The present invention relates to ellipsometer and polarimeter systems which comprise a source of electromagnetic radiation, a polarization state generator, a sample supporting stage, a polarization state detector and a detector of electromagnetic radiation, and more particularly is an ellipsometer or polarimeter or the like system which operates in a frequency range between 300 GHz or lower and extending to higher than at least 1 Tera-hertz (THz), and preferably through the Infra-red (IR) range up to, and higher than 100 THz, comprising:
The practice of ellipsometry is well established as a non-destructive approach to determining characteristics of sample systems, and can be practiced in real time. The topic is well described in a number of publications, one such publication being a review paper by Collins, titled “Automatic Rotating Element Ellipsometers: Calibration, Operation and Real-Time Applications”, Rev. Sci. Instrum., 61(8) (1990).
Before proceeding, as it is relevant to the present invention, it is noted that ellipsometer systems generally comprise means for setting a linear or elliptical polarization state, (typically substantially linear).
Continuing, in general, modern practice of ellipsometry typically involves causing a spectroscopic beam of electromagnetic radiation, in a known state of polarization, to interact with a sample system at at least one angle of incidence with respect to a normal to a surface thereof, in a plane of incidence. (Note, a plane of incidence contains both a normal to a surface of an investigated sample system and the locus of said beam of electromagnetic radiation). Changes in the polarization state of said beam of electromagnetic radiation which occur as a result of said interaction with said sample system are indicative of the structure and composition of said sample system. The practice of ellipsometry further involves proposing a mathematical model of the ellipsometer system and the sample system investigated by use thereof, and experimental data is then obtained by application of the ellipsometer system. This is typically followed by application of a square error reducing mathematical regression to the end that parameters in the mathematical model which characterize the sample system are evaluated, such that the obtained experimental data, and values calculated by use of the mathematical model, are essentially the same.
A typical goal in ellipsometry is to obtain, for each wavelength in, and angle of incidence of said beam of electromagnetic radiation caused to interact with a sample system, sample system characterizing PSI and DELTA values, (where PSI is related to a change in a ratio of magnitudes of orthogonal components rp/rs in said beam of electromagnetic radiation, and wherein DELTA is related to a phase shift entered between said orthogonal components rp and rs), caused by interaction with said sample system. The governing equation is:
ρ=rp/rs=Tan(Ψ)exp(iΔ)
As alluded to, the practice of ellipsometry requires that a mathematical model be derived and provided for a sample system and for the ellipsometer system being applied. In that light it must be appreciated that an ellipsometer system which is applied to investigate a sample system is, generally, sequentially comprised of:
Various conventional ellipsometer configurations provide that a Polarizer, Analyzer and/or Compensator(s) can be rotated during data acquisition, and are describe variously as Rotating Polarizer (RPE), Rotating Analyzer (RAE) and Rotating Compensator (RCE) Ellipsometer Systems. It is noted, that nulling ellipsometers also exist in which elements therein are rotatable in use, rather than rotating. Generally, use of a nulling ellipsometer system involves imposing a substantially linear polarization state on a beam of electromagnetic radiation with a linear polarizer, causing the resulting polarized beam of electromagnetic radiation to interact with a sample system, and then adjusting an analyzer to an azimuthal angle which effectively cancels out the beam of electromagnetic radiation which proceeds past the sample system. The azimuthal angle of the analyzer at which nulling occurs provides insight to properties of the sample system.
Continuing, in use, data sets can be obtained with an ellipsometer system configured with a sample system present, sequentially for cases where other sample systems are present, and where an ellipsometer system is configured in a straight-through configuration wherein a beam of electromagnetic radiation is caused to pass straight through the ellipsometer system without interacting with a sample system. Simultaneous mathematical regression utilizing multiple data sets can allow calibration of ellipsometers and evaluation of sample system characterizing PSI and DELTA values over a range of wavelengths. The obtaining of numerous data sets with an ellipsometer system configured with, for instance, a sequence of sample systems present and/or wherein a sequential plurality of polarization states are imposed on an electromagnetic beam caused to interact therewith, can allow system calibration of numerous ellipsometer system variables.
Before disclosing known references, it is noted that computer searching at the PTO Website for Patents and Published Applications containing the words:
Further, a PTO Website Search for Patents and Published Applications containing the words:
A Patent to Wang et al., U.S. Pat. No. 5,914,492 is of interest as it describes free electron lasers used in combination with a Golay cell and Smith-Purcell detectors. However, it does not describe application in ellipsometry or polarimetry.
A Published Application, US2006/0050269 by Brownell describes use of a free electron laser and a Smith-Purcell detector, but not in the context of ellipsometry or polarimetry.
An article titled “Gain of a Smith-Purcell Free Electron Laser”, Andrews et al., Phy. Rev., Vol 7, 070701 (2004), describes use of Smith-Purcell Free Electron Laser.
U.S. Pat. No. 2,985,790 to Kompfner is disclosed as it describes a Backward Wave Oscillator.
U.S. Pat. No. 2,880,355 to Epsztein is disclosed as it describes a Backward Wave Oscillator.
Known References which describe Ellipsometers which operate in the THz frequency range are:
A Patent to Herzinger et al. U.S. Pat. No. 6,795,184, describes an “Odd-Bounce” system for rotating a polarization state in an electromagnetic beam. Patents disclosed in the Application leading to U.S. Pat. No. 6,795,184 are:
Further Patents disclosed in the 184 Patent are:
Other Patents which describe use of reflected electromagnetic radiation to investigate sample systems are:
In addition to the identified Patents, certain Scientific papers were also disclosed in the 184 Patent are:
An additional relevant Patent is U.S. Pat. No. 6,268,917 to Johs. This patent describes a combined polychromatic electromagnetic radiation beam source comprising beam combiners.
It is also disclosed that the J. A. Woollman Co., Inc. has marketed an IR range Ellipsometer, called the IR-VASE®, for many years. Said instrument provides capability from 10 THz to 150 THz and is a Variable Angle, Rotating Compensator system utilizing a Bomen FTIR Spectrometer. Further, it comprises an FTIR Source, and an Odd-Bounce image rotating system for rotating a polarization state imposed by a wire-grid polarizer. It is noted that as marketed, this system has never provided the capability to reach down to 1 THz, which capability was achieved via research in developing the present invention.
Additional references which describe ellipsometry practiced in the THz range are:
Additional references which describe sources of Terahertz frequency range electromagnetism are:
It is noted that the Search Report for a co-pending PCT Application, PCT/US09/05346, was recently received. It identified the following references: U.S. Pat. Nos. 6,795,184; 7,274,450 and 6,798,511; and Published Applications Nos. US2004/0228371; US2007/0252992; US2006/0289761; US2007/0278407; US2007/0097373. Also identified were: a Ph.D. dissertation by Duerr, Erik Kurt, titled “Distributed Photomixers”, Mass. Inst. Tech., September 2002; and article titled “Hole Diffusion Profile in a P-P+ Silicon Homojunction Determined by Terahertz and Midinfrared Spectroscopic Ellipsometry”, Hofmann et al., App. Phys. Lett., 95 032102 (2009).
The identified references, application Ser. No. 12/456,791, Provisional Application Ser. No. 61/208,735 and Ser. No. 61/281,905, are all incorporated by reference into this Specification.
Even in view of relevant prior art, there remains need for an ellipsometer or polarimeter system for application in the Terahertz region, preferably in combination with a convenient approach to providing linearly polarized beams of electromagnetic radiation in which the azimuthal angle of the linear polarization can be controlled.
As disclosed in a Co-Pending Parent application Ser. No. 12/456,791, the present invention is a practical ellipsometer or polarimeter system for application in the range of frequencies between 300 GHz or below and proceeding well into and preferably through the Infrared frequency range. The prior art demonstrates that it is not unknown to propose, or provide a system for, and practice of ellipsometry at Terahertz (THz) frequencies, however, a specific embodiment than makes such possible and which is suitable for general application in universities and industry etc., has not been previously disclosed. To the Applicant's knowledge, there are no commercially available THz ellipsometers or polarimeters available in the market place. This is even more so the case where the ellipsometer or polarimeter also provides Infrared (IR) frequency capability.
While Synchrotrons have been used to provide THz frequency band electromagnetic radiation in ellipsometers, it is not remotely possible to provide a Synchrotron at every location whereat it is desired to practice THz ellipsometry. The present invention provides combination of many elements, which results in a novel, practical system for general application in the market place.
Before proceeding, it is of benefit to define some terminology. First, a generally accepted range for what constitutes a Terahertz range of frequencies is from 3×1011 (ie. 300 GHz), to 1.3×1012 (ie. 1.3 Thz), Hertz. The Terahertz range is sandwiched between the microwave, (the high end of which has a wavelength of 1 millimeter), and the far-infrared, (the long-wavelength edge of which is 100 micrometers), ranges of wavelengths/frequencies.
Next, it is noted that a number of sources of Terahertz (THz) electromagnetic radiation exit. For instance, a Smith-Purcell cell is a device which directs an energetic beam of electrons very close to a ruled surface of a diffraction grating. The effect on the trajectory of the beam is negligible, but a result is that Cherenkov radiation in the Terahertz frequency range can be created, where the phase velocity of the electromagnetic radiation is altered by the periodic grating. Another source of Terahertz radiation is a Free Electron Laser. In this source a beam of electrons is accelerated to relativistic speed and caused to pass through a periodic transverse magnetic field. The array of magnets is sometimes called an undulator or “wiggler” as it causes the electrons to form a sinusoidal path. The acceleration of the electrons causes release of photons, which is “synchrotron radiation”. Further, the electron motion is in phase with the field of said released electromagnetic radiation, and therefore the fields add coherently. Instabilities in the electron beam resulting from interactions of the oscillations in the undulators lead to emission of electromagnetic radiation, wherein electrons radiate independently. The wavelength of the emitted electromagnetic radiation from the electrons can be adjusted by adjusting the energy of the electron beam and/or magnetic field strength of the undulators, to be in the Terahertz range. Another source of Terahertz frequencies is a Backward Wave Oscillator (BWO), which is a vacuum tube system comprising an electron gun that generates an electron beam and causes it to interact with an electromagnetic wave traveling in a direction opposite to that of ejected electrons such that THz frequency oscillations are sustained by interaction between the propagating traveling wave backwards against the electron beam.
It is also disclosed that numerous detectors exist for monitoring Terahertz range electromagnetic radiation. One example is a Golay cell which operates by converting a temperature change resulting from electromagnetic radiation impinging onto material, into a measurable signal. Generally, when electromagnetic radiation is caused to impinge on a blackened material it heats a gas, (eg. Xenon) in an first chamber of an enclosure, and that causes a distortable reflecting diaphragm/film adjacent to said first chamber to change shape. In a second chamber, separated from the first by said diaphragm/film an electromagnetic beam is caused to reflect from the film and into a photocell, which in turn converts the received electromagnetic radiation into an electrical signal. A Bolometer is another detector of monitoring Terahertz range electromagnetic radiation, but operates by using the effect of a changing electric resistance caused by electromagnetic radiation impinging onto a blackened metal.
It is also noted that there are Solid State sources and detectors of Terahertz frequency electromagnetic radiation. For instance, an identified reference by Nagashima et al. discloses that THz pulses can be generated by a bow-tie photoconductive radiation antenna excited by a mode-locked Ti-sapphire laser with 80 Fs time width pulses, and a detection antenna can be formed from a dipole-type photoconductive antenna with a 5 micron gap fabricated on thin film LT-GaAs. Further, it is known that a company named AB Millimeter in Paris France, supplies a system that covers the entire range from 8 GHz to 1000 GHz with solid state source and detector devices.
With the above insight, it is disclosed that the present invention comprises an ellipsometer or polarimeter system which comprises a selection from the group consisting of:
It is noted that the polarization state generator comprising a THz source of electromagnetic radiation that provides substantially polarized output in a frequency range between 300 GHz or lower and extending higher than at least 1 THz, utilizes natural-polarization provided by the THz source and does not require use of a separate polarizer; whereas said source of electromagnetic radiation in functional combination with a polarization state generator that provides substantially polarized output in a frequency range between 300 GHz or lower and extending higher than at least 1 THz, typically comprises a separate polarizer.
Continuing, the THz source of electromagnetic radiation can comprise at least one selection from the group consisting of:
Further, the ellipsometer or polarimeter system preferably comprises at least one odd-bounce polarization state rotation system present between:
Coupling the odd bounce optical image rotating system with a substantially linear polarizing element, (which can comprise a source of unpolarized electromagnetic radiation and a polarizer, or can comprise a source that provides polarized electromagnetic radiation at its output), provides a polarizer system in which the polarizing element can remain stationary while the azimuthal angle of the polarized beam of electromagnetism exiting therefrom, (as viewed from a position along the locus of an electromagnetic beam caused to enter thereto), is rotated.
For general insight, it is also noted that a single three-hundred-sixty (360) degree rotation of a present invention odd bounce optical image rotating element system about an axis coincident with a beam of electromagnetic radiation which functionally passes therethrough, causes seven-hundred-twenty (720) degrees of rotation of the major intensity orthogonal component. This is not of any critical consequence, but is mentioned as it must be taken into account during practice of present invention methodology.
The detector of electromagnetic radiation in a range between 300 GHz or lower and extending higher than 1 THz, can be a selection from the group consisting of:
Further, said ellipsometer or polarimeter system further comprises an FTIR source and a detector for detecting said FTIR frequency output in a frequency range above about 1 THz, and means for selecting between:
The detector for detecting said FTIR frequency output in a frequency range above about 1 THz, and in which said detector of electromagnetic radiation in a range between 300 GHz or lower and extending higher than at least 1 THz, are each independently selected from the group:
As mentioned, in a preferred embodiment, the ellipsometer or polarimeter system has output from said THz source, preferably with a frequency multiplier in functional combination, so that it overlaps output from said FTIR source in frequency, between at least 1.0 to 1.4 THz. And preferably said sources are calibrated such that substantially the same results, (eg. ellipsometric PSI and/or DELTA), are achieved by analyzing output from either of the selected detectors in the frequency range of between about 1.0 to 1.4 THz.
In more detail, a preferred present invention ellipsometer or polarimeter system comprises:
a selection from the group consisting of:
Said ellipsometer or polarimeter further comprises:
In use a selected functional combination of selected source and selected detector is applied to cause electromagnetic radiation to impinge on and interact with a sample on said sample support, then enter said selected detector, to the end that said detector produces an output.
Again, said preferred embodiment provides that the output from the functional combination of said selected THz source and preferably a frequency multiplier, and that from said FTIR source overlap in frequency between at least 1.0 to 1.4 THz such that substantially the same results, (eg. ellipsometric PSI and/or DELTA), are achieved by analyzing output from either of the selected detectors in the frequency range of between about 1.0 to 1.4 THz.
A preferred present invention system also comprises a chopper for chopping the electromagnetic beam which interacts with the sample. (It is noted that FTIR Sources provide a natural “chopping” effect by way of a moving mirror therewithin, hence, an added chopper is relevant only when a THZ Source is selected). Further, a chopper is typically applied when other elements are caused to rotate during data acquisition. Use of a chopper enables noise reduction, particularly where data is obtained with the system located in a non-darkened room, such that spurious electromagnetic radiation is present.
A present invention method of characterizing a sample comprises the steps of:
A) providing an ellipsometer or polarimeter as described above;
B) selecting a source and detector;
C) applying said selected source to cause substantially polarized electromagnetic radiation to impinge on and interact with said sample on said sample support, then proceed to and enter said selected detector, to the end that said detector provides output.
The present invention method also preferably involves chopping the substantially polarized electromagnetic radiation which is caused to impinge on and interact with said sample on said sample support, and which then proceeds to and enters said selected detector, to the end that said detector provides output based substantially only on the chopped beam content.
And, said method can further comprise performing at least one selection from the group consisting of:
Said method can further comprise the step of continuously or step-wise rotating at least one of the at least one odd-bounce polarization state rotation system present between said source and detector, or operating a present electro, acousto or opto-modulator, during data acquisition.
The benefit is that, especially in ellipsometer/polarimeter etc. systems which operate in the IR range of wavelengths and below, it can be difficult to cause rotation of a linear polarizer, (or analyzer), without adversely causing deviation of a beam of electromagnetic radiation caused to pass therethrough, or causing mis-coordination of multiple elements thereof, (ie. multiple tipped wire linear polarizer as described in U.S. Pat. No. 5,946,098). The present invention allows setting fixed substantially linear polarizer, and analyzer azimuthal orientations, and using the odd bounce optical image rotating element instead, to effect different electromagnetic beam azimuthal rotation orientations.
It is also noted that various selected combinations of elements that comprise an ellipsometer or polarimeter, such as a specific selection from:
At the time of this submittal it is believed that a preferred embodiment makes use of a backward wave oscillator (BWO) in combination with a multiplier that provides ×1, ×2 ×3 ×6 and ×9 capability, in functional combination with Golay cell or bolometer, provides good results in the range of from about 0.12-1.5 THz. Further, a conventional FTIR Source as used in a J. A. Woollam Co. IR-VASE®, to provide 10-150 THz capability, has been shown capable of providing output down to about 1.0 Thz. This beneficially allows an overlap between the THz and IR sources between about 1.0 and 1.4 Thz, which can be used for verification of results separately obtained using the THz and IR sources. In addition, it can be advantageous to cool a detector, (eg. by use of liquid helium), and to adjust beam chopper rate, (eg. between about 12-50 Hz), differently for different source and detector combinations.
It is further believed that a present invention ellipsometer or polarimeter system which comprises:
In addition, present invention methodology which involves which the step of providing an ellipsometer or polarimeter system involves the selection of:
It is also presented that an ellipsometer or polarimeter system which operates in the THz range, and its method of use, which ellipsometer or polarimeter comprises a chopper to chop the electromagnetic beam and provide substantially only the chopped electromagnetic beam to the detector, and which is in functional combination with at least two rotating elements, each thereof being selected from the group consisting of:
Continuing, the foregoing was substantially disclosed in Co-Pending Pending application Ser. No. 12/456,791 Filed Jun. 23, 2009. In the following, variations on the foregoing, substantially as disclosed in Provisional Application Ser. No. 61/281,905 Filed Nov. 22, 2009, are discussed.
Much as in the foregoing, a present invention ellipsometer or polarimeter system comprises:
As in the foregoing, a present invention ellipsometer or polarimeter system further comprises:
and a source selected from the group consisting of:
As in the foregoing disclosure,
This is followed by:
A specific presently disclosed invention is found where the A2 polarization state generator comprises an FTIR source (S2), and the A4 polarization state generator comprises a THz source (S1), wherein a22 and a42 are further elected.
Another presently disclosed invention is found where the A2 polarization state generator comprises an FTIR source (S2), and the A4 polarization state generator comprises a THz source (S1), wherein a21 and a41 are further elected.
Another presently disclosed invention is found where the A2 polarization state generator comprises an FTIR source (S2), and the A4 polarization state generator comprises a THz source (S1), wherein a21 and a42 are further elected.
Another presently disclosed invention is found where the A2 polarization state generator comprises an FTIR source (S2), and the A4 polarization state generator comprises a THz source (S1), wherein a22 and a41 are further elected.
A method of characterizing a sample comprising the steps of:
A) providing an ellipsometer or polarimeter system as just disclosed;
B) selecting a source and detector and polarization state generator;
C) applying said selected source to cause substantially polarized electromagnetic radiation to impinge on and interact with said sample (S) on said sample support, then proceed to and enter said selected detector, to the end that said detector provides output;
said method further comprising performing at least one selection from the group consisting of:
Another recitation of a presently disclosed invention is that it is an ellipsometer or polarimeter system comprising:
It is noted that the polarization state generator characterized by a selected odd-bounce polarization state rotation system followed by said polarization state generator exit polarizer operates by the odd-bounce polarization state generator receiving an at least partially polarized beam of electromagnetic radiation from the source thereof, rotating the polarization state of said at least partially polarized beam and passing it through said polarization state exit polarizer which serves to improve the purity of the polarization state exiting therefrom.
It is also noted that the polarization state generator is characterized by a polarization state generator entry polarizer followed by said polarization state generator exit polarizer operates by the polarization state generator entry polarizer receiving an at least partially polarized beam of electromagnetic radiation from the source thereof and then passing it through said polarization state exit polarizer. Said polarization state generator entry polarizer serves to enable avoiding a condition wherein an effective azimuth of the at least partially polarized beam of electromagnetic radiation provided by the source thereof, and that of the polarization state generator exit polarizer present at essentially 90 degrees with respect to one another thereby preventing the at least partially polarized beam of electromagnetic radiation from progressing beyond the polarization state generator exit polarizer.
Another recitation of a present invention ellipsometer or polarimeter system provides that it comprise:
Another recitation of a present invention ellipsometer or polarimeter system provides that it comprise:
Continuing, the present invention ellipsometer and polarimeter system can be configured as a Rotating Analyzer, a Rotating Polarizer or a Rotating Compensator system. The preprint paper in the Background Section discloses a Rotating Analyzer system. Reference to
Said Rotating Analyzer ellipsometer or polarimeter system can be characterized by said rotatable image rotation system being an odd bounce (OB) (OB′) optical image rotating system comprising an odd number of at least three reflective elements oriented such that a beam of electromagnetic radiation provided by said source of electromagnetic radiation interacts with each of said at least three reflective elements of said at least one odd bounce optical image rotating system and exits therefrom along a non-deviated non-displaced trajectory, said beam of electromagnetic radiation also interacting with a sample system placed on said stage for supporting a sample system, and said analyzer before entering said detector, and the at least one odd bounce (OB) (OB′) optical image rotating system can consist of a selection from the group consisting of:
Said present invention Rotating Analyzer ellipsometer or polarimeter system can further comprise at least one beam directing reflecting means and the sample supporting stage can be part of a 20 goniometer.
A variation on the present invention Rotating Analyzer ellipsometer or polarimeter system can sequentially comprise:
In use a polarized beam of Terahertz spectral range electromagnetic radiation is provided by said backward wave oscillator, is optionally focused by the focusing lens, has its polarization state rotated by said rotatable image rotation system and passes through said rotatable wire grid polarizer, then impinges on a sample placed on said sample supporting stage, reflects therefrom and passes through said rotating analyzer and enters said Golay cell.
Said ellipsometer or polarimeter system is distinguished in that, during data acquisition, the rotatable image rotation system and rotatable wire grid polarizer are functionally stepwise rotated in tandem, wherein said rotatable wire grid polarizer is stepwise rotated through a sequence of angles twice that of the rotatable image rotation system, such that the polarization state of the beam provided to the wire grid polarizer by the rotatable image rotation system, is passed by said rotatable wire grid polarizer even where the polarization state of the polarized beam of Terahertz spectral range electromagnetic radiation from the backward wave oscillator is rotated by 90 degrees.
Said ellipsometer or polarimeter system can involve a rotatable image rotation system which is an odd bounce (OB) (OB′) optical image rotating system comprising an odd number of at least three reflective elements oriented such that a beam of electromagnetic radiation provided by said source of electromagnetic radiation interacts with each of said at least three reflective elements of said at least one odd bounce optical image rotating system and exits therefrom along a non-deviated non-displaced trajectory, said beam of electromagnetic radiation also interacting with a sample system placed on said stage for supporting a sample system, and said analyzer before entering said detector.
Said ellipsometer or polarimeter system at least one odd bounce (OB) (OB′) optical image rotating system can consist of a selection from the group consisting of:
Said ellipsometer or polarimeter system can further comprise at least one beam directing reflecting means.
Said ellipsometer or polarimeter system can involve a sample supporting stage is part of a system for controlling the angle of incidence at which a beam of electromagnetic radiation is caused to approach said sample.
Another recitation of a rotating analyzer ellipsometer or polarimeter system provides that it can sequentially comprise:
In use a polarized beam of Terahertz spectral range electromagnetic radiation is provided by said backward wave oscillator, is optionally focused by the focusing lens, has its polarization state altered by said first rotatable wire grid polarizer and then by said second rotatable wire grid polarizer, then impinges on a sample placed on said sample supporting stage, reflects therefrom and passes through said rotating analyzer and enters said Golay cell.
Said ellipsometer or polarimeter system is distinguished in that said two rotatable wire grid polarizers are functionally operated in tandem such that the polarization state of the beam provided to the second rotatable wire grid polarizer by the first rotatable wire grid polarizer, is passed by said second rotatable wire grid polarizer, where it not be passed were the first rotatable wire grid polarizer not present and the polarization state of the polarized beam of Terahertz spectral range electromagnetic radiation from the backward wave oscillator is rotated by 90 degrees at the location of said sample.
Said ellipsometer or polarimeter system can further comprise at least one beam directing reflecting means.
Said ellipsometer or polarimeter system can involve a sample supporting stage is part of a system for controlling the angle of incidence at which a beam of electromagnetic radiation is caused to approach said sample.
FA
A fixed analyzer ellipsometer or polarimeter system can sequentially comprise:
In use a polarized beam of Terahertz spectral range electromagnetic radiation is provided by said backward wave oscillator, is optionally focused by the focusing lens, optionally has its polarization state rotated by said rotatable or rotating polarizer, then impinges on a sample placed on said sample supporting stage, reflects therefrom and passes through said rotatable image rotation system and fixed position analyzer and enters said Golay cell.
Said ellipsometer or polarimeter system is distinguished in that, during data acquisition, the rotatable image rotation system is stepwise rotated while the analyzer remains fixed in position.
A present invention Rotating Polarizer ellipsometer or polarimeter system sequentially can comprise:
RP
In use a polarized beam of Terahertz spectral range electromagnetic radiation is provided by said backward wave oscillator, is optionally focused by the focusing lens, has its polarization state rotated by said rotatable or rotating polarizer, then impinges on a sample placed on said sample supporting stage, reflects therefrom and passes through said rotatable image rotation system and rotatable wire grid analyzer and enters said Golay cell.
Said ellipsometer or polarimeter system is distinguished in that, during data acquisition, the rotatable image rotation system and rotatable wire grid analyzer are functionally stepwise rotated in tandem, wherein said rotatable wire grid analyzer is stepwise rotated through a sequence of angles twice that of the rotatable image rotation system, such that the polarization state of the beam provided to the rotatable wire grid analyzer by the rotatable image rotation system.
Said ellipsometer or polarimeter system can involve a rotatable image rotation system is an odd bounce (OB) (OB′) optical image rotating system comprising an odd number of at least three reflective elements oriented such that a beam of electromagnetic radiation provided by said source of electromagnetic radiation interacts with each of said at least three reflective elements of said at least one odd bounce optical image rotating system and exits therefrom along a non-deviated non-displaced trajectory, said beam of electromagnetic radiation also interacting with a sample system placed on said stage for supporting a sample system, and said analyzer before entering said detector.
Said at least one odd bounce (OB) (OB′) optical image rotating system can consist of a selection from the group consisting of:
Said ellipsometer or polarimeter system can further comprise at least one beam directing reflecting means.
Said ellipsometer or polarimeter system can provide that the sample supporting stage is part of a system for controlling the angle of incidence at which a beam of electromagnetic radiation is caused to approach said sample.
A present invention Rotating Compensator ellipsometer or polarimeter system sequentially comprising:
RC
In use a polarized beam of Terahertz spectral range electromagnetic radiation is provided by said backward wave oscillator, is optionally focused by the focusing lens, has its polarization state rotated by said rotatable image rotation system and passes through said rotatable wire grid polarizer, then impinges on a sample placed on said sample supporting stage, reflects therefrom and passes through said rotatable analyzer; said Terahertz spectral range electromagnetic radiation also passing through said optical chopper and rotating compensator; and enters said Golay cell.
Said ellipsometer or polarimeter system is distinguished in that, during data acquisition while said rotating compensator is caused to continuously rotate, the rotatable image rotation system and rotatable wire grid polarizer are functionally stepwise rotated in tandem, wherein said rotatable wire grid polarizer is stepwise rotated through a sequence of angles twice that of the rotatable image rotation system, such that the polarization state of the beam provided to the wire grid polarizer by the rotatable image rotation system, is passed by said rotatable wire grid polarizer even where the polarization state of the polarized beam of Terahertz spectral range electromagnetic radiation from the backward wave oscillator is rotated by 90 degrees
Said ellipsometer or polarimeter system can provide that the rotatable analyzer is optionally also stepwise rotated during data acquisition.
Said ellipsometer or polarimeter system can provide that said rotatable image rotation system is an odd bounce (OB) (OB′) optical image rotating system comprising an odd number of at least three reflective elements oriented such that a beam of electromagnetic radiation provided by said source of electromagnetic radiation interacts with each of said at least three reflective elements of said at least one odd bounce optical image rotating system and exits therefrom along a non-deviated non-displaced trajectory, said beam of electromagnetic radiation also interacting with a sample system placed on said stage for supporting a sample system, and said analyzer before entering said detector.
Said at least one odd bounce (OB) (OB′) optical image rotating system consists of a selection from the group consisting of:
Said ellipsometer or polarimeter system can further comprise at least one beam directing reflecting means.
Said ellipsometer or polarimeter system can provide that the sample supporting stage is part of a system for controlling the angle of incidence at which a beam of electromagnetic radiation is caused to approach said sample.
Said ellipsometer or polarimeter system can provide that the rotating compensator is present at a selection from the group consisting of:
As further, generalized, disclosure it is presented that a TeraHertz Ellipsometer can be configured from components:
Frequency Purification Systems
DET 1=
DET 2=
DET 3=
From the above elements two types of THZ Ellipsometer Systems can be configured, namely:
Scanning Monochromator
Dual System: Scanning+Ftir System
The foregoing outline provides basis for describing specific present invention systems.
First, a scanning monochromater system for application in the Terahertz frequency range, can comprise:
a narrow-band essentially single frequency source selected from the group consisting of:
Said scanning monochromater system can further comprise at least one selection from the group:
Said scanning monochromater system can further comprise at least one polarization state rotating system between said selected source and selected detector.
Said scanning monochromater system can comprise two polarization state rotating systems between said selected source and selected detector.
Said scanning monochromater system can further comprise a beam chopper, said beam chopper being applied to chop said beam of electromagnetic radiation during use.
Said scanning monochromater system can, during use, cause said electromagnetic beam to be chopped by said beam chopper while two elements selected from the group consisting of:
Said scanning monochromater system can further comprise means for controlling the angle of incidence at which said beam of electromagnetic radiation from said selected source approaches said sample.
Said scanning monochromater system can further comprise, between said selected source and selected detector, at least one terahertz filter and narrow pass THZ filter selected from the group:
Said scanning monochromater system can further comprise a rotatable polarizer, the rotation of which is synchronized to that of the said at least one polarization state rotating system between said selected source and selected detector.
Said scanning monochromater system can further comprise a lock-in system referenced to said at least one component selected from the group of said:
Another present invention system is a dual scanning and FTIR system for application in the Terahertz and Infrared frequency range, comprising:
Said dual scanning and FTIR system for application in the Terahertz and Infrared frequency range can further comprise, in combination with the selected source for providing Thz range electromagnetic radiation which is selected from the group consisting of:
a mixed-laser-beat+solid state emitter;
at least one selection from the group consisting of:
and/or
at least one selection from the group consisting of:
Said dual scanning and FTIR system for application in the Terahertz and Infrared frequency range can further comprise a fixed stokes vector setting sub-system polarizer or partial polarizer positioned in the path of at least one electromagnetic beam from a selection from the group consisting of:
Said dual scanning and FTIR system can further comprise a second fixed stokes vector setting sub-system polarizer or partial polarizer positioned in the path of at least one electromagnetic beam from a selection from the group consisting of:
Said dual scanning and FTIR system for application in the Terahertz and Infrared frequency range can further comprise at least two rotating elements, selected from the group:
Said dual scanning and FTIR system for application in the Terahertz and Infrared frequency range can further comprise an ISVC fixed stokes vector control selecting sub-system polarizer or partial polarizer positioned in the path of at least one electromagnetic beam from a selection from the group consisting of:
Said dual scanning and FTIR system for application in the Terahertz and Infrared frequency range can further comprise at least one polarization state rotating system between said selected source and selected detector positioned in the path of at least one electromagnetic beam from a selection from the group consisting of:
Said dual scanning and FTIR system for application in the Terahertz and Infrared frequency range can further comprise a second polarization state rotating system between said selected source and selected detector positioned in the path of at least one electromagnetic beam from a selection from the group consisting of:
Said dual scanning and FTIR system can, during use, provide that said electromagnetic beam is caused to be chopped by a beam chopper while two elements selected from the group consisting of:
Said dual scanning and FTIR system can further comprise means for controlling the angle of incidence at which said beam of electromagnetic radiation from said selected source approaches said sample.
Said scanning monochromater system can further comprise a rotatable polarizer, the rotation of which is synchronized to that of the said at least one polarization state rotating system between said selected source and selected detector.
Said dual scanning and FTIR system can further comprise a lock-in system referenced to said at least one component selected from the group:
The present invention will be better understood by reference to the Detailed Description Section of this Specification, in combination with the Drawings.
a-1c show demonstrative configurations for a present invention ellipsometer or polarimeter system.
d shows an alternative polarization state generator involving a modulator.
e-1g show systems similar to those in
h indicate that the Odd Bounce image rotation system Polarizer reversed are controlled in synchrony.
i-1k are similar to
l-1o demonstrate various element configurations for a Terahertz ellipsometer or polarimeter.
p shows specific Terahertz ellipsometer or polarimeter.
a-2d show various aspects of Terahertz frequency Sources.
e-2g show a demonstrative detectors of Terahertz frequencies.
a demonstrates an Odd Bounce image rotating system comprising three (3) reflecting elements.
b demonstrates an Odd Bounce image rotating system comprising five (5) reflecting elements.
a demonstrates a combined Non-Brewster Angle and Brewster Angle Polarizer system.
b demonstrates a dual tipped wire grid polarizer system.
Turning now to the Drawings,
It is also noted that the configuration in
d is included to disclose that an Alternative Polarization State Generator (APSG) configuration involving an optional Polarizer (P) and a Modulator (MOD), can be applied in the present invention. Such an (APSG) configuration can be employed instead of, or in addition to components in the Conventional Polarization State Generator (CPSG) shown in
Also shown in
e shows a system substantially similar to that in
i-1k show similar configurations to
l-1o demonstrate various element configurations for a Terahertz ellipsometer or polarimeter.
l and 1p show a Backward Wave Oscillator (BWO) is shown as Source for providing a partially linearly polarized Beam of electromagnetic radiation which is directed to pass through a focusing Lens (L), a Chopper (C), an Image Rotator (PR), a Polarizer (P) then interact with a Sample on a Stage (S), and then pass through a Rotating Analyzer (A) and enter a Golay Cell Detector (GC). More specifically
Said ellipsometer or polarimeter system can provide that said rotatable image rotation system (PR) is an odd bounce (OB) (OB′) optical image rotating system comprising an odd number of at least three (RE1) (RE2) (RW3) reflective elements, (see
p shows that said ellipsometer or polarimeter system which can further comprises at least one beam directing reflecting means (M1) (M2) (M3) (M4). Further, the sample supporting stage (S) can be part of a system (HG) for controlling the angle of incidence (Oa) at which a beam of electromagnetic radiation is caused to approach said sample.
Reference to
m is not to be confused with that in
n shows a Rotating Polarizer THZ Ellipsometer system. Note that compared to
o shows a Rotating Compensator THZ Ellipsometer system. Note that both the Polarizer (P) and Analyzer (A) are rotatable, and an additional Rotating Compensator (RC) element is present.
Turning now to
e and 2f demonstrate basic components of Detectors, (eg. Golay cell (GC) and Bolometer (BOL)). A Golay cell basically comprises two Chambers (CH1) and (CH2). In use electromagnetic radiation (EM) enters one Chamber (CH1) and heats a gas therein, which expands. This causes the Diaphragm (DIA) to change shape which causes a Probe Beam (PB) entered to the Second Chamber (CH2) to reflect along a different pathway which is then detected by a detector (not shown).
(Note,
Turning now to
a and 5b demonstrate systems which can be used as Polarizer (P) and Analyzer (A) in
b demonstrates an alternative possible polarizer, comprising a dual tipped wire grid polarizer system comprising first (WG1) and second (WG2) wire grid polarizers which have fast axes of polarization oriented with their fast axes parallel to one another, each thereof having first and second essentially parallel surfaces. Note however, that the essentially parallel sides of (WG1) are tipped with respect to the essentially parallel sides of (WG2), as characterized by the angle (α). The purpose of angle (α) is to divert unwanted reflections (R1) and (R2).
Note that both Polarizers in
It is to be understood that while preferred embodiments of Polarizers provide a linear polarization as output, the present invention can be used with a substantially linearly polarizing polarizer, or a polarizer which provides partially linearly polarization. In the Claims the term “polarizer” should then be interpreted broadly to mean preferably a linear polarizer, but including polarizers which provide partially linearly polarization. Further, in combination with a Compensator, other polarization states can be achieved.
Finally, in view of recent case law, it is specifically disclosed that a present invention system preferably comprises a Computer System which controls element motion, (eg. stepwise or continuous rotation of a Polarizer (P) and/or Compensator (C, C′) and/or Analyzer (A) and/or Odd Bounce Image Rotating System (OB); operation of a Chopper (CH); positioning of a Sample (S); selection of a Source (S1, S2); selection of a Detector (D1, D2, D3); and operation of a Source (S1, S2, S3) and/or Detector (D1, D2, D3). Further, a present invention system comprises a Computer System (CMP) which serves to analyze data provided by a Detector (D1, D2, D3) and Display said data or results of analysis thereof. That is, the present invention can be considered to be a Computer System (CMP) which comprises an Ellipsometer or Polarimeter, which Computer System (CMP) controls operation of elements of said Ellipsometer or Polarimeter to the end that Sample characterizing Data is developed, as well as analysis of said data performed and presentation of said data, or results of analysis thereof.
Having hereby disclosed the subject matter of the present invention, it should be obvious that many modifications, substitutions, and variations of the present invention are possible in view of the teachings. It is therefore to be understood that the invention may be practiced other than as specifically described, and should be limited in its breadth and scope only by the Claims.
This Application is a Divisional of Ser. No. 12/802,638 Filed Jun. 11, 2010, and therevia is a CIP of Ser. No. 12/456,791 Filed Jun. 23, 2009 and therevia Claims Benefit of Provisional Application Ser. No. 61/208,735 Filed Feb. 27, 2009, and further Claims Benefit of Provisional Application Ser. No. 61/281,905 Filed Nov. 22, 2009.
This invention which is subject in this application was developed in part under support provided by a Grant from the Army under Phase I ARMY STTR Contract No. W911NF-08-C-01121. The portion of this invention concerning the “odd bounce image rotation system and method of use” in this application was developed in part under support provided by a Grant from the National Science Foundation under Phase II SBIR Contract No. 9901510. The United States Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
2880355 | Epsztein | Mar 1959 | A |
2985790 | Kompfner | May 1961 | A |
4210401 | Batten | Jul 1980 | A |
4332476 | Stenberg et al. | Jun 1982 | A |
4355903 | Sandercock | Oct 1982 | A |
4373817 | Coates et al. | Feb 1983 | A |
4647207 | Bjork et al. | Mar 1987 | A |
4750822 | Rosencwaig et al. | Jun 1988 | A |
4826321 | Coates et al. | May 1989 | A |
4838695 | Mansuripur et al. | Jun 1989 | A |
5042951 | Gold et al. | Aug 1991 | A |
5045704 | Coates | Sep 1991 | A |
5317618 | Nakahara et al. | May 1994 | A |
RE34783 | Coates et al. | Nov 1994 | E |
5373359 | Woollam et al. | Dec 1994 | A |
5452091 | Johnson | Sep 1995 | A |
5504582 | Johs et al. | Apr 1996 | A |
5521706 | Green et al. | May 1996 | A |
5596406 | Rosencwaig et al. | Jan 1997 | A |
5666201 | Johs et al. | Sep 1997 | A |
5706212 | Thompson et al. | Jan 1998 | A |
5757494 | Green et al. | May 1998 | A |
5872630 | Johs et al. | Feb 1999 | A |
5914492 | Wang et al. | Jun 1999 | A |
5946098 | Johs et al. | Aug 1999 | A |
5956145 | Green et al. | Sep 1999 | A |
5963325 | Johs et al. | Oct 1999 | A |
5963327 | He et al. | Oct 1999 | A |
6084674 | Johs et al. | Jul 2000 | A |
6084675 | Herzinger et al. | Jul 2000 | A |
6100981 | Johs et al. | Aug 2000 | A |
6118537 | Johs et al. | Sep 2000 | A |
6137618 | Herzinger | Oct 2000 | A |
6141102 | Johs et al. | Oct 2000 | A |
6268917 | Johs | Jul 2001 | B1 |
6795184 | Herzinger et al. | Sep 2004 | B1 |
6798511 | Zahn et al. | Sep 2004 | B1 |
6819423 | Stehle et al. | Nov 2004 | B2 |
6847448 | Nagashima et al. | Jan 2005 | B2 |
7274450 | Green et al. | Sep 2007 | B1 |
7339718 | Vodopanov et al. | Mar 2008 | B1 |
7450231 | Johs et al. | Nov 2008 | B2 |
7460230 | Johs et al. | Dec 2008 | B2 |
8169611 | Herzinger et al. | May 2012 | B2 |
20030016358 | Nagashima et al. | Jan 2003 | A1 |
20040027571 | Luttmann | Feb 2004 | A1 |
20040228371 | Kolodzey et al. | Nov 2004 | A1 |
20050175507 | Tsukruk | Aug 2005 | A1 |
20060050269 | Brownell | Mar 2006 | A1 |
20060068513 | Funakubo et al. | Mar 2006 | A1 |
20060289761 | Nabet et al. | Dec 2006 | A1 |
20070097373 | Pfeiffer et al. | May 2007 | A1 |
20070252992 | Itsuji | Nov 2007 | A1 |
20070278407 | Wood et al. | Dec 2007 | A1 |
Entry |
---|
Distributed Photomixer, Ph.D. Thesis, Duen, MIT, Sep. 2002. |
Hole Diffusion Profile in a P-P+Silicon Homojunction Determined by Terahertz & Infrared Spectroscopic Ellipsometry, Hofmann et al., App. Phys. Lett. 95 032102, (2009). |
A review paper by Collins, titled “Automatic Rotating Element Ellipsometers: Calibration, Operation and Real-Time Applications”, Rev. Sci. Instrum., 61(8) (1990). |
An article titled “Gain of a Smith-Purcell Free Electron Laser”, Andrews et al., Phy. Rev., vol. 7, 070701 (2004), describes use of Smith-Purcell Free Electron Laser. |
“Terahertz Generalized Meuller-matrix Ellipsometery”, Hofmann et al., Proc. of SPIE, vol. 6120, pp. 61200D1-61200D10, (2005), describes applying Thz electromagnetic radiation in generalized ellipsometry wherein the source of the Thz electronmagnetic radiation is a synchrotron located at BESSY, in Germany. |
“Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation”, Hofmann et al., American Inst. of Physics, 77, 063902-1 through 063902-12, (2006), describes applying Thz electromagnetic radiation in generalized ellipsometry wherein the source of the Thz electromagnetic radiation is a synchrotron and a conventional blackbody. The use of an FTIR source and bolometer is also mentioned. |
“Label-free Amplified Bioaffinity Detection Using Terahertz Wave Technology”, Menikh et al., Biosensors and Bioelectronics 20, 658-662 (2004), describes use of an unbiased GaAs crystal THz source of electromagnetic radiation and a ZnTe crystal detector. |
Spectroscopy by Pulsed Terahertz Radiation, Hango et al., Meas. Sci. and Technol., 13 (2002), pp. 1727-1738, describes applying 30 GHz-10 THz and describes use of Fourier Transform Spectrometers (FTS) in the Far Infrared (FIR) frequency range with the caution that such an approach is not easily applied below 1 THz. Said reference also describes application of Backward Wave Oscillators (BWO) plus frequency multipliers, with the caution that to cover the range of 30 GHz to 3 THz typically requires many BWO's and frequency multipliers to cover said frequency range. This article favors use of a Femto-sec laser (eg. a mode-locked Ti:saphire laser or Er-doped fiber laser in combination with a photoconductive antenna made on low-temperature grown GaAs). |
“Measurement of Complex Optical Constants of a Highly Doped Si Wafer Using Terahertz Ellipsometry”, Nagashima et al., Applied Phys. Lett. vol. 79, No. 24 (Dec. 10, 2001). This article describes use of a mode-locked Ti:saphire laser with a bow-tie antenna and GaAs detector antenna). |
“Development of Terahertz Ellipsometry and its Application to Evaluation of Semiconductors”, Nagashima et al., Tech. Meeting on Light Application and Visual Science, IEEE (2002) proposed a Terahertz ellipsometer. |
Terahertz Imaging System Based on a Backward-Wave Oscillator, Dobroiu et al., Applied Optics, vol. 43, No. 30, (Oct. 20, 2004) descirbes use of a Terahertz source to provide electromagnetic radiation. |
A paper by Johs, titled “Regression Calibration Method for Rotating Element Ellipsometers”, Thin Solid Films, 234 (1993) is also disclosed as it describes a mathematical regression based approach to calibrating ellipsometer systems. |
“THz Ellipsometry in Theory and Experiment”, Dietz et al. 33rd International Conference on Infrared and Millimeter Waves and 16th International Conference on Terahertz Electronics, IRMMW-THz (2008) describes an experimental ellipsometer for use in the THz frequency range. |
“Study Terahertz Ellipsometry Setups for Measuring Metals and Dielectrics Using Free Electron Laser Light Source”, Rudych, 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, IRMMW-THz (2006) descibes use of a free electron laser to provide THz frequencies. |
“Spectral THz Ellipsometer for the Unambiguous Determination of all Stokess Parameters”, Holldack et al., 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, IRMMW-THz (2006) describes a concept for determining all Stokes Parameters. |
“Terahertz Magneto-Optic Generalized Ellipsometry Using Synchrotron and Blackbody Radiation”, Esquinazi et al., Sci. Instrum., vol. 7, No. 6 (2006) describes use of synchrotron generated electromagentic radiation in magneto-optic generalized ellipsometry. |
“Terahertz Generalized Mueller-Matrix Ellisometry”, Esquinazi et al. Proc. Int. Soc. Opt. Eng., vol. 6120, (2006) describes synchrotron generated electromagentic radiation in generalized Mueller Matrix ellipsometry. |
“THz Time-Domain Magneto-Optic Ellipsometry in Reflection Geometry”, Kuwata-Gonokami et al., Trends Opt. Photonics Series, vol. 97, (2004) describes determining a dielectric tensor using THz frequencies in magneto-optic optical measurements. |
“Terahertz Polarimetry”, Gallot et al., Conf. Lasers Electro-Optics, CLEO, vol. 3 (2005) describes determining the polarization state of a THz wave over a wide rnge of frequencies. |
“Evalution of Complex Optical Constants of Semiconductor Wafers using Terahertz Ellipsometry”, Hangyo et al., Trends Opt. Photonics Series, vol. 88, (2003) describs combining terahertz ellipsometry with time domain spectroscopy. |
“Improved Performance of Hybrid Electronic Terahertz Generators”, Hurlbut et al., 33rd International Conference on Infrared and Millimeter Waves and Terahertz Waves, IRMMW-THz (2008), describes combining BWO's with frequency multipliers. |
“Terahertz Wave Generation in Orientation-Patterned GaAs Using Resonantly Enhanced Schemes”, Vodopyanov et al., SPIE—Intl. Soc. for Opt. Eng. USA, vol. 6455, (2007), describs application of Zincblende semiconductors (GaAs, GaP) to produce THz frequencies. |
“Terahertz BWO Spectroscopy of Conductors and Superconductors”, Gorshunov et al., Quantum Electronics, vol. 37, No. 10 (Oct. 2007), describes methods for directly measuring dielectric response spectra of dielectrics, consuctors and superconductors using BWO generated spectrometers. |
“Portable THz Spectrometers”, Kozlov et al., 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, IRMMW-THz (2007), decribes a portable THz spectrometer which operates in the frequency range of 0.1-1 THz. |
“Terahertz Time-Domain Spectrsocopy”, Nishizawa et al., Terahertz Optoelectronics, Topics Appl. Phys. 97, 203-271 (2005). |
Number | Date | Country | |
---|---|---|---|
20140027644 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61281905 | Nov 2009 | US | |
61208735 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12802638 | Jun 2010 | US |
Child | 13815487 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12456791 | Jun 2009 | US |
Child | 12802638 | US | |
Parent | 13815487 | US | |
Child | 12802638 | US | |
Parent | 13506848 | May 2012 | US |
Child | 13815487 | US | |
Parent | 12802734 | Jun 2010 | US |
Child | 13506848 | US | |
Parent | 12802638 | Jun 2010 | US |
Child | 12802734 | US | |
Parent | 13506848 | US | |
Child | 12802734 | US | |
Parent | 12456791 | Jun 2009 | US |
Child | 13506848 | US |