Techniques for joining dissimilar materials in microelectronics

Information

  • Patent Grant
  • 11664357
  • Patent Number
    11,664,357
  • Date Filed
    Tuesday, July 2, 2019
    4 years ago
  • Date Issued
    Tuesday, May 30, 2023
    11 months ago
Abstract
Techniques for joining dissimilar materials in microelectronics are provided. Example techniques direct-bond dissimilar materials at an ambient room temperature, using a thin oxide, carbide, nitride, carbonitride, or oxynitride intermediary with a thickness between 100-1000 nanometers. The intermediary may comprise silicon. The dissimilar materials may have significantly different coefficients of thermal expansion (CTEs) and/or significantly different crystal-lattice unit cell geometries or dimensions, conventionally resulting in too much strain to make direct-bonding feasible. A curing period at ambient room temperature after the direct bonding of dissimilar materials allows direct bonds to strengthen by over 200%. A relatively low temperature anneal applied slowly at a rate of 1° C. temperature increase per minute, or less, further strengthens and consolidates the direct bonds. The example techniques can direct-bond lithium tantalate LiTaO3 to various conventional substrates in a process for making various novel optical and acoustic devices.
Description
BACKGROUND

Certain types of microelectronic devices are conventionally discouraged from manufacture because they would require joining of different materials that have not yet been bonded together with very great success. The bonding surfaces in these micro-devices are sometimes only a few microns across. Abbreviations for units used herein include “μm” for micron or micrometer (1 micron=one-thousandth of a millimeter); and “nm” for nanometer (1000 nanometers=1 micron).


There are several difficulties that arise in attempts to form useful surface bonds between different materials to be used in semiconductor device fabrication and microelectronic packaging. First, the multi-layer dielectric and metal layers that are deposited on the various substrates often cause stress which manifests as an overall wafer bow and local warpage of the substrates. One challenge of bonding these highly warped substrates is the need to place them under vacuum to force the surfaces to be flat during bonding.


Second, the different materials have different crystal lattice properties. Traditional bonding techniques use elevated temperature and pressure to join materials. However, after bonding, the composite system is cooled to room temperature for subsequent processing and then operation temperature (generally well below the bond temperature). Direct bonding offers a way to reduce the overall stress and strain and join at lower temperatures. Both metals and nonmetals possess crystal lattice unit cells, the basic structural building blocks of each material at or near the atomic level. The crystal lattice units of the different materials may differ in geometry, or they may have similar geometries, but differ in the scale of these similar units. Either way, direct face-to-face bonding between materials that have different crystal-lattice-unit cell geometries can cause strain problems at the interface. With direct bonding, the thermal fluctuation between the two materials during bonding and subsequent rising temperatures in anneal or when the device is in electrical operation, can cause two materials that are bonded together to expand at different rates as the temperature rises, due to differences in their respective coefficients of thermal expansion (CTEs).


Ideally, a first material on one side of a face-to-face bond should possess a crystalline nature that has at least one well-defined orientation with respect to the internal crystal structure of the second material, and this orientation is sometimes called single-domain epitaxy. A lattice constant is a physical dimension of the unit cells in a crystal lattice of one of the materials. Lattices in three dimensions generally have three lattice constants: a, b, and c. Matching the lattice constants between materials to be bonded at small microelectronic scales is desirable for avoiding weak and defective bonds between the two different materials.


Bonding together of different materials can also have electronic effects that are important in microelectronic devices. For example, matching the lattice structures between two different semiconductor materials can form a region of band gap change without altering crystal structure. This enables the existence of some types of optical devices, such as light-emitting diodes, and lasers. Band gap is an energy range in a solid or two bonded solids where there are no electron states, and the gap can be characterized as the energy difference between a top of the valence band and a bottom of the conduction band in semiconductors and insulators, or from another view, the energy needed to free a bound (valence) electron to become a conduction electron for conducting electrical current.


Conventional bonding together of substances with similar lattice constants, as such gallium arsenide, aluminum gallium arsenide, and aluminum arsenide has provided many breakthrough optical devices, such as LEDs, and lasers, for example. The ability to usefully bond together more diverse materials is expected to provide even more new devices of microelectronic scale.


Sometimes fabrication of a microelectronic device would only need two different materials to be reliably direct-bonded across a very thin bonding interface, without regard for the materials' electronic effects on each other, but the respective differences in CTEs and differences in their lattice constants (lattice unit cell geometries) have conventionally made joining of these materials impossible or impractical.


SUMMARY

Techniques for joining dissimilar materials in microelectronics are provided. Example techniques include direct-bonding of dissimilar materials to each other at room temperature using a thin amorphous layer of material added to either one or both bonding surfaces of the dissimilar materials, which may be in the form of two different substrates to be joined together. Silicon oxide, silicon nitride, or silicon carbide, silicon carbonitride, silicon oxynitride, and mixtures of these dielectric materials, are examples of materials for making the thin amorphous layer, which constitutes a thin film approximately 100-1000 nm thick, for example. The dissimilar substrate materials may have significantly different coefficients of thermal expansion (CTEs) and/or significantly different crystal-lattice unit cell geometries or dimensions, conventionally resulting in too much strain to make direct-bonding feasible or reliable. Preparation of the substrates prior to direct-bonding can include adding dielectric layers to the backside of the substrates to reduce warpage, in order to render these substrates flat without a need for vacuum, thereby reducing the stress and strain at the bonding interface. These warpage reduction layers may be removed in the standard post-bond processing, after serving their purpose. After bonding, an annealing sequence achieves a well-bonded interface. The process includes a curing period at room temperature after the direct-bonding of dissimilar materials, which can strengthen the direct bonds and the resulting direct-bond energies by over 200%. A relatively low temperature anneal applied slowly at a rate of 1° C. per minute further strengthens the direct bonds. The example techniques can be utilized to direct-bond III-V semiconductors, lithium tantalate LiTaO3, or other non-silicon materials to silicon or other materials that previously presented bonding challenges, to various conventional substrates in wafer-to-wafer (W2 W), die-to-wafer (D2 W), and die-to-die (D2D) processes thereby enabling various novel optical, electrical, and acoustic devices.


This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein.



FIG. 1 is a diagram of example substrates, such dies and/or wafers, made of dissimilar materials direct-bonded together via deposited oxide layer or native oxide film using the example techniques described herein.



FIG. 2 is a diagram of direct-bond energy versus curing time with respect to example techniques described herein.



FIG. 3 is a flow diagram of an example process for direct-bonding LiTaO3 with silicon.



FIG. 4 is a flow diagram of an example process for direct-bonding LiTaO3 with sapphire.



FIG. 5 is a flow diagram of an example process for direct-bonding LiTaO3 with fused silica glass.



FIG. 6 is a flow diagram of an example process for direct-bonding LiTaO3 with silicon by creating a native oxide of the LiTaO3 and/or the silicon.



FIG. 7 is a flow diagram of an example process for direct-bonding LiTaO3 with sapphire by creating a native oxide of the LiTaO3 and/or the sapphire.



FIG. 8 is a flow diagram of an example process for direct-bonding LiTaO3 with fused silica glass by creating a native oxide of the LiTaO3 and/or the fused silica glass.



FIG. 9 is a diagram of example direct-bond energy increases at different anneal durations and different temperatures, with slow temperature increase during anneal.





DETAILED DESCRIPTION

Overview


This disclosure describes example techniques, processes, and methods for successfully joining diverse and dissimilar materials to each other in microelectronics, and describes resulting layer structures and devices. The example processes and structures apply to materials already routinely used in semiconductor fabrication and in the microelectronic packaging arts, and to combinations of materials not conventionally used in these arts. The example techniques, processes, and methods described herein are provided for fabricating novel semiconductor and microelectronic devices, and also for fabricating conventional devices with more efficient and practical designs.


Although the example processes described herein can theoretically be applied and used between many and almost all solid, amorphous, and/or crystalline materials, a few materials are now described as representative examples, for the sake of description and illustration of the example processes and resulting structures.


Lithium tantalate (LiTaO3 or simply “LiT”) is a mineral and a compound of lithium, tantalum, and oxygen that possesses useful optical and electronic properties in the microelectronic arts. As a useful component of potential microelectronic devices, LiTaO3 has optical, piezoelectric, and pyroelectric properties that make it useful for nonlinear optics, passive infrared sensors and motion detectors, terahertz generation and detection, surface acoustic wave applications, cell phone applications, cooling, heating, and small scale production of neutrons (atomic particles) for the nuclear industry, for example. LiTaO3 has a relatively large thermal expansion coefficient, with thermal expansion on the order of 12 ppm that varies along different crystalline axis directions. If LiTaO3 is warped during heating it develops an internal charge imbalance, which can result in residual warpage after cooling. In a pyroelectric effect, LiTaO3 generates a temporary voltage within itself, when heated or cooled, without any imposed physical warping. Changes in temperature slightly modify positions of atoms within its crystal structure changing the polarization of the material. In a different but related piezoelectric effect, LiTaO3 also generates an electric charge in response to applied mechanical stress (the imposed warpage). These pyroelectric and piezoelectric effects of LiTaO3 should be taken into account when bonding this material to another substrate made of different material.


Analogously, lithium niobate (LiNbO3) is a compound of lithium, niobium, and oxygen. Crystals of LiNbO3 are useful as optical waveguides, in mobile phones, as piezoelectric sensors, optical modulators and in various other linear and non-linear optical applications. LiNbO3 is considered an artificially made dielectric material that does not exist in nature.


Example techniques described herein enable direct-bonding of LiTaO3 (or LiNbO3) to other semiconductor, dielectric, and insulator materials for purposes of making practical microelectronic devices. In the description which follows, LiTaO3 is described representatively for both LiTaO3 and LiNbO3 and for many other similar materials too. As above, the example techniques, processes, and methods herein can be applied between almost any solid materials, but LiTaO3 is used in the descriptions representatively, as an example of a material to be joined to other materials that are dissimilar in CTEs, lattice unit cell geometries, or other properties.


LiTaO3 has conventionally proven incompatible for direct-bonding with important semiconductor and dielectric materials such as silicon (Si), glass (amorphous silicon dioxide SiO2 and other ingredients), fused silica (glass made of pure silicon dioxide SiO2), sapphire, and other common and uncommon substrates used, or that could be used, in the semiconductor and microelectronic fabrication and packaging arts.


Example techniques described below enable practical use of LiTaO3 in microelectronic devices, especially in wafer-level fabrication of microelectronic devices, wherein the fabrication can be greatly optimized by using direct-bonding and/or direct hybrid bonding between the surfaces of the different or incompatible materials (between substrates, such as those of dies and/or wafers made of different materials being joined to make the novel or conventional microelectronic devices).


Example Techniques

In an example process, a low temperature bonding process enables heterogeneous integration of diverse materials within a microelectronic device. This low temperature bonding process can be especially useful in fabrication processes that use substrates, such as those of dies or wafers made of two different materials that are conventionally incompatible with each other with respect to conventional direct-bonding processes.



FIG. 1 shows example structures in which a first wafer 100 of a first material is to be direct-bonded to a second wafer 102 of a second material at room temperature. Room temperature is defined in its usual way as a humanly comfortable ambient temperature, generally around 70° F. or around 21.1° C. The first material of the first wafer 100 possesses a first coefficient of thermal expansion (CTE) and a first set of physical dimensions of respective unit cells of a first crystal lattice of the first material, while the second material of the second wafer 102 possesses a second CTE and a second set of physical dimensions of respective unit cells of a second crystal lattice of the second material. The second CTE of the second wafer 102 is different from the first CTE of the first material and/or the second set of physical dimensions of the unit cells of the second wafer 102 is different from the first physical dimensions of the unit cells of the first material of the first wafer 100.


Respective thin oxide, carbide, nitride, carbonitride, oxynitride layers 104 & 106, or combinations thereof, are deposited on one or both bonding surfaces of the first wafer 100 and the second wafer 102. The deposited oxide, carbide, nitride, carbonitride, or oxynitride layers 104 & 106 may be only 100-1000 nm thick, and serve as direct-bonding intermediaries between the wafers 100 & 102. The deposited oxide, carbide, nitride, carbonitride, or oxynitride layers 104 & 106 are a different compound than either the first material of the first wafer 100 or the second material of the second wafer 102. So the direct-bonding described herein is different than conventional direct-bonding, which is often described as molecular bonding directly between two surfaces made of the same atoms or molecules: the same material being bonded to itself across an interface.


The first wafer 100 and the second wafer 102 are then direct-bonded together at room temperature to make a joined wafer, with the thin amorphous layer of oxide, carbide, nitride, carbonitride, or oxynitride intervening at the molecular bonding interface. The amorphous layer may comprise silicon.


The joined wafer is held for approximately 48 hours to strengthen direct bonds in a passive curing stage, wherein solid crystal bonds or other bonds at the solid bonding interface are allowed to spontaneously consolidate and seek their most stable energy levels under normal molecular kinetic motion at the room temperature level.


The joined wafer is then annealed by slowly raising the ambient temperature from room temperature level to a relatively low annealing temperature of 50° C. at a temperature increase rate of about 1° C. per minute or less, to anneal the direct bonds of the joined wafer.


Additional Example Processes

The direct-bonding of dissimilar materials at room temperature to make a microelectronic device can also be accomplished by creating one or more native oxide (or carbide, nitride, carbonitride, oxynitride, etc.) films 108 & 110 on one or both bonding surfaces of the first wafer 100 and second wafer 102. This can be accomplished by exposing the bonding surface(s) to a strong oxidizing solution, or oxygen plasma, for example, or other reactive agent in the cases of native carbide generation or native nitride generation.


As introduced above, challenges in heterogeneous integration of different materials within a microelectronic device are related to the differential CTEs, incompatibility of lattice unit cells at the bonding interface, as often indicated by respective lattice constants that vary greatly between materials, and differences in general material properties.


The example direct-bonding process that utilizes a step of creating a native oxide layer (or carbide layer, nitride layer, carbonitride, oxynitride, etc.) aims to take advantage of two or more substrates made of different materials that have specific advantages provided by the properties of devices that can be fabricated on each respective different type of substrate, now joined in one device by the example direct-bonding process. The example low temperature bonding technique enables multiple integration possibilities for a broad field of electronic devices.


In an implementation, the example process begins by thermally equilibrating the different materials to be direct-bonded together with each other and with the environment. In other words, the direct-bonding process begins with all materials and the environment at the same temperature, providing an equilibrium of molecular kinetic energy among the materials being used. This equilibrium controls/prevents uncontrolled flows of heat energy between materials or across the bonding interface during the initial contact of bonding surfaces during the direct-bonding process, resulting in exquisite homogeneity of the direct-bonds formed at small scale, and results in exquisite control of the example process. In other words, the careful equilibrium of temperature at the start of this example direct-bonding process can ultimately ensure a very uniform bonded interface, at the molecular level. In one implementation, this uniformity of the direct-bonded interface is limited only by the degree of flatness achievable on the surfaces to be direct-bonded together prior to contact between the two surfaces.


The example direct-bonding is performed at room temperature, and then held at room temperature for up to 48 hours or more for curing, even before an annealing step, to greatly increase bond energy: the bond strength that will be present after a subsequent annealing step is completed.


For example, with wafers that have large differences from each other with respect to CTEs, the wafers are kept at room temperature for a period of time after direct-bonding for a curing that allows bond energy to increase even before elevating the temperature during annealing to speed up the bond energy increase. Bond strengths of 1000 mJ/m2 or greater have been measured with this example room temperature curing technique.



FIG. 2 shows example increase in bond energy versus curing time at room temperature after direct-bonding of dissimilar wafer materials. One example technique uses TEOS (tetraethoxysilane) in TEOS-to-TEOS direct oxide bonding with nitrogen plasma surface activation followed by an example 29% NH4OH (aqueous ammonia) rinse. Bond strengths of 1000 mJ/m2 or greater have been measured with this example room temperature curing of the bond, before the annealing stage of direct-bonding.


Example Room Temperature Direct-Bonding Techniques Using Thin Amorphous Intermediary Bonding Layer to Join Dissimilar Materials

Some example processes for direct-bonding dissimilar materials at room temperature use a thin intermediary layer less than 1 micron thick (between approximately 100-1000 nm) as an “adapter” layer between diverse oxides, carbides, nitrides, carbonitrides, or oxynitrides for the direct-bonding. This thin intermediary layer may be an amorphous oxide layer, such as silicon dioxide (SiO2), with a thickness dimension within the range above, less than 1 micron thick. Silicon dioxide films can be grown by a plasma enhanced chemical vapor deposition (PECVD) system using liquid tetraethoxysilane (TEOS) as the source of Si, or by TEOS photochemical decomposition, for example.



FIG. 3 shows a first example process 300, in which a LiTaO3 wafer, substrate, or surface is direct-bonded at room temperature to a silicon wafer, substrate, or surface via an intervening thin amorphous bonding layer made of an oxide material, such as SiO2, or another thin amorphous dielectric intermediary for direct-bonding, such as a nitride, carbide, carbonitride, or oxynitride. In the flow diagram of FIG. 3, operations of the example process 300 are shown in individual blocks.


At block 302, a material such as TEOS-derived amorphous SiO2 is deposited onto one or both of the LiTaO3 wafer, substrate, or surface and/or the silicon wafer, substrate, or surface. The layer of oxide material may have a deposited thickness of approximately 100-1000 nm (0.1-1.0 microns).


At block 304, the respective surfaces of LiTaO3 and SiO2, one or both of these surfaces covered with the thin amorphous film of oxide, carbide, nitride, carbonitride, and/or oxynitride, are planarized by chemical mechanical planarization (CMP) to a smooth, flat surface. Asperities including defects and rough spots that would cause bonding voids can be removed at this step.


At block 306, the respective wafers, substrates, or surfaces may be cleaned with scrubbing by PVA brush, and a deionized (DI) water rinse.


At block 308, the respective wafers, substrates, or surfaces may be cleaned with a Megasonic SC1 process, rinsed with DI water and spin-dried on a Goldfinger® processing tool, for example, for megasonic wave particle removal without etching.


At block 310, the wafers, substrates, or surfaces are plasma-activated with nitrogen plasma in RIE mode, for example with a −200 to −300 volt bias. This nitrogen plasma activation with such parameters may be unique when applied to LiTaO3 direct-bonding.


At block 312, the wafers, substrates, or surfaces are spray-rinsed with 29% NH4OH (aqueous ammonia). This rinse with 29% NH4OH may also be a unique process when applied to the LiTaO3 direct-bonding. The NH4OH rinsing helps to remove particles from the wafers, substrates, or surfaces. In some cases, depending on materials, the NH4OH rinsing can help to increase bond energy. The wafers, substrates, or surfaces may be spin-dried on a spin bonder tool, for example.


At block 314, the wafers, substrates, or surfaces are contacted with each other for direct-bonding at room temperature, with the LiTaO3 wafer, for example, loaded as the top wafer. Infrared (IR) drying lamps are not used to avoid excessive bowing and warping upon bonding. The room temperature bonding also avoids excessive bowing of the wafers. Likewise, heating during spin drying could also cause bowing of the LiTaO3, which does not fully relax after cooling due to pyroelectric charge build up in the LiTaO3 material, so such heated spin-drying after direct bonding may be avoided.


At block 316, the wafers (or bonded substrates or bonded surfaces) are held at room temperature for 48 hours, as an example duration, to allow bond strength to increase before slowly elevating temperature for the subsequent annealing step. The bonding strength increases in relation to the time duration allowed for the room temperature curing, as shown in FIG. 2.


At block 318, the temperature of the direct-bonded wafers, substrates, or surfaces are ramped slowly up slowly to 50° C. in an oven, in a temperature elevation process of less than 1 degree ° C. per minute. This relatively low temperature annealing step avoids slippage of the bonds that are being strengthened, and minimizes bowing of the wafers (substrates or surfaces) being annealed.



FIG. 4 shows a second example process 400, in which a LiTaO3 wafer, substrate, or surface is direct-bonded at room temperature to a sapphire wafer, substrate, or surface via an intervening thin amorphous bonding layer made of an oxide material, such as SiO2, or another thin amorphous dielectric intermediary for direct-bonding, such as a nitride, carbide, carbonitride, and/or oxynitride. In the flow diagram of FIG. 4, operations of the example process 400 are shown in individual blocks.


At block 402, a representative material such as TEOS-derived amorphous SiO2, or a thin amorphous layer of a carbide, nitride, carbonitride, or oxynitride dielectric, is deposited onto one or both of the LiTaO3 wafer, substrate, or surface and/or the sapphire wafer, substrate, or surface. The thin layer of the amorphous material, such as the oxide, carbide, nitride, carbonitride, or oxynitride may have a deposited thickness of approximately 100-1000 nm.


At block 404, the respective surfaces of oxide-covered LiTaO3 and/or oxide-covered SiO2 (or nitride, carbide, carbonitride, oxynitride, etc.), are planarized by chemical mechanical planarization (CMP) to a smooth, flat surface. Asperities, such as defects and rough spots, that would cause bonding voids can be removed at this step.


At block 406, the respective wafers, substrates, or surfaces may be cleaned with PVA brush scrubbing and deionized (DI) water.


At block 408, the respective wafers, substrates, or surfaces may be cleaned with a Megasonic SC1 process, rinsed with DI water and spin-dried on a Goldfinger® processing tool, for example, for megasonic wave particle removal without etching.


At block 410, the wafers, substrates, or surfaces are plasma-activated with nitrogen plasma in RIE mode, for example with a −200 to −300 volt bias.


At block 412, the wafers, substrates, or surfaces are spray-rinsed with 29% NH4OH (aqueous ammonia, or ammonium hydroxide). This rinse with 29% NH4OH may be a unique process when applied to the LiTaO3 direct-bonding. The NH4OH rinsing removes particles from the wafers, substrates, or surfaces. In some cases, depending on materials, the NH4OH rinsing increases bond energy. The wafers, substrates, or surfaces may be spin-dried on a spin bonder tool, for example.


At block 414, the wafers, substrates, or surfaces are direct-bonded to each other at room temperature, with the LiTaO3 wafer, for example, loaded as the top wafer. Infrared (IR) drying lamps are not used to avoid excessive bowing and warpage upon bonding. The room temperature bonding also avoids excessive bowing of the wafers. Likewise, heating during spin drying may cause bowing of the LiTaO3, which does not fully relax after cooling due to pyroelectric charge build up in the LiTaO3 material, and such heating may be avoided at this step.


At block 416, the wafers (or substrates or surfaces) are held at room temperature for at least 48 hours, as an example duration, to allow bond strength to increase and consolidate before elevating temperature for the subsequent annealing step. The bonding strength during the passive room temperature cure increases in relation to the time duration allowed, as shown in FIG. 2.


At block 418, the temperature of the direct-bonded wafers, substrates, or surfaces are ramped up to 50° C. in an oven, at a rate of temperature increase of about 1 degree ° C. per minute, or less. Sapphire is an extremely stiff material and if the wafers are not bonded strongly enough before increasing the temperature, wafer expansion and resulting warpage can cause the wafers to separate. So this relatively low temperature annealing step avoids slippage of the bond being strengthened, and minimizes bowing of the wafers being direct-bonded together.



FIG. 5 shows a third example process 500, in which a LiTaO3 wafer, substrate, or surface is direct-bonded at room temperature to a fused silica glass wafer, substrate, or surface via an intervening thin amorphous bonding layer made of an oxide material, such as SiO2, or made of a nitride, carbide, carbonitride, or oxynitride dielectric. In the flow diagram of FIG. 5, operations of the example process 500 are shown in individual blocks.


At block 502, a material such as TEOS-derived amorphous SiO2 (or a nitride, carbide, carbonitride, or oxynitride) is deposited onto one or both of the LiTaO3 wafer, substrate, or surface and/or the fused silica glass wafer, substrate, or surface. The thin layer of material, such as the oxide, nitride, carbide, carbonitride, or oxynitride may have a deposited thickness of approximately 100-1000 nm.


At block 504, the respective surfaces of oxide-covered LiTaO3 and/or oxide-covered SiO2, for example, are planarized by chemical mechanical planarization (CMP) to a smooth, flat surface. Asperities including defects and rough spots that would cause bonding voids can be removed at this step.


At block 506, the respective wafers, substrates, or surfaces may be cleaned with PVA brush scrubbing and deionized (DI) water.


At block 508, the respective wafers, substrates, or surfaces may be cleaned with a Megasonic SC1 process, rinsed with DI water and spin-dried on a Goldfinger® processing tool, for example, for megasonic wave particle removal without etching.


At block 510, the wafers, substrates, or surfaces are plasma-activated with nitrogen plasma in RIE mode, for example with a −200 to −300 volt bias. This nitrogen plasma activation with these parameters may be unique when applied to LiTaO3 direct-bonding.


At block 512, the wafers, substrates, or surfaces are spray-rinsed with 29% NH4OH (aqueous ammonia or ammonium hydroxide). This rinse with 29% NH4OH may be a unique process when applied to the LiTaO3 direct-bonding. The NH4OH rinsing removes particles from the wafers, substrates, or surfaces. In some cases, depending on materials, the NH4OH rinsing increases bond energy. The wafers, substrates, or surfaces may be spin-dried on a spin bonder tool, for example.


At block 514, the wafers, substrates, or surfaces are direct-bonded to each other at room temperature, with the LiTaO3 wafer, for example, loaded as the top wafer. Infrared (IR) drying lamps are not used to avoid excessive bowing and warpage upon bonding. The room temperature bonding also avoids excessive bowing of the wafers, for example. Likewise, heating during spin drying may also cause bowing of the LiTaO3, which does not fully relax after cooling due to pyroelectric charge build up in the LiTaO3 material, and such heating may be avoided.


At block 516, the wafers (or substrates or surfaces) are held at room temperature for at least 48 hours, for example, to allow bond strength to increase before elevating temperature for the subsequent annealing step. The bonding strength increases in relation to the time duration allowed for room temperature curing, as shown in FIG. 2.


At block 518, the temperature of the direct-bonded wafers, substrates, or surfaces is ramped up to 50° C. in an oven, at a rate of temperature rise that is about 1 degree per minute, or preferably less. This relatively low-temperature annealing step avoids slippage of the bonds being strengthened, and minimizes bowing of the wafers being direct-bonded together.


Example Room Temperature Direct-Bonding Techniques for Joining Dissimilar Materials without a Discrete Intervening Bonding Layer


FIG. 6 shows a fourth example process 600, for direct-bonding a representative LiTaO3 wafer at room temperature to a silicon wafer, without depositing a discrete layer of an oxide, carbide, nitride, carbonitride, or oxynitride material as a bonding intermediary. In the flow diagram of FIG. 6, operations of the example process 600 are shown in individual blocks.


At block 602, a native oxide (of silicon) or oxide patina of silicon is created on the silicon wafer. In one implementation, the native oxide may be created by first cleaning the wafer with a piranha solution of hydrogen peroxide-sulfuric acid (H2O2:H2SO4) in a ratio of 1:3, and then rinsing with water. The 1:3 H2O2:H2SO4 solution grows or creates a native oxide film on the silicon, which is conducive to forming high strength bonds in oxide-to-oxide direct-bonding.


At block 604, the surface of the silicon wafer with native oxide is rinsed in a Megasonic deionized water process and can be spun and rinsed dry on a Goldfinger® processing tool, for example.


At block 606, the surface of the LiTaO3 wafer (only) is plasma-activated with nitrogen plasma in RIE mode with a −200 to −300 volt bias.


At block 608, both wafers are spray-rinsed with deionized water. The silicon wafer is rinsed with water to avoid pitting the silicon and native oxide surface, although the native oxide may be enough to protect the silicon surface, in which case use of NH4OH solution to enhance direct-bonding may be preferred. Although the LiTaO3 wafer is usually cleaned with water, cleaning with NH4OH solution can also be performed. In some cases, rinsing with the NH4OH increases direct-bond energies to more complete potential. The wafers are then spin-dried, for example on a bonder tool.


At block 610, the wafers are direct-bonded together at room temperature with the LiTaO3 wafer loaded as the top wafer, for example. Infrared drying lamps are generally avoided to prevent excessive bowing and warpage upon direct-bonding. Room temperature direct-bonding also avoids excessive bowing of the wafers. Heating during the spin-drying could cause bowing of the LiTaO3 wafer, which does not fully relax after cooling due to pyroelectric charge build-up in the LiTaO3 material, so can be avoided at this step.


A block 612, the joined and direct-bonded wafers are held at room temperature for at least 48 hours or more to allow bond strength to increase before elevating the temperature in a subsequent annealing step. The bond strength increases in relation to the duration of the room temperature cure, as shown in FIG. 2.


At block 614, the joined and direct-bonded wafers are warmed and heated in an oven up to a temperature of approximately 50° C. to anneal, at a rate of temperature increase that is 1 degree ° C. per minute, or less. This relatively low-temperature anneal applied gradually avoids slippage of the direct-bonds and minimizes bowing and warpage.



FIG. 7 shows a fourth example process 700, for direct-bonding a LiTaO3 wafer at room temperature to a sapphire wafer without depositing a discrete layer of an oxide, carbide, nitride, carbonitride, or oxynitride material as a bonding intermediary. In the flow diagram of FIG. 7, operations of the example process 700 are shown in individual blocks.


At block 702, the LiTaO3 wafer and a sapphire wafer are cleaned with a piranha solution of hydrogen peroxide and sulfuric acid (H2O2:H2SO4) in a ratio of 1:3, and then rinsed with water.


At block 704, the surfaces of the wafers are rinsed in a Megasonic deionized water process and can be spun and rinsed dry on a Goldfinger® processing tool, for example.


At block 706, the surface of sapphire wafer is plasma-activated with oxygen in RIE mode with a −200 to −300 volt bias, and the surface of the LiTaO3 wafer is plasma-activated with oxygen or nitrogen plasma in RIE mode with a −200 to −300 volt bias.


At block 708, the wafers are spray-rinsed with 29% NH4OH solution to remove particles and to enhance the bond energies possible in the direct-bonding process. The wafers may be spun dry.


At block 710, the wafers are contacted together for the direct-bonded at room temperature with the LiTaO3 wafer loaded as the top wafer, for example. Infrared drying lamps may be avoided to prevent excessive bowing and warpage upon direct-bonding. The room temperature direct-bonding avoids excessive bowing of the wafers as well as allows stronger direct-bonds to form across the dissimilar materials. Heating during the spin drying would cause bowing of the LiTaO3 wafer, which does not fully relax after cooling due to pyroelectric charge build-up in the LiTaO3 material, so this heating may be omitted. However, the built-up pyroelectric charge may be discharged or dissipated by connecting an electrical circuit to parts of the LiTaO3 wafer, or by electrically shorting, shunting, or grounding the LiTaO3 wafer with an external conductor. Discharging the built-up pyroelectric charge may relieve bowing or warping of the LiTaO3 wafer.


A block 712, the joined and direct-bonded wafers are held at room temperature for at least 48 hours or more to allow bond strength to increase before elevating temperature in a subsequent annealing step. The bond strength increases with greater time at room temperature, as shown in FIG. 2.


At block 714, the joined and direct-bonded wafers are warmed and heated in an oven up to 50° C. to anneal, at a rate of temperature increase of about 1 degree ° C. per minute, or less. This relatively low-temperature anneal applied gradually avoids slippage of the direct-bonds and minimizes bowing and warpage.



FIG. 8 shows a fourth example process 800, for direct-bonding a LiTaO3 wafer at room temperature to a fused silica glass wafer without depositing a discrete layer of an oxide, carbide, nitride, carbonitride, or oxynitride material as a bonding intermediary. In the flow diagram of FIG. 8, operations of the example process 800 are shown in individual blocks.


At block 802, the LiTaO3 wafer and a fused silica glass wafer are cleaned with a piranha solution of hydrogen peroxide and sulfuric acid (H2O2:H2SO4) in a ratio of 1:3, and then rinsed with water.


At block 804, the surfaces of the wafers are rinsed in a Megasonic deionized water process and can be spun and rinsed dry on a Goldfinger® processing tool, for example.


At block 806, the bonding surfaces of fused silica glass wafer and the LiTaO3 wafer are plasma-activated with oxygen plasma or nitrogen plasma in RIE mode with a −200 to −300 volt bias.


At block 808, the bonding surfaces of the wafers are spray-rinsed with 29% NH4OH solution to remove particles and to enhance bond energy of direct-bonding. The wafers may be spun dry.


At block 810, the wafers are direct-bonded together at room temperature with the LiTaO3 wafer loaded as the top wafer, for example. Infrared drying lamps are avoided to prevent excessive bowing and warpage. Room temperature direct-bonding is used to avoid excessive bowing of wafers. Heating during the spin drying would cause bowing of the LiTaO3 wafer, and can be avoided. Built-up pyroelectric charge in the LiTaO3 wafer may be discharged or dissipated by connecting an electrical circuit to parts of the LiTaO3 wafer, or by electrically shorting, shunting, or grounding the LiTaO3 wafer with an external conductor. Discharging the built-up pyroelectric charge may relieve a bowing tendency or warping of the LiTaO3 wafer due to these effects.


A block 812, the joined and direct-bonded wafers are held at room temperature for at least 48 hours or more to allow bond strength to increase before elevating temperature in a subsequent annealing step. The bond strength increases with more time held at room temperature, as shown in FIG. 2.


At block 814, the joined and direct-bonded wafers are warmed and heated in an oven up to a temperature of 50° C. to anneal, at a rate of temperature increase of about 1 degree ° C. per minute, or less. This relatively low-temperature anneal applied slowly avoids slippage of the direct-bonds and minimizes bowing and warping.


To further refine the example direct-bonding processes at room temperature that use no discrete deposited layer of oxide, carbide, nitride, carbonitride, or oxynitride material, an oxygen plasma activation can sometimes yield higher bond strength than nitrogen plasma activation, particularly when bonding LiTaO3 to sapphire. However, nitrogen plasma activation may work better for bonding LiTaO3 to silicon without the discrete deposited oxide layer intermediary between wafers.


Annealing of direct-bonds between LiTaO3 and silicon may attain higher bond strength with higher temperature. Nominally, direct-bonded wafers that have cured at room temperature for up to 48 hours are heated to 50° C. in an oven at rate of temperature increase than is about 1 degree ° C. per minute, or less. In the case of forming a native oxide, nitride, carbide, carbonitride, oxynitride, on one or both bonding surfaces as an intermediary for direct-bonding the dissimilar materials, after the annealing step at a gradual temperature increase up to 50° C., the temperature of the joined wafers can be further ramped up to 100° C. at a rate of temperature increase that is about 1 degree ° C. per minute or less to increase the bond strength even further, without significant increase in bowing or warping of the wafers, as shown in FIG. 9.


Both the example processes that deposit a discrete thin oxide, carbide, nitride layer, carbonitride, and/or oxynitride on one or both wafers as an intermediary for direct-bonding between dissimilar materials of the respective wafers at room temperature, and on the other hand, the example processes that form a native oxide (or carbide, nitride, carbonitride, or oxynitride) on one or both surfaces of the wafers by oxidizing native materials of a first wafer and/or second wafer can direct-bond diverse materials together at room temperature. Curing at room temperature for up to 48 hours or even beyond greatly strengthens the direct bonds formed in either case.


The materials of the first wafer and second wafer to be direct-bonded together at room temperature may have significantly different CTEs and lattice constants. The dissimilar materials to be used in a given microelectronic device constructed by the example processes described herein may be managed with thin film engineering principles for balancing wafer warpage of the two wafers, due to the difference in the materials used. Likewise, different thicknesses of the different materials of the two wafers can be leveraged for the two wafers of different thicknesses of the different materials to cancel out each other's bowing and warping. In an implementation, for the materials discussed herein, the bowing or warpage in general is assumed or calculated to be in the range of 25 μm per inch of diameter down to 10 μm per inch of diameter.


The example processes described above can be used to make stacks of wafers of different materials for a microelectronic device or package. The various stack layers can also be used to make multiple stacks of integrated circuits combined with other optical and acoustic devices, with or without direct-bonding between all the layers present.


In the foregoing description and in the accompanying drawings, specific terminology and drawing symbols have been set forth to provide a thorough understanding of the disclosed embodiments. In some instances, the terminology and symbols may imply specific details that are not required to practice those embodiments. For example, any of the specific dimensions, quantities, material types, fabrication steps and the like can be different from those described above in alternative embodiments. Moreover, the description of the techniques and devices with regard to wafers could be employed in D2D, D2 W, or W2 W applications. The term “coupled” is used herein to express a direct connection as well as a connection through one or more intervening circuits or structures. The terms “example,” “embodiment,” and “implementation” are used to express an example, not a preference or requirement. Also, the terms “may” and “can” are used interchangeably to denote optional (permissible) subject matter. The absence of either term should not be construed as meaning that a given feature or technique is required.


Various modifications and changes can be made to the embodiments presented herein without departing from the broader spirit and scope of the disclosure. For example, features or aspects of any of the embodiments can be applied in combination with any other of the embodiments or in place of counterpart features or aspects thereof. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.


While the present disclosure has been disclosed with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations possible given the description. It is intended that the appended claims cover such modifications and variations as fall within the true spirit and scope of the disclosure.

Claims
  • 1. A process for direct-bonding dissimilar materials in microelectronics, comprising: obtaining a first substrate comprising a first material having a first crystal lattice with a first set of physical dimensions of first unit cells, the first material possessing a first coefficient of thermal expansion (CTE);obtaining a second substrate comprising a second material having a second crystal lattice with a second set of physical dimensions of second unit cells, the second material possessing a second CTE, wherein the second CTE is different from the first CTE of the first material;depositing a thin amorphous layer, the thin amorphous layer comprising an oxide, a carbide, a nitride, a carbonitride, or an oxynitride, on a surface of the first substrate and depositing another thin amorphous layer on the second substrate, wherein each of the thin amorphous layers is a direct-bonding intermediary between the first substrate and the second substrate, each of the thin amorphous layers having a thickness between approximately 100 nm and approximately 1000 nm; anddirect-bonding the first substrate and the second substrate together at an ambient room temperature to make a joined stack.
  • 2. The process of claim 1, further comprising maintaining the joined stack at the ambient room temperature for at least 48 hours.
  • 3. The process of claim 1, further comprising: prior to the direct-bonding of the first wafer and the second wafer together, plasma activating the bonding surfaces of the first wafer and the second wafer; andexposing the plasma-activated bonding surfaces to NH4OH (ammonium hydroxide).
  • 4. The process of claim 1, further comprising: prior to the direct-bonding of the first wafer and the second wafer together, plasma activating the bonding surfaces of the first wafer and the second wafer; andexposing the plasma-activated bonding surfaces to deionized water.
  • 5. The process of claim 1, further comprising raising the temperature of the joined stack from 50° C. to 100° C. at a rate of temperature increase about 1 degree per minute or less.
  • 6. The process of claim 1, wherein the first material of the first substrate comprises lithium tantalate (LiTaO3) or lithium niobate (LiNbO3), and the second material of the second substrate comprises silicon (Si), quartz, fused silica glass, sapphire, or a glass.
  • 7. The process of claim 1, further comprising: planarizing a bonding surface of each of the first substrate and the second substrate with chemical mechanical planarization (CMP) before the direct-bonding at the ambient room temperature;cleaning the planarized surfaces with a PVA brush scrubbing process and a deionized water rinse process;further cleaning the planarized surfaces with a Megasonic SC1 process and rinsing with deionized water; andspin drying the cleaned surfaces.
  • 8. The process of claim 7, further comprising plasma activating the cleaned surfaces with nitrogen plasma in RIE mode with a bias voltage of −200 to −300 volts.
  • 9. The process of claim 8, further comprising spray rinsing the plasma-activated surfaces with a 29% NH4OH solution to fortify subsequent direct bonds.
  • 10. The process of claim 1, wherein the first material of the first substrate forms a device when direct-bonded to the second material of the second substrate, the device selected from the group consisting of an acoustic filter, a surface acoustic wave (SAW) device, a sensor on a processor, a light emitting diode (LED), an infrared (IR) sensor, a VIS sensor, a projector on a processor, an image sensor, an optical device, and a light detection and ranging (LIDAR) device.
  • 11. The process of claim 1, wherein the thin amorphous layer comprises silicon.
  • 12. The process of claim 1, wherein the first set of physical dimensions of first unit cells is different than the second set of physical dimensions of second unit cells.
  • 13. A process for direct-bonding dissimilar materials in microelectronics, comprising: obtaining a first substrate comprising a first material having a first crystal lattice with a first set of physical dimensions of first unit cells, the first material possessing a first coefficient of thermal expansion (CTE);obtaining a second substrate comprising a second material having a second crystal lattice with a second set of physical dimensions of second unit cells, the second material possessing a second CTE, wherein the second CTE is different from the first CTE of the first material;depositing a thin amorphous layer, the thin amorphous layer comprising an oxide, a carbide, a nitride, a carbonitride, or an oxynitride, on a surface of the first substrate and depositing another thin amorphous layer on the second substrate, wherein each of the thin amorphous layers is a direct-bonding intermediary between the first substrate and the second substrate, each of the thin amorphous layers having a thickness between approximately 100 nm and approximately 1000 nm;direct-bonding the first substrate and the second substrate together at an ambient room temperature to make a joined stack; andraising the temperature of the joined stack to around 50° C. at a rate of about 1° C. per minute or less.
  • 14. The process of claim 13, further comprising raising the temperature of the joined stack to around 100° C. at a rate of about 1° C. per minute or less, when one of the materials is silicon.
  • 15. The process of claim 13, further comprising plasma activating the first substrate with nitrogen plasma in RIE mode with a bias voltage of −200 to −300 volts and plasma activating the second substrate with oxygen plasma in RIE mode with a bias voltage of −200 to −300 volts.
  • 16. The process of claim 13, wherein the first set of physical dimensions of first unit cells is different than the second set of physical dimensions of second unit cells.
  • 17. A process for direct-bonding dissimilar materials in microelectronics, comprising: obtaining a first substrate comprising a first material having a first crystal lattice with a first set of physical dimensions of first unit cells, the first material possessing a first coefficient of thermal expansion (CTE);obtaining a second substrate comprising a second material having a second crystal lattice with a second set of physical dimensions of second unit cells, the second material possessing a second CTE, wherein the second CTE is different from the first CTE of the first material;depositing a thin amorphous layer, the thin amorphous layer comprising an oxide, a carbide, a nitride, a carbonitride, or an oxynitride, on a surface of the first substrate and depositing another thin amorphous layer on the second substrate, wherein each of the thin amorphous layers is a direct-bonding intermediary between the first substrate and the second substrate, each of the thin amorphous layers having a thickness between approximately 100 nm and approximately 1000 nm;direct-bonding the first substrate and the second substrate together at an ambient room temperature to make a joined stack; andmaintaining the joined stack at the ambient room temperature for at least approximately 48 hours and then raising the temperature of the joined stack to around 50° C. at a rate of about 1° C. temperature increase per minute, or less.
  • 18. The process of claim 17, wherein the first material of the first substrate comprises lithium tantalate (LiTaO3) or lithium niobate (LiNbO3), and the second material of the second substrate comprises silicon (Si), quartz, fused silica glass, sapphire, or a glass.
  • 19. The process of claim 17, wherein the first set of physical dimensions of first unit cells is different than the second set of physical dimensions of second unit cells.
RELATED APPLICATIONS

This nonprovisional patent application claims the benefit of priority to U.S. Provisional Patent Application No. 62/693,671 to Fountain et al., filed Jul. 3, 2018 and incorporated by reference herein, in its entirety.

US Referenced Citations (260)
Number Name Date Kind
3175025 Geen et al. Mar 1965 A
3423823 Ansley Jan 1969 A
4612083 Yasumoto et al. Sep 1986 A
4818728 Rai et al. Apr 1989 A
5451547 Himi et al. Sep 1995 A
5668057 Eda et al. Sep 1997 A
5747857 Eda et al. May 1998 A
5753536 Sugiyama et al. May 1998 A
5771555 Eda et al. Jun 1998 A
6080640 Gardner et al. Jun 2000 A
6180496 Farrens et al. Jan 2001 B1
6423640 Lee et al. Jul 2002 B1
6465892 Suga Oct 2002 B1
6495398 Goetz Dec 2002 B1
6502271 Epshteyn Jan 2003 B1
6645828 Farrens et al. Nov 2003 B1
6877209 Miller et al. Apr 2005 B1
6887769 Kellar et al. May 2005 B2
6908027 Tolchinsky et al. Jun 2005 B2
6908832 Farrens et al. Jun 2005 B2
7037804 Kellar et al. May 2006 B2
7045453 Canaperi et al. May 2006 B2
7105980 Abbott et al. Sep 2006 B2
7109092 Tong Sep 2006 B2
7126212 Enquist et al. Oct 2006 B2
7192841 Wei et al. Mar 2007 B2
7193423 Dalton et al. Mar 2007 B1
7213314 Abbott et al. May 2007 B2
7230512 Carpenter et al. Jun 2007 B1
7335572 Tong et al. Feb 2008 B2
7466022 Miller et al. Dec 2008 B2
7602070 Tong et al. Oct 2009 B2
7750488 Patti et al. Jul 2010 B2
7803693 Trezza Sep 2010 B2
8035464 Abbott et al. Oct 2011 B1
8183127 Patti et al. May 2012 B2
8349635 Gan et al. Jan 2013 B1
8377798 Peng et al. Feb 2013 B2
8441131 Ryan May 2013 B2
8476165 Trickett et al. Jul 2013 B2
8482132 Yang et al. Jul 2013 B2
8501537 Sadaka et al. Aug 2013 B2
8524533 Tong et al. Sep 2013 B2
8620164 Heck et al. Dec 2013 B2
8647987 Yang et al. Feb 2014 B2
8697493 Sadaka Apr 2014 B2
8716105 Sadaka et al. May 2014 B2
8735219 Enquist et al. May 2014 B2
8802538 Liu Aug 2014 B1
8809123 Liu et al. Aug 2014 B2
8975158 Plach et al. Mar 2015 B2
8988299 Kam et al. Mar 2015 B2
9093350 Endo et al. Jul 2015 B2
9142517 Liu Sep 2015 B2
9171756 Enquist et al. Oct 2015 B2
9184125 Enquist et al. Nov 2015 B2
9224704 Landru Dec 2015 B2
9230941 Chen et al. Jan 2016 B2
9257399 Kuang et al. Feb 2016 B2
9299736 Chen et al. Mar 2016 B2
9312229 Chen et al. Apr 2016 B2
9331149 Tong et al. May 2016 B2
9337235 Chen et al. May 2016 B2
9368866 Yu Jun 2016 B2
9385024 Tong et al. Jul 2016 B2
9394161 Cheng et al. Jul 2016 B2
9437572 Chen et al. Sep 2016 B2
9443796 Chou et al. Sep 2016 B2
9461007 Chun et al. Oct 2016 B2
9496239 Edelstein et al. Nov 2016 B1
9536848 England et al. Jan 2017 B2
9559081 Lai et al. Jan 2017 B1
9620481 Edelstein et al. Apr 2017 B2
9656852 Cheng et al. May 2017 B2
9698126 Enquist et al. Jul 2017 B2
9723716 Meinhold Aug 2017 B2
9728521 Tsai et al. Aug 2017 B2
9741620 Uzoh et al. Aug 2017 B2
9799587 Fujii et al. Oct 2017 B2
9852988 Enquist et al. Dec 2017 B2
9881882 Hsu et al. Jan 2018 B2
9893004 Yazdani Feb 2018 B2
9899442 Katkar Feb 2018 B2
9929050 Lin Mar 2018 B2
9941241 Edelstein et al. Apr 2018 B2
9941243 Kim et al. Apr 2018 B2
9960142 Chen et al. May 2018 B2
10002844 Wang et al. Jun 2018 B1
10026605 Doub et al. Jul 2018 B2
9953941 Enquist Aug 2018 B2
10075657 Fahim et al. Sep 2018 B2
10177735 Ruby et al. Jan 2019 B2
10204893 Uzoh et al. Feb 2019 B2
10269756 Uzoh Apr 2019 B2
10276619 Kao et al. Apr 2019 B2
10276909 Huang et al. Apr 2019 B2
10418277 Cheng et al. Sep 2019 B2
10446456 Shen et al. Oct 2019 B2
10446487 Huang et al. Oct 2019 B2
10446532 Uzoh et al. Oct 2019 B2
10454447 Solal et al. Oct 2019 B2
10508030 Katkar et al. Dec 2019 B2
10522499 Enquist et al. Dec 2019 B2
10707087 Uzoh et al. Jul 2020 B2
10727219 Uzoh et al. Jul 2020 B2
10784191 Huang et al. Sep 2020 B2
10790262 Uzoh et al. Sep 2020 B2
10840135 Uzoh Nov 2020 B2
10840205 Fountain, Jr. et al. Nov 2020 B2
10854578 Morein Dec 2020 B2
10879212 Uzoh et al. Dec 2020 B2
10886177 DeLaCruz et al. Jan 2021 B2
10892246 Uzoh Jan 2021 B2
10923408 Huang et al. Feb 2021 B2
10923413 DeLaCruz Feb 2021 B2
10950547 Mohammed et al. Mar 2021 B2
10964664 Mandalapu et al. Mar 2021 B2
10985133 Uzoh Apr 2021 B2
10991804 DeLaCruz et al. Apr 2021 B2
10998292 Lee et al. May 2021 B2
11011494 Gao et al. May 2021 B2
11011503 Wang et al. May 2021 B2
11031285 Katkar et al. Jun 2021 B2
11037919 Uzoh et al. Jun 2021 B2
11056348 Theil Jul 2021 B2
11069734 Katkar Jul 2021 B2
11088099 Katkar et al. Aug 2021 B2
11127738 DeLaCruz et al. Sep 2021 B2
11158606 Gao et al. Oct 2021 B2
11171117 Gao et al. Nov 2021 B2
11176450 Teig et al. Nov 2021 B2
11256004 Haba et al. Feb 2022 B2
11264357 DeLaCruz et al. Mar 2022 B1
11276676 Enquist et al. Mar 2022 B2
11329034 Tao et al. May 2022 B2
11348898 DeLaCruz et al. May 2022 B2
11355443 Huang et al. Jun 2022 B2
20010037995 Akatsu Nov 2001 A1
20020030198 Coman et al. Mar 2002 A1
20020048900 Lo et al. Apr 2002 A1
20020068396 Fitzergald Jun 2002 A1
20030022412 Higgins et al. Jan 2003 A1
20030030119 Higgins, Jr. et al. Feb 2003 A1
20040084414 Sakai et al. May 2004 A1
20060057945 Hsu et al. Mar 2006 A1
20060076559 Faure et al. Apr 2006 A1
20060121696 Shiota et al. Jun 2006 A1
20060138907 Koizumi Jun 2006 A1
20060199353 Kub et al. Sep 2006 A1
20060255341 Pinnington et al. Nov 2006 A1
20060273068 Tussot et al. Dec 2006 A1
20060284167 Augustine Dec 2006 A1
20070096294 Ikeda et al. May 2007 A1
20070111386 Kim et al. May 2007 A1
20070222048 Huang Sep 2007 A1
20070295456 Gudeman et al. Dec 2007 A1
20090004822 Murakami et al. Jan 2009 A1
20090042356 Takayama et al. Feb 2009 A1
20090068831 Enquist et al. Mar 2009 A1
20090191719 Dupont Jul 2009 A1
20090321869 Fukuoka Dec 2009 A1
20110053339 Ozawa Mar 2011 A1
20110128399 Fujii Jun 2011 A1
20110290552 Palmateer et al. Dec 2011 A1
20120003813 Chuang et al. Jan 2012 A1
20120028440 Castex et al. Feb 2012 A1
20120077329 Broekaart Mar 2012 A1
20120119224 Tai et al. May 2012 A1
20120168792 Kang et al. Jul 2012 A1
20120183808 Tong Jul 2012 A1
20120212384 Kam et al. Aug 2012 A1
20120270231 Smith Oct 2012 A1
20130130473 Ben Mohamed May 2013 A1
20130228775 Noda Sep 2013 A1
20140167230 Kitada Jun 2014 A1
20140175655 Chen et al. Jun 2014 A1
20140225795 Yu Aug 2014 A1
20150064498 Tong Mar 2015 A1
20160049384 Lu et al. Feb 2016 A1
20160343682 Kawasaki Nov 2016 A1
20170036419 Adib et al. Feb 2017 A1
20170194271 Hsu et al. Jul 2017 A1
20170338143 Peidous Nov 2017 A1
20180175012 Wu et al. Jun 2018 A1
20180182639 Uzoh et al. Jun 2018 A1
20180182666 Uzoh et al. Jun 2018 A1
20180190580 Haba et al. Jul 2018 A1
20180190583 DeLaCruz et al. Jul 2018 A1
20180219038 Gambino et al. Aug 2018 A1
20180323177 Yu et al. Nov 2018 A1
20180323227 Zhang et al. Nov 2018 A1
20180331066 Uzoh et al. Nov 2018 A1
20190096741 Uzoh et al. Mar 2019 A1
20190115277 Yu et al. Apr 2019 A1
20190123709 Inoue et al. Apr 2019 A1
20190131277 Yang et al. May 2019 A1
20190157333 Tsai May 2019 A1
20190164919 Hu et al. May 2019 A1
20190170631 Shachar et al. Jun 2019 A1
20190198409 Katkar et al. Jun 2019 A1
20190221607 Gudeman Jul 2019 A1
20190265411 Huang et al. Aug 2019 A1
20190288660 Goto et al. Sep 2019 A1
20190295883 Yokokawa Sep 2019 A1
20190333550 Fisch Oct 2019 A1
20190348336 Katkar et al. Nov 2019 A1
20190385935 Gao et al. Dec 2019 A1
20190385966 Gao et al. Dec 2019 A1
20200006145 Li et al. Jan 2020 A1
20200006266 Chen et al. Jan 2020 A1
20200013637 Haba Jan 2020 A1
20200028486 Kishino et al. Jan 2020 A1
20200035641 Fountain, Jr. et al. Jan 2020 A1
20200075520 Gao et al. Mar 2020 A1
20200075534 Gao et al. Mar 2020 A1
20200075553 DeLaCruz et al. Mar 2020 A1
20200118973 Wang et al. Apr 2020 A1
20200126906 Uzoh et al. Apr 2020 A1
20200194396 Uzoh Jun 2020 A1
20200227367 Haba et al. Jul 2020 A1
20200243380 Uzoh et al. Jul 2020 A1
20200279821 Haba et al. Sep 2020 A1
20200294908 Haba et al. Sep 2020 A1
20200328162 Haba et al. Oct 2020 A1
20200328164 DeLaCruz et al. Oct 2020 A1
20200328165 DeLaCruz et al. Oct 2020 A1
20200328193 Enquist et al. Oct 2020 A1
20200335408 Gao et al. Oct 2020 A1
20200371154 DeLaCruz et al. Nov 2020 A1
20200395321 Katkar et al. Dec 2020 A1
20200411483 Uzoh et al. Dec 2020 A1
20210098412 Haba et al. Apr 2021 A1
20210118864 DeLaCruz et al. Apr 2021 A1
20210143125 DeLaCruz et al. May 2021 A1
20210181510 Katkar et al. Jun 2021 A1
20210193603 Katkar et al. Jun 2021 A1
20210193624 DeLaCruz et al. Jun 2021 A1
20210193625 DeLaCruz et al. Jun 2021 A1
20210242152 Fountain, Jr. et al. Aug 2021 A1
20210296282 Gao et al. Sep 2021 A1
20210305202 Uzoh et al. Sep 2021 A1
20210366820 Uzoh Nov 2021 A1
20210407941 Haba Dec 2021 A1
20220077063 Haba Mar 2022 A1
20220077087 Haba Mar 2022 A1
20220139867 Uzoh May 2022 A1
20220139869 Gao et al. May 2022 A1
20220208650 Gao et al. Jun 2022 A1
20220208702 Uzoh Jun 2022 A1
20220208723 Katkar et al. Jun 2022 A1
20220246497 Fountain, Jr. et al. Aug 2022 A1
20220285303 Mirkarimi et al. Sep 2022 A1
20220319901 Suwito et al. Oct 2022 A1
20220320035 Uzoh et al. Oct 2022 A1
20220320036 Gao et al. Oct 2022 A1
20230019869 Mirkarimi et al. Jan 2023 A1
20230036441 Haba et al. Feb 2023 A1
20230067677 Lee et al. Mar 2023 A1
20230069183 Haba Mar 2023 A1
20230100032 Haba et al. Mar 2023 A1
Foreign Referenced Citations (17)
Number Date Country
2002320030 Feb 2003 AU
0823780 Feb 1998 EP
0616426 Sep 1998 EP
0591918 Jul 1999 EP
1540736 Mar 2006 EP
3 482 231 Sep 2022 EP
2002334816 Nov 2002 JP
2011200933 Oct 2011 JP
2013-33786 Feb 2013 JP
2018-160519 Oct 2018 JP
10-2015-0097798 Aug 2015 KR
10-2018-0114896 Oct 2018 KR
2005-043584 May 2005 WO
WO 2006100444 Sep 2006 WO
WO-2015191082 Dec 2015 WO
WO 2017151442 Sep 2017 WO
WO-2019180922 Sep 2019 WO
Non-Patent Literature Citations (25)
Entry
Takei et al., “Effects of Wafer Precleaning and Plasma Irradiation to Wafer Surfaces on Plasma-Assisted Surface-Activated Direct Bonding”, Japanese Journal of Applied Physics, 49 (2010): pp. 1-3 (Year: 2010).
Suga et al., “Combined Process for Wafer Direct Bonding by Means of the Surface Activation Method”, IEEE (2004): pp. 484-490. (Year: 2004).
Takagi et al., “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation”, J. Micromech. Microeng. 11 (2001): pp. 348-352. (Year: 2001).
Taylor et al., “A review of plasma oxidation of silicon and its applications”, Semicond. Sci. Technol. 8 (1993): pp. 1426-1433. (Year: 1993).
Shen et al., “Structure and Magnetic Properties of Ce-Substituted Yttrium Iron Garnet Prepared by Conventional Sintering Techniques”, J Supercond (2017): pp. 937. (Year: 2017).
Vasili et al, “Direct observation of multivalent states and 4 f → 3d charge transfer in Ce-doped yttrium iron garnet thin films”, Physical Review (2017): pp. 1-10. (Year: 2017).
Darling, R.B., “Wafer Bonding,” EE-527: Microfabrication, Winter 2013, 12 pages.
Mizumoto et al., “Direct Wafer Bonding and Its Application to Waveguide Optical Isolators,” Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Materials, ISSN: 1996-1944, www.mdpi.com/journal/materials, Mar. 31, 2012, 20 pages.
“Wafer Bonding—An Overview,” ScienceDirect Topics, Journals & Books, https://www.sciencedirect.com/topics/engineering/wafer-bonding, printed Jun. 27, 2019, 12 pages.
Ker, Ming-Dou et al., “Fully Process-Compatible Layout Design on Bond Pad to Improve Wire Bond Reliability in CMOS ICs,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316.
Moriceau, H. et al., “Overview of Recent Direct Wafer Bonding Advances and Applications”, Advances in Natural Sciences-Nanoscience and Nanotechnology, 2010, 12 pages.
Nakanishi, H. et al., “Studies on SiO2-SiO2 Bonding with Hydrofluoric Acid. Room Temperature and Low Stress Bonding Technique for MEMS,” Tech. Research Lab., 200, Elsevier Science S.A., 8 pages.
Oberhammer et al., “Sealing of Adhesive Bonded Devices on Wafer Level,” in Sensors and Actuators A, vol. 110, No. 1-3, pp. 407-412, Feb. 29, 2004, see pp. 407-412; and figures 1(a)-1(l), 6 pages.
Plobi et al., “Wafer Direct Bonding: Tailoring Adhesion Between Brittle Materials,” Materials Science and Engineering Review Journal, 1999, 88 pages.
International Search Report and Written Opinion for PCT/US2019/040255, dated 2019 Oct. 25, 2019, 12 pages.
Amirfeiz et al., “Formation of silicon structures by plasma-activated wafer bonding,” Journal of The Electrochemical Society, 2000, vol. 147, No. 7, pp. 2693-2698.
Bengtsson, S. et al., “Low Temperature Bonding,” International Conference on Compliant & Alternative Substrate Technology, Meeting Program & Abstract Book, Sep. 29-23, p. 10.
Farrens et al., “Chemical Free Room Temperature Wafer to Wafer Direct Bonding”, J. Electrochem. Soc., vol. 142, No. 11, Nov. 1995, pp. 3949-3955.
Gan, Qing, “Surface activation enhanced low temperature silicon wafer bonding,” Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Mechanical Engineering and Materials Science, Duke University, Aug. 4, 2000, 192 pages.
Gösele, U. et al., “Semiconductor Wafer Bonding, a Flexible Approach to Materials Combinations in Microelectronics, Micromechanics and Optoelectronics”, 1997 IEEE, pp. 23-32.
International Search Report and Written Opinion dated Feb. 7, 2014 in PCT/US2013/057536 filed Aug. 30, 2013.
International Search Report and Written Opinion dated Mar. 7, 2019, in International Application No. PCT/US2018/060044, 14 pages.
International Search Report and Written Opinion dated Apr. 22, 2019 in International Application No. PCT/US2018/064982, 13 pages.
Reiche et al., “The effect of a plasma pretreatment on the Si/Si bonding behaviouir,” Electrochemical Society Proceedings, 1998, vol. 97-36, pp. 437-444.
Taiwan Office Action dated Feb. 10, 2023, in Taiwan Application No. 108123486, 3 pages.
Related Publications (1)
Number Date Country
20200013765 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
62693671 Jul 2018 US