCCUGAACGGCGUGGA


EGFP ssRNA
GUUCGAGCUGGUGGGCGGCGGAGAGGGCACCCCCGAGCAGGGCCGCAUGACC


200 nt
AACAAGAUGAAGAGCACCAAAGGCGCCCUGACCUUCAGCCCCUACCUGCUGAG



CCACGUGAUGGGCUACGGCUUCUACCACUUCGGCACCUACCC





SEQ ID NO: 105
AUGCCCGCCAUGAAGAUCGAGUGCCGCAUCACCGGCACCCUGAACGGCGUGGA


EGFP ssRNA
GUUCGAGCUGGUGGGCGGCGGAGAGGGCACCCCCGAGCAGGGCCGCAUGACC


600 nt
AACAAGAUGAAGAGCACCAAAGGCGCCCUGACCUUCAGCCCCUACCUGCUGAG



CCACGUGAUGGGCUACGGCUUCUACCACUUCGGCACCUACCCCAGCGGCUACG



AGAACCCCUUCCUGCACGCCAUCAACAACGGCGGCUACACCAACACCCGCAUC



GAGAAGUACGAGGACGGCGGCGUGCUGCACGUGAGCUUCAGCUACCGCUACG



AGGCCGGCCGCGUGAUCGGCGACUUCAAGGUGGUGGGCACCGGCUUCCCCGAG



GACAGCGUGAUCUUCACCGACAAGAUCAUCCGCAGCAACGCCACCGUGGAGCA



CCUGCACCCCAUGGGCGAUAACGUGCUGGUGGGCAGCUUCGCCCGCACCUUCA



GCCUGCGCGACGGCGGCUACUACAGCUUCGUGGUGGACAGCCACAUGCACUUC



AAGAGCGCCAUCCACCCCAGCAUCCUGCAGAACGGGGGCCCCAUGUUCGCCUU



CCGCCGCGUGGAGGAGCUG





SEQ ID NO: 106
CCGGCCAUUCAAACAUGAGGAUUACCCAUGUCGAAGACAACAAAGAAGUUCA


60 nt MS2
ACUCUUUA


SSRNA






SEQ ID NO: 107
GGCCAGUGAAUUCGAGCUCGGUACCCGGGGAUCCUCUAGAAAUAUGGAUUAC


ssRNA 1 with
UUGgUAGAACAGCAAUCUACUCGNNNNNNACCUGCAGGCAUGCAAGCUUGGC


right PFS
GUAAUCAUGGUCAUAGCUGUUUCCUGUGUUUAUCCGCUCACAAUUCCACACA



ACAUACGAG CCGGAAGCAU





SEQ ID NO: 108
GGCCAGUGAAUUCGAGCUCGGUACCCGGGGAUCCUCUAGAAAUANNNNNNUG


ssRNA 1 with
GAUUACUUGgUAGAACAGCAAUCUACUCGACCUGCAGGCAUGCAAGCUUGGCG


left PFS
UAAUCAUGGUCAUAGCUGUUUCCUGUGUUUAUCCGCUCACAAUUCCACACAA



CAUACGAGCCGGAAGCAU





SEQ ID NO: 109
GGGAUGAGGAUUACCCAUGUCGAAGACAACAAAG


31-nt MS2



ssRNA target






SEQ ID NO: 110
CCGGCATCTACTAATAGACGCCGGCCATTCAAACATGAGGATTACCCATGTCGA


MS2 ssDNA and
AGACAACAAAGAAGTTCAACTCTTTATGTATTGATCTTCCTCGCGA


dsDNA target









Table 6 below shows examples of crRNA for in vitro assays.













TABLE 6






SEQ ID

SEQ ID



Name
NO
DR sequence
NO
Spacer sequence







SSRNA
111
GGTTGGAAAGCCGGTTTTCTT
112
CGAGTAGATTGCTGTTCTacC


crRNA 5

TGATGTCACGGAAC

AAGTAATCCA





SSRNA
113
GGTTGGAAAGCCGGTTTTCTT
114
TATGCTTCCGGCTCGTATGT


crRNA 1

TGATGTCACGGAAC

TGTGTGGAATT





SSRNA
115
GGTTGGAAAGCCGGTTTTCTT
116
AACACAGGAAACAGCTATG


crRNA 2

TGATGTCACGGAAC

ACCATGATTACG





SSRNA
117
GGTTGGAAAGCCGGTTTTCTT
118
AATTGTGAGCGGATAAACA


crRNA 3

TGATGTCACGGAAC

CAGGAAACAGCT





SSRNA
119
GGTTGGAAAGCCGGTTTTCTT
120
TTGCTGTTCTacCAAGTAATC


crRNA 4

TGATGTCACGGAAC

CATATTTCTA





SSRNA
121
GGTTGGAAAGCCGGTTTTCTT
122
TTTCTAGAGGATCCCCGGGT


crRNA 6

TGATGTCACGGAAC

ACCGAGCTCGA





non targeting
123
GGTTGGAAAGCCGGTTTTCTT
124
CGCCAATATAACAATACAG


crRNA

TGATGTCACGGAAC

GTATTATAGTTG





MS2 guide 1
125
GGTTGGAAAGCCGGTTTTCTT
126
CTTTGTTGTCTTCGACATGG




TGATGTCACGGAAC

GTAATCCTCAT





MS2 guide 2
127
GGTTGGAAAGCCGGTTTTCTT
128
CTTCTTTGTTGTCTTCGACA




TGATGTCACGGAAC

TGGGTAATCCT





MS2 guide 3
129
GGTTGGAAAGCCGGTTTTCTT
130
TAAAGAGTTGAACTTCTTTG




TGATGTCACGGAAC

TTGTCTTCGAC





MS2 guide 4
131
GGTTGGAAAGCCGGTTTTCTT
132
TCTTTGTTGTCTTCGACATG




TGATGTCACGGAAC

GGTAATCCTCA





MS2
133
GGTTGGAAAGCCGGTTTTCTT
134
TAATCCTCATGTTTGAATGG


additional

TGATGTCACGGAAC

CCGGCGTCTAT


spacer 1









MS2
135
GGTTGGAAAGCCGGTTTTCTT
136
TTCGACATGGGTAATCCTCA


additiona

TGATGTCACGGAAC

TGTTTGAATGG


spacer 2









MS2
137
GGTTGGAAAGCCGGTTTTCTT
138
CGAGGAAGATCAATACATA


additional

TGATGTCACGGAAC

AAGAGTTGAACT


spacer 3









MS2
139
GGTTGGAAAGCCGGTTTTCTT
140
TGGTAAATTTCGAGAGAAA


additional

TGATGTCACGGAAC

GATCGCGAGGAA


spacer 4









MS2
141
GGTTGGAAAGCCGGTTTTCTT
142
TTGAATGGCCGGCGTCTATT


additional

TGATGTCACGGAAC

AGTAGATGCCG


spacer 5









fixed
143
GGTTGGAAAGCCGGTTTTCTT
144
AATCCATATTTCTAGAGGAT


position

TGATGTCACGGAAC

CCCCGGGTACC


SSRNA 1






150 nt guide






1









fixed
145
GGTTGGAAAGCCGGTTTTCTT
146
TGTTCTACCAAGTAATCCAT


position

TGATGTCACGGAAC

ATTTCTAGAGG


SSRNA 1






150 nt guide






2









fixed
147
GGTTGGAAAGCCGGTTTTCTT
148
TCGAGTAGATTGCTGTTCTA


position

TGATGTCACGGAAC

CCAAGTAATCC


SSRNA 1






150 nt guide






3









fixed
149
GGTTGGAAAGCCGGTTTTCTT
150
GCATGCCTGCAGGTCGAGT


position

TGATGTCACGGAAC

AGATTGCTGTTC


SSRNA 1






150nt guide






4









fixed
151
GGTTGGAAAGCCGGTTTTCTT
152
TTACGCCAAGCTTGCATGCC


position

TGATGTCACGGAAC

TGCAGGTCGAG


SSRNA 1






150 nt guide






5









fixed
153
GGTTGGAAAGCCGGTTTTCTT
154
GCTATGACCATGATTACGCC


position

TGATGTCACGGAAC

AAGCTTGCATG


SSRNA 1






150 nt guide






6









fixed
155
GGTTGGAAAGCCGGTTTTCTT
156
AATCCTCATGTTTGAATGGC


position MS2

TGATGTCACGGAAC

CGGCGTCTATT


guide 1









fixed
157
GGTTGGAAAGCCGGTTTTCTT
158
CTTCGACATGGGTAATCCTC


position MS2

TGATGTCACGGAAC

ATGTTTGAATG


guide 2









fixed
159
GGTTGGAAAGCCGGTTTTCTT
160
ACTTCTTTGTTGTCTTCGAC


position MS2

TGATGTCACGGAAC

ATGGGTAATCC


guide 3









fixed
161
GGTTGGAAAGCCGGTTTTCTT
162
CATAAAGAGTTGAACTTCTT


position MS2

TGATGTCACGGAAC

TGTTGTCTTCG


guide 4









fixed
163
GGTTGGAAAGCCGGTTTTCTT
164
AGGAAGATCAATACATAAA


position MS2

TGATGTCACGGAAC

GAGTTGAACTTC


guide 5









fixed
165
GGTTGGAAAGCCGGTTTTCTT
166
GAGAAAGATCGCGAGGAAG


position MS2

TGATGTCACGGAAC

ATCAATACATAA


guide 6









EGFP guide
167
GGTTGGAAAGCCGGTTTTCTT
168
AGGGTGCCGGTGATGCGGC


1

TGATGTCACGGAAC

ACTCGATCTTCA





EGFP guide
169
GGTTGGAAAGCCGGTTTTCTT
170
CCAGCTCGAACTCCACGCC


2

TGATGTCACGGAAC

GTTCAGGGTGCC





EGFP guide
171
GGTTGGAAAGCCGGTTTTCTT
172
CCCTCTCCGCCGCCCACCAG


3

TGATGTCACGGAAC

CTCGAACTCCA





EGFP guide
173
GGTTGGAAAGCCGGTTTTCTT
174
CGGCCCTGCTCGGGGGTGC


4

TGATGTCACGGAAC

CCTCTCCGCCGC





EGFP guide
175
GGTTGGAAAGCCGGTTTTCTT
176
ACGTGGCTCAGCAGGTAGG


5

TGATGTCACGGAAC

GGCTGAAGGTCA





EGFP guide
177
GGTTGGAAAGCCGGTTTTCTT
178
AGGTGCCGAAGTGGTAGAA


6

TGATGTCACGGAAC

GCCGTAGCCCAT





EGFP guide
179
GGTTGGAAAGCCGGTTTTCTT
180
TGGCGTGCAGGAAGGGGTT


7

TGATGTCACGGAAC

CTCGTAGCCGCT





EGFP guide
181
GGTTGGAAAGCCGGTTTTCTT
182
GTACTTCTCGATGCGGGTGT


8

TGATGTCACGGAAC

TGGTGTAGCCG





EGFP guide
183
GGTTGGAAAGCCGGTTTTCTT
184
GCGGCCGGCCTCGTAGCGG


9

TGATGTCACGGAAC

TAGCTGAAGCTC





EGFP guide
185
GGTTGGAAAGCCGGTTTTCTT
186
AAGCCGGTGCCCACCACCTT


10

TGATGTCACGGAAC

GAAGTCGCCGA





EGFP guide
187
GGTTGGAAAGCCGGTTTTCTT
188
AAGATCACGCTGTCCTCGG


11

TGATGTCACGGAAC

GGAAGCCGGTGC





GwCas7-11c
189
GTTTGGAAGCCGGGTCGAAG
190
CTTTGTTGTCTTCGACATGG


MS2 crRNA

TCAGGCCCGTTAAGAC

GTAATCCTCAT





CjcCas7-11b
191
cttgaagactaaaggaaggaa
192
CTTTGTTGTCTTCGACATGG


MS2 crRNA

ttaatgtcacggtac

GTAATCCTCAT





GwCas7-11c
193
GTTTGGAAGCCGGGTCGAAG
194
CGCCAATATAACAATACAG


non-targeting

TCAGGCCCGTTAAGAC

GTATTATAGTTG


crRNA









CjcCas7-11b
195
cttgaagactaaaggaaggaa
196
CGCCAATATAACAATACAG


non-targeting

ttaatgtcacggtac

GTATTATAGTTG


crRNA









MS2 crRNA
197
GTTGGAAAGCCGGTTTTCTTT
198
CTTTGTTGTCTTCGACATGG


DR length

GATGTCACGGAAC

GTAATCCTCAT





MS2 crRNA
199
GGAAAGCCGGTTTTCTTTGAT
200
CTTTGTTGTCTTCGACATGG


DR length

GTCACGGAAC

GTAATCCTCAT





MS2 crRNA
201
AAGCCGGTTTTCTTTGATGTC
202
CTTTGTTGTCTTCGACATGG


DR length

ACGGAAC

GTAATCCTCAT





MS2 crRNA
203
CCGGTTTTCTTTGATGTCACG
204
CTTTGTTGTCTTCGACATGG


DR length

GAAC

GTAATCCTCAT





MS2 crRNA
205
GTTTTCTTTGATGTCACGGAA
206
CTTTGTTGTCTTCGACATGG


DR length

C

GTAATCCTCAT





MS2 crRNA
207
TCTTTGATGTCACGGAAC
208
CTTTGTTGTCTTCGACATGG


DR length



GTAATCCTCAT





MS2 crRNA
209
TTGATGTCACGGAAC
210
CTTTGTTGTCTTCGACATGG


DR length



GTAATCCTCAT





MS2 crRNA
211
ATGTCACGGAAC
212
CTTTGTTGTCTTCGACATGG


DR length



GTAATCCTCAT





MS2 crRNA
213
TCACGGAAC
214
CTTTGTTGTCTTCGACATGG


DR length



GTAATCCTCAT





MS2 crRNA
215
CGGAAC
216
CTTTGTTGTCTTCGACATGG


DR length



GTAATCCTCAT





MS2 crRNA
217
GGTTGGAAAGCCGGTTTTCTT
218
CTTTGTTGTCTTCGACATGG


spacer length

TGATGTCACGGAAC

GTAATCCTCA





MS2 crRNA
219
GGTTGGAAAGCCGGTTTTCTT
220
CTTTGTTGTCTTCGACATGG


spacer length

TGATGTCACGGAAC

GTAATCCT





MS2 crRNA
221
GGTTGGAAAGCCGGTTTTCTT
222
CTTTGTTGTCTTCGACATGG


spacer length

TGATGTCACGGAAC

GTAAT





MS2 crRNA
223
GGTTGGAAAGCCGGTTTTCTT
224
CTTTGTTGTCTTCGACATGG


spacer length

TGATGTCACGGAAC

GT





MS2 crRNA
225
GGTTGGAAAGCCGGTTTTCTT
226
CTTTGTTGTCTTCGACATG


spacer length

TGATGTCACGGAAC







MS2 crRNA
227
GGTTGGAAAGCCGGTTTTCTT
228
CTTTGTTGTCTTCGAC


spacer length

TGATGTCACGGAAC







MS2 crRNA
229
GGTTGGAAAGCCGGTTTTCTT
230
CTTTGTTGTCTTC


spacer length

TGATGTCACGGAAC







MS2 crRNA
231
GGTTGGAAAGCCGGTTTTCTT
232
CTTTGTTGTC


spacer length

TGATGTCACGGAAC







MS2 crRNA
233
TTGATGTCACGGAAC
234
CTTTGTTGTCTTCGACATGG


1 DR WT



GTAATCCTCAT





MS2 crRNA
235
ATGATGTCACGGAAC
236
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


1









MS2 crRNA
237
TAGATGTCACGGAAC
238
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


2









MS2 crRNA
239
TTCATGTCACGGAAC
240
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


3









MS2 crRNA
241
TTGTTGTCACGGAAC
242
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


4









MS2 crRNA
243
TTGAAGTCACGGAAC
244
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


5









MS2 crRNA
245
TTGATCTCACGGAAC
246
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


6









MS2 crRNA
247
TTGATGACACGGAAC
248
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


7









MS2 crRNA
249
TTGATGTGACGGAAC
250
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


8









MS2 crRNA
251
TTGATGTCTCGGAAC
252
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


9









MS2 crRNA
253
TTGATGTCAGGGAAC
254
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


10









MS2 crRNA
255
TTGATGTCACCGAAC
256
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


11









MS2 crRNA
257
TTGATGTCACGCAAC
258
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


12









MS2 crRNA
259
TTGATGTCACGGTAC
260
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


13









MS2 crRNA
261
TTGATGTCACGGATC
262
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


14









MS2 crRNA
263
TTGATGTCACGGAAG
264
CTTTGTTGTCTTCGACATGG


1 DR mutant



GTAATCCTCAT


15









MS2 crRNA
265
TTGATGTCACGGAAC
266
CTTTGTTGTCTTCGACATGG


1 DR WT



GTAATCCTCAT





MS2 crRNA
267
AAGATGTCACGGAAC
268
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 1









MS2 crRNA
269
TACATGTCACGGAAC
270
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 2









MS2 crRNA
271
TTCTTGTCACGGAAC
272
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 3









MS2 crRNA
273
TTGTAGTCACGGAAC
274
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 4









MS2 crRNA
275
TTGAACTCACGGAAC
276
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 5









MS2 crRNA
277
TTGATCACACGGAAC
278
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 6









MS2 crRNA
279
TTGATGAGACGGAAC
280
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 7









MS2 crRNA
281
TTGATGTGTCGGAAC
282
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 8









MS2 crRNA
283
TTGATGTCTGGGAAC
284
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 9









MS2 crRNA
285
TTGATGTCAGCGAAC
286
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 10









MS2 crRNA
287
TTGATGTCACCCAAC
288
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 11









MS2 crRNA
289
TTGATGTCACGCTAC
290
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 12









MS2 crRNA
291
TTGATGTCACGGTTC
292
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 13









MS2 crRNA
293
TTGATGTCACGGATG
294
CTTTGTTGTCTTCGACATGG


1 DR double



GTAATCCTCAT


mutant 14









COVID-19 N
295
GGTTGGAAAGCCGGTTTTCTT
296
ACCAAACGTAATGCGGGGT


gene crRNA

TGATGTCACGGAAC

GCATTTCGCTGA


1









COVID-19 N
297
GGTTGGAAAGCCGGTTTTCTT
298
GTTGAATCTGAGGGTCCACC


gene crRNA

TGATGTCACGGAAC

AAACGTAATGC


2









COVID-19 N
299
GGTTGGAAAGCCGGTTTTCTT
300
CATTCTGGTTACTGCCAGTT


gene crRNA

TGATGTCACGGAAC

GAATCTGAGGG


3









COVID-19 N
301
GGTTGGAAAGCCGGTTTTCTT
302
GCCCCACTGCGTTCTCCATT


gene crRNA

TGATGTCACGGAAC

CTGGTTACTGC


4









COVID-19 N
303
GGTTGGAAAGCCGGTTTTCTT
304
ACGTTGTTTTGATCGCGCCC


gene crRNA

TGATGTCACGGAAC

CACTGCGTTCT


5









COVID-19 N
305
GGTTGGAAAGCCGGTTTTCTT
306
GGTAAACCTTGGGGCCGAC


gene crRNA

TGATGTCACGGAAC

GTTGTTTTGATC


6









COVID-19 N
307
GGTTGGAAAGCCGGTTTTCTT
308
AGACGCAGTATTATTGGGT


gene crRNA

TGATGTCACGGAAC

AAACCTTGGGGC


7









COVID-19 N
309
GGTTGGAAAGCCGGTTTTCTT
310
TGAGAGCGGTGAACCAAGA


gene crRNA

TGATGTCACGGAAC

CGCAGTATTATT


8









Influenza A
311
GGTTGGAAAGCCGGTTTTCTT
312
CCGGGAAGTTTTTGAGCGA


segment 4

TGATGTCACGGAAC

AAACCAGACATA


HA gene






crRNA 1









Influenza A
313
GGTTGGAAAGCCGGTTTTCTT
314
CGTGCTGTTGTCATTTCCGG


segment 4

TGATGTCACGGAAC

GAAGTTTTTGA


HA gene






crRNA 2









Influenza A
315
GGTTGGAAAGCCGGTTTTCTT
316
CAAGGCACAGCGTTGCCGT


segment 4

TGATGTCACGGAAC

GCTGTTGTCATT


HA gene






crRNA 3









Influenza A
317
GGTTGGAAAGCCGGTTTTCTT
318
GGTACTGCATGGTGCCCAA


segment 4

TGATGTCACGGAAC

GGCACAGCGTTG


HA gene






crRNA 4









Influenza A
319
GGTTGGAAAGCCGGTTTTCTT
320
TCACTATCGTTCCGTTTGGT


segment 4

TGATGTCACGGAAC

ACTGCATGGTG


HA gene






crRNA 5









Influenza A
321
GGTTGGAAAGCCGGTTTTCTT
322
GTCATTCGTGATTGTTTTCA


segment 4

TGATGTCACGGAAC

CTATCGTTCCG


HA gene






crRNA 6









Influenza A
323
GGTTGGAAAGCCGGTTTTCTT
324
AGTGACTTCAATTTGGTCAT


segment 4

TGATGTCACGGAAC

TCGTGATTGTT


HA gene






crRNA 7









Influenza A
325
GGTTGGAAAGCCGGTTTTCTT
326
ACCAGTTCAGTAGCATTAGT


segment 4

TGATGTCACGGAAC

GACTTCAATTT


HA gene






crRNA 8









EGFP guide
327
GGTTGGAAAGCCGGTTTTCTT
328
TGGGGTGCAGGTGCTCCAC


12

TGATGTCACGGAAC

GGTGGCGTTGCT





EGFP guide
329
GGTTGGAAAGCCGGTTTTCTT
330
AAGGTGCGGGCGAAGCTGC


13

TGATGTCACGGAAC

CCACCAGCACGT





EGFP guide
331
GGTTGGAAAGCCGGTTTTCTT
332
GTCCACCACGAAGCTGTAG


14

TGATGTCACGGAAC

TAGCCGCCGTCG





EGFP guide
333
GGTTGGAAAGCCGGTTTTCTT
334
TGCTGGGGTGGATGGCGCT


15

TGATGTCACGGAAC

CTTGAAGTGCAT





EGFP guide
335
GGTTGGAAAGCCGGTTTTCTT
336
GGAAGGCGAACATGGGGCC


16

TGATGTCACGGAAC

CCCGTTCTGCAG





MS2 tiling
337
GGTTGGAAAGCCGGTTTTCTT
338
AATCCTCATGTTTGAATGGC


guide 1

TGATGTCACGGAAC

CGGCGTCTATT





MS2 tiling
339
GGTTGGAAAGCCGGTTTTCTT
340
GGTAATCCTCATGTTTGAAT


guide 2

TGATGTCACGGAAC

GGCCGGCGTCT





MS2 tiling
341
GGTTGGAAAGCCGGTTTTCTT
342
ATGGGTAATCCTCATGTTTG


guide 3

TGATGTCACGGAAC

AATGGCCGGCG





MS2 tiling
343
GGTTGGAAAGCCGGTTTTCTT
344
GACATGGGTAATCCTCATGT


guide 4

TGATGTCACGGAAC

TTGAATGGCCG





MS2 tiling
345
GGTTGGAAAGCCGGTTTTCTT
346
TTCGACATGGGTAATCCTCA


guide 5

TGATGTCACGGAAC

TGTTTGAATGG





MS2 tiling
347
GGTTGGAAAGCCGGTTTTCTT
348
GTCTTCGACATGGGTAATCC


guide 6

TGATGTCACGGAAC

TCATGTTTGAA





MS2 tiling
349
GGTTGGAAAGCCGGTTTTCTT
350
GTTGTCTTCGACATGGGTAA


guide 7

TGATGTCACGGAAC

TCCTCATGTTT





MS2 tiling
351
GGTTGGAAAGCCGGTTTTCTT
352
TTTGTTGTCTTCGACATGGG


guide 8

TGATGTCACGGAAC

TAATCCTCATG





MS2 tiling
353
GGTTGGAAAGCCGGTTTTCTT
354
TTCTTTGTTGTCTTCGACAT


guide 9

TGATGTCACGGAAC

GGGTAATCCTC





MS2 tiling
355
GGTTGGAAAGCCGGTTTTCTT
356
AACTTCTTTGTTGTCTTCGA


guide 10

TGATGTCACGGAAC

CATGGGTAATC





Cjc MS2
357
CTTGAAGACTAAAGGAAGGA
358
AATCCTCATGTTTGAATGGC


60 bp ssRNA

ATTAATGTCACGGTAC

CGGCGTCTATT


crRNA 1









Cjc MS2
359
CTTGAAGACTAAAGGAAGGA
360
GGTAATCCTCATGTTTGAAT


60 bp ssRNA

ATTAATGTCACGGTAC

GGCCGGCGTCT


crRNA 2









Cjc MS2
361
CTTGAAGACTAAAGGAAGGA
362
ATGGGTAATCCTCATGTTTG


60 bp ssRNA

ATTAATGTCACGGTAC

AATGGCCGGCG


crRNA 3









Cjc MS2
363
CTTGAAGACTAAAGGAAGGA
364
GACATGGGTAATCCTCATGT


60 bp ssRNA

ATTAATGTCACGGTAC

TTGAATGGCCG


crRNA 4









Cjc MS2
365
CTTGAAGACTAAAGGAAGGA
366
TTCGACATGGGTAATCCTCA


60 bp ssRNA

ATTAATGTCACGGTAC

TGTTTGAATGG


crRNA 5









Cjc MS2
367
CTTGAAGACTAAAGGAAGGA
368
GTCTTCGACATGGGTAATCC


60 bp ssRNA

ATTAATGTCACGGTAC

TCATGTTTGAA


crRNA 6









Cjc MS2
369
CTTGAAGACTAAAGGAAGGA
370
GTTGTCTTCGACATGGGTAA


60 bp ssRNA

ATTAATGTCACGGTAC

TCCTCATGTTT


crRNA 7









Cjc MS2
371
CTTGAAGACTAAAGGAAGGA
372
TTTGTTGTCTTCGACATGGG


60 bp ssRNA

ATTAATGTCACGGTAC

TAATCCTCATG


crRNA 8









Cjc MS2
373
CTTGAAGACTAAAGGAAGGA
374
TTCTTTGTTGTCTTCGACAT


60 bp ssRNA

ATTAATGTCACGGTAC

GGGTAATCCTC


crRNA 9









Cjc MS2
375
CTTGAAGACTAAAGGAAGGA
376
AACTTCTTTGTTGTCTTCGA


60 bp ssRNA

ATTAATGTCACGGTAC

CATGGGTAATC


crRNA 10









Cjc MS2
377
CTTGAAGACTAAAGGAAGGA
378
TTGAACTTCTTTGTTGTCTTC


60 bp ssRNA

ATTAATGTCACGGTAC

GACATGGGTA


crRNA 11









Gw MS2
379
GTTTGGAAGCCGGGTCGAAG
380
AAACGTAATGCGGGGTGCA


60 bp ssRNA

TCAGGCCCGTTAAGAC

TTTCGCTGATTT


crRNA 1









Gw MS2
381
GTTTGGAAGCCGGGTCGAAG
382
ACCAAACGTAATGCGGGGT


60 bp ssRNA

TCAGGCCCGTTAAGAC

GCATTTCGCTGA


crRNA 2









Gw MS2
383
GTTTGGAAGCCGGGTCGAAG
384
TCCACCAAACGTAATGCGG


60 bp ssRNA

TCAGGCCCGTTAAGAC

GGTGCATTTCGC


crRNA 3









Gw MS2
385
GTTTGGAAGCCGGGTCGAAG
386
GGGTCCACCAAACGTAATG


60 bp ssRNA

TCAGGCCCGTTAAGAC

CGGGGTGCATTT


crRNA 4









Gw MS2
387
GTTTGGAAGCCGGGTCGAAG
388
TGAGGGTCCACCAAACGTA


60 bp ssRNA

TCAGGCCCGTTAAGAC

ATGCGGGGTGCA


crRNA 5









Gw MS2
389
GTTTGGAAGCCGGGTCGAAG
390
ATCTGAGGGTCCACCAAAC


60 bp ssRNA

TCAGGCCCGTTAAGAC

GTAATGCGGGGT


crRNA 6









Gw MS2
391
GTTTGGAAGCCGGGTCGAAG
392
TGAATCTGAGGGTCCACCA


60 bp ssRNA

TCAGGCCCGTTAAGAC

AACGTAATGCGG


crRNA 7









Gw MS2
393
GTTTGGAAGCCGGGTCGAAG
394
AGTTGAATCTGAGGGTCCA


60 bp ssRNA

TCAGGCCCGTTAAGAC

CCAAACGTAATG


crRNA 8









Gw MS2
395
GTTTGGAAGCCGGGTCGAAG
396
GCCAGTTGAATCTGAGGGT


60 bp ssRNA

TCAGGCCCGTTAAGAC

CCACCAAACGTA


crRNA 9









Gw MS2
397
GTTTGGAAGCCGGGTCGAAG
398
ACTGCCAGTTGAATCTGAG


60 bp ssRNA

TCAGGCCCGTTAAGAC

GGTCCACCAAAC


crRNA 10









Gw MS2
399
GTTTGGAAGCCGGGTCGAAG
400
GTTACTGCCAGTTGAATCTG


60 bp ssRNA

TCAGGCCCGTTAAGAC

AGGGTCCACCA


crRNA 11









Table 7 below shows examples of mammalian plasmids.











TABLE 7





Plasmid




number
Name
Benchling link







pDF0158
pCMV-huDsiGRAMP N term
https://benchling.com/s/seq-



msfGFP mammalian expression
16V8YUC36yaVMw4GYawz


pDF0159
pCMV-huDsiGRAMP mammalian
https://benchling.com/s/seq-



expression
V4NVwiioQSHLp6fkKY5I


pDF0160
pCMV-huDsiGRAMP C term
https://benchling.com/s/seq-



msfGFP mammalian expression
6KYYZvPGjqOWNIPwLN2u


pDF0113
pU6-Eco31i-Eco31i-DsiCas7-11a full DR
https://benchling.com/s/seq-



guide scaffold with golden gate site
fl07Vm8NmTi2ydJnbZGS


pDF0114
pU6-Eco31i-Eco31i-DsiCas7-11a mature DR
https://benchling.com/s/seq-



guide scaffold with golden gate site
22EWyWJAvvfpX2EsdJxs


pDF0111
CMV-Cluciferase(STOP85)-polyA EF1a-
https://benchling.com/s/seq-



G-luciferase-polyA (pAB0040)
9fEQxFBZrIEQo8Ta407A


pDF0112
CMV-Cluciferase-polyA
https://benchling.com/s/seq-



EF1a-G-luciferase-polyA
QDT25JIo4luxluesN196


pDF0234
pCMV-huDsiGRAMP
https://benchling.com/s/seq-



(5′ UTR from BE constructs) dead mutant
cNh21gwflmDV66VanySf


pDF0237
pCMV-dead huDsiGRAMP-NES-huADAR2
https://benchling.com/s/seq-




OKxBeGoAOWuk6GbgfAa2


pDF0228
pCMV-huDsiGRAMP-NES-huADAR2
https://benchling.com/s/seq-




BnKsJ4pko0RcknikJMlr









Table 8 below shows examples of Cas7-11 guides for mammalian.













TABLE 8





SEQ 



Application


ID



(Knockdown/


NO
Name
Spacer sequence
Target
editing)







401
DsiGRAMP mammalian Gluc
GCAGATCAGGGCAAACAG
Gluc
Knockdown



guide 1 F
AACTTTGACTCCC







402
DsiGRAMP mammalian Gluc
CGATGTTGAAGTCTTCGTT
Gluc
Knockdown



guide 2 F
GTTCTCGGTGGG







403
DsiGRAMP mammalian Gluc
GCAACTTCCCGCGGTCAGC
Gluc
Knockdown



guide 3 F
ATCGAGATCCGT







404
DsiGRAMP mammalian Gluc
TGCAGCCAGCTTTCCGGGC
Gluc
Knockdown



guide 4 F
ATTGGCTTCCAT







405
DsiGRAMP mammalian Gluc
TGAACTTCTTCATCTTGGGC
Gluc
Knockdown



guide 5 F
GTGCACTTGAT







406
DsiGRAMP mammalian Gluc
GAATGTCGACGATCGCCTC
Gluc
Knockdown



guide 6 F
GCCTATGCCGCC







407
DsiGRAMP mammalian Gluc
ATGAACTGCTCCATGGGCT
Gluc
Knockdown



guide 7 F
CCAAGTCCTTGA







408
DsiGRAMP mammalian Gluc
GCAGCCAGTTGTGCAGTCC
Gluc
Knockdown



guide 8 F
ACACACAGATCG







409
DsiGRAMP mammalian Gluc
GCGTTGCGGCAGCCACTTC
Gluc
Knockdown



guide 9 F
TTGAGCAGGTCA







410
DsiGRAMP mammalian Gluc
TGTCCACCTGGCCCTGGAT
Gluc
Knockdown



guide 10 F
CTTGCTGGCAAA







411
DsiGRAMP mammalian Non-
GGTAATGCCTGGCTTGTCG
Gluc
Knockdown



targeting 1 F
ACGCATAGTCTG







412
DsiGRAMP mammalian Non-
GGGAACCTTGGCCGTTATA
Gluc
Knockdown



targeting 2 F
AAGTCTGACCAG







413
KRAS guide 1
TATAATGGTGAATATCTTC
KRAS
Knockdown




AAATGATTTAGT







414
KRAS guide 2
ATGTATAGAAGGCATCATC
KRAS
Knockdown




AACACCCTGTCT







415
KRAS guide 3
GGTTAAAAATTTACAGATT
KRAS
Knockdown




GTGCTGAGCTTG







416
PPIB guide 1
GTAGATGCTCTTTCCTCCTG
PPIB
Knockdown




TGCCATCTCCC







417
PPIB guide 2
CAGTTTGAAGTTCTCATCG
PPIB
Knockdown




GGGAAGCGCTCA







418
PPIB guide 3
CAGTGTTGGTAGGAGTTTG
PPIB
Knockdown




TTACAAAAGTGA







419
MALAT1 guide 1
CTTGGCCAAGTCTGTTATGT
MALA
Knockdown




TCACCTGAAAA
T1






420
MALAT1 guide 2
CAAAATGTACTCAGCTTCA
MALA
Knockdown




ATCACAAATACG
T1






421
MALAT1 guide 3
GGTTATAGCTTGACAAGCA
MALA
Knockdown




ATTAACTTTAAA
T1






422
CXCR4 guide 1
ATGATAATGCAATAGCAGG
CXCR4
Knockdown




ACAGGATGACAA







423
Non-targeting 1
GGTAATGCCTGGCTTGTCG

Knockdown




ACGCATAGTCTG







424
Non-targeting 2
GGGAACCTTGGCCGTTATA

Knockdown




AAGTCTGACCAG







425
Cluc W85X guide MM1
CATCCTGCGGCCTCTACTCT
Cluc
Editing




GCATTCAATTACATACTGA






CACATTCGGCA







426
Cluc W85X guide MM3
ACCATCCTGCGGCCTCTAC
Cluc
Editing




TCTGCATTCAATTACATACT






GACACATTCGG







427
Cluc W85X guide MM5
AAACCATCCTGCGGCCTCT
Cluc
Editing




ACTCTGCATTCAATTACAT






ACTGACACATTC







428
Cluc W85X guide MM7
CTAAACCATCCTGCGGCCT
Cluc
Editing




CTACTCTGCATTCAATTACA






TACTGACACAT







429
Cluc W85X guide MM9
TTCTAAACCATCCTGCGGC
Cluc
Editing




CTCTACTCTGCATTCAATTA






CATACTGACAC







430
Cluc W85X guide MM11
TGTTCTAAACCATCCTGCG
Cluc
Editing




GCCTCTACTCTGCATTCAAT






TACATACTGAC







431
Cluc W85X guide MM13
AATGTTCTAAACCATCCTG
Cluc
Editing




CGGCCTCTACTCTGCATTCA






ATTACATACTG







432
Cluc W85X guide MM15
AGAATGTTCTAAACCATCC
Cluc
Editing




TGCGGCCTCTACTCTGCATT






CAATTACATAC







433
Cluc W85X guide MM17
ATAGAATGTTCTAAACCAT
Cluc
Editing




CCTGCGGCCTCTACTCTGC






ATTCAATTACAT







434
Cluc W85X guide MM19
CCATAGAATGTTCTAAACC
Cluc
Editing




ATCCTGCGGCCTCTACTCTG






CATTCAATTAC







435
Cluc W85X guide MM21
TTCCATAGAATGTTCTAAA
Cluc
Editing




CCATCCTGCGGCCTCTACTC






TGCATTCAATT







436
Cluc W85X guide MM23
CTTTCCATAGAATGTTCTAA
Cluc
Editing




ACCATCCTGCGGCCTCTAC






TCTGCATTCAA







437
Cluc W85X guide MM25
CTCTTTCCATAGAATGTTCT
Cluc
Editing




AAACCATCCTGCGGCCTCT






ACTCTGCATTC







438
Cluc W85X guide MM27
ATCTCTTTCCATAGAATGTT
Cluc
Editing




CTAAACCATCCTGCGGCCT






CTACTCTGCAT







439
Cluc W85X guide MM29
GAATCTCTTTCCATAGAAT
Cluc
Editing




GTTCTAAACCATCCTGCGG






CCTCTACTCTGC







440
Cluc W85X guide MM31
TGGAATCTCTTTCCATAGA
Cluc
Editing




ATGTTCTAAACCATCCTGC






GGCCTCTACTCT







441
Cluc W85X guide MM33
ACTGGAATCTCTTTCCATA
Cluc
Editing




GAATGTTCTAAACCATCCT






GCGGCCTCTACT







442
Cluc W85X guide MM35
GAACTGGAATCTCTTTCCA
Cluc
Editing




TAGAATGTTCTAAACCATC






CTGCGGCCTCTA







443
Cluc W85X guide MM37
TGGAACTGGAATCTCTTTC
Cluc
Editing




CATAGAATGTTCTAAACCA






TCCTGCGGCCTC







444
Cluc W85X guide MM39
CCTGGAACTGGAATCTCTT
Cluc
Editing




TCCATAGAATGTTCTAAAC






CATCCTGCGGCC







445
Cluc W85X guide MM41
TTCCTGGAACTGGAATCTC
Cluc
Editing




TTTCCATAGAATGTTCTAA






ACCATCCTGCGG







446
Cluc W85X guide MM43
GGTTCCTGGAACTGGAATC
Cluc
Editing




TCTTTCCATAGAATGTTCTA






AACCATCCTGC







447
LwaCas13a guide
ACCCAGGAATCTCAGGAAT
Gluc
Knockdown



for comparison
GTCGACGAT







448
PspCas13b guide
GGGCATTGGCTTCCATCTCT
Gluc
Knockdown



for comparison
TTGAGCACCT







449
RfxCas13d guide
ACCCAGGAATCTCAGGAAT
Gluc
Knockdown



for comparison
GTCGACGAT







450
shRNA guide for
AAAGTTCTGTTTGCCCTGAT
Gluc
Knockdown



comparison
CCTCGAGGATCAGGGCAAA






CAGAACTTT









Table 9 shows the representative Cas7-11 orthologs of FIG. 1F.










TABLE 9





SEQ ID NO/



NAME
SEQUENCE







SEQ ID NO: 451
RDMATSAHTTIDKETKRTKENHLINLEVVRIEDN-RYLKGSVEMIN-


MBD3181016.1






SEQ ID NO: 452
DQVRTSAHNKINRATGRVEKDLLFSYELG--ANT-VPLEGTIERVNP


MBC8521845.1






SEQ ID NO: 453
DMVRTSTHNKISRATGRVEKDHLFSYELG--ANT-TPFEGMIEPVNH


RCV63412.1






SEQ ID NO: 454
GTTRVSLHNRVDPTTGRVPEETFFSFEVG--SAE-K-FTGRIERSGP


MBC8461765.1






SEQ ID NO: 455
EPIRISTHNRIDPATGRVPKDLLFTFEMG--SPA-V-FRGYIERIGI


HHR29383.1






SEQ ID NO: 456
LQTFLYTQARLDRPTRTAVPGALYSSEFG--LRE-ITFKGSVTGWLE


WP_129889723.1






SEQ ID NO: 457
NQKDVYTQVRLDRPTRTAVEGALYTSEFG--TRG-LTFHGDITGSLT


WP_174676620.1






SEQ ID NO: 458
LFLNTRTGTKIDRRTGTVQEDHLFTTESG--IKG-ITLTSKIYGRGN


TFH44231.1






SEQ ID NO: 459
YGQSIRSNNRIDPKTRTAANDHLFFTECV--DPD-TYFIGEIRSSSN


MAT45258.1






SEQ ID NO: 460
YGRLLRTGIGIDRKLRVVVPDRLFTNECV--GTK-IPFTGRIIGEFP


WP_075063448.1






SEQ ID NO: 461
EIAVSRVVNRVDPNSGKA-KDFFRVWEID--HKLCPNFLGKMSISLS


HreCas7-11






SEQ ID NO: 462
DIVQKRILNRVDQTCGKA-KDFFKVCEVD--HIACPTLNGIIRINDE


CmaCas7-11






SEQ ID NO: 463
ETAIERIVNRVDPSSGKA-KDYMRIWEID--PLVCSQFNGIITIN--


HvmCas7-11






SEQ ID NO: 464
EIGSRRTINRVDDETGKA-HDFFSIWEVD--A--VREFQGEIVLAAD


SmCas7-11






SEQ ID NO: 465
EIGRLRTLNRIDRLTTKA-QDFFRIYEVD--Q--VRDFFGTITLAGD


OmCas7-11






SEQ ID NO: 466
AIGSQRVLNRVDFKSGKA-HDFFKAYEVD--HTRFPRFEGEITIDNK


DisCas7-11






SEQ ID NO: 467
EIAVRRVVNRVDYASGKA-HDFFRIFEVD--HIAFPCFHGEIAFGEN


DsbaCas7-11






SEQ ID NO: 468
DIGTQRTLNRVDYATGKA-HDFFKVWEID--HSLLSVFQGKISIADN


SstCas7-11






SEQ ID NO: 469
DIASGRILNRVDFDTGKA-KDYFRTWEAD--YETYGTYTGRITLRNE


CsbCas7-11






SEQ ID NO: 470
DIASERILNRVDYTTGKA-HDYFKVWEVD--DDQWWQFTGTITMHDD


CjcCas7-11






SEQ ID NO: 471
DVCKERVLNRVDFRTGKA-QDYFRVFEID--HEDWGVYTGEITITEP


CbfCas7-11






SEQ ID NO: 472
ELAPKRALNRIEQYTGKA-QDYFTVYEAL--NKEFWTFKGRIRIKED


HvsCas7-11






SEQ ID NO: 473
EIGIRRILNRVDFTTGKA-QDYFYVWEVE--HSMCPKFQGTVKINED


HsmCas7-11






SEQ ID NO: 474
DIAQKRTSNRVDFFSKKA-HDHYGVWEVT--A--VKNLLGYIYISDA


FmCas7-11






SEQ ID NO: 475
QLIRPRILNRMDPGTSKA-RDYFRVFEIE--NQLCSQFRGWIWLSGD


DpbaCas7-11









Table 10 shows the representative Cas7-11 orthologs of FIG. 1G.










TABLE 10





SEQ ID NO/



NAME
SEQUENCE







SEQ ID NO: 476
QRI----------------TPDAPDADP-YWQADIALDADGRPYLPG


WmCas7x3






SEQ ID NO: 477
EEMDKQSG-----------ESVDKKQNN-SWIQAIALDLNKKPYIPG


NisCas7x3






SEQ ID NO: 478
E------------------KERDENKET-RWLEAVALDHKGQPYIPG


GwCas7x3






SEQ ID NO: 479
VTRP---------------ELTVADRDELVDINAVVTDYTGKPYLPG


HvmCas7x3






SEQ ID NO: 480
TDRPGLEI-----------EQKDGSKVK-AEINAFIKDSNGKPYLPG


DsbCas7x3






SEQ ID NO: 481
IPVT---I-----------KDTQGKNRE-VEVNSVITGKAALPIIPG


Gam:Cas7x3






SEQ ID NO: 482
VEHD---------------LIKNDDGTP-VQINALITGAGGLPIIPG


DesCas7x3






SEQ ID NO: 483
AEIE---I-----------NDSQGDRRQ-VQANAIIRGKDDKPIIPG


GabCas7x3






SEQ ID NO: 484
CEHD---------------DVKNNDGEP-VKINACIKGSKGRPIIPG


MetCas7x3






SEQ ID NO: 485
CYRP---------------ELTNADQKP-VDINACIKGANNLPIIPG


MebCas7x3






SEQ ID NO: 486
-----------------EGQKQTDDQAE-SLHLRTLRDGHGRFRIPF


GwCas7-11






SEQ ID NO: 487
----------------------SEGQTS----QAIILCPDGSYRLPR


HreCas7-11






SEQ ID NO: 488
----------------------KTSHTR----STIFLNMNGQFCIPR


CmaCas7-11






SEQ ID NO: 489
----------------------QEGQTS----ATILLNRDGYFRLPR


HvmCas7-11






SEQ ID NO: 490
-------------------PIDDDQTS----SRTL VDRDGRYRLPR


SmCas7-11






SEQ ID NO: 491
---------------------GSHDHTS----RKILLTRDFYYRLPR


OmCas7-11






SEQ ID NO: 492
---------------------EDAKQTD----LQVLLTPDNKYRLPR


DisCas7-11






SEQ ID NO: 493
---------------------KEKKQTD----LMLLLDGQNHYRIPR


DsbaCas7-11






SEQ ID NO: 494
---------------------EDAKHTN----LKVLLDRQNRYRLPR


SstCas7-11






SEQ ID NO: 495
---------------------GAGGHTD----LSILLGKDGHYRVPR


SybCas7-11






SEQ ID NO: 496
SDSIPGKEK------KSEDSLVINEHTS----FNILLDKENRYRIPR


CsbCas7-11






SEQ ID NO: 497
FDSTQDDLDLVPDIVNTDEKLEANEQTS----FRILMDKKGRYRIPR


CjcCas7-11






SEQ ID NO: 498
------------------EQTEEVEHTS----LRLVMDKKGRFRIPR


CbfCas7-11






SEQ ID NO: 499
----------------------DEEKAE----GAILLTPDNRFRLPR


HvsCas7-11






SEQ ID NO: 500
---------------------KTEEQID----MQILLTKDGRYRLPR


HsmCas7-11






SEQ ID NO: 501
---------------------QAGKQTS----MPTLQDSNDHFRLPR


FmCas7-11






SEQ ID NO: 502
---------------------ATETHTD----LPILLTSDRHFRIPR


DpbaCas7-11









Table 11 shows the representative Cas7-11 orthologs of FIG. 1H.










TABLE 11





SEQ ID NO/



NAME
SEQUENCE







SEQ ID NO: 503
HRKPQDNAPDGTPRQRGDRA---------------LLPGASLRGRLRS


WxxCas7x3






SEQ ID NO: 504
KKDEAKNEADAKPRTNHQGQV--------------ILPASSLRGRLRA


NisCas7x3






SEQ ID NO: 505
KADDADAV----PRRTHDDKI--------------VLPASSLRGRLRT


GwCas7x3






SEQ ID NO: 506
KKKRRSNTPNLRPLRDAIGRP--------------CLPESSVRGALRA


HvmCas7x3






SEQ ID NO: 507
KKRKED--IDHQPLRDSAGNA--------------RLPAKSIRGAMRS


DsbCas7x3






SEQ ID NO: 508
DKCKAEDTPDIYPLEEKNGVP--------------AFPVRSFRGAIRS


CamCas7x3






SEQ ID NO: 509
NTPDITQAPDMVPLVDEDGNP--------------MLPASSFRGALRA


DesCas7x3






SEQ ID NO: 510
SKGDGDQPAVHQPLTDRSNNP--------------ILPARSFRGAIRA


GabCas7x3






SEQ ID NO: 511
LSSNENAKTDHYPLLDKNRNP--------------YLPVSSFRGVLRS


MetCas7x3






SEQ ID NO: 512
LEADPKTKIDHYPLLDNHKKP--------------RLPSASIRGVLRS


MebCas7x3






SEQ ID NO: 513
ESDAPDNVAYKKPVVQYDETGRLRTTDPGPVEMLTCLKGEGVRGVVAY


GwCas7-11






SEQ ID NO: 514
DHDNKDAVMVQKTVLFVDESG------NYSQMPHHFLKGSGIRGACRF


HreCas7-11






SEQ ID NO: 515
DNRNPDAVMVKKTILVYEQDSSTHKNVPKEVPKY-FIKSETIRGLLRS


CmaCas7-11






SEQ ID NO: 516
DPRNTDAIMVRKTVFCPDPNA---KNRPAPATVY-MIKGESIRGILRS


HvmCas7-11






SEQ ID NO: 517
NSDTADIISFRRTVVDNGEVL------REP-----VLRGEGLRGLLRT


SmCas7-11






SEQ ID NO: 518
-RHEEDSVYFQKRIFTSDGRV-----VLVP-----ALRGEGLRGLLRT


OmCas7-11






SEQ ID NO: 519
DKRGTDVVTFVKYKAEGEEAK------PVC-----AYKAESFRGVIRS


DisCas7-11






SEQ ID NO: 520
TEDVADIVSFKKYTQGGEKIIY-------------AYKSESFRGVVRT


DsbaCas7-11






SEQ ID NO: 521
EKDGSDIVSFRKYADDSGKEVY-------------AYKAESFRGVVRA


SstCas7-11






SEQ ID NO: 522
ERIGFDNIAYEKRRYNGETNT------TESIP---AVKGETFRGIVRT


SybCas7-11






SEQ ID NO: 523
EPGNRDAIAYKKRVYNDGNNA------IEPEPRF-AVKSETHRGIFRT


CsbCas7-11






SEQ ID NO: 524
NKDNIDCIAYEKRKWENGGIK------FVP-----TIKGETIRGIVRM


CjcCas7-11






SEQ ID NO: 525
DPNNVDAIVFEKMKLDGDQVK------YLP-----AIKGETIRGIVRT


CbfCas7-11






SEQ ID NO: 526
EGKAPDAVFFKKYVFENGKIE------EKP-----CFKAESIRGIFRT


HvsCas7-11






SEQ ID NO: 527
DSSNTDLVTFKKYKLEESKEVF-------------AIKGESIRGVFRT


HsmCas7-11






SEQ ID NO: 528
-HGNTDSVFYKKPILKSGEKE------PSYQW---AIKSDTVRGLIRS


FmCas7-11






SEQ ID NO: 529
-RNESDAVFYQKSVAGEKGPVY-------------ALKGEGLRGIVSS


DpbaCas7-11









Table 12 shows the representative Cas7-11 orthologs of FIG. 1I.










TABLE 12





SEQ ID NO/



NAME
SEQUENCE







SEQ ID NO: 530
PATLVDHDMLAIDRFTGGGKDGAKFK----LRYAECP-TLEGQLSLDL


WmCas7x3






SEQ ID NO: 531
LATLTRHEMVAIDRFTGGGKEGAKFN----VDYIECP-TLTGAIYLDL


NisCas7x3






SEQ ID NO: 532
SIKTRRHEMLAIDRFTGGGKDGAKFN----VDYVECP-TLAGKLSLDL


GwCas7x3






SEQ ID NO: 533
EDCDNIQEFVAIDRFTGGAKDKAKFN----AEYIGSP-RFTGTIALDK


HvmCas7x3






SEQ ID NO: 534
TRQETVQDFVAIDRFHGGGKETAKFD----ASFSWRP-QYSILMHIPS


DsbCas7x3






SEQ ID NO: 535
LKPFIIQEFVAIDRFHGGGKDEAKFN----AAHYQAP-VFKGKVRVSQ


GamCas7x3






SEQ ID NO: 536
FRREQEQTFVAIDRFHGGCKEGALYT----IRHAESP-RFEGHLVIDP


DesCas7x3






SEQ ID NO: 537
YRPAKTQQFVAIDRFHGGGKDGALFS----IKYFERP-VLKGGISLKL


GabCas7x3






SEQ ID NO: 538
KSKKTKQDFVAIDRFHGGGKDGAKFD----ATHFERP-EFEGAISFSP


MetCas7x3






SEQ ID NO: 539
ANELKTQEFIAIDRFHGGGKDGAKFN----AKHSERP-YFQGRITLSP


MebCas7x3






SEQ ID NO: 540
TPHAMRSDRVALDVF-GGAMPEAKFDDRPLAASPGKPLNFKSTIWYRE


GwCas7-11






SEQ ID NO: 541
EVEAIKCDHVAIDRFHGGTVHRMKYDDYPLPGSPNRPLRIKGNIWVKR


HreCas7-11






SEQ ID NO: 542
NVSDCCIDHVAIDRFTGGGVEKMKFNDYPLSASPKNCLNLKGSIWITS


CmaCas7-11






SEQ ID NO: 543
SVSDKKMDHVAIDRFTGGGVDQMKFDDYPLPGCPAQPLILEGKFWVKD


HvmCas7-11






SEQ ID NO: 544
TVADKRLDHVAIDRFDQSVVE--KYDDRPLVGSPKQPLVFKGCFWVQT


SmCas7-11






SEQ ID NO: 545
TWNDKKIDHVSCSRFDASVVN--KFDDRSLVGSPDSPLHFEGTFWLHR


OmCas7-11






SEQ ID NO: 546
DPEPVTFDHVAIDRFTGGAADKKKFDDSPLPGSPARPLMLKGSFWIRR


DisCas7-11






SEQ ID NO: 547
EPEPRRFDHVAIDRFTGGAVNQKKFDDRSLVPGKEGFMTLIGCFWMRK


DsbaCas7-11






SEQ ID NO: 548
QPEPMIFDHVAIDRFTGGAVDKKKFDDCSLPGTPGHPLTLKGCFWIRK


SstCas7-11






SEQ ID NO: 549
AWTRKHLDHVAIDRFHGGAEENMKFDTYALAASPTNPLRMKGLIWVRS


SybCas7-11






SEQ ID NO: 550
EKLEKHIDHVAIDRFTGGALDKAKFDTYPLAGSPKKPLKLKGRFWIKK


CsbCas7-11






SEQ ID NO: 551
SYKKKLIDHVAIDRFHGGAEDKMKFNTLPLAGSFEKPIILKGRFWIKK


CjcCas7-11






SEQ ID NO: 552
KDIAKKIDHVAIDRFTGGARDQMKFDTLPLIGSPERPLRLKGLFWMRR


CbfCas7-11






SEQ ID NO: 553
GQEEKFFDHVAIDRFLGGAKEKYKFDDKPIIGAPDTPIVLEGKIWVKK


HvsCas7-11






SEQ ID NO: 554
DSAPKRLDHVAIDRFTGGAKEQAKFDDSPLIGSPDSPLEFTGIVWVRD


HsmCas7-11






SEQ ID NO: 555
EIKTYRMDHVAIDRISGGAVDQCKYDDEPLVGTSKHPLVFKGMFWINR


FmCas7-11






SEQ ID NO: 556
EVREKLFDHVSIDRFTGGAANKLKFDDKPLVG---NPLVFQGVFWVHQ


DpbaCas7-11









Table 13 shows the representative Cas7-11 orthologs of FIG. 1J.










TABLE 13





SEQ ID NO\



NAME
SEQUENCE







SEQ ID NO: 557
PVAGFALQNQPAIPATSLRGLLSSLFESISGSNLRVLHPTPYSIRKTT


WmCas7x3






SEQ ID NO: 558
EARPFKLNGKHAIPATSLRGMLSSLFESVSNSNFRVLHPEHYSVRKSL


NisCas7x3






SEQ ID NO: 559
SLHPFKLNNGLAIPATSLRGMISSLFESVSNSNFRVLDEKTYSMRKTM


GwCas7x3






SEQ ID NO: 560
EILPFTLGGKPAIPATSLRGMLSSIAEAASNSSLRVLEDKTLSYRKSM


HvmCas7x3






SEQ ID NO: 561
QVDHYTENGEIAIPATTLRGLLSSLSEAASNSSMRVLDDGMMSYRQPV


DsbCas7x3






SEQ ID NO: 562
LRHPYQLDGEPAIPSTSLRGLISTMTEAAANCAMRVLDSEIISYRKPM


GamCas7x3






SEQ ID NO: 563
RIENYRLGNRIAIPAASLRGMLSSLAEAASNSAMRVLHQGILSYRKKA


DesCas7x3






SEQ ID NO: 564
LKEHYQLNNKLAIPATSLRGLISSLAEAASNSALRVLDNGVLSYRKPA


GabCas7x3






SEQ ID NO: 565
EINNYRLNGELAIPATSLRGMISSLAEAASNSAMRVLDNGLLSYRKTA


MetCas7x3






SEQ ID NO: 566
ELDNYRLNGQLAIPATSLRGMISSLAEAASNSAMRVLDNGLLSYRKDA


MebCas7x3






SEQ ID NO: 567
TQRFHQINDEIGLPGASLRGMVLSNYQILTNSCYRNLKATEEITRRMP


GwCas7-11






SEQ ID NO: 568
NYRFFRINDELAIPGSELRGMVSSVYEALTNSCFRIMEEGRYLSRRMG


HreCas7-11






SEQ ID NO: 569
NYAFFRINDHIAIPGASIRGMISSVFETLTHSCFRVMDDKKYLTRRVI


CmaCas7-11






SEQ ID NO: 570
NYGFFRINGNVAIPGSSIRGMISSVFEALTNSCFRVFDQERYLSRSEK


HvmCas7-11






SEQ ID NO: 571
NFPFFKINDEIMLPGAPLWAAVSQVYEALTNSCFRVMKQKRFLSWRME


SmCas7-11






SEQ ID NO: 572
EYPSFRLNNTPMIPGAGLRAAVSQVYEVLTNSCIRIMDQGQTLSWRMS


OmCas7-11






SEQ ID NO: 573
SYAFFRLHKQIMIPGSELRGMVSSVYETVTNSCFRIFDETKRLSWRMD


DisCas7-11






SEQ ID NO: 574
SYRFFTLNRVPMIPGSEIRGMISSVFEALSNSCFRIFDEKYRLSWRMD


DsbaCas7-11






SEQ ID NO: 575
SYAFFSVNGDIMLPGSEIRGMLSSVYEALTNSCFRVFDEGYRLSWRME


SstCas7-11






SEQ ID NO: 576
MCKFFSVAGKPMIPGSEIRGMISSVYEALTNSCFRVFDEEKYLTRRVQ


SybCas7-11






SEQ ID NO: 577
NYKFFNINGELMIPGSELRGMLRTHFEALTKSCFAIFGEDSTLSWRMN


CsbCas7-11






SEQ ID NO: 578
NYQFFHINDEIMVPGSEIRGMISSVYEAITNSCFRVYDETKYITRRLS


CjcCas7-11






SEQ ID NO: 579
TYDFFQMNNAIMIPGSEIRGMISAVYEAMTNSCFRIFHEKQYLTRRIS


CbfCas7-11






SEQ ID NO: 580
YYHFLKIDNKPIIPGAEIRGAVSSIYEALTNSCFRVFGEKKVLSWRME


HvsCas7-11






SEQ ID NO: 581
VYKFFRLGGHLCIPAAEIRGMISSVYEALTNSCFRVFDEKRLISWRMT


HsmCas7-11






SEQ ID NO: 582
SFRFFRIDDEVLIPGSEIRGMVSTVFEALTGSCFRVINQKAHLSWRIN


FmCas7-11






SEQ ID NO: 583
RFKFMRMGSQAAIPGSAIRSMTSSVFEALTNSCFRVLDQKSHLSWRME


DpbaCas7-11









Table 14 shows the representative Cas7-11 orthologs of FIG. 1K.










TABLE 14





SEQ ID NB\



NAME
SEQUENCE







SEQ ID NO: 584
E--------------------ALSA--IGRI-VE----RNGELKLYPL


WmCas7x3






SEQ ID NO: 585
DYV------------------ALSA--MGRI-VD----DQGELKLQPL


NisCas7x3






SEQ ID NO: 586
Q--------------------SLSA--MGRI-VR----HDQKLYLLPL


GwCas7x3






SEQ ID NO: 587
ANRN--------------EDKPLSA--LGMI-KKIETGDKVEYRLLPL


HvmCas7x3






SEQ ID NO: 588
SG-------------------SLSA--IGMV-VI----RDGKKFIYPL


DsbCas7x3






SEQ ID NO: 589
PSH------------------ILSA--LGMV-TK----RGEDFWLIPL


GamCas7x3






SEQ ID NO: 590
N--------------------ALRE--IGMI-VL----RDGKRFILPL


DesCas7x3






SEQ ID NO: 591
R--------------------ALRK--IGIL-FK----REEQWRLVQM


GabCas7x3






SEQ ID NO: 592
D--------------------ALRK--VGMV-IY----VDNKSFIIKL


MetCas7x3






SEQ ID NO: 593
L--------------------ALSK--IGITFIN----RQGQWQLIPM


MebCas7x3






SEQ ID NO: 594
DEA------------------KYRK--AGRV-TVSGDGAQKKYSIQEM


GwCas7-11






SEQ ID NO: 595
D--------------------EFKDFHPGIV--------VDGAKIREM


HreCas7-11






SEQ ID NO: 596
ESETTQ-KRKSGRYQVEESDPDLF---PGRV-QK----KGNKYKIEKM


CmaCas7-11






SEQ ID NO: 597
DPT------------------ELTKYYPGKV-KR----DGNKFFILKM


HvmCas7-11






SEQ ID NO: 598
E--------------------DYKDFYPGRV-------LDGGKQIKKM


SmCas7-11






SEQ ID NO: 599
SEHK-----------------DYQ---PGKI-------TDNGRKIQPM


OmCas7-11






SEQ ID NO: 600
DHQN-----------------VLQDFLPGRV-------TADGKHIQKF


DisCas7-11






SEQ ID NO: 601
DVK------------------ELEQFKPGRV-------ADDGKRIEEM


DsbaCas7-11






SEQ ID NO: 602
DRN------------------VLMQFKPGRV-------TDNGLRIEEM


SstCas7-11






SEQ ID NO: 603
KKGA-----------------KSSELVPGII-VWG---QNGGLAVQQV


SybCas7-11






SEQ ID NO: 604
DEKDYKIDSNSIRKMESQRNPKYRI--PDEL-QKELRNSGNGLFNRLY


CsbCas7-11






SEQ ID NO: 605
EKKD---ESNDKNKSQDDASQKIR---KGLV-KK----TDEGFSIIEV


CjcCas7-11






SEQ ID NO: 606
EDK------------------ELREFIPGIV-RI----INGDVYIEKA


CbfCas7-11






SEQ ID NO: 607
KDAK-----------------EFM---PGRV-SK----KKGKLYMVKM


HvsCas7-11






SEQ ID NO: 608
EEAK----RPDPKKSEEQNRMRFR---PGRI-IK----KDKKFYAQEM


HsmCas7-11






SEQ ID NO: 609
DMAK-----------------HYR---PGRI-IQ----NNEKMFIQPY


FmCas7-11






SEQ ID NO: 610
DDAG-----------------DYK---PGRF-EK----KDDKAVIRKF


DpbaCas7-11
















TABLE 15





shows sequence alignments of cas nucleases.







DOMAINS


Mutated residues; catalytic residues


Domain 1 - Csm3-like (group 7 RAMP) with abnormal “G-rich” loop


Domain 2 - putative small subunit (no sequence similarity but there is a conserved “W” and 


four large alpha


helices predicted by Jpred in this region)


Domain 3 - Csm3-like (group 7 RAMP), could be catalytic


Domain 4 - Csm3-like (group 7 RAMP), * - catalytic aspartates based on Zhu X, Ye K.


Nucleic Acids Res. 2015 Jan;43(2):1257-67; https://doi.org/10.1093/nar/gku1355)


Domain 5 - Csm3-like with large insertion or subdomain (group 7 RAMP)


WmCas7x3, GwCas7x3, SER16298.1, PID64649.1, WP_031436019.1, HEB50754.1 - III-D systems





SECTION 1


SEQ ID NO: 611


WmCas7x3 ----------------------------------------------------------------------------------


-------------------------------------------------------------------------------------------


--------------------------





SEQ ID NO: 612


SER16298.1 --------------------------------------------------------------------------------


-------------------------------------------------------------------------------------------


----------------------------





SEQ ID NO: 613


GwCas7x3 ----------------------------------------------------------------------------------


-------------------------------------------------------------------------------------------


--------------------------





SEQ ID NO: 614


PID64649.1 --------------------------------------------------------------------------------


-------------------------------------------------------------------------------------------


----------------------------





SEQ ID NO: 615


WP_031436019.1 ----------------------------------------------------------------------------


-------------------------------------------------------------------------------------------


--------------------------------





SEQ ID NO: 616


HEB50754.1 --------------------------------------------------------------------------------


-------------------------------------------------------------------------------------------


----------------------------





SEQ ID NO: 617


HreCas7-11 --MSVEEFYVRLTFL-EPFRVVPWVRNGDERKGDRIYQRGGTYARWHKI-----


NDSHGQPYITGTMLRSAVLREIENTLTLHNTY----GCCPGGT--RTTEGKLEKPL-YLRRRD--


GFEFENH-AEKPC-----SEEDPCPLCLIQGRFDKLRRDEKKQFVRQGNI-SFCSVNFSNLNISS---


GIKSFSWE---EI





SEQ ID NO: 618


CmaCas7-11 ----MLKLKVKITYF-QPFRVIPWIKEDDRNSDRN-YLRGGTFARWHKDKK---


DDIHGKPYITGTLLRSALFTEIEKIKIHHSDFIH---CCNAID----RTEGKHQPS-FLRKRP----


VYTENKNIQAC--------NKCPLCLIMGRGDDRGEDLKKKKHYNGKHYQNWTVHFSNFD------


TQATFYWK---DI





SEQ ID NO: 619


HvmCas7-11 ----MTQITIQVTFF-HPFRVVPWNHRDHRKTDRK-YLRGGTFAKWHCTAS---


EGKSGRPYITGTLLRSALFAEIEKLIAFHDPF----KCCRGKD---KTENGNAKPL-FLRRRP-----------


RADC-----DPCGTCPLCLLMGRSDTVRRDAKKQKK-------DWSVHFCNLR-EA---TERSFNWK---ET





SEQ ID NO: 620


SmCas7x3 -----MRLKINIHFL-EPFRLIEWHEQDRRNKGNSRWQRGQSFARWHRRKD---NDQ-


GRPYITGTLLRSVVIRAVEEELARPDTAWQ---SCGGLF---ITPDGQTKPQ-HLRHRA--TVRARQT-


AKDKC---A-DRQSACPFCLLLGRFDQVGKDGDKKGEGL-----RFDVRFSNLD-LPKDFSPRDFDGPQ--


EI





SEQ ID NO: 621


oral_meta MIPDLRSLVVHISFL-TPYRQAPWFPPEKRRNNNRDWLRMQSYARWHKVAP---EE--


GHPFITGTLLRSRVIRAVEEELCLANGIWRGVACCPGEF----NSQAKKKPK-HLRRRT--TLQWYPE-


GAKSCSKQD-GRENACPFCLLLDRFGGEKSEEGRKKNN------DYDVHFSNLNPFYPGSSPKVWSGPE-


-EI





SEQ ID NO: 622


DisCas7-11 ---MTTTMKISIEFL-EPFRMTKWQESTRRNKNNKEFVRGQAFARWHRNKK---


DNTKGRPYITGTLLRSAVIRSAENLLTLSDGKISEKTCCPGKF----DTEDKDRLL-QLRQRS--TLRWT---


DKNPC--PD-NAETYCPFCELLGRSGNDGKKAEKKDW-------RFRIHFGNLS-LP---GKPDFDGPK--AI





SEQ ID NO: 623


DsbaCas7-11 -------MKITLRFL-EPFRMLDWIRPEERISGNKAFQRGLTFARWHKSKA---DDK-


GKPFITGTLLRSAVIRAAEHLLVLSKGKVGEKACCPGKFLTETDTETNKAPTMFLRKRP--TLKWT---


DRKGC-----DPDFPCPLCELLGPGAVGKKEGEAGI--------NSYVNFGNLS-FP---GDTGYSNAR--EI








SEQ ID NO: 624


SstCas7-11 -----MIINITVKFL-GPFRMLEWTDPDNRNRKNREFMRGQAFARWHNSNP---QKG-


SQPYITGTLVRSAVIRSAENLLMLSEGKVGKEKCCPGEF--RTENRKKRDAMLHLRQRS--TLQWKT--


DKPLC-----NGKSLCPICELLGRRIGKTDEVKKKG--------DFRIHFGNLT------PLNRYDDPS--DI





SEQ ID NO: 625 


CsbCas7-11 -----MNITVELTFF-EPYRLVEWFDWDARKKSHS-AMRGQAFAQWTWKGK---


GRTAGKSFITGTLVRSAVIKAVEELLSLNNGKWEGVPCCNGSF--QTDESKGKKPS-FLRKRH--


TLQWQAN-NKNIC-----DKEEACPFCILLGRFDNAGKVHERNK--------DYDIHFSNFD-LD---


HKQEKNDLRLVDI





SEQ ID NO: 626 


CjcCas7-11 ---MHTILPIHLTFL-EPYRLAEWHAKADRKKNKR-YLRGMSFAQWHKDKD---GI--


GKPYITGTLLRSAVLNAAEELISLNQGMWAKEPCCNGKF-----ETEKDKPA-VLRKRP--TIQWKTG-


RPAICDPEKQEKKDACPLCMLLGRFDKAGKRHRDNKYDKH----DYDIHFDNLN-LI---TDKKFSHPD--


DI





SEQ ID NO: 627 


CbfCas7-11 MSKTDDKIDIKLTFL-EPYRMVNWLENGLRMTDPR-YLRGLSFARWHRNKN---


GKA-GRPYITGTLLRSAVIRAAEELLSLNLGKWGKQLCCPGQF--ETEREMRKNKT-FLRRRP--


TPAWSAETKKEIC---T-THGSACAFCLLLGRRLHGGKEDVNEDAPGS---CRKPVGFGNLS-LP---


FQPTKRQIQ--DV





SEQ ID NO: 628 


HvsCas7-11 ----MKSIPITLTFL-EPYRILPWAEKGKRDKKE--YLRGANYVRLHKDKN---GK--


FKPYITGTLIRSAVLSAIEMLLDITNGEWNGKECCLAKF-----HTEGEKPS-FLRKKP----IYIRAEKDEIC-


--T-SRETACPLCLILGRFDKAEKKEKDKE--------KFDVHFSNLN-LY---SSKEFSTIE--EL





SEQ ID NO: 629 


HsmCas7-11 ----MTKIPISLTFL-EPFRLVDWVSESERDKSE--


FLRGLSFARWHRIKNQREDENQGRPYITGTLLRSAVIKAAEELIFLNGGKWQSEECCNGQF--


KGSKAKYRKVE-CPRRRHRATLKW----TDNTC---S-DYHNACPFCLLLGCLKPNSKE-------------


NSDIHFSNLS-LP---NKQIFKNPP--EI





SEQ ID NO: 630 


FmCas7-11 ----MPRFQLSLTFFDEPFRLIEWTDKSNRNSANTQWMRGQGFARWHKITL---EK--


GFPFVTGTAVRSKIIREVEALLSRNKGTWNGIPCCSGFF-----DTKGPSPT-HLRYRP--TLEWEY--


GKTVC---T-SEADVCPLCLLLGRFDQAGKKSDTPCQST-----DYHVHWENLS--A---GVAQYR-LE--DI





SEQ ID NO: 631 


DpbaCas7-11 --------------F-E------------------------SYARWCKSNS---GL--


WKPYIPGTLLRSAVLESVEYLLAL-IGSKNKVEICPGLY---TQSENNPDTK-YLRRRP--WYELHA--


QKEIC---K-TRDTACPLCLLMRTKLDNDGDGETEK----------NVKFGNL-------YPTSPLEPL--QK





Domains


.........................................................................


.........................................................................


........................................................





SECTION 2 (SEQ ID NOS 611-631, continued from section above)


D177 atypical G-rich loop





WmCas7x3 ---------------------------------------------------------------------------------


------------------------------------------------------------------------------------------


----------------------------





SER16298.1 -------------------------------------------------------------------------------


------------------------------------------------------------------------------------------


------------------------------





GwCas7x3 ---------------------------------------------------------------------------------


------------------------------------------------------------------------------------------


----------------------------





PID64649.1 -------------------------------------------------------------------------------


------------------------------------------------------------------------------------------


------------------------------





WP_031436019.1 ---------------------------------------------------------------------------


------------------------------------------------------------------------------------------


----------------------------------





HEB50754.1 -------------------------------------------------------------------------------


------------------------------------------------------------------------------------------


------------------------------





HreCas7-11 AVSRVVNRVDPNSGKAKDFFRVWEIDHKLCPNFLGKMSISLS----


EKLEDVKALLAVGLAQVNVLSGALCRVDIID-------------------------


PETQKDTVHQHLIQQFVTRIQDKEKGDAADIPAFTLPPAGLSPSSNEWNDTIKSLAEKIR--


KIKELEQGQKLRQMADVIREL-RRKTPAYLDQ----





CmaCas7-11 VQKRILNRVDQTCGKAKDFFKVCEVDHIACPTLNGIIRINDEKLSQEEISKIKQLIAVGLAQIESLAGGI


CRIDITN--------------------------------------QNHDDLIKSFFETKPSKILQPNL---


KESGEERFELAKLELLAEYLT-QSFDANQKEQQLRRLADAIRDL-RKYSPDYLKD----





HvmCas7-11 AIERIVNRVDPSSGKAKDYMRIWEIDPL VCSQFNGIITINLD---


TDNAGKVKLLMAAGLAQINILAGSICRADIIS------------------


EDHDALIKQFMAIDVREPEVSTSFPLQDDELNNAPAGCGDDEISTDQPVGHNLVDRVRISKIAESIE-


DVFSQEQKAQQLRRMADAIRDL-RRSKPDETTLDA--





SmCas7x3 GSRRTINRVDDETGKAHDFFSIWEVDA--VREFQGEIVLAAD-L--


PSRDQVESLLHHALGFVDRLCGARCVISIAD--------------------------------------------------


QKPAEREERTV----AAGDEKATIADYDQVKGLPY----------TRLRPLADAVRNL-RQLDLAELNKPDGK





oral_meta GRLRTLNRIDRLTTKAQDFFRIYEVDQ--VRDFFGTITLAGD-L--


PRKVDVEFLLRRGLGFVSTLCGAQCEIKVVD--------------------------------------------------


LKKKQNNKEDSI----LPVSEVPFFLEPEVLAKMCQ-DVFPS----GKLRMLADVILRL-REEGPDNLT-----





DisCas7-11 GSQRVLNRVDFKSGKAHDFFKAYEVDHTRFPRFEGEITIDNK-V--S--


AEARKLLCDSLKFTDRLCGALCVIRFDE-------------------------------------------------YTPAADSGKQT-


---ENVQAEPNANLAEKTAEQII-SILDDNKKTEYTRLLADAIRSL-RRSSKLVAG-----





DsbaCas7-11 AVRRVVNRVDY ASGKAHDFFRIFEVDHIAFPCFHGEIAFGEN-V--S--


SQARNLLQDSLRFTDRLCGALCVIRYDG--------------------------------------------DIPKCGKTAPLPETESI


----QNAAEETARAIVRVFHGGRKDPEQAQIDKAEQIQLLSAAVREL-GRDKKKVSA-----





SstCas7-11 GTQRTLNRVDYATGKAHDFFKVWEIDHSLLSVFQGKISIADN-I----


GDGATKLLEDSLRFTDRLCGAICVISYDC--------------------------------------------


IENSDGKENGKTGEAAH----IMGESDAGKTDAENIANAIA-DMMGTAGEPEKLRILADAVRAL-


RIGKNTVSQ-----





CsbCas7-11 ASGRILNRVDFDTGKAKDYFRTWEADYETYGTYTGRITLRN--------


EHAKKLLLASLGFVDKLCGALCRIEVIK----------------------------------------


KSESPLPSDTKEQSYTKDDTV-----EVLSEDHNDELRKQAEVIV-EAFKQNDKLEKIRILADAIRTL-


RLHGEGVIEKDE--





CjcCas7-11 ASERILNRVDYTTGKAHDYFKVWEVDDDQWWQFTGTITMHDD------


CSKAKGLLLASLCFVDKLCGALCRIEVTG----------


NNSQDENKEYAHPDTGIITSLNLKYQNNSTIHQDAVPLSGSAHDNDEPPVH--


DNDSSLDNDTITLLSMKAKEIV-GAFRESGKIEKARTLADVIRAM-RLQKPDIWEK----





CbfCas7-11 CKERVLNRVDFRTGKAQDYFR VFEIDHEDWGVYTGEITITE--------


PRVQEMLEASLKFVDTLCGALCRIEIVG------------------------------


SADETKRTTSSKEGCPASTTTRDCSSSEND----DTSPEDPVREDLKKIAHVIA-


NAFQNSGNREKVHALADAIRAM-RLEESSIINT----





HvsCas7-11 APKRALNRIEQYTGKAQDYFTVYEALNKEFWTFKGRIRIKED-I----


YDKVTDLLFSALRCVEKIAGALCRIEIDK---------------------------------------------------EPSQQKGFV


K-------------RQLSKQAKEDIE-KIFQVVKDAQKLRLLSDCFRELTRMANKDELA-----





HsmCas7-11 GIRRILNRVDFTTGKAQDYFYVWEVEHSMCPKFQGTVKINED-M--


PKYNVVKDLLISSIQFVDKLCGALCVIEI-----------------------------------------------------GKTKNYI


C----QSFSSNIPEEEIKKLAQEIR-DILKGEDALDKMRVLADTVLQM-RTKGPEIVNE----





FmCas7-11 AQKRTSNRVDFFSKKAHDHYGVWEVTA--VKNLLGYIYISDA-


ITESHQKTVISLLKAALSFTDTLCGANCKLELSD----------------------------------------


EPVDSIHSNQSASNFNPHSGAAPSQCSQSMP----PFNMDQETKELANTLCKAFT-------


GNMRHLRTLADAVREM-RRMSPGISS-----





DpbaCas7-11 IRPRILNRMDPGTSKARDYFRVFEIENQLCSQFRGWIWLSGD-L--


PNMELVKSLLAAGLSNVATLAGAVCRIRIVSTDNPSMKQDLTTQDLIDDFTNYYLKGDTPPANLAAS


GKGDAFPRFSPGSGDHPDTTGVSHA----DMASSHEGTALAKDIAEKCK-


DIL SQISASEQLRRLADIMRDL-RQDSNREIMYRQ--





Domains


.........................................................................


.........................................................................


........................................................





SECTION 3 (SEQ ID NOS 611-631, continued from section above)


D429





WmCas7x3 ----------------------------------------------------------------------------------


---------------------------------MTTPSAPKSSL------PA----LHWLIRAELEVLTPLHLG-----------------


----TGTDQRITPDAPDA-----DPY





SER16298.1 --------------------------------------------------------------------------------


----------------------------------------MTDTV------KS----GRWIITGQFQLVTPMHIG----------------


------TGLDEEMDKQSGESVDKKQNNS





GwCas7x3 ----------------------------------------------------------------------------------


-----------------------------------------------MSNQ----TRWIIEGTLELITPLHIG------------------


----TGLDE-------KERDENKETR





PID64649.1 --------------------------------------------------------------------------------


-----------------------------MSDTQKQAIHENKWHF-----RGI----KRWEISAYLKTLSPLHIG----------------


------DG---GTIPVTIKDTQGKNREV





WP_031436019.1 ----------------------------------------------------------------------------


---------------------------------------------MNLPTWKL-----NNE----KRWHISIVLTTATPLHIG--------


--------------SG--EFCEHDDVKNNDG--EPV





HEB50754.1 --------------------------------------------------------------------------------


------------------------------------MAAVQDRWTLMDQQGNEL----KRFRITAELETASSLHIG---------------


-------AS--ETVEHDLIKNDDG--TPV





HreCas7-11 -LPAGKPEG--------RESIWEK------------TPTGE--TLTLRQLLKSANVPGE-------


SWRAFCEELGEQLYRLEKNLYS--HARPLPRLLGETEFYGQPARKS---DDPPMIRASYR----AFPS----


YVWVLDGILRAETPFYFG-----------------------TET-----------SEGQTS-





CmaCas7-11 -LPKGKKGG--------RTSIWNK------------KVADD---FTLRDCLKNQKIPNE-------


LWRQFCEGLGREVYKISKNISN--RSDAKPRLLGETEYAGLPLRKE---DEKEYSPTYQN----QESLPK--


TKWIISGELQAITPFYIG-----------------------HVN-----------KTSHTR-





HvmCas7-11 -LPKGKTDK--------


DNSVWDKPLKKDILPSPRMPASEDDDTPTLRKVLKDEINGQED------


MWRKFCEALGNSLYDLSKKAKERKRTEALPRLLGETEIYGLPMREN---KEDEPLPSSLT----YK------


FKWLIAGELRAETPFFFG-----------------------TEV-----------QEGQTS-





SmCas7x3 FLPPGRVNK---DGRRVPHYVWDIP-----------LGKGD----TLRKRLEFLAASCEGDQA--


-KWRNICESEGQALYEKSKKLKD--SPAAPGRHLGAAEQVRPPQPPV---SYSEESINSDL----PL------


AEWIITGTLRAETPFAIGM---------------------DAPI-----------DDDQTS-





oral_meta -LPMGSQGL---GGRL-PHHLWDVP-----------LVSKDRETQTLRSCLEKIAAQCKSEQT---


QFRLFCQKLGSSLFRINKGVYL--APNSKISP----EPCLDPSKTI---RTKGPVPGKQK----


HRFSLLPPFEWIITGTLKAQTPFFIP----------------------DEQG-----------SHDHTS-





DisCas7-11 -LPKDHDGK---D----DHYLWDIG-----------KKKKDENSVTIRQILTTSADTKELKNAG--


KWREFCEKLGEALYLKSKDMSG--GLKITRRILGDAEFHGKPDRLE---KSRSVSIGSVL------------


KETVVCGELVAKTPFFFG----------------------AIDE-----------DAKQTD-





DsbaCas7-11 -LPLNHEGK---E----DHYLWDK------------KAGGE----TIRTILKAAAEKEAVAN----


QWRQFCIELSEELYKEAKKAHG--GLEPARRIMGDAEFSDKSVPDT---VSHSIGISVE-------------


KETIIMGTLKAETPFFFG----------------------IESK-----------EKKQTD-





SstCas7-11 -LPLDHEGK---E----NHHLWD-------------IGEGK----SIRELLLEKAESLPSD-----


QWRKFCEDVGEILYLKSKDPTG--GLTVSQRILGDEAFWSKADRQL---NPSAVSIPVT-------------


TETLICGKLISETPFFFG----------------------TEIE-----------DAKHTN-





CsbCas7-11 -LPDGKEER---DK---GHHLWDI------------KVQGT----ALRTKLKELWQSNKDI-----


GWRKFTEMLGSNLYLIYKKETG--GVSTRFRILGDTEYYSKAHDSE---GSDLFIPVTPP----EGIET---


KEWIIVGRLKAATPFYFGVQQPSDSIPGKEK------KSEDSLV-----------INEHTS-





CjcCas7-11 -LPKGINDK---------HHLWDR------------EVNGK----KLRNILEELWRLMNKRN----


AWRTFCEVLGNELYRCYKEKTG--GIVLRFRTLGETEYYPEPEKTEPCLISDNSIPITPL----GGV-----


KEWIIIGRLKAETPFYFGVQSSFDSTQDDLDLVPDIVNTDEKLE-----------ANEQTS-





CbfCas7-11 -LPKGKSEKTTEQIEVNKHYLWDEI-----------PVNDT----


SVRHILIEQWRRWQSKKDD-PEWWKFCDFLGECLYKEYKKLTS--


GIQSRARVMGETEYYGALGMPD---KVIPLLKSDKT------------KEWILVGSLKAETPFFFGLET-----------


--------EQTE-----------EVEHTS-





HvsCas7-11 -LPLGPEDD---------GHYLWDKI----------KVEGK----TLRIFLRNCFSQYKD------


NWLCFCDEASKKGYQKYREKRH--KLTDRELPTATPKHFAEKKDPQ---ISPIYIDKDDK----V-------


YEWIIVGRLIAQTPFHFG-------------------------------------DEEKAE-





HsmCas7-11 -LPRGIEKK---G----GHWLWDKL-----------R---------LRKKFKEIANNYKD------


SWQELCEKLGNELYISYKELTG--GIAVKKRIIGETEYRKIPEQEI---SFLPSKAGYS-------------


YEWIILGKLISENPFFFG----------------------KETK-----------TEEQID-





FmCas7-11 -LPRGRLNK---EGEITAHYLWDE-------------RIDEK----


TIRQVLEDTIELSPARSIIYKNWISFCNQLGQKLYERAKD-ND--PILERKRPLGEAAFSKVPTSSH---


APRHDMNSRVK----GGFT----REWIIVGTLRALTPFYMG----------------------TGSQ-----------AGKQTS-





DpbaCas7-11 -VAEENHEK-------ASLLYKK------------TKKGD----SIAALIAGKTEGMDA-----


ETWRRLCEFLGQTFYGEAKEAGL--VETPVPRILGESERYSLQKKPT---VRTDLAAELVP----D-------


IEFIIKGNLIAETPFFFG----------------------TDIA-----------TETHTD-





Domains


.........................................................................


.........................................................................


........................................................





SECTION 4 (SEQ ID NOS 611-631, continued from section above)


*


G-rich loop





WmCas7x3 WQADIALDADGRPYLPGASLKGALKALARRRQVDAPCL-


PLFGDLNRGGAPHPDCIPPRRTRAGLAEFRDALQSHAT--QAD--GPDT---------


AQPRIAIDRITGSVVDKKLFHTQTVPVGTRFSVEI--ILRRADQ--NLAAQLVALLQHGPT-----


DPDFRLGAHANLGFGRVGL-YGNIDTRRFGPQQAQ-H





SER16298.1 WIQAIALDLNKKPYIPGASIKGALKALARRYYCASNL--NIFGDTI--


DTKDGDNKRKSVTVAGQAEFLNA-WYAAD--QED--KPFD---------


TITRVAIDRVTGTAEDRKLFNTRRVNPGVCFNYKI--IIQNACE--TEIQYLLDLLRKAAK-----


DPSFSLGAGANQSQGKVRC-LSSC-VRYFGKQEMH-D





GwCas7x3 WLEAVALDHKGQPYIPGASLKGALRALAKRHD---------FRNLF--DNKEVDGD-----


FVRQAEFLSA-WCVPD--TDK--GRL----------IQPRVAIDRVTGTAQDKKLFQTRLITPGTRFAMKI--


VVQNAVE--NEIADLLGLLNLLPD-----DPQFSLGAYANQGQGRVQW-FGKIQTRCFGINEAK-A





PID64649.1 EVNSVITGKAALPIIPGSTIKGRLRHYFSKHFSDKALLNKVFGEES--DATDDDQG-----


RGGLAEFHDAKWNPEK--


NRNLQGRYPYWNNTRKTYIEVSTAINRHTGAAKDKSLHHTECVPPGTVFEIKITGSMDDRCA--


ALVVAALEAIQTTGS-----RIFL--GAEDANGNGRIGL-TGKITVKQMDQAHII-Q





WP_031436019.1 KINACIKGSKGRPIIPGSTIKGKLYEWLKTRNTEENLLEKLFGKGH--


NSVSQDQG-----RGGKAEFHDAEIIEPL--TGS--


QPWPYWREEHQAFIAASTAIDRHKQVALQQSLHYMETVPAGIRFKFTFTGVMRDEEA--


ALLIAALDSFDKNON-----QPCF--GVDRANAYGRMEL-HGHLHVKVMGATEIS-S





HEB50754.1 QINALITGAGGLPIIPGSTIKGRFLARLRERGVDSALLETLFGKGH--DRETEDQG-----


RGGRAEFHDAPLCHRL--SGA--


RHFPYWRPERQIWVKAQTAVDRHRGTALRRSLRYTEMVPPGVRFRLTITGCMTDAEA--


DVLFALLEDLGDPRQ-----ACSF--GGAGADGNGTMRL-FGRPEVYCLDRSGIL-G





HreCas7-11 --QAIILCPDGSYRLPRSLLRGVIRRDLRAIL-GTGCNVSLGKVRP--CSCPVCE------


IMRRITVQQG---VSS--YRE--PAE----------VRQRIRSNPHTGTVEEGALFDLETGPQGMTFPFRL----


YFRTRSPYIDRALWLTINHWQE-----GKAI-FGGDIGVGMGRFRL-E-NLQIRSADLVSRR-D





CmaCas7-11 --STIFLNMNGQFCIPRSTLRGALRRDLRLVF-GDSCNTPVGS-RV--CYCQVCQ------


IMRCIKFEDA---LSD--VDS--PPE----------VRHRIRLNCHTGVVEEGALFDMETGFQGMIFPFRL----


YYESKNEIMSQHLYEVLNNWTN-----GQAF-FGGEAGTGFGRFKL-L-NNEVFLWEIDGEEED








HvmCas7-11 --ATILLNRDGYFRLPRSVIRGALRRDLRLVMGNDGCNMPIGG-QM--CECGVCR----


--VMRHIVIEDG---LSD--CKI--PPE----------VRHRIRLNCHTGTVEEGALFDMETGYQGMTFPFRL----


YCETENSDLDSYLWEVLNNWQN-----GQSL-FGGDTGTGFGRFEL-T-EPKVFLWNFSKKE-K





SmCas7x3 --SRTLVDRDGRYRLPRSTLRGILRRDLSLASGDQGCQVRLGPERP--CTCPVCL------


ILRQVVIADT---VSE--TTV--PAD----------IRQRIRRNPITGTAADGGLFDTERGPKGAGFPFSL----


RYRGH-APMPKALRTVLQWWSA-----GKCF-AGSDGGVGCGRFAL-D-NLEVYRWDLGTFA-F





oral_meta --RKILLTRDFYYRLPRSLLRGIIRRDLHEATDKGGCRVELAPDVP--CTCQVCR------


LLGRMLLADT---TST--TKV--APD----------MRHRVGVDRSCGIVRDGALFDTEYGIEGVCFPLEI----


RYRGN-KDLEGPIRQLLSWWQQ-----GLLF-LGGDFGIGKGRFRL-E-NMKIHRWDLRDES-A





DisCas7-11 --LQVLLTPDNKYRLPRSAVRGILRRDLQTYF-DSPCNAELGG-RP--CMCKTCR------


IMRGITVMDA---RSE--YNA--PPE----------IRHRTRINPFTGTVAEGALFNMEVAPEGIVFPFQL----


RYRGSEDGLPDALKTVLKWWAE-----GQAF-MSGAASTGKGRFRM-E-NAKYETLDLSDEN-Q





DsbaCas7-11 --LMLLLDGQNHYRIPRSALRGILRRDIRSVL-GTGCNAEVGG-RP--CLCPVCR------


IMKNITVMDT---RSS--TDT--LPE----------VRPRIRLNPFTGSVQEKALFNMEMGTEGIEFPFVL----


SYRGK-KTLPKELRNVLNWWTE-----GKAF-LGGAASTGKSIFQL-S-DIHAFSSDLSDET-A





SstCas7-11 --LKVLLDRQNRYRLPRSAIRGVLRRDLRTAFGGKGCNVELGG-RP--CLCDVCR------


IMRGITIMDA---RSE--YAE--PPE----------IRHRIRLNPYTGTVAEGALFDMELGPQGLSFDFIL----


RYRGKGKSIPKALRNVLKWWTK-----GQAF-LSGAASTGKGIFRL-D-DLKYISFDLSDKD-K





CsbCas7-11 --FNILLDKENRYRIPRSALRGALRRDLRTAF-GSGCNVSLGGQIL--CNCKVCI------


EMRRITLKDS---VSD--FSE--PPE----------IRYRIAKNPGTATVEDGSLFDIEVGPEGLTFPFVL----


RYRGH--KFPEQLSSVIRYWEENDGKNGMAW-LGGLDSTGKGRFAL-K-DIKIFEWDLNQ---K





CjcCas7-11 --FRILMDKKGRYRIPRSLIRGVLRRDLRTAFGGSGCIVELGRMIP--CDCKVCA------


IMRKITVMDS---RSE--NIE--LPD----------IRYRIRLNPYTATVDEGALFDMEIGPEGITFPFVF----


RYRGE-DALPRELWSVIRYWMD-----GMAW-LGGSGSTGKGRFAL-I-DIKVFEWDLCNEE-G





CbfCas7-11 --LRLVMDKKGRFRIPRSVLRGALRRDMRIAF-DSGCDVKLGSPLP--CDCSVCQ------


VMRSITIKDS---RSE--AGK--LPQ----------IRHRIRLNPFSGTVDEGALFDIEVAPEGVIFPFVM----


RYRGE--EFPPALLSVIRYWQD-----GKAW-LGGEGATGKGRFALAK-DLKMYEWKLEDK--S





HvsCas7-11 --GAILLTPDNRFRLPRTALRGILRRDLKLAG-ASACEVEVGRSEP--CPCDVCK------


IMRRVTLLDT---VSEDLRDF--LPE----------LRKRIRINPQSGTVAEGALFDTEVGPEGLSFPFVL----


RYKCE--KLPDSLTTVLCWWQE-----GLAF-LSGESATGKGRFRL-E-INGAFVWDLQK---G





HsmCas7-11 --MQILLTKDGRYRLPRSVLRGALRRDLRLVI-GSGCDVELGSKRP--CPCPVCR------


IMRRVTLKDA---RSD--YCK--PPE----------VRKRIRINPLTGTVQKGALFTMEVAPEGISFPFQL----


RFRGE-DKFHDALQNVLVWWKE-----GKLF-LGGGASTGKGRFKL-E-IEHVLKWDLKN---N





FmCas7-11 --MPTLQDSNDHFRLPRTALRGALRRDINQASDGMGCVVELGPHNL--CSCPVCQ----


--VLRQIRLLDT---KSK--FSM--PPA----------IRQKICKNPVLSIVNEGSLFDVELGIEGETFPFVM----


RYRGG-AKIPDTIITVLSWWKN-----ERLF-IGGESGTGRGRFVL-E-CPRIFCWDVEK---G





DpbaCas7-11 --LPILLTSDRHFRIPRSVLRGILRRDLRLVT-GSGCSVKLGRSEP--CACDVCQ------


IMRSLTMRDC---VSS--CKV--PPE----------IRHRIRLNPVTETVEEGALFDMEIGPQGISFPFVL----


RSRGVNSSFSTRLKNVLTWWSE-----GKIF-MGGDKGTGKGRFTL-A-ELEAYYFRLTTKRIG





Domains


.........................................................................


.........................................................................


........................................................





SECTION 5 (SEQ ID NOS 611-631, continued from section above)


D654





WmCas7x3 WF-----AAAQTQADARW-TDFAEA---VT-----------------LTAPAPAPAQP----------------


APHRLALP--------------------------------LSLTFHTPFLVKQPEHKH--R----KPQDNAPDGTPR----QRGD-----


-----RA----LLPGASLRGRLRSQAERILRTLGCK





SER16298.1 WF-----RAIQNGKQEHW-QIFAKP---SN-----------------IKYADLERPDI----------------


IANSLNLP--------------------------------LTLDFHTPFLVKASKKK--------DEAKNEADAKPR---TNHQG------


----QV----ILPASSLRGRLRAQAEKILRTMGQD





GwCas7x3 WY-----EEIRKDESKCW-TAFAKP---KN-----------------VSTP---PTPA----------------


KEAQLTLP--------------------------------LNLAFHTPFLVKQAGIK-----------ADDADAVPR---RTHDD--------


--KI----VLPASSLRGRLRTQSERILRTLGCE





PID64649.1 WL-----Q-----KDST--TCVASF---SN-----------------VKAENETQVKQ--------------


MVQRHIAPKLNSVVSAAG------------------PSYDITLHFDGPFVVNDSDKC-------KAEDTPDIYPL---


EEKNG----------VP----AFPVRSFRGAIRSQAERIIRTIGGQ





WP_031436019.1 WL-----NSFSE-NDKK--MAMESA---RN-----------------LEQQEINTLIE----------------


QGNALFKA------SCDE------------------VKLGLTLKFKGPFLVNDPYAVKILS----SNENAKTDHYPL---


LDKNR----------NP----YLPVSSFRGVLRSQAERIIRTLGGK





HEB50754.1 WL-----ASFEKGGNGG--MAMTAA---AL-----------------LQADTVQRRAD----------------


KVRQAWQP------PDVG------------------PRLHVELRFSGPFLVNDPSRN---T----PDITQAPDMVPL---


VDEDG----------NP----MLPASSFRGALRAQAERIIRTLGGR





HreCas7-11 FS-----LYLRA---RGL-KGLSR----EE-----------------VTRIGLNEEQWEAVMA----DD-----


PGTHYNPF------P--W------------------EKISYTLLIHSPLISNDPIAAM--L----D--


HDNKDAVMVQKTVLFVDESGN-----YSQMPHHFLKGSGIRGACRFLLGRK-------





CmaCas7-11 YL-----QYLFS---RGY-KGIE-----TD-----------------EIKKVADPIKWKTLF-----TK-----


LEIPPEKI------P--L------------------TQLNYTLTIDSPLISRDPIAAM--L----D--


NRNPDAVMVKKTILVYEQDSSTHKNVPKEVPKYFIKSETIRGLLRSIISRT-------





HvmCas7-11 HE-----AYLLN---RGF-KGQMPV---QD-----------------VKTKSFKTKTWFQIH-----RE----


-LDISPKKL------P--W------------------YSTDYRFNVTSPLISRDPIGAM--L----D--


PRNTDAIMVRKTVFCPDPNA---KNRPAPATVYMIKGESIRGILRSIVVR--------





SmCas7x3 RQ-----AYSEN---NGL-RSPEEEFDLAV-----------------IHELAEGLAKEDGQK------------


ILKGTEPF------TC-W------------------QERSWQFSFTGPLLQGDPLAAL--N------


SDTADIISFRRTVVDNGEVL------REP----VLRGEGLRGLLRTAVGRV-------





oral_meta RA-----DYVQK---CGLRRGVGDDTAINL-----------------EKDLSLNLPE----------------------


SGY------P--W------------------KKHAWKLSFQVPLLTADPIMAQ--T-------


RHEEDSVYFQKRIFTSDGRVV-----LVP----ALRGEGLRGLLRTAVSRA-------





DisCas7-11 RN-----DYLKN---WGW-RDEKGL---EE----------------LKKRLNSGLP-----------------


EPGNYRDP------K--W------------------HEINVSIEMASPFINGDPIRAA--V----D--


KRGTDVVTFVKYKAEGEEAK------PVC----AYKAESFRGVIRSAVARI-------





DsbaCas7-11 RE-----SYLSN---HGW-RGIMEN---SI-----------------VHESPLEGGAGGCSF------------


GLSDLPKL------G--WHAEDLKLSDIEKYKPFHRQKISVKITLNSPFLNGDPVRAL--T-------


EDVADIVSFKKYTQGGEK--------IIY----AYKSESFRGVVRTALGLR-------





SstCas7-11 RK-----DYLDN---YGW-RNRIEA---LS-----------------LEKMPLD--------------------


RMNDYAEP------L--W------------------QKVSVEIEIGSPFLNGDPIRAL--I----E--


KDGSDIVSFRKYADDSGK--------EVY----AYKAESFRGVVRAALARQ-------





CsbCas7-11 IN-----EYIKE---RGM-RGKEKELLEMG----------------ESSLPDGLIPYKFFEEREC-LF---


--PYKENLKP------Q--W------------------SEVQYTIEVGSPLLTADTISAL--T----E--


PGNRDAIAYKKRVYNDGNNA------IEPEPRFAVKSETHRGIFRTAVGRR-------





CjcCas7-11 LK-----AYICS---RGL-


RGIEKEVLLENKTIAEITNLFKTEEVKFFESYSKHIKQLCHECIINQISFLWGLRSYYEYLGP------L--W-


-----------------TEVKYEIKIASPLLSSDTISAL--L----N--KDNIDCIAYEKRKWENGGIK------FVP----


TIKGETIRGIVRMAVGKR-------





CbfCas7-11 LH-----AYIDT---YGH-RGNEHAIGTGQ-----------------


GIDGFRSGSLSDLLSDISKESFRDPLASYHNYLDK------R--W------------------


IKVGYQITIGAPLLSADPIGAL--L----D--PNNVDAIVFEKMKLDGDQVK------YLP----


AIKGETIRGIVRTALGKR-


HvsCas7-11 LF-----NYIKN---HGF-RGEERLFLEGN-----------------EAELEKMGIQINTELLQPEMIK--


---KEKNFTDF------P--Y------------------DLIKYQLNISSPLLLNDPIRAI--ALYEGE--


GKAPDAVFFKKYVFENGKIE------EKP----CFKAESIRGIFRTAVGRI-------





HsmCas7-11 FH-----SYLQY---KGL-RDKGDFNSIKE-----------------IEGLKVETEEFKVK---------------


---KPF------P--W------------------SCVEYTIFIESPFVSGDPVEAV--L----D--SSNTDLVTFKKYKLEESK-----


---EVF----AIKGESIRGVFRTAVGKN-------





FmCas7-11 QN-----DYIQY---HGF-RNKEDEL--LS-----------------VYSTVSGLAEKNDV-------------


NLNNARDF------S--F------------------DKICWEVQFDGPVLTGDPLAAL--F-------


HGNTDSVFYKKPILKSGEKE------PSY--QWAIKSDTVRGLIRSAFGKR-------





DpbaCas7-11 KNVWVIGNYLKS---QGW-RG-------AE-----------------LETHFDSLKEWKSL------SF----


-SDSDVKVF------T--W------------------HKITWKVSFEGPVLTNDPIAAD--I-------RNESDAVFYQKSV--


AGEKG------PVY----ALKGEGLRGIVSSSLCKK-------





Domains


.........................................................................


.........................................................................


........................................................





SECTION 6 (SEQ ID NOS 611-631, continued from section above)


*


WmCas7x3 VAQG--------HAVPPVKNNTCP-DPATL-----LFGTAGWRGLLRTDD---------------------


-------CTGTA---------------------------------------------------------------------------


--PAT----------------------------------LVD





SER16298.1 IPQG-------HAAPAYDGIAHR-DLISL-----


LFGTAGWKGIVCASDLIHSIPEYALQFNGVRETISDLSDTVKSCIIVDLVKTSTAAEKTEEQLHIRIVDS


AGSLIVHKSENSSWANDTFRDASVKDNFKARLKEIADPQDLSDALRADIKKRAFQLAT-----------------


-----------------LTR





GwCas7x3 TPQG--------HTAPAYRKGQPHDDLAVL-----LFGAAGWRGIVQTSD----------------------


------CIVED---------------------------------------------------------------------------


-KSIK----------------------------------TRR





PID64649.1 CCDG--------SINNTCK------NPKNLCIACEMFGSTGWKTSIEMDPFL----------------------


----CVDRE-----------------------------------------------------------------------------


LKP----------------------------------FII





WP_031436019.1 CCS-----------TDDPCKPIFDKGDLSKLCLACQIFGASGWKTVINIHDFK----------------


----------AINKS------------------------------------------------------------------------


-------K----------------------------------KTK





HEB50754.1 CCD----------TSSPCRPLGSSDKVGELCLACQVFGAPGWGTTLHIQGFT-----------------


--------CTSV---------------------------------------------------------------------------


----FRR.---------------------------------EQE





HreCas7-11 -DAPNE------NGLTYFE--ADHEE--CDCLLCSLFGSKHYQGKLRFEDAE------------------


--------LQDEV--------------------------------------------------------------------------


---EA-----------------------------------IK





CmaCas7-11 -EIKLE----DGKKERIFN--LDHED--CDCLQCRLFGNVHQQGILRFEDAE------------------


---------ITNKN-------------------------------------------------------------------------


----VS----------------------------------DCC





HvmCas7-11 -------------NEELYD--TDHED--CDCILCRLFGSIHQQGSLRFEDAE-------------------------


--VQNSV-----------------------------------------------------------------------------SD--


---------------------------------KK





SmCas7x3 ------------AGDDLLT--RSHQD--CKCEICQLFGSEHRAGILRFEDLP-------------------------


-PVSPT-----------------------------------------------------------------------------TV---


------------------------------ADKR





oral_meta ------------YGISLIN--DEHED--CDCPLCKIFGNEHHAGMLRFDDMV-------------------------


-PVGTW------------------------------------------------------------------------------ND-


---------------------------------KK





DisCas7-11 -HME-------DGVPLTE--LTHSD--CECLLCQIFGSEYEAGKIRFEDLV----------------------


----FESDP-----------------------------------------------------------------------------


EP-----------------------------------VT





DsbaCas7-11 -NQGNDDIT-GKKNVPLIA--LTHQD--CECMLCRFFGSEYEAGRLYFEDLT------------


-------------FESEP---------------------------------------------------------------------


---------EP---------------------------------RR





SstCas7-11 -HFDKEGKPLDKEGKPLLT--LIHQD--CECLICRLFGSEHETGRLRFEDLL---------------


---------FDPQP--------------------------------------------------------------------------


----EP----------------------------------MI





CsbCas7-11 ------------TGDLG-K--EDHED--CTCDMCIIFGNEHESSKIRFEDLE-------------------------


LINGN------------------------------------------------------------------------------EF---


---------------------------EKLEKH





CjcCas7-11 -------------SGDLG-M--DDHED--CSCTLCTIFGNEHEAGKLRFEDLE-----------------------


-VVEEK------------------------------------------------------------------------------


LPSEQNSDSNKIPFGPVQDGDGNREKECVTAVKSYKKKL





CbfCas7-11 ------------NNLLA-K--NDHDD--CTCSLCAIFGNENETGKIRFEDLE-----------------------


-VYDKD------------------------------------------------------------------------------IA--


------------------------------KK





HvsCas7-11 ------------KNVLT----KNHED--CICVLCHLFGNVHETGRLKFEDLK-----------------------


--IVSGQ-----------------------------------------------------------------------------EE--


--------------------------------KF





HsmCas7-11 ------------EGKLTTE--NEHED--CTCILCRLFGNEHETGKVRFEDLE-----------------------


---LINDS----------------------------------------------------------------------------AP--


---------------------------------KR





FmCas7-11 ------------DALLI----KSHED--CDCLLCEAFGSKHHEGKLRFEDLT-------------------------


PKSDE----------------------------------------------------------------------------IK----


-----------------------------TYR





DpbaCas7-11 ------------KNLSS----NLHED--CECLRCKIFGSKHQEGNIRFEDMT------------------------


-VSQES----------------------------------------------------------------------------EV----


----------------------------REKL





Domains


.........................................................................


.........................................................................


........................................................





SECTION 7 (SEQ ID NOS 611-631, continued from section above)


D745 D758 G-rich loop





WmCas7x3 HDMLAIDRFTGGGKDGAKFKLRYA-----ECPTLEGQLSLDLSRLRSARLD------


GANAADTPWIALGLLTLVLRDLAEGDIPFGHGSAKGYGRCRAQGLPDRWRQALEAHFGPNADARA


LAALRAWCRTHATAAL--DAPCSLAGSAPTPAAAAPS--GQAAPAD---AFHN--PYHFI-P-F-


SQPDIDRWLSPDA





SER16298.1 HEMVAIDRFTGGGKEGAKFNVDYI-----ECPTLTGAIYLDLHRLKQAQLK------


NDEDALKP--


ALGLISLLLRDLAEGDIAFGFGANKGYGQCREHAVLDNWEERLKKIGAGLTIDGALQALRDTVALEP


PAEF---PPEIEKTTDDNQPEAPDF--NLKPASN---GFHN--PYHFI-P-L-NNPKIGDWPEAKA








GwCas7x3 HEMLAIDRFTGGGKDGAKFNVDYV-----ECPTLAGKLSLDLARLKNAKLK------


GGKDALLP--


ALGLMTLMLRDLAEGDIPFGYGISKGYGQCRASSALGDWAELLKQHLGADSADTTVQALREYLGN


PKGQELKLDPPSADATQAGVPAQQNAAKTQAQGAQE---KFHN--PYHFI-P-L-SKPDISQWPEPQK





PID64649.1 QEFVAIDRFHGGGKDEAKFNAAHY-----QAPVFKGKVRVS-QRVGN-DIS------WRK--


-------GLLALIFRDLKEGDIYFGFGTNKGYGAVKKAEINPDGN-------


ASDFSESDIEAFINKCREKKGLYNC--NPIKKPGKTKVSKNLPPAIVPLDRTDS---KFYN--PYHFI-P-V-


KKPNTSSWAEKTA





WP_031436019.1 QDFVAIDRFHGGGKDGAKFDATHF-----ERPEFEGAISFS-PRMANNDLD------


WGK---------GLLALVLRDMQEGDMTFGYGANKGYGGLESASITGIEQ-----------


ITSDIQAFRDKCVASPQTWLCDEAVKPANQQD----KIPPA--GIQVANS---GFHN--PYQFI-P-S-


KEPDTGHWLPVLG





HEB50754.1 QTFVAIDRFHGGCKEGALYTIRHA-----ESPRFEGHLVID-PRMPA----------WGR-------


--GLLALVFRDLREGDITFGLGAGKGYGVVDAAVVQDMAE-----------


LEPYVEAFREQCRQHQGMADCHSAPSPQPLRDHDLAEIPPA---EEAPGE---TFLN--PYHFV-P-I-


REPDTGSWLARDE





HreCas7-11 CDHVAIDRFHGGTVHRMKYDDYPLPGSPNRPLRIKGNIWVK------RDLS-----DTEK--


-------EAVKDVLTELRDGLIPLGANGGAGYGRIQRLMI-DDGPGW------------------


LALPERKEDERPQPSFSPVS--------LGP-VHVNLKSGSDTADVYYYHPHYFL-E-PPSQTV---------





CmaCas7-11 IDHVAIDRFTGGGVEKMKFNDYPLSASPKNCLNLKGSIWIT------SALK-----DSEK---


------EALSKALSELKYGYASLGGLSAIGYGRVKELTLEEN----------------------


DIIQLTEITESNLNSQSRLS--------LKP-DVKKELSNN---HFYY--PHYFI-K-PAPKEV--------





HvmCas7-11 MDHVAIDRFTGGGVDQMKFDDYPLPGCPAQPLILEGKFWVK------DDID-----


DESK---------SALEKAFADFRDGLVSLGGLGAIGYGQIGDFELIGGSADW------------------


LNLPKPEENRTDVPCGDRSA--------QGP-EIKISLDAD---KIYH--PHFFL-K-PSDKNV---------





SmCas7x3 LDHVAIDRFDQSVVE--KYDDRPLVGSPKQPLVFKGCFWVQ------TSGMT----HQLT--


-------ELLAQAWRDIAAGHYPVGGKGGIGYGWINSLVVDGEK---------------------


ITCRPDGDSISLTTVTGDIP--------PRP-ALTPPAG-----AIYY--PHYFLPPNP-EHKP---------





oral_meta IDHVSCSRFDASVVN--KFDDRSLVGSPDSPLHFEGTFWLH------RDFQ-------ND---------


VEIKTALQDFADGLYSIGGKGGIGYGWLFDMEIPRSLRKLNSGFREA----------


SSIQDALLDSAKEIPLSAPLT--------FTP-VKG---------AVYN--PYYYL-PFP-AEKP---------





DisCas7-11 FDHVAIDRFTGGAADKKKFDDSPLPGSPARPLMLKGSFWIR------RDVLED---EEYC-


--------KALGKALADVNNGLYPLGGKSAIGYGQVKSLGIKGDDKRI------------------


SRLMNPAFDETDVAVPEKPK--------TDA-EVRIEAE-----KVYY--PHYFV-E-P-HKKV---------





DsbaCas7-11 FDHVAIDRFTGGAVNQKKFDDRSLVPGKEGFMTLIGCFWMR------KDKELS---


RNEI---------EELGKAFADIRDGLYPLGAKGSMGYGQVAELSIVDDEDSDDENNPAK----------


LLAESMKNASPSLGTPTSLKK--------KDA-GLSLRFDEN---ADYY--PYYFL-E-P-EKSV---------





SstCas7-11 FDHVAIDRFTGGAVDKKKFDDCSLPGTPGHPLTLKGCFWIR------


KELEKPDEDKSER---------EALSKALADIHNGLYPLGGKGAIGYGQVMNLKIKGAGD--------------------


VIKAALQSESSRMSASEPEH--------KKP-DSGLKLSFDDKKAVYY--PHYFL-K-PAAEEV---------





CsbCas7-11 IDHVAIDRFTGGALDKAKFDTYPLAGSPKKPLKLKGRFWIK------KGFS-----GDHK---


------LLITTALSDIRDGLYPLGSKGGVGYGWVAGISIDDNVPDDFKEMINK----------


TEMPLPEEVEESNNGPINNDY--------VHP-GHQSPKQDHKNKNIYY--PHYFL-D-S-GSKV---------





CjcCas7-11 IDHVAIDRFHGGAEDKMKFNTLPLAGSFEKPIILKGRFWIK------KDIV-----KDYK-----


----KKIEDAMVDIRDGLYPIGGKTGIGYGWVTDLTILNPQSGFQ-----------------


IPVKKDISPEPGTYSTYPSH--------STP-SLNKG-------HIYY--PHYFL-A-P-ANTV---------





CbfCas7-11 IDHVAIDRFTGGARDQMKFDTLPLIGSPERPLRLKGLFWMR------RDVS-----PDEK---


------ARILLAFLEIREGLYPIGGKTGSGYGWVSDLEFDGDAPEAFKEMNSK----------


RGKQASFKEKISFRYPSGAPK--------HIQ-NLKAT-------SFYY--PHYFL-E-P-GSKV---------





HvsCas7-11 FDHVAIDRFLGGAKEKYKFDDKPIIGAPDTPIVLEGKIWVK------KDIN-----DEAK----


-----ETLSQAFSDINTGIYYLGANGSIGYGWIEEVKA-LKAPSWLKIK-------------


EKPNFEKDTSLNISAIMNEF--------KKD-IQTLNLD-----KTYL--PYGFL-K-L-LEKV---------





HsmCas7-11 LDHVAIDRFTGGAKEQAKFDDSPLIGSPDSPLEFTGIVWVR------DDID-----EEEK----


-----KALKSAFLDIKSGYYPLGGKKGVGYGWVSNLKI-ESGPEWLRLEVQE----------


KSSQENVLSPVILSEVMDIEF--------NPP-KIDEN-------GVYF--PYAFL-R-P-LNEV---------





FmCas7-11 MDHVAIDRISGGAVDQCKYDDEPLVGTSKHPLVFKGMFWIN------RDSS-----


VEMQ---------RALIAAFKEIRDGLYPLGSNGGTGYGWISHLAI-TNGPDWLNLEEVP----------


LPQPTADIPVEECTAEPYPKF--------QKP-DLDQN-------AVYY--PHYFL-Q-P-GKPA---------





DpbaCas7-11 FDHVSIDRFTGGAANKLKFDDKPLVG---NPLVFQGVFWVH------QSIGNN---EKTQ-


--------EALSDAFKDVRDGLYPVGAKGSIGYGWIKGIEV-VEGPDWLK----------------


DALSAEKTVEAGIASEESEY--------KLP-DLPWISLLPKGRAIYN--PHYFL-GIP-KVTP---------





Domains


.........................................................................


.........................................................................


........................................................





SECTION 8 (SEQ ID NOS 611-631, continued from section above)


E959





WmCas7x3 H---RKTGGH-SRYRG--------------LSGRLVCALTTVTPLFVGAAA-RTP-ASDQHPK---


-P----VAGFALQNQPAIPATSLRGLLSSLFESISGSNLRVLHPT-PYSIRKTTKE---------------ALSA--I-


----------G--------------------------------





SER16298.1 ETLKANREGH-DQYHTGK------------FSGRIVCSLTTQTPLFIGAET-KPS-TSDREPS---


-------E----ARPFKLNGKHAIPATSLRGMLSSLFESVSNSNFRVLHPE-HYSVRKSLDDYV-------------


ALSA--M-----------------G--------------------------------





GwCas7x3 L--TEKGHSH-DRYAS--------------LSGRIVCRLTTQTPLFIGSEQ-TTP-TNPQAPK-------


---S----LHPFKLNNGLAIPATSLRGMISSLFESVSNSNFRVLDEK-TYSMRKTMQQ---------------SLSA--


M-----------------G--------------------------------





PID64649.1 FGTADSPHSH-GFYRKQTNE------QQPLYSGRLICMLTSETPFFIGAQA-ESD---


PTENE----------NQASLRHPYQLDGEPAIPSTSLRGLISTMTEAAANCAMRVLDSE-IISYRKPMNPSH----


---------ILSA--L-----------------G--------------------------------





WP_031436019.1 L-NADSHHSH-AFYRDQTDN------GEKL YHGRLICCLNTETPIFIGADK-KKD-


TEPAEIN----------N-------YRLNGELAIPATSLRGMISSLAEAASNSAMRVLDNG-LLSYRKTADD--------


-------ALRK--V-----------------G--------------------------------





HEB50754.1 L-DSSCCHSH-GFYRQQVDD-------RPLYHGRLTCLLETETPLFIGATG-DSS-V-


PSRIE----------N-------YRLGNRIAIPAASLRGMLSSLAEAASNSAMRVLHQG-ILSYRKKAKN-------------


--ALRE--I-----------------G--------------------------------





HreCas7-11 S-RELDIISHARTRDS---G------GEALLTGRILCRLITRGPIFIPDTN-NDNAFGLEGGI-G-


-----HKN----YRFFRINDELAIPGSELRGMVSSVYEALTNSCFRIMEEGRYLSRRMGADEFK--------------


-DFHP-----------------G--------------------------------





CmaCas7-11 V-RESRLISHVQGHDT---E------


GEFLLTGKIKCRLQTLGPLFIANNDKGDDYFELQHNNPG------HLN----


YAFFRINDHIAIPGASIRGMISSVFETLTHSCFRVMDDKKYLTRRVIPESETTQKRKSGRYQVEESDPD


LFP-----------------G--------------------------------





HvmCas7-11 Y-RERELVSHAKKKGP---D------


GKSLFTGKITCRLSTEGPVFIPDTDLGEDYFEMQASHKK------HKN----


YGFFRINGNVAIPGSSIRGMISSVFEALTNSCFRVFDQERYLSRSEKPDPTE--------------LTKYYP--------


---------G-------------------------------





SmCas7x3 K-RSDKIIGH-HTFAT---D-------PDSFTGRITCKLEVVTPLIVPDTE-G------EQPKDQ----


--HKN----FPFFKINDEIMLPGAPLWAAVSQVYEALTNSCFRVMKQKRFLSWRMEAEDYK----------------


-DFYP-----------------G--------------------------------





oral_meta E-RCLVPPSH-ARLQS---D---------RYTGCLTCELETVSPLLLPDTC--------REKDGN------


YKE----YPSFRLNNTPMIPGAGLRAAVSQVYEVLTNSCIRIMDQGQTLSWRMSTSEHK----------------


DYQP-----------------G--------------------------------





DisCas7-11 E-REEKPCGH-QKFHE---------G-RLTGKIRCKLITKTPLIVPDTS-


NDDFFRPADKEARKEKDEYHKS----


YAFFRLHKQIMIPGSELRGMVSSVYETVTNSCFRIFDETKRLSWRMDADHQN-------------VLQDFLP---


--------------G--------------------------------





DsbaCas7-11 H-RDPVPPGHEEAFRG---G---------LLTGRITCRLTVRTPLIVPNTE-


TDDAFNMKEKAGK-KKDAYHKS----


YRFFTLNRVPMIPGSEIRGMISSVFEALSNSCFRIFDEKYRLSWRMDADVKE---------------LEQFKP------


-----------G--------------------------------





SstCas7-11 N-RKPIPTGH-ETLNS---G---------LLTGKIRCRLTTRTPLIVPDTS-NDDFF--QTGVEG---


---HES----YAFFSVNGDIMLPGSEIRGMLSSVYEALTNSCFRVFDEGYRLSWRMEADRNV--------------


LMQFKP-----------------G--------------------------------





CsbCas7-11 Y-REKDIITH-EEFTE---E---------LLSGKINCKLETLTPLIIPDTS-DENGLKLQGNKPG--


----HKN----YKFFNINGELMIPGSELRGMLRTHFEALTKSCFAIFGEDSTLSWRMNADEKD---


YKIDSNSIRKMESQRNPKYRIPDELQKELRNSGNGLFNRLYTSERRFWSDVSNKFENSIDYKREILR





CjcCas7-11 H-REQEMIGH-EQFHK---E----QKGELLVSGKIVCTLKTVTPLIIPDTE-


NEDAFGLQNTYSG------HKN----


YQFFHINDEIMVPGSEIRGMISSVYEAITNSCFRVYDETKYITRRLSPEKKD--


ESNDKNKSQDDASQKIRK-----------------G--------------------------------





CbfCas7-11 I-REQKMIGH-EQYYE---SYPSGASGEKLLSGRIICSMTTHTPLIVPDTG------


VIKDPENK------HAT----YDFFQMNNAIMIPGSEIRGMISAVYEAMTNSCFRIFHEKQYLTRRISPEDKE-


-------------LREFIP-----------------G-------------------------------





HvsCas7-11 K-RTSSPITH-ERFYE---N---------HLTGFIECSLKVLSPLIIPDTE------TPEKEENG------


HKY----YHFLKIDNKPIIPGAEIRGAVSSIYEALTNSCFRVFGEKKVLSWRMEGKDAK----------------


EFMP-----------------G--------------------------------





HsmCas7-11 K-RTREPIGH-NEWKK---S---------LISGYLTCRLELLTPLIIPDTS--EEVIKEKVNNGE-


-----HPV----YKFFRLGGHLCIPAAEIRGMISSVYEALTNSCFRVFDEKRLISWRMTAEEAK---


RPDPKKSEEQNRMRFRP-----------------G--------------------------------





FmCas7-11 E-RERHPVSH-DHIDD---K---------LLTGRLVCTLTTKTPLIIPDTQ-


TNTMLPPNDAPEG------HKS----


FRFFRIDDEVLIPGSEIRGMVSTVFEALTGSCFRVINQKAHLSWRINADMAK----------------HYRP--------


---------G--------------------------------





DpbaCas7-11 E-REREPVGH-DRFQT---D---------LHTGRIICTLKTITPLIIPDTE-


NDKAFEVENASAD------HER----


FKFMRMGSQAAIPGSAIRSMTSSVFEALTNSCFRVLDQKSHLSWRMEADDAG----------------DYKP----


-------------G--------------------------------





Domains


.........................................................................


.........................................................................


........................................................





SECTION 9 (SEQ ID NOS 611-631, continued from section above)


D998





WmCas7x3 -----------RIVERNGELKLYPL---------------TLPTIHQNA-DNAY-----------PVPA----------


RWRKVF-YWESPV---------------------------------------------------------------------------


---------------------------------





SER16298.1 ----------RIVDDQGELKLQPL---------------TLPTLFGNR----N-----------NVPA----------


KWEKIFGTPSEDD----------------------------------------------------------------------------


--------------------------------





GwCas7x3 -----------RIVRHDQKLYLLPL---------------TLPTLPQGP-HGVY-----------DLGE----------


KWSAVF-DWQP-P---------------------------------------------------------------------------


---------------------------------





PID64649.1 -----------MVTKRGEDFWLIPL---------------AMPALSLNDEEHNY-----------KLDK---------


-RYRTMF--PDGLA---------------------------------------------------------------------------


---------------------------------





WP_031436019.1 -----------MVIYVDNKSFIIKL-------------------------------------------------


--------------NDAI-----------------------------------------------------------------------


-------------------------------------





HEB50754.1 -----------MIVLRDGKRFILPL----------------VPLM---------------------------------


--------------------EVT------------------------------------------------------------------


--------------------------------------------





HreCas7-11 -----------IV---VDGAKIREM---------------KRYRLPLYD-T--P-----------DKTS----------


RTKEMT-CPELFTRKDG-------------------------------------------------------------------------


-------------------------------





CmaCas7-11 -----------RVQKKGNKYKIEKM--------------DEIVRLPIYD-N--F-----------SLVE----------


RIREYH-YSEECASYVP-------------------------------------------------------------------------


-------------------------------





HvmCas7-11 -----------KVKRDGNKFFILKM--------------KDFFRLPLYD-F--------------DFEG----------


EAESLR-PNYDEDRNEEENKGKNKNTQ---------------------------------------------------------------


-------------------------------





SmCas7x3 -----------RV--LDGGKQIKKMG-------------DKAIRMPLYD-D--S-----------TATG----------


SIKDDQ-LISDCCPKSDE------------------------------------------------------------------------


-------------------------------





oral_meta -----------KI--TDNGRKIQPMG-------------KQAIRLPLYD-E--


VIHHVSTPGDTDDLEKLKAIVLELTRPWKELP-


EEQKKKRFEKCKNILDGRMLQQKELRALENSGFAYWRDKTSLTFDSFLKDAIEQEYPRYSGDYQRI


KALVVNITLPWKLLKKEERHKRFDKCRRILKGQQPLTKDERKALEESG





DisCas7-11 -----------RV--TADGKHIQKF--------------SETARVPFYD-K--TQKHFDILDEQEIAGE-----


-----KPVRMW-VKRFIKRLSLVDPAKHPQKKQDNKWKRRKEGI----------------------------------------------


------------------------------------





DsbaCas7-11 -----------RV--ADDGKRIEEM---------------KEIRYPFYD-R--T--YPER-----------


NAQNGY-F-RWDARISLTDNSMRKM-EKDG-VPRNVIYKLNTLKNKAYKSEKSFLFDL----------


-------------------------------------KNKAGGV











SstCas7-11 -----------RV--TDNGLRIEEM---------------KEYRYPFYD-R--D-----------CSDK----------


KSQEAY-FDEWERSITLTDDSLEKMAERKGDISPKDLKVLKSLKGKNYKSTEGLLAAF------------------


--------------------------------------KDKGGDT





CsbCas7-11 CAGRPKNYKGGIIRQRKDSLMAEEL---------------KVHRLPLYD-N--F-----------DIPD---


---------SAYK-ANDHCRKSATCSTSRGCRERFT------------------------------------------------------


--------------------------------------





CjcCas7-11 -----------LVKKTDEGFSIIEVERYSMKTKGGTKLVDKVYRLPLYD-S--E-----------


AVIA-------------SIQ-FEQYGEKNEKRNA--------------------------------------------------------


---------------------------------------------





CbfCas7-11 -----------IVRIINGDVYIEKA--------------EREYRLPLYD-D--V-----------HIIT----------


NYEELE-YEKYIKKNPGREQ----------------------------------------------------------------------


-------------------------------





HvsCas7-11 -----------RVSKKKGKLYMVKM---------------QALRLPVYD-N--P-----------ALAN-----------


-EIRSGS-IYE--------------------------------------------------------------------------------


-------------------------------





HsmCas7-11 -----------RIIKKDKKFYAQEM---------------LELRIPVYD-N--K-----------D-------------


KRNEIS-QNDPTRPS---------------------------------------------------------------------------


--------------------------------





FmCas7-11 -----------RIIQNNEKMFIQPY---------------KMFRLPFYA-G--F--------------------------


------------------------------------------------------------------------------------------


-----------------------------





DpbaCas7-11 -----------RFEKKDDKAVIRKF---------------KKKARFPFYA-G--P-----------------------


------------------------------------------------------------------------------------------


--------------------------------





Domains


.........................................................................


.........................................................................


........................................................





SECTION 10 (SEQ ID NOS 611-631, continued from section above)


WmCas7x3 --------------------PLRVY----FGS-R--------KQTYDS-R---QP-----HYLP-IQELS-


Y---------------LPND---SDCI------APDQGDLRFPSRDRDRKFLIGQCPISRYDCPIPETDLP------KLSPQERPRY----


-TR--GWVR--SLWTS-----NREK----ELPHTVK-H





SER16298.1 --------------------FLRIY----FDDIP--------SKFSSN-K---RY-----FYNCKATELKDF--------


-------IKSD---KYFIG---KRTPTV----FPKSSTEKSHLESLEFID--VEKFKKAVEN------LEITPGNNPY-----IH-


-GWVR--NLKDE-----FRE-----DIPDNVK-H








GwCas7x3 ---------------------PLRIY----FDPPP--------RRTYQS-Q---QP-----CYMK-LSTVK-Y---------


------SESN---PNQI----IAGENLGALRFPRGNQNTQFLIGQSNQD--ECPITQAEYA------QKSEDERNEY-----


TS--GWVR--TLVKP-----GR------DLPRSVK-H





PID64649.1 --------------------KLKVYLEKAYSNNV--------MKTFLN-N---EN-----TWTLAQSKIH-Y---


------------LPLT---PIQMQ---NGGINSYYNNLRTPSRSNNFLIGQTVAH--GNGIPASGPG------AGMVP-----


---------GILR--ILGKE-----HRQN----DLPQNKK-H





WP_031436019.1 ---------------------KLKQT----YTPGN--------MKDFIE-K---SN-----SWSPEHNTVY-Y---


------------LD-------------------------------------------NNQIPQESYM------NGMKP-------------


-GILR--ILGKE-----GREQ----EL-ENKL-H





HEB50754.1 --------------------KLRHA----YTDPA--------MKHFLD-D---KN-----SWSPRCNRVY-Y-----


----------LGRD-----------------------------------------GNQIPAETRG------AGMRP--------------


GILR--LLGRE-----GRHD----AL-QNKK-H





HreCas7-11 ---------------------RPERA----KKFNEEIAKVAVQNRAYLL-SLDEKERR---


EVLLGNREVT-FDECPDDEYSDDEYSELKYAQKYKDFIAVLKKNGQKRGYIKFTGPNTAN-------------


------KKN--------EDAPDKNY-----RS--DWDP--FKLNI------LLESDPECRVSN--IH





CmaCas7-11 --------------------SVKKA----IDYNRMLAQAADSNREFLY-NHPEAK-----


SILQGKKEVY-Y-ILHKQESKNRGKTKEINPNARYACLTDENTPGSRKGFIKFTGPDMVT-----------------


--VNK------ELKSKIAPIYDPEWEKDIPDWERSNQESNHKYSFILHNEIEMRSSQKK----





HvmCas7-11 -------------------KVKNA----VEFNIKMAGFAKHNRDFLK-KYKEQEIK---


DIFMGKKKVY-F-------TAGKHKPNEAHDNDKIALLTKGSNKKAEKGYFKFTGPGMVN------------------


-VKA------GVEGEECDFHIDESDPDV-YWNMS--------SILPHNQIKWRPSQKK----





SmCas7x3 --------------------KLQKA----LATNOKIALAAKHNQEYLA-QLSPDERE---


EALQGLKKVS-F--------WTESLANNEAPPFLIAKLGEERGKPKRAGYLKITGPNNAN-------------------


IAN-------TNNPDDGGY-----IP--SWKD--QFDYS-----FRLLGPPRCLPNTKGNR





oral_meta FANWHGRELLFDRFLKDENSCLIKA----ETTDRVIASVAKNNRDYLF-


EIKQQDFARYKRIIQGLERVP-F--------SLRSLAKSKETSFQIACLGLRRGRFLRKGYLKISGPNNAN-----


--------------VEI------SGGSHSNSGY-----SD--IWDD--PLDFS-----FRLSGKSELRPNTQKTR








DisCas7-11 --------------------ATFIE----QKNGSYYFNVVTNNGCTSF-


HLWHKPDNFDQEKLEGIQNGE-K-----LDCWVRDSRYQKAFQEIPENDP--


DGWECKEGYLHVVGPSKVE-------------------FSDKKGDVINNFQGTLPSV-----PN--DWKT--IRTND-----


------FKNRKRKNE--





DsbaCas7-11 -GRYKKLVLKHAEVRGGEIPYYSHP----TPTDCKLLSLVGPNRQLCR-


QDTLVQYRIIKHRRGAKPEED-F------MFVGTPSENQK-----GHKEN----NDHGGGYLKISGPNKIE--------


-----------KEN-------VLTSGVPSV-----PE--NMGA--VVHNCPP---RLVEVTVRCGRKQEEEC





SstCas7-11 GGNILGLIFKYAE-RIGDVPRYEHP----TDTDRMMLSLSEYNRNQ-K-


SDGKRAYKIIKPASKLGKGAY-F------MFAGTSVENKRICNPACTDKA----NKSVKGYLKISGPNKLE---


----------------KYN-------ISEPELDGV-----PE--DRNCQIIHNRI-----YLRKIFVANAKKR---K





CsbCas7-11 --------------------CGIKV----RDKNRVFLNAANNNRQYLN-


NIKKSNHDLYLQYLKGEKKIR-F--------NSKVITGSERSPIDVIAEL--NERGRQTGFIKLSGLNNSN-------


------------KSQ---------GNTGTTF-----NS--GWDR--FELNI-----LLDDLETRPSKSD----





CjcCas7-11 --------------------KIRAA----IKRNEVIAEVARKNLIFLR-SLTPEELK---KVLQGEILVK-F-


----------SLKSGKNPNDYLAELH---ENGTERGLIKFTGLNMVN-------------------IKN------V--NEEDKDF---


--ND--TWDW--EKLNI-----FHNAHEKRNSLKQ----





CbfCas7-11 --------------------KIKNA----HRFNKNIARIAESNRNYLC-SLDRAVRR---EILSGRKKVN-


F--------RLVKVNDNKNPDKEAVELC---KTGPLEGLVKFSGLNAVN-------------------ISN------


LRPGTAEEGF-----DA--KWDM--WSLNI-----ILNRMDVRNSQKK----





HvsCas7-11 --------------------KYKN-----SKVEIIFFQTVEGIRKFLRGNFNNVEWKK--


VLVTGIDPLA-I----------LPSQKIPGNDKWVKNLQ--SKISPVRGYFKFTGPNKIE-------------------


TKRREEEKDEKLRTKANKVSCLQ-KD--KWYE--AMHNHVE---YKQDYTPPNSPKTEP-L





HsmCas7-11 -------------------EYNHP----TEPERIFFSNAEKIRNFLK-RNS--------NYLHGSTPLL-F----


--ROWSISNRYDKIA----------LIGNKSQGHLKFTGPNKIE-------------------VSE---------


GTKCPKYETIPGRD--EWDK--AVHNYVEPGKFVTVISRKKGQKPKA-V





FmCas7-11 ----------------------------------------DPRNCLSE------------KQLLGIEPVK-L--------


WVKDFVASLVKPQTDIDIE----WKEKIGFVRVTGPNKVE-------------------VDS-----SNTPDPSLPEC-----


ES--DWKD--IHITE--------DGSTPSKNDR----





DpbaCas7-11 ----------------------------------------DTREAFTS------------DQIMGKEKVT-L--------


WVKDFEASLTVPDE-------IGWKKKRGYLKVTGPNKVE-------------------IDT------ENISENNPSP-----PD-


-SWQD--VRIND--------DGTIPDKKNR----





Domains


.........................................................................


.........................................................................


........................................................





SECTION 11 (SEQ ID NOS 611-631, continued from section above)


WmCas7x3 QLFI--PDPVE--TPAA--DDL------------------------------LPIP-QGV-


LDTFHALADLALAGQH----W-GKDE-TPADD-QLLPFTPAGRQR----HDA---


DRPPRDADRQTRLQPGDLVCFD--LG-------D-------DGAVSEISFSSIWREGLRLAG-KPN-


LATTADLLAQ----------V





SER16298.1 HVFL--PDTTKRVSP--------------------------------LEIP-PHV-KKRFHELADLALAGLH---


-L-KQGE-TIASPYKILPYTPIGRNK----LENHIHRVPNDLTCYMTRLKKGDLVFFD--VD-------N-------


DGQITEISFSSIWRAGI---GTKNK-LQTTADLLSQ----------R





GwCas7x3 HVFL--PDVFIDAPPPV--NDL--------------------------YPIP-DSV-


IQRFHDLADQVLASMN----L-KPEE-IVDST-NLLPYTPVGRRS----DSD----------CRDTRLQAGDLIFFD--


IDPPLHPG-E-------KSQITEISFSSIWRSGI---G-KDH-LLTTPDLLTN----------F





PID64649.1 ELFI--PVPDAFVADPK--TFLD---------------------TATAFLIP-RNV-


IDAFEKIAEKQTQSQKQDK-L-KHDE-------ERLPFHLKGTRR----EQN-----------HTLQIKTGDLVYFR--


PN-----A-K-------GDEVEEIAFSSIWRGKT---------SGTTADFFPD----------K





WP_031436019.1 ELFI--PVPLEYVDTEN--NKFDYQAYKK-------A------FLYRAIEIP-EPV-


LKRYSELADQRTMSQKSNKEL-KKDD-TCQSV-GWLPFHLKGTKR----QLD------


DKHNVGKLQIDEYDLIYYE--AS---------------GKEVTEVAFSSIWRGRV---ETNSS-QANKVYSFIP--------


--G





HEB50754.1 EYFI--EIPERYVD-QD--HCFDYRMFIR-------D------


RARNGTLVPISPVAWERYHCLAEERTLSQKNDPEL-REDK-ACASL-KWLPFHPKGRVR----ERD------


PENDVCHLSLRHGDLVFYA--EQ---------------NRVVSEISFSAIWRSRV---ETSDSYQAVTVDCFVP------


----K





HreCas7-11 CYPR--PLLVC----IK--DKAEYRIHKRCEAIFCSI-----GSPSDLYDIP-QKV-SNQYRTIL--


--QDYNDNTGK--IVE-IF------------RTQ----IKH-----------DQ--LTTGDLVYFK--PA-------A-------


NGQVNAVIPVSISRKTD--------ENPLAKRFKN----------D





CmaCas7-11 KYPR--PVFIC----KK--NGVEYRMQKRCERIFDFT---KEEEKDKEIVIP-QKV-


VSQYNAIL----KDNKENTET--IPG-LF-------------NSK----MVN-----------KE--LEDGDLVYFK--YK---------


------EGKVTELTPVAISRKTD---------NKPMGKRFPKISINGKMKPND





HvmCas7-11 EYPR--PVLKC----VK--DGTEYVMLKRSEHVFAEA------SSEDSYPVP-GKV-


RKQFNSIS----RDNVQNTDH--LSS-MF-------------QSR----RLH----------DE--LSHGDLVYFR--HD-------E-


------KRKVTDIAYVRVSRTVD----------DRPMGKRFKN---------E





SmCas7x3 EYPR--PGFTC----VI--DGKEYSLTKRCERIFEDI---SGGENQVVRAVT-ERV-


REQYREIL----ASYRANAAG--IAE-GF-------------RTR----MYD-----------TE-ELRENDLVYFKTAKQ-----


ADG-------KERVVAISPVCISREAD---------DRPLGKRLP-----------A





oral_meta EYPR--PSFTC----TV--DGKQYTVNKRCERVFEDS-------AAPAIELP-RMV-REGYKGIL-


---TDYEQNAKH--IPQ-GF-------------QTR----FSS-----------YR-ELNDGDLVYYK--TD-------S-------


QGRVTDLAPVCLSRLAD---------DRPLGKRLP-----------E





DisCas7-11 -----PVFCC----ED-DKGNYYTMAKYCETFFFDL------KENEEYEIP-EKA-RIKYKELL--


--RVYNNNPQA--VPESVF------------QSR---VARE-----------NVEKLKSGDLVYFK--HN---------------


EKYVEDIVPVRISRTVD--------DRMIGKRMS-----------A





DsbaCas7-11 KRKRLVPEYVC----ADPEKKVTYTMTKRCERIFLEK-------SRRIIPFT-NDA-


VDKFEILV----KEYRRNAEQQDTPE-AF------------QTI----LPE-----------NG-TVNPGDLLYFR--EE----------


------KGKAAEIVPVRISRKVD---------DRHIGKRID----------P





SstCas7-11 ERDRLVGEFAC----YDPEKKVTYSMTKRCERIFIKD-------RGRTLPIT-HEA-


SELFEILV----QEYRENAKRQDTPE-VF-------------QTL----LPD-----------NG-RLNPGDLVYFR--EE---------


-------KGKTVEIIPVRISRKID---------DSPIGKRLR-----------E





CsbCas7-11 -YPR--PRLLF----TK--DQYEYNITKRCERVFEID-----KGNKTGYPVD-DQI-


KKNYEDIL----DSYDGIKDQ-EVAE-RF-------------DTF----TRG-----------SK--LKVGDLVYFH--ID-------


G-------DNKIDSLIPVRISRKCA---------SKTLGGKLD-----------K





CjcCas7-11 GYPR--PVLKF----IK--DRVEYTIPKRCERIFCIP-----VKNTIEYKVS-SKV-CKQYKDVL-


---SDYEKNFGH--INK-IF-------------TTK----IQK-----------RE--LTDGDLVYFI--PN-----EGA-------


DKTVQAIMPVPLSRITD---------SRTLGERLPH----------K





CbfCas7-11 EYPR--PALHF----NH--DGKEYTIPKRCERVFVRAEAGKRAETEGSYKVP-RKV-


QEQYQNIL----RDYESNIGH--IDN-TF-------------RTL----IEN-------CG--LNNGSLVYFK--PD-----N-S--


-----RKEVVAITPVKISRKTD---------RLPQGDRFPHTS--------S





HvsCas7-11 ERPRNIPCFVC----SD--KEKIYRMTKRCERVFVSL-----GENAPKYEIP-ISA-


IKRYEVIL----SAYRENWERNKTPE-LF-------------RTR----LPG-----------DGRTLNEDDLVYFR--AD-------


E-------NEKVKDIIPVCISRIVD---------EVPLIKRLS-----------Q





HsmCas7-11 QRRRNVPAFCC----YDYNTNRCFVMNKRCERVFKVS------RDKPKYEIP-PDA-


IRRYEHVL----RKYRENWERYDIPE-VF-------------RTR----LPG-----------DGETLNEGDLVYFR--LD------


-E-------NNRVLDIIPVSISRISD---------TQYLGRRLP-----------D





FmCas7-11 -------VYRC----QL--KGVTYTVAKWCEAFWVKD------EGKKPITVN-AEA-


INRYHLIM----KSYQDNPQS--PPI-IF-------------RSLPVLNYKQ-----------DQKII--GSMIFYR--ES-----


AKS-------DKIVNEIIPVKISRTAD---------TELLAKHLPN----------N





DpbaCas7-11 -------KFIC----QY--GTTTYTVDKWCEAFFCDE-------EKDPYELA-PDV-ERKYRLLM-


---DSYHNNPQA--PPQ-IF-------------RSLPLFSETG---------PKKTLEHGDLVYFRLSEV-----


NKQSQSKKQVRERVTDIVPVSISRIAN---------NQPIGKHIA---------A





Domains


.........................................................................


.........................................................................


........................................................





SECTION 12 (SEQ ID NOS 611-631, continued from section above)


WmCas7x3 SPHLLPLG--------------------------MPGRS-A-----RLSPVEQLFGVVEYRPPQTAK--


GTRKPTDAPAAYALAGKLQVGFGRP---ARPF-----------ER-------EP-AVTLKELSTPKPPSPALYFRPKA-


-GDGYVSKAKLASQ--------------PQ----DYAPAGRKHYLH--ALRR





SER16298.1 DPNLVQLG--------------------------MGVRT-


KNTDRFKLSPAERLFGVVEHRDDDNTTVENVNQPNDKAQAFAFAGKVRIGFGLP---DKKT-----------


TV-----NGVS-PVTLKELSSPKPPSPAFYLKRKN--NDDFVSKKVAAEC--------------SE----


TMTLRGRKCYLH--AWRE





GwCas7x3 DVNLQPHG--------------------------MPGRT-Q-----SLSPAELLFGLVGTQNDQATT--------


------AYAGKVRIGFGLP---EEGH-----------NP-----RLDA-RITLKELSSPKPPSPALYFRKKSG-


KDEYVSKANLADK--------------PE----DYILRGRKMYLH--AWRK





PID64649.1 E--LLPFN--------------------------RNRS--------RVSPAELLFGFTENNPKEMKI------D----


RGLAFAGKIRISAGTL---SDKF-----------SDTTESDLFEP-ETTLKALSSPKPPSPALYFKEKKS-


GTQYIKKQDL--N--------------PG----KHEIQGRKIYLH--ALRN





WP_031436019.1 E--LLPFN--------------------------ESRK--------KVSPAELLFGFTQINKDGSKA------DD-


--KAQAFAGKVRISAGTI---SEYP-----------EN--EANLLEQ-


EVTLKALSTPKLPSPALYFRTINGNGSAYISKQEL--E--------------PS----KHLAKGRKYYLH--ALRT





HEB50754.1 E--LRPFN--------------------------RDRR--------AISPAELLFGFVELDESEHST------


EKSRYEQMAFAGKVRLSAGLP---VEDV-----------ED---SALLEPKPIVLKALSSPKPPSPPFYFVMRDG-


SGAYIAKKDL--S--PD----------------RHRIKGRKHYLH--GLRQ





HreCas7-11 S--LRPCA-GLCVE----DCNECPARCKK-VADYFNPHP-R-----GLCPACHLFG---------


TT--------------FYKGRVRFGFAWLTGEDGAPRWYKGPD----PC--DSG-KGR-PMTIPLLERPRPT-----


WSIPD--------------N--------------------SFDIPGRKFYVHHP-YSV





CmaCas7-11 S--LRSCS-HTCTE----DCDDCPNLCES-VKDYFKPHP-D-----GLCPACHLFG---------


TT--------------FYKSRLSFGLAWL---ENNAKWYISNDFQQKDS--KKE-KGG-KLTLPLLERPRPT-----


WSMPN--------------N--------------------NAEVPGRKFYVHHP-WSV





HvmCas7-11 S--LRPCN-HVCVE----GCDECPDRCKE-LEDYFSPHP-E-----GLCPACHLFG---------


TT--------------DYKGRVSFGLGWH--ESNTPKWYMP------ED--NSQ-KGS-HLTLPLLERPRPT-----


WSMPN--------------K--------------------KSEIPGRKFYVHHP-WSV





SmCas7x3 G--FQPCS-HVCLE----DCNTCSAKNCP-VPLYREGWPVN-----GLCPACRLFG---------


AQ--------------MYKGRVNFGFARL------P-----------DD--KQP-ETK-TLTLPLLERPRPT-----WVLPK--------


------SV-------------KGSNTEDATIPGRKFYLRHDGWRI





oral_meta E--YRPCA-HVCLE----ECDPCTGKDCP-VPIYREGYPAR-----GFCPACQLFG---------TQ--


------------MYKGRVRFSFGVP---VN-------------ST--RSP-QLK-YVTLPSQERPRPT-----WVLPE--------------


S-----------------CKGKEKDVPGRKFYLRHDGWRE





DisCas7-11 D--LRPCH-GDWVE----DGDLSALNAYP-EKRLLLRHP-K-----GLCPACRLFG---------


TG---------------SYKGRVRFGFASL---ENDPEWLIPGK---NPG--DPF-HGG-PVMLSLLERPRPT-----


WSIPG---------------S--------------DN----KFKVPGRKFYVHHHAWKT





DsbaCas7-11 E--LRPCH-GEWIE----DGDLSKLDAYPAEKKLLTRHP-K-----GLCPACRVFG---------


TG---------------SYKSRVRFGFAAL---KGTPKWLKED-----PA--EPS-QGK-GITLPLLERPRPT-----


WAVLH---------------ND-------------KE----NSEIPGRKFYVHHNGWKG





SstCas7-11 D--LRPCH-GEWIE----GDDLSQLSEYP-EKKLFTRNT-E-----GLCPACRLFG---------TG--


------------AYKGRLRFGFAKL---ENDPKWLMKN-----SD--GPS-HGG-PLTLPLLERPRPT-----WSMPD----


-----------DTLNRLKKDGKQEPKKQKGKKGPQVPGRKFYVHHDGWKE





CsbCas7-11 A--LHPCT-GLS-----------------------------D-----GLCPGCHLFG---------TT--------------


DYKGRVKFGFAKY---ENGPEWLI-------TR--GNN-PER-SLTLGVLESPRPA-----FSIPD---------------D------


--------------ESEIPGRKFYLHHNGWRI





CjcCas7-11 N--LLPCV-HEVN-----EGLLSGILDSL-DKKLLSIHP-E-----GLCPTCRLFG----------TT-----


---------YYKGRVRFGFANL---MNKPKWLT-------ER--ENG-CGG-YVTLPLLERPRLT-----WSVPS---------


-----D--------------------KCDVPGRKFYIHHNGWQE





CbfCas7-11 D--LRPCV-RDCLDT---EGDIRMLENSP-FKRLFHIHP-E-----GLCPACQLFG---------TT--


------------NYRGRVRFGFASL---SDGPKWFR-------KD--EGN-ETC-HITLPLLERPRPT-----WSMPD--------


------D--------------------TSTIPGRKFYVHHMGYET





HvsCas7-11 E--LWPCVLAECPLLGF-ECKKCELEGLP-EKIWFRINK-D-----GLCPACRLFG---------


TQ--------------IYKSRVRFSFAYA------KNW--------------KF-YDG-YITLPRLESPRAT-----WLILK-----------


---E--------------KDKHYIKYKVCGRKFYLHNSTYED





HsmCas7-11 H--LRSCV-RECLYEGWGDCKPCKLSLFP-EKMWIRINP-E-----GLCPACHLFG---------


TQ--------------VYKGRVRFGFARA-----GSNW--------------KF-REE-QLTLPRFETPRPT-----WVIPK---------


-----R--------------KD----EYQIPGRKFYLHHNGWEE





FmCas7-11 D--FLPCA-ATCLN----ECDTCNAKTCKFLPLYREGYPVN-----GLCPSCHLFG---------


TT--------------GYQGRVRFGFAKM---NGNAKFCQ-------GG--ERP-EDR-AVTLPLQERPKLT-----


WVMPN--------------E--------------------NSTIPGRKFFLHHQGWKK





DpbaCas7-11 A--FRPCA-YVCIE----ECEPCDAKTCP-IPVYREGYPIK-----GLCRACHLFG---------TT-


-------------GYKGRVRFSFAKL---NGDAVW---------AK--GAG-GKD-YFTLPLLEKPRPT-----WTMPN-----


---------E--------------------GAKIPGRKFYVHHNEWKT





Domains


.........................................................................


.........................................................................


........................................................





SECTION 13 (SEQ ID NOS 611-631, continued from section above)


WmCas7x3 QG---QVARLDNSGHVPSDGSGRPPW------QSRFDG--------QEDSGNK----


RRVRVEPIPAGETFHFEIDFDNLSPTELEQLCATLLP-HPAFEHRLGMGKPIGLGSVKLAVEGL---


LLVDRPRRYAEDEPNAPRHHRGW--RAN--ADAG--WPDHLQGDSPAAPLEAT-EQP-AALAERAMA---


------


SER16298.1 QNG--NVMKLDAIGVNSGGSTCKPPWKTHKPAANDQKE---------


FEEDKNKFITSRQVKIAPISENTPFYFEIDFNNLDATELAQLCATLQP-


APKFEHRLGMGKPLGLGSVKIEPVGL---FLINRHQRYTTDSTNCDRYHYAW--LKG--


EHAAWDWPEYFRQNVVTADCTQTFNDTFDKLVQNGLA---------





GwCas7x3 NE---QVVELSDTGH---DGGVRPPW------VSKFDE--------SADEGNK----


RRVSIEPIAKDESFYFEVDFHNLSRTELAQLCATLYP-NEKFEHRLGMGKPLGLGSIKITPLSL---


FLVNRSQRYATDGLDKPRYHAVW--HTG--TASEPRWPDHLQREQQGIAFEGVSTAP-TVMSLAAEA--





PID64649.1 ENN-QNVQRITSQGKFDNAANRTQPW----------VS--------QNEERNH----


LKTKCKPLKSGLNFFFHIDFNNLTQWELGLLCYALRP-CETFRHKIGMGKPIGLGTVKIDIAVL---


QTIDRYARYTDTTQDSERYNQGA--WIS--QELQNEIPN--QYKGKGISNKKGMLSP-EDCRKVEME------


---





WP_031436019.1 GDN--KVQKLGSQGETANGGDSKLPW---------VTH--------NPDERPQ----


LKVKIKPIKAE--FIFSLDFNNLTEWELGLLCYALRP-TDSFRHRIGMGKPLGLGSVKIDIMAL---


QTINRQQRYAQDGLEENRFNRHN--WVN--PPHQPRL----EKAGYSISLSSTPLNP-EILRATFTK---------





HEB50754.1 RGNPDRVQSLDRYGH-ATETAANPPW---------ETC--------HPEERPQ----


IKVRVQPVRRKTKFFFHLDFSNLSRWELGLLCYVLRP-TACFRHKLGMGKPLGLGSVRIDIASL---


QLIDRVRRYGTDDLTAGRYNMGG--HFN--ASCLDLLP---QQDSPAPDDSGAAPDP-GTLRQDFVK-----


----





HreCas7-11 ----D--------GI-------------------------------DGETRTP----


NNRTIEPLAEGNEFVFDIDFENLRDWELGLLLYSLEL-EDSLAHKLGLGKPLGFGTVQINIRGI---


SLKN---------------GSKG--WDTKTGDDKNQWIK----KGF------------AHLGIDIKE---------





CmaCas7-11 ENI-K--------NNQGN------------------QKDISLKPDSDAIKIKE----


NNRTIEPLGKDNVFNFEISFNNLRDWELGLLLYAIEL-EDHLAHKLGMAKAFGMGSVKIEIKNL---


LIKG---------------SIND--------ISKAELIK----KGF------------KKLGIDSLEKD-------





HvmCas7-11 DKI-R--------NRQFD------------------PAK-EKQPD-DVIKPNE----


NNRTVEPLGKGNEFTFEVRFNNLREWELGLLLYSLEL-EDNMAHKLGMGKALGMGSARIKAEAI---


ELRC---------------ESA---GQNAELKDKAAFVR----KGF------------EFLEIDKPGEN-------





SmCas7x3 -VM-A--------GTNPI------------------TG--------ESIEKTA----


NNATVEAIMPGATFTFDIVCENLDQQELGLLLYSLEL-EEGMSHTLGRGKPLGFGNVRIKVEKI---


EKRL---------------SDG---------SRREMIPP----KGA------------GLFMTDKVQDALRGLTEG





oral_meta MWG-D--------DDKPD----------------------------SRPSSEE----


CQDIIEGIGPGEKFHFRVAFENLDKNELGRLLYSLEL-DAGMNHHLGRGKAFGFGQVKIRVTKL---


ERRL---------------EPGQ--WRS--EKICTDLPV----TSS------------ELVISSLKK---------





DisCas7-11 -IK-D--------GNHPT------------------TG--------KAIEQSP----


NNRTVEALAGGNSFSFEIAFENLKEWELGLLIHSLQL-EKGLAHKLGMAKSMGFGSVEIDVESV---


RLRK---------------DWKQ--WRN-GNSEIPNWLG----KGF------------AKLKEWFRD---------





DsbaCas7-11 -IS-E--------GIHPI------------------SG--------ENIEPDE----


NNRTVEVLDKGNRFVFELSFENLEPRELGLLIHSLQL-EKGLAHKLGMAKSMGFGSVEIDVESV---


RVKH---------------RSGE--WDYKDGETVDGWIE----EGK------------RGVAAKGKA---------





SstCas7-11 -IN-C--------GCHPT------------------TK--------ENIVQNQ----


NNRTVEPLDKGNTFSFEICFENLEPYELGLLLYTLEL-EKGLAHKLGMAKPMGFGSIDIEVENV---


SLRT---------------DSGQ--WKD-ANEQISEWTD----KGK------------KDAGKWFKT---------





CsbCas7-11 -IR-Q--------KQLEI----------------------------RETVQPE----


RNVTTEVMDKGNVFSFDVRFENLREWELGLLLQSLDP-


GKNIAHKLGKGKPYGFGSVKIKIDSLHTFKINS---------------NNDK--IKRVPQSDIREYIN----KGY-------


-----QKLIEWSGNNSIQKGNVL





CjcCas7-11 -VL-R--------NN------------------------------DITPKTE----


NNRTVEPLAADNRFTFDVYFENLREWELGLLCYCLEL-


EPGMGHKLGMGKPMGFGSVKIAIERLQTFTVHQ--------------DGIN--WKP-SENEIGVYVQ----KGR----


--------EKLVEWFTPSAPHKNM--





CbfCas7-11 -VK-K--------NQ------------------------------RTLVKTE----


NNRTVKALDKENEFTFEVFFENLREWELGLLLHCLEL-


EPEMGHKLGMGKPLGFGSVKIRIDKLQKCVVNV--------------KDGCVLWEP-EEDKIQHYIA----KGL--


----------GKLTTWFGK---------





HvsCas7-11 IIN-N--------SKK-----------------------------EKEKKTE----NNASFEVLKEG-


EFTFKVYFENLENWELGLLLLSLT--GLGEAIKIGHAKPLGFGSVKIEAKKI---YFRE--------------


EAGK--FHP--CEKADEYLK----KGL------------NKLTSWFGK---------





HsmCas7-11 IYK-K--------NKK------------------------------NEIKKEK----NNATFEVLKQG-


TFYFKVFFENLELWELGLLIFSAELGGEEFAHKLGHGKALGFGSVKISVDKI---ILRR---------------


DPGQ--FEQRGQKFKRDAVD----KGF------------CVLENRFGK---------





FmCas7-11 IVD-E--------GKNPI------------------NG--------DVIEPDA----


NNRTVEPLAAGNDFSFEVFFENLREWELGLLRYTLEL-ESELAHKLGMGKAFGFGSVKIKIKSV---


DLRK---------------QGE--------------WEK----ATN------------TLVSEDKKS---------





DpbaCas7-11 -VQ-E--------GKNPI------------------DQ--------KAIRPNP----


NNSSVEVLNLGNEFQFEVSFENLEEWELGLLLYCLEL-EPGLAHKLGRGKAFGFGSIEAEVSKI---


EMRI---------------KSGT--WKNE-TSGKEKFIQ----SGL------------SQVPSFFKQDEK------





Domains


.........................................................................


.........................................................................


........................................................





SECTION 14 (SEQ ID NOS 611-631, continued from section above)


WmCas7x3 ---RVPADVRRALQLLGNP----GAVAAPVHYPQVKDAQIE--EKH---YLWFVANDD--


--------------EKTAGGNRH---------------LPRL-----HANSPGLPTLPRLV-----KREKDHSSNTGKPRRK--------


--------------------------------------------------





SER16298.1 ---GTDADIKHALQLLGDP----QYIGVPVHYPIAGNSTLE--NKH---FEWFGNNDK------


----ASVLRQKAQANSKNHHYQPKQQATPEEPQYLHTI-----


TKDSKQISLLKKNKIEDIENRDQQKHRYSNHRR---------------------------------------------------------


---





GwCas7x3 ---KVSDDVKRALELLGNP----DEITVPVHYPQLHNGLME--SKQ---FDWFVQNDK-----


----------SGRDQPANNRQH-------------LSSF-----TKDTEKLEPLIRIM-----------------RR-------------


-------------------------------------------------





PID64649.1 ---TMDADIQRAIELLGDP----GNVTSPVHYPQLDRKNIE--TKN---YEWFKQNEI--------


-------------EQQV---------------LKPI-----TKNTTHLTPFAR-------------------WEQG--------------


--------------------------------------------





WP_031436019.1 ---TMNADIYRTLELLGNP----QNVKRPVHYPQVENHNIE--QEN---YKWFVANDQ-


---------GSGKGRNKIDPAEKA---------------LKIL-----TENSDCLPTLSRLD------------------WRDE------


---------------------------------------------------





HEB50754.1 ---TMDETVFRALDLLGNP----AHVQRPVHYPQVREMDIE--DQT---FLWFVDNDK----


----------------QWKDA---------------LQPL-----TSSSTQLPPLTRRN-----------------KR------------


------------------------------------------------





HreCas7-11 --ANERPYIKQLRELLWVP---TGDNLPHVRYPELESKTKD-----VPGYTSLLKE--------


--KDL---------ADR---------------VSLL-----KA---PWKPWKPWS-----


GTAPHPDKGTNRLRASIVERDRIQRKTDTAKPEKKEETKVGKSSSSDIEKRYVGTVKWENDKKGYG


FI-LYGTD





CmaCas7-11 -DLSEYLHIKQLREILWFS----DKPVGTIEYPKLENKTNS----


RIPSYTDFVQEKDHETGFKNPKYQNL----------KSR---------------LHIL-----QN---PWNAWWKNE-----E----





HvmCas7-11 -DPMNFDHIRQLRELLWFL---PENVSANVRYPMLEKEDDG-----


TPGYTDFIKQEEPSTGKRNPSYLSS---------EKR---------------RNIL-----QT---PWKHWYLIP-----


PFQASAQSETVFE----------------------------------------GTVKWFDDKKGFGFIKINDGG





SmCas7x3 GDWHQRPHISGLRRLLTRY------PEIKARYPKLSQGEDK-----


EPGYIELKSQKDENGVPI----YNP----------NRE---------------LRVS-----EN---GPLPWFLLA-----KK-------


------------------------------------------------------------------





oral_meta -----VEERRKLLRLVMTP-----YKGLTACYPGLERENGR------PGYTDLKML------------


ATY----------DPY---------------RELVVQIGSNQ---PLRPWYEPG-----


KSFKPSPGNDCTGRGGSVSKSLISEPKVV-----------------PAIAPFCEGVVKWFNSVKGFGFI-ETKEQ





DisCas7-11 ----ELDFIENLKKLLWFP---EGDQAPRVCYPMLRKKDDP--NGN-SGYEELKDGE-------


----FKK---------EDR---------------QKKL-----TT---PWTPWA------------------------------------


----------------------------------------------





DsbaCas7-11 ---------NDLRKLLYLP---GEKQNPHVHYPTLKKEKKG----DPPGYEDLKKSFR----------


EKK---------LNR---------------RKML-----TT---LWEPWHK---------------------------------------


------------------------------------------





SstCas7-11 -DWEAAEHIKNLKKLLFLP---GEEQNPRVIYPALKQKDIP--NSRLPGYEELKKN--------


----LNM---------EKR---------------KEML-----TT---PWAPWHPIK-----K---------------------------


----------------------------------------------





CsbCas7-11


PQWHVIPHIDKLYKLLWVPFLNDSKLEPDVRYPVLNEESKGYIEGSDYTYKKLGDKDN----------LPY-


--------KTR---------------VKGL-----TT---PWSPWNPFQ-----


VIAEHEEQEVNVTGSRPSVTDKIERDGKMV--------------------------------------------





CjcCas7-11 -EWNGVKHIKDLRSLLSIP-----GDKPTVKYPTLNKDAEG--AISDYTYERLSDTKL-----


-----LPH---------DKR---------------VEYL-----RT---PWSPWNAFV-----KEAEYSPSEKSDEKGRETIRTKPK-


--------------------SLPSVKSIGKVKWFDEGKGFGIL-IMDDG





CbfCas7-11 -EWDRLEHIQGLRSLQRLL-------------PL-----------------------------------------------


--------------------------------------------------------------------------------------------


---------------------------





HvsCas7-11 --NEINEHMRNLLLFMTYY-----QNLPKVKYPDF------------DGYAKWRCS------------


YVE---------QDK---------------VEYF-----QN---RWIVAS------------------------------------------


----------------------------------------





HsmCas7-11 -TNFKI-YLNNFLQLLYWP----NNKKVKVRYPYLRQEDDP--EKL-PGYVELKKH------


------QML---------KDD---------------NRYSLFARPRA---VWLKWTEMV-----QRDKS-----------------------


---------------------------------------------





FmCas7-11 -SWYNIHTVNNLRTALYYV----EDDKIQVNYPKLKKDNES---DNRPGYVEMKKTA--


---------FPV---------RDI---------------L--------TT---PWWPWWPPT-----PPPMNQSGNQSYARSEEPARITE--


--------------------SQPEVYKTGTVKFYKHDKKFGFITMDGRE





DpbaCas7-11 -QWNKVEQVKNIRKLLQLSWNKGNAVEPEVRYPALREKDDE--NKR-


PGYVELKDNG-----------Y------------DA---------------GKKL-----VS---PWAPWHPIK-----K-------------


-------------------------------------------------------------





Domains


.........................................................................


.........................................................................


........................................................





SECTION 15 (SEQ ID NOS 611-631, continued from section above)


WmCas7x3 ---------------------------------------------





SER16298.1 ---------------------------------------------





GwCas7x3 ---------------------------------------------





WP_031436019.1 ---------------------------------------------





PID64649.1 ---------------------------------------------





HEB50754.1 ---------------------------------------------





HreCas7-11 EEIFVHRSGVADNSIPKEGQKVGFRIERGARGSHAVEVKAIE---





CmaCas7-11 ---------------------------------------------





HvmCas7-11 KDVFVHHSSIVGTGFKSLNEGDSVAFKMGVGPKGPCAEKVKKIGN





SmCas7x3 ---------------------------------------------





oral_meta RDIFVHFSAIRGEGYKILEPGEKVRFEIGEGRKGPQAINVIRIR-





DisCas7-11 ---------------------------------------------





DsbaCas7-11





SstCas7-11 ---------------------------------------------





CsbCas7-11 KEVSISKNSIRGNILLKKGQKVTFHIVQGLIPKAEDIEIAK----





CjcCas7-11 ---------------------------------------------





CbfCas7-11 ---------------------------------------------





HvsCas7-11 ---------------------------------------------





HsmCas7-11 ---------------------------------------------





FmCas7-11 NIHFAGNQICRPET--SLQSGDKVKFIEGENYKGPTALKVERLKG





DpbaCas7-11 ---------------------------------------------





Domains .............................................









EXAMPLES

While several experimental Examples are contemplated, these Examples are intended non-limiting.


Example 1

Cas7-11 Family


New Cas7-11 family members were mined from bacterial and metagenomic data downloaded from NCBI, JGI, and ENA repositories. CDS were extracted using MetaGeneMark (Besemer and Borodovsky 1999; Zhu et al. 2010), and used to build BLAST databases (Camacho et al. 2009). Existing Cas7-11 family members (Makarova et al. 2019) were used as seeds to find putative orthologs. In parallel CRISPR arrays were identified using both CRISPRCasFinder (Couvin et al. 2018) and PILER-CR (Edgar 2007), and putative orthologs were filtered for proximity to CRISPR arrays.


Cas7-11 family members were computationally identified and expressed. The Cas7-11 family is summarized in the trees presented in FIG. 2A. The type III-E Cas7-11 locus from Desulfonema ishimotonii (DisCas7-11) comprises multiple Cas7-like gRAMP domains, including a small subunit domain and an unknown insertion in the Csm3-like domain 5 (FIG. 2B). The CRISPR array was expressed in Desulfonema ishimotonii and processed into mature crRNAs containing 14-nt direct repeats (DRs) and ˜31 nt spacers (FIG. 2C). The cleavage site for processing and maturation is illustrated in FIG. 2D.


By screening a database of bacterial genomic and metagenomic sequences from diverse sources containing more than ˜11.6 billion protein sequences, the set of subtype III-E systems was expended to 17 loci from various bacteria and metagenomes (FIG. 2A). Apart from the identification of many additional type III-E loci, a novel subset of III-D systems (subtype III-D2) that was characterized by an the fusion of 3 Cas7 domains into a single protein, referred to as Cas7×3 was identified (FIG. 2A and FIG. 2B and Table 1). This similarity of the domain architectures, together with the phylogenetic analysis of the Cas7 domain (FIG. 2A), suggests an evolutionary path from subtype III D1 to III-D2 via the fusion of 3 Cas7 proteins, and then, from III-D2 to III-E via the fusion with an additional Cas7 and the Cas 11 protein.


Examination of the extended set of type III-E systems confirmed that almost all III-E loci (15 of the 17) contained the TPR-CHAT protein (Csx29), and a majority encompassed uncharacterized proteins denoted Csx30 (10/17) and Csx31 (9/17) as well as the alternative sigma factor RpoE (8/17) (FIG. 1E). The frequent presence of these genes in the III-E loci suggests that the respective proteins play accessory roles in the CRISPR response. More than half of the III-E loci (9/17) also contain the adaptation gene Cm′ which, in 8 of these 9 loci, is fused to a reverse transcriptase (RT), in a common arrangement among the type III systems, as well as a CRISPR array (12/17). Searching the spacer sequences against the NCBI NT (nucleotide sequences) database did not identify any matches, in agreement with the previous observations that the majority of the CRISPR spacerome consists of “dark matter” that apparently reflects vast, still unexplored viromes. Furthermore, alignments of the Cas7 domains of the Cas7×3 and Cas7-11 proteins show conservation of acidic residues implicated in crRNA guided target cleavage (FIGS. 1F-1K). The activities of Cas7-11 and Cas7×3 proteins were experimentally characterized to assess the path of evolution that resulted in the unique Class 1 single protein effector that is predicted to function as a programmable RNase without collateral activity.


Example 2
Cas7-11 Defense

The RNA-guided RNA-targeting Cas7-11 was demonstrated to be capable of defense against ssRNA MS2 phage and RNA knockdown in bacteria.


The CRISPR array screen of all crRNAs targeting the MS2 genome was performed (FIG. 3A). The results of the MS2 interference screen is shown in FIG. 3B (for MS2 targeting spacers) and FIG. 3C (for non-targeting spacers). Regarding FIG. 3B, the results of the MS2 interference screen are shown as box plots. Enrichment of DisCas7-11 spacers in the phage targeting condition denote survival of bacteria and enhanced representation of specific active spacers. Boxes denotes 25th and 75th percentiles with the median marked by the middle line. The whiskers are calculated via the Tukey method (1.5 times the inter-quartile range). Outliers are denoted by square symbols. FIG. 3C shows the results of the MS2 interference screen showing enrichment of DisCas7-11a non-targeting spacers across varying phage dilution amounts as box plots. Boxes denotes 25th and 75th percentiles with the median marked by the middle line. The whiskers are calculated via the Tukey method (1.5 times the inter-quartile range). Outliers are denoted by square symbols.


The enrichment of DisCas7-11 crRNAs in the phage targeting condition denotes the survival of bacteria and enhanced representation of specific active crRNAs. The results of the MS plaque dilution assay are shown in FIG. 3D. The assay shows significant survival of E. coli containing the top crRNA identified in the MS2 screen. In the non-targeting spacer, dilutions of phage up to 1e9 are capable of lysing bacteria. For the top targeting spacer, only dilutions up to 1e4 are capable of lysis because of DisCas7-11 interference.


The number of DisCas7-11a spacers that display survival enrichment over a threshold of 1.7 across different phage dilution conditions are shown in FIG. 3E. The quantification of resistance conferred by top MS2-targeting DisCas7-11 spacers compared against a panel of 4 non-targeting spacers is shown in FIG. 3F. The resistance is quantified as the highest surviving titer of MS2 phage that generates plaques in the dilution assay.


The quantification of resistance conferred by two MS2-targeting DisCas7-11 spacers compared against a panel of 6 non-targeting spacers is shown in FIG. 3G. Resistance is quantified as the final dilution of MS2 phage that generates plaques in the dilution assay.


The RFP knockdown assay containing a DisCas7-11 and spacers expression vector co-transformed with an RFP-expressing vector is illustrated in FIG. 3H, and the results from the knockdown assay are shown in FIG. 3I. The RFP knockdown assay by multiple targeting spacers is normalized to a non-targeting condition as determined by flow cytometry. DisCas7-11-mediate RFP knockdown was found to exceed 50%.


The DisCas7-11a full locus with TPR-CHAT nearby and DisCas7-11a effector expressed alone with TPR-CHAT are illustrated in FIG. 3H, and the MS2 interference activity of DisCas7-11a in the full locus and as a single effector with and without TPR-CHAT expression is shown in FIG. 3I.


Example 3
Cas7-11 Cleavage Activity

The DisCas7-11 programmable RNA cleavage activity was biochemically characterized. The CRISPR array processing assay for DisCas7-11 is illustrated in FIG. 4A and shows robust processing activity by DisCas7-11. The DisCas7-11 was assayed at concentrations ranging between 0 nM and 233 nM. The in vitori cleavage of ssRNA 1 target is illustrated in FIG. 4B and demonstrates that programmable DisCas7-11 RNA targeting is Mg+2 and crRNA dependent. Note that the targets are either 5′ or 3′ fluorescently labeled. The results from the cleavage of EGFP ssRNA at multiple sites with tiled crRNAs are shown in FIG. 4C. A varying cleavage pattern based on target position is observed. The protospacer flanking site (PFS) sequence screen is illustrated in FIG. 4D and shows a varying cleavage pattern based on target position and a lack of sequence preference flanking the target site for DisCas7-11 cleavage. The kinetics of fluorescence due to RnaseAlert collateral cleavage by DisCas7-11 or LwaCas13a targeting and non-targeting crRNA against the MS2 RNA target are illustrated in FIG. 4E. The processing activity of a synthetic DisCas7-11 CRISPR array by DisCas7-11 protein with predicted catalytic processing mutants in the protein insert region with a characteristic K×Y×H catalytic triad motif is illustrated in FIG. 4F. The measurement of bacterial growth (OD600) during target interference by DisCas7-11 and LwaCas13 is shown in FIG. 4G.


Example 4
Cas7-11 Catalytic Residues

The catalytic residues in DisCas7-11 were identified.


The protein domains of DisCas7-11 with putative catalytic residues highlighted in Cas7-like domains 3 and 4 are illustrated in FIG. 5A. The results from the cleavage of synthetic ssRNA target with two cRNAs and wild type, D429A, D654A, and D429A/D654A DisCas7-11 proteins are shown in FIG. 5B. The cleavage is affected by the single mutants and completely inactivated by the double mutant D429A/D654A. The processing of a synthetic DisCas7-11 CRISPR array by catalytic DisCas7-11 mutants is not affected by D429A and D654A catalytic mutations (FIG. 5C). The MS2 phage interference in bacteria is affected by D429A/D654A mutations, although there is remaining residual interference above the lack of DisCas7-11 altogether (FIG. 5D). The RFP knockdown in E. coli is prevented by the catalytic mutation D429A/D654A in DisCas7-11 (FIG. 5E).


The DisCas7-11:crRNA complex binding to a complementary MS2 ssRNA target is determined by electrophoretic mobility shift assay (EMSA) and illustrated in FIG. 5F. An EMSA is performed for both the WT DisCas7-11 and dead DisCas7-11 complexes and is compared to WT DisCas7-11 in complex with a non-targeting crRNA. The Kd value for the WT and dead DisCas7-11 complexes are shown below corresponding gels.


Example 5
Cas7-11 Cleavage Sites

DisCas7-11 cleavage sites were characterized. The DisCas7-11 guides targeting multiple sites on a synthetic 100 nt EGFP ssRNA target are illustrated in FIG. 6A and the cleavage patterns of each EGFP-targeting guide incubated with DisCas7-11 on a 3′ labeled EGFP ssRNA are shown in FIG. 6B. The DisCas7-11 guides targeting of multiple sites on either MS2 ssRNA or ssRNA target 2, two targets of equivalent length (153 nt), are illustrated in in FIG. 6C. The guides are designed to target sites at the same position on both targets in order to better understand whether sequence specific cleavage preferences exist and whether cleavage cut sites are position dependent. The cleavage patterns of each guide incubated with MS2 ssRNA or ssRNA target 2 are shown in FIG. 6D.


Example 6
Cas7-11 Orthologs Activity

The CRISPR processing and RNA cleavage activity were demonstrated for different DisCas7-11 orthologs.


The schematics of three Cas7-11 orthologs (GwCas7-11, CjcCas7-11, and DisCas7-11) chosen for additional characterization are shown in FIG. 7A, wherein a multiple sequence alignment of the three orthologs compared against the domain organization of a typical Cas7-11 protein is shown. The multiple sequence alignments of the DR sequences for GwCas7-11, CjcCas7-11, and DisCas7-11 are shown in FIG. 7B. Mismatches against the consensus are highlighted in grey and the grey region shows the sections of the DRs that are cleaved from the pre-crRNAs to generate mature crRNAs.


The activity of the GwCas7-11 orthologs at concentrations between 2 uM to 125 nM was assessed. The activity of Cas7-11 from Candidatus Jettenia caeni (CjcCas7-11) shows robust processing of CRISPR arrays specific to the CjcCas7-11 locus (FIG. 7C). The activity of Cas7-11 from ground water metagenomes (GwCas7-11) shows robust processing of CRISPR arrays specific to the GwCas7-11 locus (FIG. 7D). MS2 ssRNA target cleavage by GwCas7-11 and CjcCas7-11 incubated with their cognate crRNAs using guides complementary to the MS2 ssRNA target is illustrated in FIG. 7E. The incubation of GwCas7×3 and CjcCas7-11 proteins with their cognate crRNAs complementary to the MS2 ssRNA target at varying positions along the target is illustrated in FIG. 7F.


Example 7
Cas7-11 RNA Knockdown in Mammalian Cells

The knockdown of RNA in mammalian cells by DisCas7-11 was evaluated. The schematic of a luciferase reporter assay for RNA knockdown using a vector expressing human codon-optimized DisCas7-11 and guide RNA is shown in FIG. 8A. The knockdown activity of DisCas7-11 against the Gaussia luciferase (Gluc) transcript normalized to two non-targeting conditions is illustrated in FIG. 8B. Note that the dotted line in this FIG. represents 85% knockdown. The knockdown activity of DisCas7-11 against the multiple endogenous transcripts normalized to two non-targeting conditions is illustrated in FIG. 8C. Note that the dotted lines in this figure represent background expression and 65% knockdown by DisCas7-11.


RNA A-to-I editing of Cypridina luciferase (Cluc) mRNA W85X mutation in mammalian cells by dead DisCas7-11a-NES-ADAR2 was investigated. Guides were designed with mismatch distances between 2-50 nt. Editing was measured by two methods: 1) restoration of Cluc luciferase activity that is normalized to the non-targeting guide condition (FIG. 8E) and 2) amplicon sequencing of the targeted adenosine to measure percent conversion of the adenosine to inosine (FIG. 8F).


The RFP knockdown by DisCas7-11 or LwaCas13a in E. coli bacteria was assessed (FIG. 8G). The knockdown of Gluc mRNA in mammalian cells by DisCas7-11 with a panel of guides containing the mature DR sequence was assessed (FIG. 8H). The guides were designed to be tiled across the Gluc transcript. The knockdown of Gluc mRNA in mammalian cells by DisCas7-11 with a panel of guides of different lengths was assessed (FIG. 8I). Comparison of the number of significant off-targets when targeting the Gluc transcript in HEK293FT and U87 cells by DisCas7-11, shRNA, LwaCas13a, PspCas13b, and RfxCas13d using transcriptome-wide RNA-sequencing data is shown in FIG. 8G. Off-targets were determined by significance testing of differentially expressed transcripts between targeting and non-targeting guide conditions. Comparison of the number of significant off-targets when targeting the Gluc transcript in HEK293FT and U87 cells by DisCas7-11, shRNA, LwaCas13a, PspCas13b, and RfxCas13d using transcriptome-wide RNA1217 sequencing data is shown in FIG. 8K. Off-targets were determined by significance testing of differentially expressed transcripts between the targeting guide condition and cells only expressing EGFP. The data were mean (n=3)±s.e.m.


Given that DisCas7-11 lacked collateral activity in vitro or in vivo, the efficiency and effects of targeting with DisCas7-11, multiple Cas13 family members, and RNA interference through small hairpin RNA (shRNA) was compared. The activity in HEK293FT cells was assessed, for which no detectable growth impact from Cas13a targeting has been reported. Comparing Gluc knockdown between DisCas7-11, LwaCas13a, PspCas13b, RfxCas13d, and shRNA, comparable knockdown efficiencies was found for the different systems, with the exception of LwaCas13a, which could only reach ˜35% knockdown (FIG. 8L). By assessing the specificities of the different systems by whole transcriptome profiling in HEK293FT cells and comparing between targeting and non-targeting guide conditions, it was found that there were more differentially expressed genes for shRNA and RfxCas13d than for DisCas7-11 (FIG. 8M). LwaCas13a and PspCas13b had minimal off-target effects on the transcriptome when comparing targeting versus non-targeting guide conditions, and none of these knockdown tools had any effect on HEK293FT cell viability (FIGS. 8M-8N). In addition, when comparing targeting conditions of the different tools to a no-protein, GFP condition, only RfxCas13d expression was found to result in detectable differential gene expression. Because cell toxicity of Cas13 has been reported in certain cell types, such as the U87 glioblastoma cell line7, the degree of toxicity due to the collateral activity of Cas13 may be cell-type specific. Thus, the comparison of shRNA, Cas13a/b/d, and Cas7-11 knockdown activities was repeated in U87 cells, finding efficient knockdown by DisCas7-11, PspCas13b, and RfxCas13d, less efficient knockdown with LwaCas13a, and no activity from shRNA (FIG. 8O). Whereas DisCas7-11 and the Cas13 variants showed minimal differential gene expression off-targets when comparing between targeting and non-targeting conditions, evaluation of targeting conditions versus the no protein, GFP-only control showed increased numbers of differentially expressed genes in RfxCas13d, LwaCas13a, and PspCas13b compared to DisCas7-11 (FIG. 8P). Moreover, Cas13 enzymes and shRNA caused cell toxicity resulting in ˜30-50% cell death, whereas DisCas7-11 expression had minimal impact on cell viability (FIG. 8Q), consistent with the specific knockdown demonstrated by transcriptome sequencing. The observation that certain cell lines can be more susceptible to non-specific RNA degradation than others is consistent with other reports on substantial RNAi toxicity in diverse cell lines. Moreover, the ineffectiveness of the RNAi constructs in U87 cells herein, in contrast to their functionality in HEK293FT cells, is consistent with the low Dicer and Argonaute 2 expression in U87 cells, causing poor on-target knockdown, with off-target induced toxicity. The highly specific and low toxicity knockdown activity of DisCas7-11 compared to other RNA knockdown tools, RNAi and Cas13, could make Cas7-11 proteins more generally applicable and appropriate tools for RNA knockdown across diverse cells and tissues.


Example 8
Heterologous Expressions of Type-III-E CRISPR Cas System

The heterologous expression of the Desulfonema ishimotonii Type III-E CRISPR-Cas system and associated CRISPR array were performed. The Desulfonema ishimotonii Type III-E full locus matures crRNAs (FIG. 9A), single effector protein DisCas7-11 matures crRNAs in E. coli. (FIG. 9B) and DisCas7-11 CRISPR array without any effector or accessory proteins (FIG. 9C) were expressed. Additional type III-E family members and loci architecture are illustrated in FIG. 9D.


Example 9
Cas7-11 Dilution Assays

Dilution assays with DisCas7-11 and different spacers were performed. The DisCas7-11 assays for MS2 targeting spacers, non-targeting spacers and RFP targeting spacers were performed with dilution of phage up to 1e-1 (FIG. 10). The assay shows that bacteria with DisCas7-11a and MS2 targeting guides can survive at higher viral loads


Example 10
Effects Genes on MS2 Interference

The effects of genes in the Desulfonema ishimotonii type III-E CRISPR-Cas locus on MS2 interference were analyzed. The Type III-E locus of the Desulfonema ishimotonii is illustrated in FIG. 11A. Results of the phage plaque assay of the incomplete Type III-E DisCas7-11 CRISPR-Cas locus are shown in FIG. 11B. The knock-out of TPR-CHAT shows the highest positive effect on the interference by DisCas7-11. Results from the phage plaque assay of the individual gene knock-in together with of the Type III-E DisCas7-11 CRISPR-Cas system are shown in FIG. 11C. Knock-in data shows that RpoE has an inhibitory effect on DisCas7-11.


Example 11
Cas7-11 Pre-crRNA Processing to DR Mutations

The robustness of DisCas7-11 pre-crRNA processing to DR mutations was evaluated. The in vitro transcription of pre-crRNA and processing by DisCas7-11 is illustrated in FIG. 12A. The sequence of a single spacer CRISPR array showing locations of mutated bases is shown in FIG. 12B. The transcribed pre-crRNA was processed and the results showed the effect of consecutive double mutations on processing (FIG. 12C). Transcribed pre-crRNA was processed and the results showed the effect of consecutive double mutations on processing (FIG. 12D).


Example 12
Effect of Ion on Cas7-11 Activity

The effects of ions on pre-crRNA processing and ions, complex concentrations, and incubation time on target cleavage was analyzed. The in vitro transcription and 5′ end labeling of pre-crRNA and processing by DisCas7-11 were assessed. Pre-crRNA was processed by DisCas7-11 in the presence of different ions or chelating agents (FIG. 13A). CRISPR array processing by DisCas7-11 is shown to be ion independent. A schematic of in vitro cleavage of ssRNA target with DisCas7-11 and crRNA 5 is shown in FIG. 13B. The ssRNA target was incubated with DisCas7-11 and targeting or non-targeting crRNA in the presence of different ions or chelating agents (FIG. 13C). The results show the dependence on magnesium, manganese, and calcium. The cleavage of ssRNA target with increasing amounts of DisCas7-11-crRNA complex from 0 nM to 233 nM was performed (FIG. 13D). The cleavage of ssRNA target at increasing incubation periods from 0 minutes to 180 minutes was also performed (FIG. 13E).


Example 13
Effect of DR Length, Spacer Length and DR Mutations on Cas7-11 Activity

The effects of DR length, spacer length, and DR mutations on in vitro target cleavage by DisCas7-11 were evaluated. A schematic of the sequence of DisCas7-11 crRNA 5 targeting the ssRNA target is shown in FIG. 14A. The ssRNA target was cleaved with crRNA of varying DR and spacer lengths (FIG. 14B). A schematic of the sequence of DisCas7-11 crRNA 1 targeting the MS2 target is shown in FIG. 14C. The MS2 ssRNA target was cleaved (FIG. 14D). The results show the effect of single and double mutations at various positions in the DR, and several single and double mutations cause inhibition of DisCas7-11 target cleavage.


Example 14
DisCas7-11 In Vivo Collateral Activity

The in vivo collateral activity of DisCas7-11 was evaluated. The results from the three-hour end point fluorescence of RnaseAlert reporter incubated with either DisCas7-11 or LwaCas13a targeting and non-targeting guides against MS2 ssRNA target are shown in FIG. 15. The LwaCas13a demonstrates robust collateral activity whereas DisCas7-11 has no collateral cleavage of the RNase alert reporter.


Example 15
Activity of DisCas7-11 Catalytic Mutants

The cleavage activity of DisCas7-11 catalytic mutants on MS2 RNA target was evaluated. A schematic showing the positions of DisCas7-11 crRNA 1 and crRNA 2 targeting the MS2 target is shown in FIG. 16A. The cleavage of a synthetic MS2 ssRNA target with two cRNAs and wild type, D429A, D654A, and D429A/D654A DisCas7-11 proteins was performed (FIG. 16B). The D429A/D654A mutant demonstrates reduced cleavage activity on the target.


The DisCas7-11 catalytic mutants that were assessed are presented in Table 16 below.













TABLE 16







Mutation
In vitro status
Domain









E70
Purified, no effect
1



D77
Purified, no effect
1



E93
Purified, no effect
1



D111
Purified, no effect
1



D143
Purified, no effect
1



D160
Purified, no effect
1



D162
Purified, no effect
1



D177
Purified, cut inactivated,
1




bottom




D185
Purified, no effect
1



D193
Purified, no effect
1



D226
Purified, no effect
1



D238
Purified, no effect
1



E280
Purified, no effect
2



D287
Purified, no effect
2



W315
Purified, no effect
2



D316
Purified, no effect
2



D379
Purified, no effect
2



E381
Purified, no effect
2



E390
Purified, no effect
2



D422
Purified, no effect
3



D429
Purified, cut inactivated,
3




middle (top shifts up)




D437
Purified, no effect
3



D454
Purified, no effect
3



D487
Purified, no effect
3



E497
Purified, no effect
3



E520
Purified, no effect
3



D543
Purified, no effect
3



D581
Purified, no effect
3



D642
Purified, no effect
4



D654
Purified, cut inactivated,
4




bottom




D727
Purified, no effect
4



D733
Purified, no effect
4



D740
Purified, no effect
4



D745
Purified, cut inactivated,
4




bottom




D753
Purified, no effect
4



D758
Purified, cut inactivated,
4




bottom




D781
Purified, no effect
4



D798
Purified, no effect
4



D825
Purified, no effect
4



D909
Purified, no effect
5



D914
Purified, no effect
5



E959
Purified, cut inactivated,
5




bottom




D970
Purified, no effect
5



D982
Purified, no effect
5



D998
Purified, cut inactivated,
5




bottom




D1015
Purified, no effect
5



D1025
Purified, no effect
5



D1118
Purified, no effect
5



D1179
Purified, no effect
5



D1273
Purified, no effect
5



D1297
Purified, no effect
5



D1308
Purified, no effect
5



D1367
Purified, no effect
5



D1404
Purified, no effect
5



D1539
Purified, no effect
5



D1569
Purified, no effect
5



D1588
Purified, no effect
5










Example 16
Cas7-11 EMSA Binding Assays

Electrophoretic mobility shift assays (EMSA) for crRNA-target interactions and quantification of EMSA intensities were performed (FIGS. 17A-F). The EMSA assays for targeting crRNA in the absence of DisCas7-11 show minimal binding of the cRNA and shift of the labeled target). Target binding was found to be crRNA-dependent, as expected, and the dead mutant to have a similar affinity to ssRNA as the active DisCas7-11 protein. Furthermore, agreeing with the lack of ssDNA cleavage, DisCas7-11 showed weak ssDNA binding, and efficient binding required the full protein complexed with a.


Example 17
DisCas7-11 Cleavage Sites on ssRNA Targets

The characterization of DisCas7-11 cleavage sites on ssRNA targets was performed.


DisCas7-11 was incubated with a panel of crRNAs targeting either MS2 ssRNA or ssRNA target 2, two targets of equivalent length (153 nt) (FIG. 18A). The crRNAs are designed to target sites at the same position on both targets in order to better understand whether sequence-specific cleavage preferences exist and whether cleavage cut sites are position dependent. The cleavage of ssRNA 1 and MS2 ssRNA at multiple sites with tiled crRNAs were also performed (FIG. 18B). A varying cleavage pattern based on target position was observed.


A schematic of the position of the tested crRNAs along the SARS-CoV-2 ssRNA is shown in FIG. 18C. The results from the cleavage of synthetic SARS-CoV-2 ssRNA at multiple sites with tiled crRNAs showing a varying cleavage pattern based on target position are also shown in the same figure. A schematic of the position of the tested crRNAs along the Influenza A ssRNA target is shown in FIG. 18D. The results from the cleavage of synthetic influenza A segment 4 HA gene ssRNA at multiple sites with tiled crRNAs showing a varying cleavage pattern based on target position are also shown in the same figure.


DisCas7-11a was incubated with a crRNA targeting a crRNA site flanked by different sequences (FIG. 18E). While the spacer:target complementarity region is fixed, the sequences around the site are completely variable, allowing determination of any sequence preferences for cleavage. DisCas7-11a was also incubated with a crRNA targeting a double-stranded (dsDNA) target with 5′ labeling of the bottom strand (FIG. 18F) or top strand (FIG. 18G).


Example 18
Cleavage Activity on Various Length EGFP ssRNA Substrates

Biochemical characterization of DisCas7-11 programmable RNA cleavage activity on various length EGFP ssRNA substrates was performed. A schematic of the position of the tested crRNAs along the 100 nt EGFP ssRNA target is shown in FIG. 19A. The biochemical characterization of programmable DisCas7-11 RNA cleavage of 100 nt long and 3′ fluorescently labeled EGFP ssRNA target with tiling crRNAs is also shown in this figure. A schematic of the position of the tested crRNAs along the 200 nt EGFP ssRNA target is shown in FIG. 19B. The biochemical characterization of the programmable DisCas7-11 RNA cleavage of 200 nt long and 3′ fluorescently labeled EGFP ssRNA target with tiling crRNAs is also shown in this figure. A schematic of the position of the tested crRNAs along the 600 nt EGFP ssRNA target is shown in FIG. 19C. The biochemical characterization of the programmable DisCas7-11 RNA cleavage of 600 nt long and 3′ fluorescently labeled EGFP ssRNA target with tiling crRNAs is also shown in this figure. The DNA sequencing analysis of selected EGFP targeting crRNA conditions on an unlabeled 400 nt EGFP ssRNA target was performed (FIG. 19D). The DisCas7-11a cleavage was found to occur at both sides directly flanking the crRNA binding site, with cleavage occurring approximately 20 bases downstream of the 5′ position of the spacer. Other biochemical characterizations of DisCas7-11 programmable RNA cleavage activity are shown in FIGS. 19E-19G


Example 19
Candidatus Jettenia caeni Type III-E CRISPR-Cas System

The heterologous expression of the Candidatus Jettenia caeni Type III-E CRISPR-Cas system and associated CRISPR array in E. coli was performed. The schematic of Candidatus Jettenia caeni locus (minus Cm′) in E. coli is shown in FIG. 20. The processing of crRNAs occurs when the CjcCas7-11 locus is heterologously expressed in E. coli, and mature 37 nt crRNAs are generated containing a 15-nt DR.


Example 20
Processing of Cas7-11 Orthologs

The processing of Cas7-11 orthologs was found to be specific to the cognate pre-cRNAs and to do not occur on other synthetic RNAs. The DisCas7-11 pre-cRNA processing is specific to the DisCas7-11 array and does not occur on the MS2 ssRNA target as illustrated in FIG. 21A. The GwCas7-11 pre-cRNA processing is specific to the GwCas7-11 array and does not occur on the MS2 ssRNA target as illustrated in FIG. 21B. The CjcCas7-11 pre-cRNA processing is specific to the CjcCas7-11 array and does not occur on the MS2 ssRNA target as illustrated in FIG. 21C. FIG. 21D shows the comparison of target cleavage between active CjcCas7-11 and dead CjcCas7-11.


Example 21
Cas7-11 Correction of Cluc W85X

The correction of Cluc W85X mRNA by dDisCas7-11 was measured. A schematic of the DisCas7-11 guide design for RNA editing of Cluc W85A target mRNA is shown in FIG. 22A. A table disclosing the different guides used for the correction of the mRNA is shown in FIG. 22B. The dDisCas7-11 correction of Cluc W85X RNA by the different guides is shown in FIG. 22C, and the percentage editing for the correction is shown in FIG. 22D. The luciferase correction that correlates to the correction percent is shown in FIG. 22E.


Example 22
Harvesting and Next-Generation Sequencing of crRNA and Pre-crRNA from Desulfonema ishimotonii and E. coli

To extract total RNA, freeze-dried Desulfonema ishimotonii cultures (DSMZ 9680) were resuspended in TRIzol (R2051, Zymo), homogenized by bead beating with zirconia/silica beads, and processed with the Direct-Zol RNA miniprep protocol (R2051, Zymo). Purified RNA samples were treated with T4 Polynucleotide Kinase (M0201S, New England Biolabs), both with and without ATP to allow for the enrichment of 3′-P and 5′-OH ends. Samples has ribosomal RNA depleted using the Ribo Minus Kit (K155004, Thermo Fisher Scientific) before being processed for next-generation sequencing with the NEBNext Small RNA Library Prep Set for Illumina sequencing (E7330S, New England Biolabs). Notably, the PCR extension step was increased to 1 minute to allow for longer templates to be included in the library. Libraries were sequenced on an MiSeq (Illumina) to sufficient depth and analyzed using the alignment tool BWA (Li and Durbin 2009). Paired-end alignments were used to extract entire transcript sequences using Galaxy tools (https://usegalaxy.org/), and these sequences were analyzed using Geneious 8.1.5 (Biomatters, Auckland, New Zealand) and custom scripts (https://github.com/abugoot-lab).


Example 23
Design and Cloning of Bacterial Constructs

To clone DisCas7-11 constructs, genomic DNA from D. ishimotonii cultures (DSMZ 9680) was extracted using the Blood & Cell Culture DNA Mini Kit (13323, Qiagen). The Type III-E D. ishimotonii CRISPR locus was PCR amplified and cloned into a pACYC184 backbone with chloramphenicol resistance using Gibson cloning. For the Cas7-11 only construct, DisCas7-11a was cloned with a J23119 promoter and B0015 terminator. Removal or addition of other genes in the CRISPR locus was cloned using Gibson cloning; when adding genes to the Cas7-11-only construct, expression of these genes was driven by a pLac promoter. In order to facilitate simple cloning of spacers, a minimal spacer construct with two flanking direct repeats (DR) surrounding a Golden Gate acceptor site was used as a backbone for Golden Gate cloning (Engler and Marillonnet 2014). To clone the CjcCas7-11b locus, DNA corresponding to the locus was synthesized by GeneArt (Thermo Scientific). Unless otherwise noted, all clonings were transformed into Stb13 cells (C737303, Thermo Fisher Scientific) made competent with the Mix and Go kit (T3001, Zymo Research), all colonies were picked into Terrific Broth (TB) (24 g/L Yeast Extract, 12 g/L Tryptone, 9.4 g/L K2HPO4, 2.2 g/L KH2PO4, pH 7.2) supplemented with the appropriate antibiotic (chloramphenicol, 25 μg/mL; ampicillin, 100 μg/mL) and all plasmids were isolated using the QiaPrep Spin Miniprep kit (27104, Qiagen) protocol and verified by next generation sequencing on a MiSeq (Illumina). All bacterial plasmids used are listed in Table 3.


Example 24
Cloning of Screening Libraries for MS2 Interference Activity Screen

To design the MS2 library for screening, all possible spacers targeting the MS2 genome were computationally extracted, and synthesized as a library by Twist Biosciences. This library was Golden Gate cloned into the minimal CRISPR array containing the Golden Gate acceptor site on the DisCas7-11a-only backbone and transformed into Endura Duo electro-competent cells (60240-1, Lucigen) and plated on chloramphenicol-supplemented Bioassay agar plates. 16 hours post transformation, libraries were harvested by scraping and purified using a NucleoBond Xtra MaxiPrep EF (740424.10, Takara Bio).


Example 25
Bacterial Phage Interference PFS Screen Assay

To transform the MS2 spacer library, 400 uL NovaBlue(DE3) Gigasingle competent cells (71227-3, EMD Millipore) were transformed with a total of 2 ug of the spacer library. Cells were recovered in SOC while shaking at 37° C. for 1 hour. After recovery, cells were split into two biological replicates and used to inoculate 8 mL of Luria Broth (LB) (10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl) supplemented with chloramphenicol. Cells were further incubated in LB-chlor while shaking at 37° C. for 4 hours, after which the volume was brought to a total of 12 mL for each biological replicate. Replicates were split into 6 2 mL tubes, and phages of different dilutions were added to each tube. Cells were incubated with phage while shaking at 37° C. for 3 hours, after which they were plated on Bioassay plates with LB-agar supplemented chloramphenicol. After 16 hours of growth, all colonies were harvested by scraping and scraped and plasmid DNA was extracted with the NucleoBond Xtra MaxiPrep EF (740424.10, Takara Bio). Spacer sequences were PCR amplified from extracted plasmids and sequenced using a MiSeq (Illumina) with a paired-end 150 cycle kit.


Example 26
Cloning of Libraries and Screening for Beta-lactamase and Transcribed/non-transcribed PFS Screens

Plasmid libraries for PFS screens were cloned from synthesized oligonucleotides (IDT) consisting of 7 randomized nucleotides either upstream or downstream of the spacer 1 target. To generate dsDNA fragments for cloning, the ssDNA oligonucleotides were annealed to a short primer for second strand synthesis by large Klenow fragment (M0210S, New England Biolabs). dsDNA fragments were Gibson cloned into digested pUC19, either at the 5′-end of the beta-lactamase (Ampicillin resistance) transcript (RNA targeting library), or in a non-transcribed region of pUC19 (DNA targeting library). Gibson clonings were electroporated into Endura Duo electro-competent cells (60240-1, Lucigen) and plated on Bioassay plates with LB-agar supplemented with ampicillin. After 16 hours of growth, all colonies were harvested by scraping and scraped and plasmid DNA was extracted with the NucleoBond Xtra MaxiPrep EF (740424.10, Takara Bio).


To screen libraries, we co-transformed 50 ng of the pooled ampicillin library and an equimolar amount of the Cas7-11 locus plasmid or pACYC184 plasmid control intoNovaBlue(DE3) Gigasingle competent cells (71227-3, EMD Millipore). After transformation, cells were plated on ampicillin and chloramphenicol to select for both plasmids. After 16 hours of growth, all colonies were harvested by scraping and scraped and plasmid DNA was extracted with the NucleoBond Xtra MaxiPrep EF (740424.10, Takara Bio). The target PFS region was PCR amplified and sequenced using a MiSeq (Illumina) with a single-end 150 cycle kit.


Example 27
Computational Analysis of In Vivo Screens

To determine enriched spacers from the bacteriophage interference screens, sequenced spacer regions were counted and normalized to total reads for each sample. For enriched spacers, enrichment was measured as the log 2 ratio compared to no phage dilution controls, with a pseudocount adjustment. PFS regions (both at 5′ and 3) from spacers above a 1.7 log 2 enrichment threshold in both biological replicates were used to generate sequence logos for the phage dilution samples.


For transcribed/non-transcribed (beta-lactamase) pUC19 PFS screens, PFS regions were extracted and computationally collapsed to 5 nt to have broader coverage. Collapsed PFS were counted and normalized to total reads for each sample. For a given PFS region, enrichment was measured as the log ratio compared to control (pACYC184 control), with a 0.01 pseudocount adjustment. PFSs above a 6 depletion threshold that were enriched in both biological replicates were collected and used to generate sequence logos (Crooks et al. 2004).


Example 28
Bacterial Phage Interference Assay for Individual Spacers

To test individual spacers for MS2 interference with drop plaque assays, complementary oligonucleotides encoding the spacer sequences (see Table 4) flanked by overhangs corresponding to the Cas7-11a Golden Gate acceptor sites were ordered from IDT. Oligonucleotides (final concentration 10M) were annealed in T4 ligase buffer (B0202S, New England Biolabs) supplemented with 5 units of T4 Polynucleotide Kinase (M0201S, New England Biolabs). The oligonucleotides were phosphorylated at 37° C. for 30 minutes and annealed by heating to 95° C. for 5 minutes followed by a 5° C./minute cool to 25° C. Annealed oligos were then cloned into the locus backbone by Golden Gate cloning. After verification by sequencing, clonal plasmids were transformed into NovaBlue(DE3) GigaSingle competent cells (71227-3, EMD Millipore) made competent with the Mix and Go kit (T3001, Zymo Research). Transformed GigaSingle cells were seeded from an overnight culture grown to OD600 of ˜2, at which point they were diluted 1:6 in Top Agar (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl, 7 g/L agar) and poured onto warm LB-chloramphenicol plates. Dilutions of MS2 phage in phosphate buffered saline were then spotted on the plates with a multichannel pipette, and plaque formation was recorded after overnight incubation.


Example 29
RFP Targeting and Growth Assay

Spacers (see Table 4) targeting RFP mRNA were Golden Gate cloned into the DisCas7-11a-only construct (as described above). After verification by sequencing, clonal plasmids were co-transformed with a tetracycline-inducible RFP plasmid on the pBR322 backbone (Addgene 79157). Colonies were picked into TB supplemented with ampicillin, chloramphenicol, and 50 ng/mL anhydrotetracycline final (631310, Takara Bio) and grown to saturation by shaking at 37° C. overnight. Cells were separated by centrifugation through a 40 μm filter plate (MANMN4010, EMD Millipore) and analyzed by flow cytometry on a FACSCanto II Cell Analyzer (BD Biosciences). Knockdown efficiency was quantified as the percent of RFP positive cells compared to a non-targeting spacer control.


Example 30
Cas7-11 Protein Purification

The E. coli codon-optimized genes for DisCas7-11a and GwCas7-11c, and the human codon-optimized gene for CjcCas7-11b were synthesized by Twist Biosciences, PCR amplified, and Gibson into a Twin-Strep-tag and SUMO tag bacterial expression vector (Addgene 90097). Sequence verified clonal Cas7-11 expression constructs were transformed into either T7 Express lysY Competent E. coli cells (C3010I, New England Biolabs), for DisCas7-11a and GwCas7-11c, or Rosetta(DE3)pLysS Competent Cells (70956-3, EMD Millipore), for CjcCas7-11b. Colonies were picked and grown overnight in TB supplemented with ampicillin. 10 ml of overnight culture was used to inoculate 1 L of TB supplemented with ampicillin, and the culture was grown by shaking at 37° C. until the OD600 reached 1. At this point, cultures were cooled at 4° C. for 30 minutes, and induced with IPTG (16758, Sigma) to a final concentration of 500 NM. Induced cultures were grown overnight (16-24 hours) by shaking at 18° C. After growth, Cells were harvested by centrifuged at 17,700×g for 15 min at 4° C., and the cell pellet was frozen at −80° C. for later purification.


Frozen cell paste was crushed and resuspended to a final concentration of 250 mg/mL in lysis Buffer (20 mM Tris-HCl, 500 mM NaCl, 1 mM DTT, pH 8.0) supplemented with Complete Ultra EDTA-free protease inhibitor tablets (5892953001, Sigma), 1 mg/mL lysozyme (L6876, Sigma) and 1 U/mL Benzonase nuclease (E1014, Sigma). Resuspension was performed by spinning for 30 minutes at 4° C. After resuspension, the solution was sonicated on ice with a 600 W Ultrasonic Homogenizer (U.S. Solid) for 15 minutes with a 50% duty cycle. Sonicated lysate was cleared by centrifugation at 38,400×g for 1 hour at 4° C. The supernatant was supplemented with 1 mL of Strep-Tactin XT superflow high capacity resin (2-4030-010, IBA Life Sciences) and incubated with rotation for 1 hour at 4° C. Bound resin was loaded onto a glass Econo-Column (7371507, Bio-Rad) and washed with three column volumes of lysis buffer supplemented with Complete Ultra EDTA-free protease inhibitor tablets. To cleave protein off of bead-bound Twin-Strep-tag and SUMO tag, the resin was resuspended in 3 mL of SUMO digest buffer (30 mM Tris-HCl, 500 mM NaCl, 1 mM DTT, 0.15% NP-40, pH 8.0) supplemented with 100 ug of SUMO protease (purified in-house). Cleavage occurred on-column overnight at 4° C. with rotation, after which supernatant was drained from the column by gravity filtration and concentrated to a volume of 1 mL with a 100 kDa centrifugal filter (UFC810024, Sigma). Concentrated protein was loaded onto a gel filtration column (Superdex 200 Increase 10/300 GL, GE Healthcare Life Sciences) via an ÄKTA pure FPLC machine. The resulting fractions from gel filtration were analyzed by SDS-PAGE Stain-Free gels (4568096, Bio-Rad), and fractions containing protein were pooled, buffer exchanged into Storage Buffer (600 mM NaCl, 50 mM Tris-HCl pH 7.5, 5% glycerol, 2 mM DTT), quantified via comparison SDS-PAGE with a Bovine Serum Albumin (BSA) ladder, aliquoted, and frozen at −80° C. for storage.


Example 31
Nucleic Acid Target and Cas7-11 Pre-crRNA Preparation

RNA targets for testing cleavage and pre-crRNA targets were synthesized by in vitro transcription. Single stranded DNA oligonucleotide templates with a T7 RNA polymerase promoter appended at the 5′ end were synthesized by IDT, and converted to dsDNA by PCR and gel extraction. Gel extracted dsDNA products (˜1 μg/reaction) were used as input for the HiScribe T7 Quick High Yield RNA Synthesis kit (E2050S, New England Biolabs), with the 30 uL reaction size recommended for transcripts <300 nt. Transcription occurred overnight at 30° C., after which targets were purified with RNA Clean and Concentrator columns (R1017, Zymo Research). Labeling was performed with the 3′ EndTag End Labeling System (MB-9002, Vector Laboratories) and 5′ EndTag End Labeling System (MB-9001, Vector Laboratories), per the manufacturer's instructions, which was followed by incubation with 100× molar ratio of Cyanine5.5 maleimide (17080, Lumiprobe) at 65° C. for 30 minutes. We confirmed that this labeling was not 5′ or 3′ specific, but rather body labeling, via Rnase H gel assays (FIG. S21), likely due to the intercalating or groove-binding properties of Cyanine5.5 (Biver et al. 2005). After labeling, RNA was purified with RNA Clean and Concentrator columns (R1017, Zymo Research). All targets used for in vitro cleavage are listed in supplemental Table 5.


Example 32
Cas7-11 crRNA Preparation

crRNA designs were ordered from IDT as reverse complement DNA oligonucleotide templates with a T7 RNA polymerase promoter appended at the 5′ end. These templates were annealed with a T7 promoter oligonucleotide, generating a dsDNA promoter region. Annealing occurred in Taq Buffer (B9014S, New England Biolabs) with both oligonucleotides at 10 μM. 1 uL of the anneal reaction was used as input for the HiScribe T7 Quick High Yield RNA Synthesis kit (E2050S, New England Biolabs), with the 30 uL reaction size recommended for transcripts <300 nt. Transcription occurred overnight at 37° C., after which targets were purified with RNAClean XP beads (A63987, Beckman Coulter); beads were used at 3.3× volume ratio and supplemented with 3× volume of isopropanol. All crRNA used for in vitro cleavage are listed in supplemental Table 6.


Example 33
In Vitro Nuclease Assays

Unless otherwise indicated, in vitro nuclease assays were performed with 233 nM purified Cas7-11, 30 nM of labeled ssRNA target and 200 nM crRNA in nuclease assay buffer (40 mM Tris-HCl, 60 mM NaCl, 6 mM MgCl2, pH 7.5) supplemented with 4 U of RNase Inhibitor, Murine (M0314S, New England Biolabs). For pre-crRNA processing reactions, crRNA was omitted and pre-crRNA was used in place of labeled ssRNA target. Reactions were incubated for 1 hour at 37° C. (unless otherwise indicated) and then quenched with addition of proteinase K, EDTA, and urea (final concentrations 1 mg/mL proteinase K, 6 mM EDTA, and 400 uM Urea) for 15 minutes at 50° C. To prepare for gel electrophoresis, reactions were denatured with 4.5M urea denaturing buffer at 95° C. for 5 minutes and loaded onto a 10% Novex PAGE TBE-Urea gel (EC6885BOX, Invitrogen), which was run at 235V for 25 minutes at 60° C. Gels were imaged using an Odyssey scanner (LI-COR Biosciences).


Example 34
Experimental and Computational Analysis of In Vitro PFS Screens

In vitro PFS screens were reverse transcribed with a target specific primer using the qScript cDNA SuperMix (95048-025, Quanta Bio) and, the target PFS region was PCR amplified and sequenced using a MiSeq (Illumina) with a single-end 150 cycle kit. PFS regions were computationally extracted and collapsed to 5 nt to have broader coverage, and collapsed PFS were counted and normalized to total reads for each sample. For a given PFS region, enrichment was measured as the log ratio compared to non-targeting control, with a 0.01 pseudocount adjustment. PFSs above a 5 depletion threshold that were enriched in both experimental replicates were collected and used to generate sequence logos


Example 35
In Vitro Collateral Activity Assays

In vitro collateral activity assays were performed with 233 nM purified Cas7-11 or LwaCas13a, 10 nM of unlabeled ssRNA target and 200 nM crRNA in nuclease assay buffer (40 mM Tris-HCl, 60 mM NaCl, 6 mM MgCl2, pH 7.5) supplemented with 4 U of RNase Inhibitor, Murine (M0314S, New England Biolabs) and 250 nM final concentration RnaseAlert V2 (4479768, Thermo Fisher Scientific). Reactions were incubated at 37° C. and activity was read continuously in the FAM channel of a Synergy Neo2 plate reader (BioTek).


Example 36
Electrophoretic Mobility Shift Assay (EMSA)

EMSA reactions were performed with dilutions of Cas7-11-crRNA complex with 10 nM of labeled ssRNA target in EMSA buffer (5 mM EDTA, 2.5% glycerol, 20 mM Tris, 5 μg/mL heparin, pH 7.5) supplemented with 4 U of RNase Inhibitor, Murine (M0314S, New England Biolabs). Binding occurred by incubation at 37° C. for 20 minutes, after which reactions were mixed with 2× loading buffer (0.5×TBE buffer, 10% Ficoll, 18 mM EDTA) and run on a 6% Novex PAGE TBE gel (EC6265BOX, Thermo Fisher Scientific) at 180V for 30 min at 4° C. Gels were imaged using an Odyssey scanner (LI-COR Biosciences).


Example 37
Next-Generation Sequencing of In Vitro Cleaved RNA

In vitro nuclease assays were performed and samples were quenched as described above using unlabeled ssRNA targets. After quenching, samples were treated with alkaline phosphatase (EF0651, Thermo Fisher Scientific) and purified with RNA Clean and Concentrator columns (R1017, Zymo Research). Libraries were then treated with the same small RNA sequencing pipeline applied to in vivo crRNA species, with the RiboMinus depletion step omitted.


Example 38
Design and Cloning of Mammalian Constructs

To generate vectors for testing DisCas7-11a in mammalian cells, a mammalian codon optimized DisCas7-11a sequence was ordered from Twist Biosciences, PCR amplified, and cloned into a mammalian expression vector containing combinations of modifications, including with and without NLS tags or N- or C-terminal msfGFP fusions, all under the control of a CMV promoter.


The dual luciferase reporter was cloned by PCR amplifying Gaussia and Cypridinia luciferase coding DNA, the EF1alpha and CMV promoters and assembled using the NEB Gibson Assembly (E2611S, New England Biolabs).


For mammalian DisCas7-11a guide expression, we synthesized both the full-length and mature DR sequences and cloned with golden-gate acceptor sites under U6 expression via restriction digest cloning. Individual guides were then cloned into the corresponding expression backbones for DisCas7-11a by golden-gate cloning. All mammalian DisCas7-11 plasmids are listed in Table 7. All DisCas7-11a guide sequences for knockdown or RNA editing experiments are listed in Table 8.


Example 39
Mammalian Cell Culture

All mammalian experiments were performed using the HEK293FT cell line (American Type Culture Collection (ATCC)). HEK293FT cells were grown in Dulbecco's Modified Eagle Medium with high glucose, sodium pyruvate, and GlutaMAX (Thermo Fisher Scientific), additionally supplemented with 1×penicillin-streptomycin (Thermo Fisher Scientific) and 10% fetal bovine serum (VWR Seradigm). We maintained cells below a confluency of 80%.


Transfections were performed using Lipofectamine 2000 (Thermo Fisher Scientific) in 96-well plates coated with poly-D-lysine (BD Biocoat). For transfections, cells were plated 16 hours prior to transfection at seeding densities of ˜20,000-30,000 cells per well, allowing cells to reach 90% confluency by transfection. For each well on the plate, transfection plasmids were combined with Opti-MEM I Reduced Serum Medium (Thermo Fisher) to a total of 25 μl. Separately, 24.5 μl of Opti-MEM was combined with 0.5 μl of Lipofectamine 2000. Plasmid and Lipofectamine solutions were then combined and incubated for 5-10 minutes, after which they were pipetted onto cells.


Example 40
Mammalian Cell RNA Knockdown Assays

To assess RNA knockdown in mammalian cells with reporter constructs, 100 ng of DisCas7-11a expression vector was co-transfected with 150 ng of guide expression plasmid and 40 ng of the knockdown reporter construct. After 48 hours, we harvested media containing secreted luciferase and measured luciferase activity using the Gaussia Luciferase Assay reagent (GAR-2B) (Targeting Systems) and Cypridina (Vargula) luciferase assay reagent (VLAR-2) (Targeting Systems) kits. Assays were performed in white 96 well plates on a plate reader (Biotek Synergy Neo 2) with an injection protocol. All replicates performed are biological replicates. Luciferase measurements were normalized by dividing the Gluc values by the Cluc values, thus normalizing for variation from well to well.


For targeting of endogenous genes, 100 ng of DisCas7-11a expression vector was co-transfected with 150 ng of guide expression plasmid. After 48 hours, we lysed cells and harvested RNA using a method previously described (Joung et al. 2017) with a gene-specific reverse transcription primers. Using Fast Advanced Master Mix (Thermo Fisher Scientific), we measured gene expression using the cDNA via qPCR and TaqMan qPCR probes for the KRAS, PPIB, CXCR4, and MALAT1 transcripts (Thermo Fisher Scientific) as well as the GAPDH control probe (Thermo Fisher Scientific). qPCR reactions were read out on a Bio-Rad CFX384 Touch Real-Time PCR Detection System, with four 5 μl technical replicates in 384-well format.


Example 41
RNA Editing in Mammalian Cells

To assess dDisCas7-11a-ADAR2dd editing activity in mammalian cells, we transfected 100 ng of dDisCas7-11a-ADAR2dd expression vector, 150 ng of guide expression plasmid, and 25 ng of the RNA editing reporter. After 48 hours, we harvested media from the cells, which should contain the secreted Gluc (normalization control) and Cluc (protein targeted for correction of W85X) proteins. If planning to sequence the RNA for the precise RNA editing levels, we also harvested RNA using a method previously described (Joung et al. 2017) with a gene-specific reverse transcription primer.


For luciferase measurements, we used undiluted media and the Gaussia Luciferase Assay reagent (GAR-2B) (Targeting Systems) and Cypridina (Vargula) luciferase assay reagent (VLAR-2) (Targeting Systems) kits. Assays were performed in white 96 well plates on a plate reader (Biotek Synergy Neo 2) with an injection protocol. All replicates performed are biological replicates. Luciferase measurements were normalized by dividing the Cluc values by the Gluc values, thus normalizing for variation from well to well. This ratio measurement could further be normalized by dividing by the non-targeting guide ratios.


For sequencing of RNA editing rates, we performed two rounds of PCR (NEBNext High-Fidelity 2×PCR Master Mix from New England Biolabs) using the extracted cDNA to add Illumina adaptors and sample barcodes. Illumina next generating sequencing was used to sequence editing rates in our prepared libraries on a MiSeq instrument. RNA editing rates were evaluated at the targeted adenosine in the W85X pre-termination codon.


Example 42
DisCas7-11-Mediated RNA-Guided RNA Interference Against MS2 Phage and RNA Knockdown in E. coli

DisCas7-11-mediated RNA-guided RNA interference against MS2 phage and RNA knockdown in E. coli was investigated. The potential role of PFS in the function of the III-E systems was assessed by performing randomized PFS screens on both a DNA-only target and an expressed target at the 5′ end of an ampicillin gene. It was found that there was no signal on the DNA-only target on either side of the protospacer (FIG. 28A) and only a weak sequence preference when cleaving the expressed target (FIG. 28B). Furthermore, it was found that there were no observable trends in the flanking sequences of enriched MS2 spacers (FIGS. 28C and 28D), suggesting a lack of targeting constraints.


Example 43
Regulation of DisCas7-11 Interference Activity by Accessory Proteins

The regulation of DisCas7-11 interference activity by accessory proteins was assessed. Whether accessory proteins in the D. ishimotonii subtype III-E CRISPR locus could modulate RNA interference activity was investigated (FIG. 28E). Expression of the full D. ishimotonii CRISPR locus resulted in reduced MS2 interference compared to DisCas7-11 alone (FIG. 28F), prompting us to test the deletion of each putative accessory gene. Deletion of Csx29 was found to restore the interference activity. (FIG. 28G).


Example 44
Mapping DisCas7-11a Cleavage Mechanism

The mapping of the DisCas7-11a cleavage mechanism via in vitro cleavage of ssRNA of a 31 nt target was investigated. The DisCas7-11a cleavage of synthetic 31 nt MS2 ssRNA with a 31 nt crRNA completely duplexed to the target shows two cleavage fragments that are generated in the targeting condition when protein is generated (indicated by triangles) (FIG. 29). Other bands present in all conditions indicate incomplete products generated when in vitro transcribing the 31 nt target.


Example 45
DisCas7-11a-Mediated Knockdown of mRNA in Mammalian Cells

The effects of DisCas7-11a-mediated knockdown of mRNA in mammalian cells by guide variants or inactivating mutations was measured. The knockdown of Gaussia luciferase (Gluc) mRNA in mammalian cells by DisCas7-11a unmodified or with N-/C-terminal msfGFP fusions, with guides containing the full DR sequence was assessed. The guides are designed to be tiled across the Gluc transcript. The knockdown of Gluc mRNA in mammalian cells by DisCas7-11a unmodified or with N-/C-terminal msfGFP fusion, with guides containing the mature DR sequence was assessed. Guides are designed to be tiled across the Gluc transcript. The comparison of knockdown activity of Gluc mRNA in mammalian cells between active DisCas7-11a, catalytically inactive D429A/D654A DisCas7-11a, and GFP is illustrated in FIG. 31A. Guides are the same as in a and b above and have the full DR sequence. The comparison of knockdown activity of endogenous mRNA in mammalian cells between active DisCas7-11a, catalytically inactive D429A/D654A DisCas7-11a, and GFP is illustrated in FIG. 31B. Here the guides have the full DR sequence.


Example 46
RNA Editing Efficiency with DisCas7-11a-NES-ADAR2 Constructs

The RNA editing efficiency with active and inactive DisCas7-11a-NES-ADAR2 constructs was measured. The RNA A-to-I editing of Cypridinia luciferase (cluc) mRNA W85X mutation in mammalian cells by active DisCas7-11a-NES-ADAR2 or dead DisCas7-11a-NES-ADAR2 is shown in FIG. 32A. The guides are designed with mismatch distances between 2-50 nt. Editing is measured by restoration of Cluc luciferase activity and is normalized to the non-targeting guide condition. The RNA A-to-I editing of Cypridinia luciferase (cluc) mRNA W85X mutation in mammalian cells by active DisCas7-11a-NES-ADAR2 or dead DisCas7-11a-NES-ADAR2 is shown in FIG. 32B. The guides are designed with mismatch distances between 2-50 nt, and the editing is measured by amplicon sequencing and measuring the percent correction of the pre-termination stop codon.


Example 47
RNase H Cleavage of Target Showing Body Labeling

The RNase H cleavage of target showing body labeling was investigated. Cleavage of 3′ (FIG. 33A) and 5′ (FIG. 33B) labeled targeted by incubation with RNase H and indicated oligonucleotides show similar band patterns and double bands indicative of body labeling.


Example 48
Mechanism of the Programmable RNA Cleavage Activity of DisCas7-11

The mechanism of the programmable RNA cleavage activity of DisCas7-11 was assessed. The type III-E system from D. ishimotonii and corresponding effector DisCas7-11 were chosen, as a representative of type III-E systems to characterize in detail. The small RNA from D. ishimotonii were harvested and sequenced. Mature crRNA species indicative of pre-crRNA processing were identified (FIG. 2C), a hallmark of an active CRISPR-Cas locus. Heterologous reconstitution of the D. ishimotonii type III-E locus in E. coli demonstrated similar processing (FIG. 9A), and expression of the DisCas7-11 protein and pre-crRNA were both necessary and sufficient for mature crRNA expression (FIG. 9B and FIG. 9C), suggesting that Cas7-11 possesses pre-crRNA processing activity. Processing occurred though cleavage in the second hairpin of the direct repeat (DR) at residue 21, generating a mature rRNA with spacers of ˜18-24 nt and 14 nt DRs lacking any predicted secondary structure, similar to the mature DR tags of other type III systems (FIG. 2D). To generalize the observation of the processing activity of Cas7-11 beyond D. ishimotonii, the Candidatus Jettenia caeni type III-E locus through heterologous expression in E. coli was assessed. Robust processing of the C. Jettenia caeni pre-crRNA that resulted in mature crRNAs 37 nt in length was observed (FIG. 20), suggesting that pre-crRNA processing activity is common among type III-E systems.


One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.

Claims
  • 1. A composition that cleaves an RNA target comprising a guide RNA that hybridizes to the RNA target, and a polypeptide comprising an amino acid sequence 85-100% identical to the amino acid sequence of SEQ ID NO: 1, wherein the polypeptide comprises a glutamate at a position corresponding to position 70 of SEQ ID NO: 1; and/or aspartate at a position corresponding to position 429 of SEQ ID NO: 1; and/or aspartate at a position corresponding to position 487 of SEQ ID NO: 1; and/or an aspartate at a position corresponding to position 654 of SEQ ID NO: 1.
  • 2. The composition of claim 1, wherein the polypeptide comprises an amino acid sequence at least 90% identical to the amino acid sequence of SEQ ID NO:1.
  • 3. The composition of claim 1, wherein the polypeptide comprises an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID NO:1.
  • 4. The composition of claim 1, wherein the polypeptide comprises an amino acid sequence at least 99% identical to the amino acid sequence of SEQ ID NO:1.
  • 5. The composition of claim 1, wherein the guide RNA has a sequence with a length of from about 20 to about 53 nucleotides (nt), or from about 25 to about 53 nt, or from about 29 to about 53 nt, or from about 40 to about 50 nt.
  • 6. The composition of claim 1, wherein the guide RNA is a pre-crRNA.
  • 7. The composition of claim 1, wherein the guide RNA is a mature crRNA.
  • 8. The composition of claim 1, wherein the RNA target is a single-strand RNA (ssRNA).
  • 9. A composition that cleaves an RNA target comprising a guide RNA that hybridizes to the RNA target, and a polynucleotide that encodes a polypeptide comprising an amino acid sequence 85-100% identical to the amino acid sequence of SEQ ID NO: 1, wherein the polypeptide comprises a glutamate at a position corresponding to position 70 of SEQ ID NO: 1; and/or aspartate at a position corresponding to position 429 of SEQ ID NO: 1; and/or aspartate at a position corresponding to position 487 of SEQ ID NO: 1; and/or an aspartate at a position corresponding to position 654 of SEQ ID NO: 1.
  • 10. The composition of claim 9, wherein the guide RNA is encoded by a nucleic acid molecule.
  • 11. A vector comprising the polynucleotide of claim 9.
  • 12. An isolated cell comprising the composition of claim 1.
  • 13. The isolated cell of claim 12, wherein the isolated cell is an isolated prokaryotic cell or an isolated eukaryotic cell.
  • 14. The isolated cell of claim 13, wherein the isolated eukaryotic cell is an isolated mammalian cell.
  • 15. The isolated cell of claim 13, wherein the isolated mammalian cell is an isolated human cell.
  • 16. A method of cleaving an RNA target in a cell in vitro comprising providing to the cell the composition of claim 1.
  • 17. The method of claim 16, wherein the RNA target is an ssRNA.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Nos. 63/073,898 filed Sep. 2, 2020 and 63/208,606, filed Jun. 9, 2021, the entire contents of which are hereby incorporated by reference in their entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under Grant No. R21 AI149694 awarded by the National Institutes of Health (NIH). The government has certain rights in the invention.

US Referenced Citations (1)
Number Name Date Kind
20160208243 Zhang et al. Jul 2016 A1
Foreign Referenced Citations (5)
Number Date Country
3009511 Apr 2016 EP
20150184016 Dec 2015 WO
2019060746 Mar 2019 WO
2019222555 Nov 2019 WO
WO-2019222555 Nov 2019 WO
Non-Patent Literature Citations (22)
Entry
Krishna (et al. 2006. A tale of two ferredoxins: sequence similarity and structural differences. BMC Struct. Biol. 6:8) (Year: 2006).
Wang (and Li. 2012. The mysterious RAMP proteins and their roles in small RNA-based immunity. Protein Sci. 21:463-470) (Year: 2012).
Doudna and Charpentier. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096 (Year: 2014).
IDS NPL document #5 (Anonymous: “hypothetical protein KSU1_C0135 [Candidatus Jettenia caeni]—Protein—NCBI”, GenBank, Sep. 5, 2015; of record) (Year: 2015).
Thurtle-Schmidt and Lo. 2018. Molecular Biology at the Cutting Edge: A Review on CRISPR/CAS9 Gene Editing for Undergraduates. Biochem. Molec. Biol. Educat. 46(2):195-205 (Year: 2018).
UniProt (Accession 13IJ36 version 26. Jul. 31, 2019. Accessible online at: https://www.uniprot.org/uniprotkb/I3IJ36/entry. Accessed Jul. 20, 2023; “Uniprot”) (Year: 2019).
U.S. Appl. No. 18/234,680, filed Aug. 16, 2023.
U.S. Appl. No. 18/455,380, filed Aug. 25, 2023.
PCT Application No. PCT/US2021/040160 Written Opinion dated Mar. 10, 2022, 10 pages.
PCT Application No. PCT/US2021/040160 International Search Report dated Mar. 10, 2022, 8 pages.
Anonymous: “Candidatus Jettenia caeni DNA, contig: KSUI_C, whole genome shotgun se—Nucleotide—NCBI”, Sep. 15, 2015 (Sep. 15, 2015), XP055853309.
Zhao Yunpeng et al: “Genome-centered omics insight into the competition and niche differentiation ofCa. JetteniaandCa. Brocadiaaffiliated to anammox bacteria”, Applied Microbiology and Biotechnology, Springer Berlin Heidelberg, Berlin/Heidelberg, vol. 103, No. 19, Sep. 3, 2019 (Sep. 3, 2019), pp. 8191-8202.
Anonymous: “hypothetical protein KSU1_C0135 [Candidatus Jettenia caeni]—Protein—NCBI”, GenBank, Sep. 15, 2015 (Sep. 15, 2015).
Michal Burmistrz et al: “RNA-Targeting CRISPR-Cas Systems and Their Applications”, International Journal of Molecular Sciences, vol. 21, No. 3, Feb. 7, 2020 (Feb. 7, 2020), p. 1122.
Makarova Kira Set al: “Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants”, Nature Reviews Microbiology, Nature Publishing Group, GB, vol. 18, No. 2, Dec. 19, 2019 (Dec. 19, 2019), pp. 67-83.
Kira S. Makarova et al: “Classification and Nomenclature of CRISPR-Cas Systems: Where from Here?”, The CRISPR Journal, vol. 1, No. 5, Oct. 17, 2018 (Oct. 17, 2018), pp. 325-336.
Zheng Ye University of California et al: “Substrate Recognition and Novel Substrate Discovery for Human Adenosine Deaminase that Acts on Double-Stranded RNA”, Dissertation Submitted in Partial Satisfaction of the Requirements for the Degree of Doctor of Philosophy in Chemistry in the Office of Graduate Studies of the University of California, University of California, US, Jan. 1, 2017 (Jan. 1, 2017), pp. 1-140.
Rationally engineered Cas9 nucleases with improved specificity, Slaymaker et al. (2016), Science, 351(6268):84-88.
GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. John Besemer, Alexandre Lomsadze and Mark Borodovsky, Nucleic Acids Research (2001) 29, pp. 2607-2618.
PILER-CR: fast and accurate identification of CRISPR repeats, Edgar, R.C., BMC Bioinformatics, Jan. 20;8:18(2007).
Wong et al., RNA 7:846-858 (2001).
Makarova et al., Supplemental Information (46 pages) for “Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants”, Nature Reviews Microbiology, Dec. 19, 2019, 18(2): 67-83. [Original non-patent literature document submitted with Mar. 3, 2023 IDS.].
Related Publications (1)
Number Date Country
20220073891 A1 Mar 2022 US
Provisional Applications (2)
Number Date Country
63208606 Jun 2021 US
63073898 Sep 2020 US