This specification relates generally to automated test systems and test sockets therefor having automated lids.
System-level testing (SLT) involves testing an entire device, rather than individual components of the device. If the device passes a battery of system-level tests, it is assumed that the individual components of the device are operating properly. SLT has become more prevalent as the complexity of, and number of components in, devices have increased. For example, a chip-implemented system, such as an application-specific integrated circuit (ASIC), may be tested on a system level in order to determine that components that comprise the system are functioning correctly.
An example test socket for a test system includes a receptacle to make electrical and mechanical connections to a device under test (DUT) and a lid to cover the DUT in the receptacle. The lid is controllable to open automatically to enable receipt of the DUT in the receptacle and, following receipt of the DUT, to close automatically to cover the DUT in the receptacle. Closing the lid applies force to the DUT to complete the electrical and mechanical connections between the test socket and the DUT. The example test system may include one or more of the following features, either alone or in combination.
The test socket may include an actuator to control opening and closing of the lid. The actuator may be configured to move the lid perpendicularly to the receptacle and to pivot the lid relative to the receptacle. The test socket may include a gear connected to the actuator. The gear being may be to move the lid perpendicularly to the receptacle. The actuator may include a motor. A torque of the motor may provide a clamping force to the DUT to complete the electrical and mechanical connections between the test socket and the DUT. The actuator may include a helical worm drive screw that causes motion of the lid and that is configured to provide a clamping force to the DUT to complete the electrical and mechanical connections between the test socket and the DUT. The actuator may include one of a hydraulic actuator or a pneumatic actuator.
The test socket may include a plate having a track having a first branch that extends perpendicularly to the receptacle and a second branch that extends obliquely relative to the receptacle. The lid may include a roller. The actuator may be for moving the roller along the first branch to move the lid perpendicularly to the receptacle and for moving the roller along the second branch to pivot the lid relative to the receptacle.
The test socket may include a thermal control system to control a temperature of the DUT in the test socket separately from control over temperatures of other DUTs in other test sockets. The thermal control system may include a thermoelectric cooler (TEC) and a structure connected to the lid that is thermally conductive. The TEC may be in thermal communication with the DUT to control the temperature of the DUT by transferring heat between the DUT and the structure. The thermal control system may include liquid coolant to flow through the structure to reduce a temperature of the structure. The liquid coolant may include liquid nitrogen. The thermal control system may include a heater.
The test socket may include a first plate on a first side of the lid, where the first plate includes first tracks; a second plate on a second side of the lid, where the second plate includes second tracks. first rollers on a first side of the lid, and second rollers on a second side of the lid. During opening and closing of the lid, the first rollers move along the first tracks and the second rollers move along the second tracks. At least one of the first tracks and at least one of the second tracks may include a right-angled track. The first plate may be a single plate and the second may be is a single plate.
The test socket may include a hinge to which the lid is connected. The hinge may include a spring that enables compression of the lid to apply force to the DUT to complete the electrical and mechanical connections between the test socket and the DUT.
The test socket may include a first set of plates on a first side of the lid, where the first set of plates includes first tracks; a second set of plates on a second side of the lid, where the second set of plates include second tracks, first rollers on a first side of the lid, and second rollers on a second side of the lid. During opening and closing of the lid, the first rollers move along the first tracks and the second rollers move along the second tracks. The first set of plates may include a first mobile plate and a first stationary plate, and the second set of plates may include a second mobile plate and a second stationary plate. The first mobile plate may be controllable to move relative to the first stationary plate and the second mobile plate may be controllable to move relative to the second stationary plate to cause the lid to open or to close.
The first mobile plate may include a first track and a second track. The first stationary plate may include a third track and a fourth track. The first track may intersect the third track at a location of one of the first rollers and the second track may intersect the fourth track a location of one of the first rollers. The second mobile plate may include a fifth track and a sixth track. The second stationary plate may include a seventh track and an eighth track. The fifth track may intersect the seventh track at a location of one of the second rollers and the sixth track may intersect the eighth track a location of one of the second rollers. Each of the first tracks and the second tracks may include one or more bends.
An example test system includes a test socket for a test system. The test socket includes a receptacle to make electrical and mechanical connections to a device under test (DUT) and a lid to cover the DUT in the receptacle. The lid is controllable to open automatically to enable receipt of the DUT in the receptacle and, following receipt of the DUT, to close automatically to cover the DUT in the receptacle. Closing the lid applies force to the DUT to complete the electrical and mechanical connections between the test socket and the DUT. The test system includes a pick-and-place robot to move the DUT relative to the test socket. The test system includes one or more processing devices to coordinate operation of the pick-and-place robot and to control opening and closing the lid so that the lid is pivoted when the pick-and-place robot reaches the test socket. The test system may include one or more of the following features, either alone or in combination.
The one or more processing devices may be configured to coordinate opening the lid with movement of the pick-and-place robot. The test system may include a gantry on which the pick-and-place robot is mounted. The gantry may be configured to move the pick-and-place robot relative to the test socket to position the pick-and-place robot for picking the DUT from the test socket or placing the DUT into the test sockets. The test socket may be arranged in at least one array of test sockets so that the test socket is accessible to the pick-and-place robot.
An example test system includes packs, each of which includes test sockets for testing DUTs and at least some test electronics for performing tests on the DUTs in the test sockets. Different packs are configured to have different configurations. The different configurations include at least different numbers of test sockets arranged at different pitches. A test socket among the test sockets includes a receptacle to make electrical and mechanical connections a DUT and a lid to cover the DUT in the receptacle. The lid may be controllable to open automatically to enable receipt of the DUT in the receptacle and, following receipt of the DUT, to close automatically to cover the DUT in the receptacle. Closing the lid applies force to the DUT to make the electrical and mechanical connections between the test socket and the DUT. The test system may include one or more of the following features, either alone or in combination.
The test socket may include an actuator to control opening and closing of the lid. The actuator may be configured to move the lid perpendicularly to the receptacle and to pivot the lid relative to the receptacle. The actuator may be configured to move the lid perpendicularly to the receptacle and to pivot the lid relative to the receptacle. The test socket may include a plate having a track having a first branch extends perpendicularly to the receptacle and a second branch that extends obliquely relative to the receptacle. The lid may include a roller. The actuator may be for moving the roller along the first branch to move the lid perpendicularly to the receptacle and for moving the roller along the second branch to pivot the lid relative to the receptacle.
The test socket may include a first plate on a first side of the lid, where the first plate includes first tracks, a second plate on a second side of the lid, where the second plate includes second tracks, first rollers on a first side of the lid, and second rollers on a second side of the lid. During opening and closing of the lid, the first rollers move along the first tracks and the second rollers move along the second tracks.
Any two or more of the features described in this specification, including in this summary section, can be combined to form implementations not specifically described herein.
The systems, techniques, and processes described herein, or portions thereof, can be implemented as and/or controlled by a computer program product that includes instructions that are stored on one or more non-transitory machine-readable storage media, and that are executable on one or more processing devices to control (e.g., coordinate) the operations described herein. The systems, techniques, and processes described herein, or portions thereof, can be implemented as an apparatus, method, or electronic system that can include one or more processing devices and memory to store executable instructions to implement various operations. The systems, techniques, processes, and/or components described herein may be configured, for example, through design, construction, arrangement, placement, programming, operation, activation, deactivation, and/or control.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference numerals in different figures indicate like elements.
Described herein are example implementations of a test socket and components associated therewith that are usable in a test system, such as an SLT test system. In some implementations, the test system includes an automated gantry and pick-and-place automation to transport a device under test (DUTs) to and from the test socket. The test socket includes a lid assembly (or simply “lid”) and associated structure that is controllable to open prior to arrival of the automated gantry and pick-and-place automation at the test socket. For example, before or during movement to the test socket, the lid of the test socket is controlled to open so that when the automated gantry and pick-and-place automation arrives at the test socket, the pick-and-place automation can retrieve a tested DUT from the test socket and/or place an untested DUT into the test socket. In a case where an untested DUT is placed in the test socket, the lid is controllable to close while the automated gantry and pick-and-place automation move away from the test socket. In some examples, the pick-and-place automation plays no role in opening or closing the lid. That is done while the automated gantry and pick-and-place automation are performing other tasks, such as those described below. As a result, testing throughput can be increased. That is, because the lid is open by the time the automated gantry and pick-and-place automation arrive, the automated gantry and pick-and-place automation do not need to take time to open the lid or otherwise make the test socket accessible. Rather, the pick-and-place automation, upon arrival at the test socket, may immediately remove a tested DUT or place an untested DUT.
In some implementations, the test system is an SLT system; however, the components and features described herein may be implemented in any appropriate testing context. As noted, SLT involves testing an entire device, rather than individual components of the device. If the device passes a battery of system-level tests, it is assumed that the individual components of the device are operating properly. An overview of an example test system is provided followed by more in-depth descriptions of the various components of the test socket introduced in this overview.
The example test system includes multiple subsystems. In this regard, the test system includes a frame that holds an automated gantry and primary pick-and-place automation. A tray feeder contains automation to move trays that hold devices to be tested and/or devices that have been tested into and out of the system. Packs that are movable into and out of the frame contain test electronics for testing devices held in test sockets. The packs may be movable into and out of the system during device testing. An example pack includes electrical test support infrastructure and at least one liquid-to-air heat exchanger. In some implementations, the liquid-to-air heat exchanger may be omitted from, or external to, the pack. An example pack contains one or more rows of test sockets, which are part of test sites in the test system and which hold DUTs. The test sites may each contain an end-user's test site board. The end-user's test site board contains the test socket that holds the DUT in some implementations. Each row in a pack can contain N customer test sites, where N is an integer between one and however many sites can fit in a row based on system size. Each test site may include an actuator to hold the DUT in the test socket. The actuator can be replaced as needed and to accommodate a device's force requirements.
The example test system also includes a service module that houses system infrastructure and electronics used for liquid cooling, power, and test computations and other processing. A housing, also referred to as a “skin” or “outer shell”, encloses at least part of the system and holds cool air generated by the system and circulated down across the test sites and test electronics boards. Additionally, ionized air may be circulated over the test sites before, during, and/or after testing to mitigate electrostatic charge buildup and to reduce or to prevent electrostatic discharge (ESD) events.
The layout of the example test system may be considered advantageous. For example, the test electronics, customer site electronics, and device automation can be configured in a stack. As a result, the test system can be extended to whatever length is required for a testing application, which may enable an efficient usage of the automation. Furthermore, the test system may include a single layer of pick-and-place automation to place DUTs in test sockets and to remove the DUTs from the test sockets. This single layer of pick-and-place automation may reduce the need for multiple automation exchanges found in other test systems, which may improve the test system's reliability. The site-row-pack model also may enhance system configurability and modularity and may reduce the cost of test and serviceability.
Different packs may include test sockets that are sized to hold DUTs having different characteristics, such as different sizes, interfaces, or form factors. For example, the test sockets in one pack 13a may be configured to hold DUTs that have a 10 millimeter (mm) dimension (for example, length, width, or diagonal) and test sockets in another pack 13b may be configured to hold DUTs having a 6 mm dimension. The test sockets may be organized in one or more rows, each containing one or more test sockets. In rows that contain more than one test socket, the test sockets may be arranged at different pitches. A pitch may include the distance between the centers of two adjacent test sockets. For example, the pitch may be the distance between the centers of two adjacent test sockets. The packs may also include test electronics configured to test DUTs held in the test sockets. The test electronics may be customized to test features that are unique to a DUT. The test electronics may include, but are not limited to, pin electronics, parametric measurement units, programmable logic, and/or a microcontroller or other processing device(s). The test electronics may execute, or be used to implement, one or more test routines on each DUT in a test socket.
Test system 10 includes trays 14. In some implementations, each tray includes cells for holding devices to be tested or cells for holding devices that have been tested. The cells may be sized and shaped to hold devices having different sizes, shapes, or form factors. For example, one tray may be configured to hold devices that have a 10 mm dimension and another tray may be configured to hold devices having a 6 mm dimension. In some implementations, there may be two or more trays for each different type of device being tested—for example, one tray containing devices to be tested and one tray containing devices that have been tested, or one tray containing devices to be tested, one tray containing devices that have passed testing, and one tray containing devices that have failed testing. In the example of
Test system 10 includes pick-and-place automation, which is also referred to as “pick-and-place robotics”. As shown in
Pickers are mounted on a robotic gantry (“gantry”) 20 that includes a movable gantry beam 21 that spans across an array of test sockets 15, rails 21 over which the gantry beam moves, and one or more motors (not shown) to control such movement. Gantry beam 21 is configured to move over the test sockets in the directions of arrow 23 (the Y-dimension 25), which are arranged in rows that are perpendicular to the gantry beam. Pickers 19a to 19d are arranged linearly along gantry beam 21 so that the test sockets are accessible to the pickers during system operation. The pickers are also configured to move linearly along the gantry beam to move to different locations and to change a pitch of the pickers along the gantry beam to service different types of DUTs. Accordingly, in this example, pickers 19a to 19d are configured to move in the Cartesian X dimension 26 (arrow 27) and gantry beam 21 is configured to move in the Cartesian Y dimension 25 (arrow 23). Pickers 19a to 19d thus move in a single plane that is substantially parallel to a plane or planes containing test sites 15. Pickers 19a to 19d mounted to gantry beam 21 move along with the gantry beam and are sized and operated so that, with their arms extended or retracted, the pickers clear—that is, do not touch—test sockets that are empty or full. In other words, automation 17 is configured to move anywhere within a defined work area and to pass over all sockets, regardless of the state of the socket (open or closed). This includes clearance for the pickers when they are fully retracted. Linear magnetic motors (“linear motors”), which are not shown in
In some implementations, the pickers perform picking or placing into different packs. For example, two packs on opposite sides of the system, such as packs 81b and 81d of
In
In this example, there are six pickers 31. The six pickers 31 may pick-up or remove six devices or fewer than six devices from tray 34 concurrently or in parallel. In some examples, each picker picks-up a single device; however, not every picker need pick-up a device. As shown in
As described in more detail below, each test socket includes a lid configured—for example, constructed, controlled and/or arranged—to fit over the test socket when a device (a DUT) is placed in the test socket. In example implementations, before a picker arrives at the test socket, the lid for that test socket automatically pivots, rotates, or in any appropriate way moves away from a test socket to expose the test socket and/or a device in the test socket and thereby allow a picker to place a device into the test socket or to remove a device from the test socket. After a device has been placed in the test socket, the lid is controlled to automatically move over and cover the test socket and to apply a force to the device in the test socket that creates, maintains, or both creates and maintains electrical and mechanical connection between the device and the test socket. As explained previously and with respect to
In the example shown in
In
As shown in
In
As shown in
Next, in
Devices that have been tested are removed from test sockets 61 and placed into tray 45 as shown in
However, as partially depicted in
In some implementations, a number (for example, six) DUTs to be picked-up (or locations where DUTs are to be placed) are not in the same row. As a result, the pickers would not pick or place the DUTs concurrently or in parallel. Instead, the pickers and the gantry are controlled by the control system to perform picking or placing using as many steps as needed. For example, the pickers and/or the gantry may be controlled to pick-up two DUTs in parallel on one tray row, then move to pick-up four more DUTS in parallel on a different tray row, then move to place three of those DUTs in parallel into sockets that are aligned in one row, and then move again to place the remaining three DUTs into a different set of sockets aligned in another row.
In this regard, as explained with respect to
In the examples of
The number of packs to be used may be based on DUT test time and the gantry cycle time to achieve greater tester socket utilization and/or automation gantry utilization. The pack can be fully removed from the frame, as shown with respect to
As noted, the test sockets may be configured to hold devices that are to be tested. Different packs may be configured—for example, constructed, arranged, programmed, and/or controlled—to test different types of devices. Accordingly, the test sockets may have different configurations to accommodate different types and/or numbers of devices, to support different types of devices having different form factors, to support different types of devices having different electrical interfaces, to support different types of devices having different thermal requirements, to support different types of devices having different physical interfaces, to support different types of devices having different wireless functionalities, and/or to support different types of devices having electro-mechanical interfaces. In an example, different packs may include, but are not limited to, different numbers of test sockets arranged at different pitches. Furthermore, the test sockets on an individual pack may be configured and/or reconfigured to accommodate different types and/or numbers of devices, to support different types of devices having different form factors, to support different types of devices having different electrical interfaces, to support different types of devices having different thermal requirements, to support different types of devices having different physical interfaces, to support different types of devices having different wireless functionalities, and/or to support different types of devices having electro-mechanical interfaces. Accordingly, arrays or groups of test sockets may differ across different packs or across rows or other subsections of the same pack.
By way of example,
As noted, the test electronics on a pack may include, but are not limited to, pin electronics, parametric measurement unit(s), programmable logic, and/or a microcontroller or other processing device(s). The test electronics may execute, or be used to implement, one or more test routines on devices in test sockets contained on the pack. In this regard, in some implementations, the test electronics may be customizable or reconfigurable based on the DUTs to be tested by the pack.
The interface electronics enables connection between a pack and a backplane of the test system. This connection enables communication between the test system and test electronics on the packs. Example protocols that may be supported on the connections include, but are not limited to, Peripheral Component Interconnect Express (PCIe), Universal Serial Bus (USB), and the Joint Test Action Group (JTAG) standard.
Referring to
In this regard, test system 80 may include a control system. The control system may include circuitry and/or on-board electronics 93 to control operations of test-system 80. The circuitry or on-board electronics are “on-board” in the sense that they are located within the housing of the test system itself. The on-board electronics may include, for example, one or more microcontrollers, one or more microprocessors, programmable logic such as a field-programmable gate array (FPGA), one or application-specific integrated circuits (ASICs), solid state circuitry, or any appropriate combination of two or more of these types of circuitry or processing devices.
In some implementations, on-board components of the control system communicate with a remote computing system 95 (
The control system may include a servo controller or servo control functionality to control the position and velocity of the gantry beam and/or the pickers. An example servo controller may operate to regulate the velocities and positions of motors controlling the gantry beam and pickers based on feedback signals. In general, a servo controller executes a servo loop to generate a command to minimize an error between a commanded value and feedback value, such as a commanded velocity and feedback velocity value. The servo controller may also implement position control in addition to velocity control. To implement position control, a position loop may be added in series with the velocity loop. In some implementations, a proportional-integral-derivative (PID) position provides position and velocity control absent a separate velocity loop.
In some implementations, the control system may be implemented in or be part of a service module 96, which is shown in
As explained previously, devices to be tested and devices that have been tested are stored in trays that are serviced by the pick-and-place robotics. Example trays that may be used include, but are not limited to, Joint Electron Device Engineering Council (JEDEC) trays. In the examples of
In the example of test system 10 (
The pickers described herein, such as pickers 31, may include linear magnetic motors that allow their arms to extend or to retract relative to a test socket. Each picker may include a picker nozzle that is configured to hold a device to be tested or a device that has been tested for transport between the trays and the sockets. In an example, there are six pickers configured to pick-up from one to six devices concurrently from a tray or a socket array. In other examples, however, there may be more than six pickers or fewer than six pickers. The number of pickers in the test system is scalable—for example, one or more pickers may be added to, or removed from, the test system. For example, the number of pickers may be scalable based on characteristics of the packs and on characteristics of the test sockets in the packs. For example, if a pack contains 12 test sockets in a row, the number of pickers may be a factor of 12. In this regard, the pick-and-place automation, such as the number of pickers, can be configured differently depending on DUT test time—different DUT types can take different time to test. Automation configuration does affect maximum throughput in some implementations. For example, if the automation is configured with more pickers, a maximum number of DUTs that can move through the test system per hour will be greater.
Referring back to
As shown in
In an example operation, the actuator controls the gear to rotate and move along helical worm screw 109 in order to implement the perpendicular motion up to a distance above the receptacle, which distance may be measured in single-digit millimeters or low-single-digit centimeters in some examples. During this motion roller 115 moves along first branch 113 of plate 111. Once the appropriate distance above the receptacle is reached as shown in
Reverse operations are performed in order to force the lid onto the socket—for example, to create the mechanical and electrical connections between the DUT and the socket. As explained previously, the perpendicular motion downward toward the socket is made to apply clamping force evenly to the lid to make the create the mechanical and electrical connections between the DUT and the socket. During testing, the lid is kept on the socket with appropriate force to maintain the mechanical and electrical connections between the DUT and the socket. The lid is removed after testing or at other times in some cases, for example, if testing is interrupted and ends.
In this example sequence of operations, DUT 124 is a tested DUT that is to be retrieved by a picker and replaced with an untested DUT in the test socket. As described previously, movements of the lid and pickers are coordinated so that the lid is opened when the picker arrives at the receptacle. Accordingly, as shown in
Referring to
Socket 100b also includes a single first plate 144a on a first side of lid 141 and a single second plate 144b on a second side—for example, an opposite side—of the lid. These first and second plates may be identical in construction and function. The plates are physically connected at one end of each plate to panel 145. First plate 144a includes first tracks 146a and 146b and second plate 144b includes second tracks 147a and 147b. Track 146a on plate 144a, and its corresponding track 147a (partially visible in
In the configuration of
Referring to
Plates 157 include a stationary plate 157a that remains at a fixed location relative to receptacle 155 and a mobile plate 157b that is movable relative to the stationary pate, the receptacle, and a DUT in the receptacle. Also, although not described in detail, plates 158 include a stationary plate 158a that remains at a fixed location relative to receptacle 155 and a mobile plate 158b that is movable relative to the stationary pate, the receptacle, and a DUT in the receptacle. Stationary plate 157a and mobile plate 157b each includes a set of angled tracks. Tracks 159a, 159b on stationary plate 157a may be identical in structure, spaced apart, and each contain a single bend in this example. Tracks 160a, 160b on mobile plate 157b may be identical in structure, spaced apart, and each contain a two bends in this example. Plate configurations and track configurations other than those shown in the figures may be used.
Mobile plate 157b and stationary plate 157a are configured and arranged in parallel such that their respective pairs of track each align at least at a single location and such that this single location changes as mobile plate 157b moves relative to stationary plate 157a, relative to receptacle 155, and relative to the DUT in receptacle 155. Each side of lid 156 contains two sets of rollers that may have identical locations on their respective sides and be identical in structure and function. Accordingly, only rollers 161a and 161b are described. As shown in
In the configuration of
A lid, such as those described herein, is configured for a specific socket application in terms of DUT size and thickness, whether the DUT is configured for top testing, and any DUT-specific heating or cooling requirements An attachment mechanism, which may be considered part of or separate from the lid, includes a stop plate that abuts the socket frame when the lid is full engaged with the test socket to establish a precision Z-dimension (or vertical) reference. The lid includes springs that are compressible to provide precise forces to the device in the socket even if there is fluctuation in force applied by the actuator. The lid includes a cap that contacts the device. This cap is aligned to the socket via alignment pins that also align to thermal control components in the lid. The thermal components are described in more detail below and may include passive heat sinks or active components such as a liquid cooled plate, a thermoelectric cooler (TEC), and/or electric heating elements. The test socket may also include temperature one or more sensors to monitor the temperature of the components. The test socket may also include one or more temperature sensors to monitor the temperature of the test socket or the test site containing the test socket.
In
In this example, cold plate 190 has structure that is at least partly flat, hence use of the term “plate”. However, cold plate 190 may have any appropriate structure, including cubical structures or polyhedral structures. The cold plate may be reduced in temperature using liquid coolant conduits that run to, through, and/or over the cold plate. Examples of liquid coolant that may be used include, but are not limited to, liquid nitrogen, chilled water, an ethylene glycol and water mixture, hydrofluoroether (HFE), and silicone oil. One or more conduits 254 are configured to transport the liquid coolant between cold plate 190 and a supply 255 of the liquid coolant. The supply may be within the housing of the test system or external to the test system. The liquid coolant thus circulates between the cold plate and its supply. A liquid/liquid/heat exchanger 257 may be arranged in the circulation path of the liquid coolant, for example at the supply, to maintain the liquid coolant at a target temperature using chilled water. A pressure regulator 259 in conjunction with an expansion tank 260 may be configured to maintain the pressure of the liquid coolant in the conduits. In some examples, the control system described herein may control the flow of liquid coolant shown in
The flow of liquid coolant to each test site is independently and asynchronously controllable to affect—for example, to reduce—a temperature of a DUT in each test site. The control system described herein may control the flow of liquid coolant to the test site based, for example, on active feedback from temperature sensors at the test site. The temperature sensors may include a first temperature sensor at, on, or near the cap 192 to detect a temperature proximate to the DUT and a second temperature sensor at, on, or near the cap but farther away from the DUT than the first temperature sensor. Additional or fewer temperature sensors may be used, which may be distributed across various locations on the lid. In this example, the two temperature sensors send temperature data to the control system. The control system is configured to control the temperature of the DUT based on the sensed temperatures based on the requirements of one or more test programs being run to test the DUT.
As shown in
The thermal control system may also include one or more—for example two—heaters 264 embedded in, or placed on, the cold plate. The heaters are adjustable by the control system to increase a temperature of the cold plate and, through conduction via the TEC and the cap, to increase the temperature of the DUT during testing. The heaters may be arranged at locations on the cold plate that ensure equal or substantially equal distribution of heat over the cold plate. This temperature increase may be a requirement of a test program, for example. During a heating cycle, the flow of liquid coolant to the cold plate may stop or may be reduced so as not to counteract the heating produced by the heaters. The system may control the heaters to heat the cold plate at a rate that is greater than or equal to a predefined rate required for testing. During cooling using the liquid coolant, the heaters may be turned off or turned down so as not to counteract the cooling produced by the liquid coolant.
In operation, the temperature of a DUT in a test socket is controlled by changing a temperature of cold plate 190 that is thermally conductive. This is done by controlling an amount of liquid coolant that flows through the cold plate and/or controlling a temperature of the cold plate by controlling operation of one or more heaters in contact with the plate. The TEC is controlled to transfer heat between the plate and the DUT to control the temperature of the DUT. Following heated testing, the heaters may be turned-off and the liquid coolant may be controlled to flow through the structure to cool the structure down to a handling temperature, such as 68° F. (20° C.).
In some implementations of the test system described herein, the automated gantry may include more than one gantry beam that moves relative to a horizontal plane of test sites. For example, as shown in
In implementations such as those shown in
In example implementations, the test system is 1.6 meters (m) in width by 8 m in length. However, the test system is not limited to these dimensions and may be any appropriate size. The test system may scale to accommodate a user's needs.
The example test systems described herein may be implemented by, and/or controlled using, one or more computer systems comprising hardware or a combination of hardware and software. For example, a system like the ones described herein may include various controllers and/or processing devices located at various points in the system to control operation of the automated elements. A central computer may coordinate operation among the various controllers or processing devices. The central computer, controllers, and processing devices may execute various software routines to effect control and coordination of the various automated elements.
The example systems described herein can be controlled, at least in part, using one or more computer program products, e.g., one or more computer program tangibly embodied in one or more information carriers, such as one or more non-transitory machine-readable media, for execution by, or to control the operation of, one or more data processing apparatus, e.g., a programmable processor, a computer, multiple computers, and/or programmable logic components.
A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a network.
Actions associated with implementing all or part of the testing can be performed by one or more programmable processors executing one or more computer programs to perform the functions described herein. All or part of the testing can be implemented using special purpose logic circuitry, e.g., an FPGA (field programmable gate array) and/or an ASIC (application-specific integrated circuit).
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only storage area or a random access storage area or both. Elements of a computer (including a server) include one or more processors for executing instructions and one or more storage area devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from, or transfer data to, or both, one or more machine-readable storage media, such as mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Machine-readable storage media suitable for embodying computer program instructions and data include all forms of non-volatile storage area, including by way of example, semiconductor storage area devices, e.g., EPROM, EEPROM, and flash storage area devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
Any “electrical connection” as used herein may include a direct physical connection or a wired or wireless connection that includes or does not include intervening components but that nevertheless allows electrical signals to flow between connected components. Any “connection” involving electrical circuitry that allows signals to flow, unless stated otherwise, includes an electrical connection and is not necessarily a direct physical connection regardless of whether the word “electrical” is used to modify “connection”.
Elements of different implementations described herein may be combined to form other embodiments not specifically set forth above. Elements may be left out of the structures described herein without adversely affecting their operation. Furthermore, various separate elements may be combined into one or more individual elements to perform the functions described herein.
Number | Name | Date | Kind |
---|---|---|---|
557186 | Joseph | Mar 1896 | A |
2224407 | Passur | Dec 1940 | A |
2380026 | Clarke | Jul 1945 | A |
2631775 | Gordon | Mar 1953 | A |
2635524 | Jenkins | Apr 1953 | A |
3120166 | Lyman | Feb 1964 | A |
3360032 | Sherwood | Dec 1967 | A |
3364838 | Bradley | Jan 1968 | A |
3517601 | Courchesne | Jun 1970 | A |
3845286 | Zeiss et al. | Oct 1974 | A |
4147299 | Freeman | Apr 1979 | A |
4233644 | Hiwang et al. | Nov 1980 | A |
4336748 | Martin et al. | Jun 1982 | A |
4379259 | Varadi et al. | Apr 1983 | A |
4477127 | Kume | Oct 1984 | A |
4495545 | Dufresne et al. | Jan 1985 | A |
4526318 | Fleming et al. | Jul 1985 | A |
4620248 | Gitzendanner | Oct 1986 | A |
4648007 | Garner | Mar 1987 | A |
4654727 | Blum et al. | Mar 1987 | A |
4654732 | Mesher | Mar 1987 | A |
4665455 | Mesher | May 1987 | A |
4683424 | Cutright et al. | Jul 1987 | A |
4685303 | Branc et al. | Aug 1987 | A |
4688124 | Scribner et al. | Aug 1987 | A |
4700293 | Grone | Oct 1987 | A |
4713714 | Gatti et al. | Dec 1987 | A |
4739444 | Zushi et al. | Apr 1988 | A |
4754397 | Varaiya et al. | Jun 1988 | A |
4768285 | Woodman, Jr. | Sep 1988 | A |
4775281 | Prentakis | Oct 1988 | A |
4778063 | Ueberreiter | Oct 1988 | A |
4801234 | Cedrone | Jan 1989 | A |
4809881 | Becker | Mar 1989 | A |
4817273 | Lape et al. | Apr 1989 | A |
4817934 | McCormick et al. | Apr 1989 | A |
4851965 | Gabuzda et al. | Jul 1989 | A |
4878137 | Yamashita et al. | Oct 1989 | A |
4881591 | Rignall | Nov 1989 | A |
4888549 | Wilson et al. | Dec 1989 | A |
4911281 | Jenkner | Mar 1990 | A |
4967155 | Magnuson | Oct 1990 | A |
5012187 | Littlebury | Apr 1991 | A |
5045960 | Eding | Sep 1991 | A |
5061630 | Knopf et al. | Oct 1991 | A |
5094584 | Bullock | Mar 1992 | A |
5119270 | Bolton et al. | Jun 1992 | A |
5122914 | Hanson | Jun 1992 | A |
5127684 | Klotz et al. | Jul 1992 | A |
5128813 | Lee | Jul 1992 | A |
5136395 | Ishii et al. | Aug 1992 | A |
5143193 | Geraci | Sep 1992 | A |
5158132 | Guillemot | Oct 1992 | A |
5168424 | Bolton et al. | Dec 1992 | A |
5171183 | Pollard et al. | Dec 1992 | A |
5173819 | Takahashi et al. | Dec 1992 | A |
5176202 | Richard | Jan 1993 | A |
5205132 | Fu | Apr 1993 | A |
5206772 | Hirano et al. | Apr 1993 | A |
5207613 | Ferchau et al. | May 1993 | A |
5210680 | Scheibler | May 1993 | A |
5223785 | Becker | Jun 1993 | A |
5237484 | Ferchau et al. | Aug 1993 | A |
5263537 | Plucinski et al. | Nov 1993 | A |
5268637 | Liken | Dec 1993 | A |
5269698 | Singer | Dec 1993 | A |
5295392 | Hensel et al. | Mar 1994 | A |
5309323 | Gray et al. | May 1994 | A |
5325263 | Singer et al. | Jun 1994 | A |
5343403 | Beidle et al. | Aug 1994 | A |
5349486 | Sugimoto et al. | Sep 1994 | A |
5368072 | Cote | Nov 1994 | A |
5374395 | Robinson et al. | Dec 1994 | A |
5379229 | Parsons et al. | Jan 1995 | A |
5398058 | Hattori | Mar 1995 | A |
5412531 | Clapp, III | May 1995 | A |
5412534 | Cutts et al. | May 1995 | A |
5414591 | Kimura et al. | May 1995 | A |
5426581 | Kishi et al. | Jun 1995 | A |
5434737 | Okimi | Jul 1995 | A |
5469037 | McMurtrey, Sr. et al. | Nov 1995 | A |
5477416 | Schkrohowsky | Dec 1995 | A |
5484012 | Hiratsuka | Jan 1996 | A |
5486681 | Dagnac et al. | Jan 1996 | A |
5491610 | Mok et al. | Feb 1996 | A |
5543727 | Bushard et al. | Aug 1996 | A |
5546250 | Diel | Aug 1996 | A |
5557186 | McMurtrey, Sr. et al. | Sep 1996 | A |
5563766 | Perdue | Oct 1996 | A |
5570740 | Flores et al. | Nov 1996 | A |
5593380 | Bittikofer | Jan 1997 | A |
5601141 | Gordon et al. | Feb 1997 | A |
5604662 | Anderson et al. | Feb 1997 | A |
5610893 | Soga et al. | Mar 1997 | A |
5617430 | Angelotti et al. | Apr 1997 | A |
5644705 | Stanley | Jul 1997 | A |
5646918 | Dimitri et al. | Jul 1997 | A |
5654846 | Wicks et al. | Aug 1997 | A |
5673029 | Behl et al. | Sep 1997 | A |
5694290 | Chang | Dec 1997 | A |
5703843 | Katsuyama et al. | Dec 1997 | A |
5718627 | Wicks | Feb 1998 | A |
5718628 | Nakazato et al. | Feb 1998 | A |
5719985 | Norikazu et al. | Feb 1998 | A |
5731928 | Jabbari et al. | Mar 1998 | A |
5751549 | Eberhardt et al. | May 1998 | A |
5754365 | Beck et al. | May 1998 | A |
5761032 | Jones | Jun 1998 | A |
5785482 | Nobuhiro | Jul 1998 | A |
5793610 | Schmitt et al. | Aug 1998 | A |
5811678 | Hirano | Sep 1998 | A |
5812761 | Seki et al. | Sep 1998 | A |
5813817 | Matsumiya et al. | Sep 1998 | A |
5819842 | Potter et al. | Oct 1998 | A |
5831525 | Harvey | Nov 1998 | A |
5851143 | Hamid | Dec 1998 | A |
5859409 | Kim et al. | Jan 1999 | A |
5859540 | Fukumoto | Jan 1999 | A |
5862037 | Behl | Jan 1999 | A |
5870630 | Reasoner et al. | Feb 1999 | A |
5886639 | Behl et al. | Mar 1999 | A |
5890959 | Pettit et al. | Apr 1999 | A |
5892367 | Magee et al. | Apr 1999 | A |
5894218 | Farnworth et al. | Apr 1999 | A |
5912799 | Grouell et al. | Jun 1999 | A |
5913926 | Anderson et al. | Jun 1999 | A |
5914856 | Morton et al. | Jun 1999 | A |
5927386 | Lin | Jul 1999 | A |
5955877 | Farnworth et al. | Sep 1999 | A |
5956301 | Dimitri et al. | Sep 1999 | A |
5959834 | Chang | Sep 1999 | A |
5999356 | Dimitri et al. | Dec 1999 | A |
5999365 | Hasegawa et al. | Dec 1999 | A |
6000623 | Blatti et al. | Dec 1999 | A |
6005404 | Cochran et al. | Dec 1999 | A |
6005770 | Schmitt | Dec 1999 | A |
6008636 | Miller et al. | Dec 1999 | A |
6008984 | Cunningham et al. | Dec 1999 | A |
6011689 | Wrycraft | Jan 2000 | A |
6031717 | Baddour et al. | Feb 2000 | A |
6034870 | Osborn et al. | Mar 2000 | A |
6042348 | Aakalu et al. | Mar 2000 | A |
6045113 | Masayuki | Apr 2000 | A |
6055814 | Song | May 2000 | A |
6066822 | Nemoto et al. | May 2000 | A |
6067225 | Reznikov et al. | May 2000 | A |
6069792 | Nelik | May 2000 | A |
6084768 | Bolognia | Jul 2000 | A |
6094342 | Dague et al. | Jul 2000 | A |
6104607 | Behl | Aug 2000 | A |
6107813 | Sinsheimer et al. | Aug 2000 | A |
6115250 | Schmitt | Sep 2000 | A |
6122131 | Jeppson | Sep 2000 | A |
6122232 | Schell et al. | Sep 2000 | A |
6124707 | Kim et al. | Sep 2000 | A |
6129428 | Helwig et al. | Oct 2000 | A |
6130817 | Flotho et al. | Oct 2000 | A |
6144553 | Hileman et al. | Nov 2000 | A |
6166901 | Gamble et al. | Dec 2000 | A |
6169413 | Paek et al. | Jan 2001 | B1 |
6169930 | Blachek et al. | Jan 2001 | B1 |
6177805 | Pih | Jan 2001 | B1 |
6178835 | Orriss et al. | Jan 2001 | B1 |
6181557 | Gatti | Jan 2001 | B1 |
6185065 | Hasegawa et al. | Feb 2001 | B1 |
6185097 | Behl | Feb 2001 | B1 |
6188191 | Frees et al. | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6193339 | Behl et al. | Feb 2001 | B1 |
6209842 | Anderson et al. | Apr 2001 | B1 |
6227516 | Webster, Jr. et al. | May 2001 | B1 |
6229275 | Yamamoto | May 2001 | B1 |
6231145 | Shen-Yi | May 2001 | B1 |
6233148 | Shen | May 2001 | B1 |
6236563 | Buican et al. | May 2001 | B1 |
6247944 | Bolognia et al. | Jun 2001 | B1 |
6249824 | Henrichs | Jun 2001 | B1 |
6252769 | Tullstedt et al. | Jun 2001 | B1 |
6262581 | Han | Jul 2001 | B1 |
6262863 | Ostwald et al. | Jul 2001 | B1 |
6272007 | Kitlas et al. | Aug 2001 | B1 |
6272767 | Botruff et al. | Aug 2001 | B1 |
6281677 | Cosci et al. | Aug 2001 | B1 |
6282501 | Assouad | Aug 2001 | B1 |
6285524 | Boigenzahn et al. | Sep 2001 | B1 |
6289678 | Pandolfi | Sep 2001 | B1 |
6297950 | Erwin | Oct 2001 | B1 |
6298672 | Valicoff, Jr. | Oct 2001 | B1 |
6301105 | Glorioso et al. | Oct 2001 | B2 |
6302714 | Bolognia et al. | Oct 2001 | B1 |
6304839 | Ho et al. | Oct 2001 | B1 |
6307386 | Fowler et al. | Oct 2001 | B1 |
6327150 | Levy et al. | Dec 2001 | B1 |
6330154 | Fryers et al. | Dec 2001 | B1 |
6351379 | Cheng | Feb 2002 | B1 |
6353329 | Kiffe | Mar 2002 | B1 |
6354792 | Kobayashi et al. | Mar 2002 | B1 |
6356409 | Price et al. | Mar 2002 | B1 |
6356415 | Kabasawa | Mar 2002 | B1 |
6384593 | Kobayashi et al. | May 2002 | B1 |
6384995 | Smith | May 2002 | B1 |
6388437 | Wolski et al. | May 2002 | B1 |
6388875 | Chen | May 2002 | B1 |
6388878 | Chang | May 2002 | B1 |
6389225 | Malinoski et al. | May 2002 | B1 |
6390756 | Isaacs et al. | May 2002 | B1 |
6411584 | Davis et al. | Jun 2002 | B2 |
6421236 | Montoya et al. | Jul 2002 | B1 |
6434000 | Pandolfi | Aug 2002 | B1 |
6434498 | Ulrich et al. | Aug 2002 | B1 |
6434499 | Ulrich et al. | Aug 2002 | B1 |
6459572 | Huang et al. | Oct 2002 | B1 |
6464080 | Morris et al. | Oct 2002 | B1 |
6467153 | Butts et al. | Oct 2002 | B2 |
6473297 | Behl et al. | Oct 2002 | B1 |
6473301 | Levy et al. | Oct 2002 | B1 |
6476627 | Pelissier et al. | Nov 2002 | B1 |
6477044 | Foley et al. | Nov 2002 | B2 |
6477442 | Valerino, Sr. | Nov 2002 | B1 |
6480380 | French et al. | Nov 2002 | B1 |
6480382 | Cheng | Nov 2002 | B2 |
6487071 | Tata et al. | Nov 2002 | B1 |
6489793 | Jones et al. | Dec 2002 | B2 |
6494663 | Ostwald et al. | Dec 2002 | B2 |
6515470 | Suzuki et al. | Feb 2003 | B2 |
6525933 | Eland | Feb 2003 | B2 |
6526841 | Wanek et al. | Mar 2003 | B1 |
6535384 | Huang | Mar 2003 | B2 |
6537013 | Emberty et al. | Mar 2003 | B2 |
6544309 | Hoefer et al. | Apr 2003 | B1 |
6546445 | Hayes | Apr 2003 | B1 |
6553279 | Brown | Apr 2003 | B2 |
6553532 | Aoki | Apr 2003 | B1 |
6560107 | Beck et al. | May 2003 | B1 |
6565163 | Behl et al. | May 2003 | B2 |
6566859 | Wolski et al. | May 2003 | B2 |
6567266 | Ives et al. | May 2003 | B2 |
6568770 | Gonska et al. | May 2003 | B2 |
6570734 | Ostwald et al. | May 2003 | B2 |
6577586 | Yang et al. | Jun 2003 | B1 |
6577687 | Hall et al. | Jun 2003 | B2 |
6618246 | Sullivan et al. | Sep 2003 | B2 |
6618254 | Ives | Sep 2003 | B2 |
6618548 | Shuji et al. | Sep 2003 | B1 |
6626846 | Spencer | Sep 2003 | B2 |
6628518 | Behl et al. | Sep 2003 | B2 |
6635115 | Fairbairn et al. | Oct 2003 | B1 |
6640235 | Anderson | Oct 2003 | B1 |
6644982 | Ondricek et al. | Nov 2003 | B1 |
6651192 | Viglione et al. | Nov 2003 | B1 |
6654240 | Tseng et al. | Nov 2003 | B1 |
6679128 | Wanek et al. | Jan 2004 | B2 |
6693757 | Hayakawa et al. | Feb 2004 | B2 |
6701003 | Feinstein | Mar 2004 | B1 |
6736583 | Ostwald et al. | May 2004 | B2 |
6741529 | Getreuer | May 2004 | B1 |
6746648 | Mattila et al. | Jun 2004 | B1 |
6751093 | Hsu et al. | Jun 2004 | B1 |
6791785 | Messenger et al. | Sep 2004 | B1 |
6791799 | Fletcher | Sep 2004 | B2 |
6798651 | Syring et al. | Sep 2004 | B2 |
6798972 | Ito et al. | Sep 2004 | B1 |
6801834 | Konshak et al. | Oct 2004 | B1 |
6806700 | Wanek et al. | Oct 2004 | B2 |
6808353 | Ostwald et al. | Oct 2004 | B2 |
6811427 | Garrett et al. | Nov 2004 | B2 |
6822412 | Gan et al. | Nov 2004 | B1 |
6822858 | Allgeyer et al. | Nov 2004 | B2 |
6826046 | Muncaster et al. | Nov 2004 | B1 |
6830372 | Ju et al. | Dec 2004 | B2 |
6832929 | Garrett et al. | Dec 2004 | B2 |
6838051 | Marquiss et al. | Jan 2005 | B2 |
6854174 | Jiang | Feb 2005 | B2 |
6861861 | Song | Mar 2005 | B2 |
6862173 | Konshak et al. | Mar 2005 | B1 |
6867939 | Katahara et al. | Mar 2005 | B2 |
6882141 | Kim | Apr 2005 | B2 |
6892328 | Klein et al. | May 2005 | B2 |
6904479 | Hall et al. | Jun 2005 | B2 |
6908330 | Garrett et al. | Jun 2005 | B2 |
6928336 | Peshkin et al. | Aug 2005 | B2 |
6937432 | Sri-Jayantha et al. | Aug 2005 | B2 |
6957291 | Moon et al. | Oct 2005 | B2 |
6960908 | Chung et al. | Nov 2005 | B2 |
6965811 | Dickey et al. | Nov 2005 | B2 |
6974017 | Oseguera | Dec 2005 | B2 |
6976190 | Goldstone | Dec 2005 | B1 |
6980381 | Gray et al. | Dec 2005 | B2 |
6982872 | Behl et al. | Jan 2006 | B2 |
7002363 | Mathieu | Feb 2006 | B2 |
7006325 | Emberty et al. | Feb 2006 | B2 |
7013198 | Haas | Mar 2006 | B2 |
7021883 | Plutt et al. | Apr 2006 | B1 |
7039924 | Goodman et al. | May 2006 | B2 |
7047106 | Butka et al. | May 2006 | B2 |
7054150 | Orriss et al. | May 2006 | B2 |
7070323 | Wanek et al. | Jul 2006 | B2 |
7076391 | Pakzad et al. | Jul 2006 | B1 |
7077614 | Hasper et al. | Jul 2006 | B1 |
7084655 | Min et al. | Aug 2006 | B2 |
7088541 | Orriss et al. | Aug 2006 | B2 |
7092251 | Henry | Aug 2006 | B1 |
7106582 | Albrecht et al. | Sep 2006 | B2 |
7123477 | Coglitore et al. | Oct 2006 | B2 |
7126777 | Flechsig et al. | Oct 2006 | B2 |
7130138 | Lum et al. | Oct 2006 | B2 |
7134553 | Stephens | Nov 2006 | B2 |
7139145 | Archibald et al. | Nov 2006 | B1 |
7142419 | Cochrane | Nov 2006 | B2 |
7164579 | Muncaster et al. | Jan 2007 | B2 |
7167360 | Inoue et al. | Jan 2007 | B2 |
7181458 | Higashi | Feb 2007 | B1 |
7203021 | Ryan et al. | Apr 2007 | B1 |
7203060 | Kay et al. | Apr 2007 | B2 |
7206201 | Behl et al. | Apr 2007 | B2 |
7216968 | Smith et al. | May 2007 | B2 |
7219028 | Bae et al. | May 2007 | B2 |
7219273 | Fisher et al. | May 2007 | B2 |
7227746 | Tanaka et al. | Jun 2007 | B2 |
7232101 | Wanek et al. | Jun 2007 | B2 |
7243043 | Shin | Jul 2007 | B2 |
7248467 | Sri-Jayantha et al. | Jul 2007 | B2 |
7249992 | Kalenian et al. | Jul 2007 | B2 |
7251544 | Christie, Jr. | Jul 2007 | B2 |
7257747 | Song | Aug 2007 | B2 |
7259966 | Connelly, Jr. et al. | Aug 2007 | B2 |
7273344 | Ostwald et al. | Sep 2007 | B2 |
7280352 | Wilson et al. | Oct 2007 | B2 |
7280353 | Wendel et al. | Oct 2007 | B2 |
7304855 | Milligan et al. | Dec 2007 | B1 |
7315447 | Inoue et al. | Jan 2008 | B2 |
7333283 | Akamatsu et al. | Feb 2008 | B2 |
7349205 | Hall et al. | Mar 2008 | B2 |
7353524 | Lin et al. | Apr 2008 | B1 |
7362961 | Shigeru et al. | Apr 2008 | B2 |
7375960 | Blaalid et al. | May 2008 | B2 |
7385385 | Magliocco et al. | Jun 2008 | B2 |
7387485 | Dickey et al. | Jun 2008 | B2 |
7390458 | Burow et al. | Jun 2008 | B2 |
7391609 | Wendel et al. | Jun 2008 | B2 |
7395133 | Lowe | Jul 2008 | B2 |
7403451 | Goodman | Jul 2008 | B2 |
7408338 | Ham et al. | Aug 2008 | B2 |
7416332 | Rountree et al. | Aug 2008 | B2 |
7421623 | Haugh | Sep 2008 | B2 |
7437212 | Farchmin | Oct 2008 | B2 |
7447011 | Wade et al. | Nov 2008 | B2 |
7457112 | Fukuda et al. | Nov 2008 | B2 |
7467024 | Flitsch | Dec 2008 | B2 |
7476362 | Angros | Jan 2009 | B2 |
7480807 | Wilson et al. | Jan 2009 | B2 |
7483269 | Marvin, Jr. et al. | Jan 2009 | B1 |
7505264 | Hall et al. | Mar 2009 | B2 |
7554811 | Scicluna et al. | Jun 2009 | B2 |
7568122 | Mechalke et al. | Jul 2009 | B2 |
7570455 | Deguchi et al. | Aug 2009 | B2 |
7573715 | Mojaver et al. | Aug 2009 | B2 |
7584016 | Weaver | Sep 2009 | B2 |
7584851 | Hong et al. | Sep 2009 | B2 |
7612996 | Atkins et al. | Nov 2009 | B2 |
7625027 | Kiaie et al. | Dec 2009 | B2 |
7630196 | Hall et al. | Dec 2009 | B2 |
7635246 | Neeper | Dec 2009 | B2 |
7643289 | Ye et al. | Jan 2010 | B2 |
7646596 | Ng | Jan 2010 | B2 |
7710684 | Koujiro | May 2010 | B2 |
7729107 | Atkins et al. | Jun 2010 | B2 |
7729112 | Atkins | Jun 2010 | B2 |
7737715 | Tilbor et al. | Jun 2010 | B2 |
7777985 | Barkley | Aug 2010 | B2 |
7778031 | Merrow et al. | Aug 2010 | B1 |
7789267 | Hutchinson et al. | Sep 2010 | B2 |
7796724 | Ito | Sep 2010 | B2 |
7848106 | Merrow | Dec 2010 | B2 |
7852723 | Onagi et al. | Dec 2010 | B2 |
7890207 | Toscano et al. | Feb 2011 | B2 |
7904211 | Merrow et al. | Mar 2011 | B2 |
7908029 | Slocum, III | Mar 2011 | B2 |
7911778 | Merrow | Mar 2011 | B2 |
7920380 | Merrow et al. | Apr 2011 | B2 |
7929303 | Merrow | Apr 2011 | B1 |
7932734 | Merrow et al. | Apr 2011 | B2 |
7936534 | Orriss et al. | May 2011 | B2 |
7940529 | Merrow et al. | May 2011 | B2 |
7945424 | Garcia et al. | May 2011 | B2 |
7987018 | Polyakov et al. | Jul 2011 | B2 |
7995349 | Merrow et al. | Aug 2011 | B2 |
7996174 | Garcia et al. | Aug 2011 | B2 |
8041449 | Noble et al. | Oct 2011 | B2 |
8046187 | Klein et al. | Oct 2011 | B2 |
8061155 | Farquhar et al. | Nov 2011 | B2 |
8086343 | Slocum, III | Dec 2011 | B2 |
8095234 | Polyakov et al. | Jan 2012 | B2 |
8102173 | Merrow | Jan 2012 | B2 |
8116079 | Merrow | Feb 2012 | B2 |
8117480 | Merrow et al. | Feb 2012 | B2 |
8140182 | Noble et al. | Mar 2012 | B2 |
8160739 | Toscano et al. | Apr 2012 | B2 |
8167521 | Nakao et al. | May 2012 | B2 |
8238099 | Merrow | Aug 2012 | B2 |
8279603 | Merrow et al. | Oct 2012 | B2 |
8305751 | Merrow | Nov 2012 | B2 |
8318512 | Shah et al. | Nov 2012 | B2 |
8339445 | Yoro et al. | Dec 2012 | B2 |
8405971 | Merrow et al. | Mar 2013 | B2 |
8466699 | Merrow et al. | Jun 2013 | B2 |
8467180 | Merrow et al. | Jun 2013 | B2 |
8482915 | Merrow | Jul 2013 | B2 |
8485511 | Di Stefano | Jul 2013 | B2 |
8499611 | Merrow et al. | Aug 2013 | B2 |
8504194 | Mitsuyoshi | Aug 2013 | B2 |
8547123 | Merrow et al. | Oct 2013 | B2 |
8549912 | Merrow et al. | Oct 2013 | B2 |
8628239 | Merrow et al. | Jan 2014 | B2 |
8631698 | Merrow et al. | Jan 2014 | B2 |
8655482 | Merrow | Feb 2014 | B2 |
8687349 | Truebenbach | Apr 2014 | B2 |
8687356 | Merrow | Apr 2014 | B2 |
8755177 | Farquhar et al. | Jun 2014 | B2 |
8770204 | Bencivenni et al. | Jul 2014 | B2 |
8886946 | Fraser et al. | Nov 2014 | B1 |
8926196 | Detofsky et al. | Jan 2015 | B2 |
8941726 | Marks et al. | Jan 2015 | B2 |
8964361 | Truebenbach | Feb 2015 | B2 |
8967605 | Kogure | Mar 2015 | B2 |
8970244 | Di Stefano et al. | Mar 2015 | B2 |
9001456 | Campbell et al. | Apr 2015 | B2 |
9002186 | Akers et al. | Apr 2015 | B2 |
9196518 | Hofmeister et al. | Nov 2015 | B1 |
9201093 | Chae-Yoon | Dec 2015 | B2 |
9459312 | Arena et al. | Oct 2016 | B2 |
9463574 | Purkayastha et al. | Oct 2016 | B2 |
9483040 | Kazumasa | Nov 2016 | B2 |
9580245 | Mansfield et al. | Feb 2017 | B2 |
9606145 | Peng et al. | Mar 2017 | B2 |
9779780 | Martino | Oct 2017 | B2 |
9789605 | Meier et al. | Oct 2017 | B2 |
10359779 | Duda et al. | Jul 2019 | B2 |
10466273 | Hwang et al. | Nov 2019 | B1 |
10675487 | Zwart et al. | Jun 2020 | B2 |
10725091 | Bowyer et al. | Jul 2020 | B2 |
10845410 | Bowyer et al. | Nov 2020 | B2 |
11002787 | Wolff et al. | May 2021 | B2 |
11754596 | McKenna et al. | Sep 2023 | B2 |
11754622 | Akers et al. | Sep 2023 | B2 |
20010006453 | Glorioso et al. | Jul 2001 | A1 |
20010044023 | Johnson et al. | Nov 2001 | A1 |
20010046118 | Yamanashi et al. | Nov 2001 | A1 |
20010048590 | Behl et al. | Dec 2001 | A1 |
20020009391 | Marquiss et al. | Jan 2002 | A1 |
20020026258 | Suzuki et al. | Feb 2002 | A1 |
20020030981 | Sullivan et al. | Mar 2002 | A1 |
20020044416 | Harmon et al. | Apr 2002 | A1 |
20020051338 | Jiang et al. | May 2002 | A1 |
20020056057 | Co | May 2002 | A1 |
20020071248 | Huang et al. | Jun 2002 | A1 |
20020079422 | Jiang | Jun 2002 | A1 |
20020090320 | Burow et al. | Jul 2002 | A1 |
20020116087 | Brown | Aug 2002 | A1 |
20020161971 | Dimitri et al. | Oct 2002 | A1 |
20020172004 | Ives et al. | Nov 2002 | A1 |
20030035271 | Lelong et al. | Feb 2003 | A1 |
20030043550 | Ives | Mar 2003 | A1 |
20030121337 | Wanek et al. | Jul 2003 | A1 |
20030206397 | Allgeyer et al. | Nov 2003 | A1 |
20040051544 | Malathong et al. | Mar 2004 | A1 |
20040165489 | Goodman et al. | Aug 2004 | A1 |
20040207387 | Chung et al. | Oct 2004 | A1 |
20040208354 | Vilela | Oct 2004 | A1 |
20040230399 | Shin | Nov 2004 | A1 |
20040236465 | Butka et al. | Nov 2004 | A1 |
20040251866 | Gan et al. | Dec 2004 | A1 |
20040264121 | Orriss et al. | Dec 2004 | A1 |
20050004703 | Christie | Jan 2005 | A1 |
20050010836 | Bae et al. | Jan 2005 | A1 |
20050012498 | Lee et al. | Jan 2005 | A1 |
20050018397 | Kav et al. | Jan 2005 | A1 |
20050055601 | Wilson et al. | Mar 2005 | A1 |
20050057849 | Twogood et al. | Mar 2005 | A1 |
20050062463 | Kim | Mar 2005 | A1 |
20050069400 | Dickey et al. | Mar 2005 | A1 |
20050109131 | Wanek et al. | May 2005 | A1 |
20050116702 | Wanek et al. | Jun 2005 | A1 |
20050131578 | Weaver | Jun 2005 | A1 |
20050164530 | Yates et al. | Jul 2005 | A1 |
20050179457 | Min et al. | Aug 2005 | A1 |
20050207059 | Cochrane | Sep 2005 | A1 |
20050216811 | Song | Sep 2005 | A1 |
20050219809 | Muncaster et al. | Oct 2005 | A1 |
20050225338 | Sands et al. | Oct 2005 | A1 |
20050270737 | Wilson et al. | Dec 2005 | A1 |
20060010353 | Haugh | Jan 2006 | A1 |
20060023331 | Flechsia et al. | Feb 2006 | A1 |
20060028802 | Shaw et al. | Feb 2006 | A1 |
20060035563 | Kalenian et al. | Feb 2006 | A1 |
20060066974 | Akamatsu et al. | Mar 2006 | A1 |
20060130316 | Takase et al. | Jun 2006 | A1 |
20060190205 | Klein et al. | Aug 2006 | A1 |
20060208757 | Bjork | Sep 2006 | A1 |
20060227517 | Zayas et al. | Oct 2006 | A1 |
20060250766 | Blaalid et al. | Nov 2006 | A1 |
20070018673 | Hsieh | Jan 2007 | A1 |
20070034368 | Atkins et al. | Feb 2007 | A1 |
20070035874 | Wendel et al. | Feb 2007 | A1 |
20070035875 | Hall et al. | Feb 2007 | A1 |
20070040570 | Gopal et al. | Feb 2007 | A1 |
20070053154 | Fukuda et al. | Mar 2007 | A1 |
20070082907 | Canada et al. | Apr 2007 | A1 |
20070127202 | Scicluna et al. | Jun 2007 | A1 |
20070127206 | Wade et al. | Jun 2007 | A1 |
20070144542 | Bencivenni et al. | Jun 2007 | A1 |
20070152655 | Ham et al. | Jul 2007 | A1 |
20070183871 | Hofmeister et al. | Aug 2007 | A1 |
20070185676 | Ding et al. | Aug 2007 | A1 |
20070195497 | Atkins | Aug 2007 | A1 |
20070248142 | Rountree et al. | Oct 2007 | A1 |
20070253157 | Atkins et al. | Nov 2007 | A1 |
20070286045 | Onagi et al. | Dec 2007 | A1 |
20070296408 | Liao et al. | Dec 2007 | A1 |
20070296426 | Krishnaswami et al. | Dec 2007 | A1 |
20080002538 | Raaymakers | Jan 2008 | A1 |
20080007865 | Orriss et al. | Jan 2008 | A1 |
20080030945 | Mojaver et al. | Feb 2008 | A1 |
20080112075 | Farquhar et al. | May 2008 | A1 |
20080191725 | Cojocneanu et al. | Aug 2008 | A1 |
20080238460 | Kress et al. | Oct 2008 | A1 |
20080239564 | Farquhar et al. | Oct 2008 | A1 |
20080282275 | Zaczek et al. | Nov 2008 | A1 |
20080282278 | Barkley | Nov 2008 | A1 |
20080297140 | An et al. | Dec 2008 | A1 |
20080317575 | Yamazaki et al. | Dec 2008 | A1 |
20090028669 | Rebstock | Jan 2009 | A1 |
20090082907 | Stuvel et al. | Mar 2009 | A1 |
20090122443 | Farquhar et al. | May 2009 | A1 |
20090142169 | Garcia et al. | Jun 2009 | A1 |
20090153992 | Garcia et al. | Jun 2009 | A1 |
20090153993 | Garcia et al. | Jun 2009 | A1 |
20090153994 | Merrow et al. | Jun 2009 | A1 |
20090175705 | Nakao et al. | Jul 2009 | A1 |
20090261047 | Merrow | Oct 2009 | A1 |
20090261228 | Merrow | Oct 2009 | A1 |
20090261229 | Merrow | Oct 2009 | A1 |
20090262444 | Polyakov et al. | Oct 2009 | A1 |
20090262445 | Noble et al. | Oct 2009 | A1 |
20090262454 | Merrow | Oct 2009 | A1 |
20090262455 | Merrow | Oct 2009 | A1 |
20090265032 | Toscano et al. | Oct 2009 | A1 |
20090265043 | Merrow et al. | Oct 2009 | A1 |
20090265136 | Garcia et al. | Oct 2009 | A1 |
20090297328 | Slocum, III | Dec 2009 | A1 |
20100074404 | Ito | Mar 2010 | A1 |
20100083732 | Merrow et al. | Apr 2010 | A1 |
20100165498 | Merrow et al. | Jul 2010 | A1 |
20100165501 | Polyakov et al. | Jul 2010 | A1 |
20100168906 | Toscano et al. | Jul 2010 | A1 |
20100172722 | Noble et al. | Jul 2010 | A1 |
20100193661 | Merrow | Aug 2010 | A1 |
20100194253 | Merrow et al. | Aug 2010 | A1 |
20100195236 | Merrow et al. | Aug 2010 | A1 |
20100220183 | Yoro | Sep 2010 | A1 |
20100230885 | Di Stefano | Sep 2010 | A1 |
20100249993 | Mitsuyoshi | Sep 2010 | A1 |
20100265609 | Merrow et al. | Oct 2010 | A1 |
20100265610 | Merrow et al. | Oct 2010 | A1 |
20100279439 | Shah et al. | Nov 2010 | A1 |
20100283476 | Shen | Nov 2010 | A1 |
20100302678 | Merrow | Dec 2010 | A1 |
20110011844 | Merrow et al. | Jan 2011 | A1 |
20110012631 | Merrow et al. | Jan 2011 | A1 |
20110012632 | Merrow et al. | Jan 2011 | A1 |
20110013362 | Merrow et al. | Jan 2011 | A1 |
20110013665 | Merrow et al. | Jan 2011 | A1 |
20110013666 | Merrow et al. | Jan 2011 | A1 |
20110013667 | Merrow et al. | Jan 2011 | A1 |
20110064546 | Merrow | Mar 2011 | A1 |
20110074458 | Di Stefano et al. | Mar 2011 | A1 |
20110148020 | Kogure | Jun 2011 | A1 |
20110157825 | Merrow et al. | Jun 2011 | A1 |
20110172807 | Merrow | Jul 2011 | A1 |
20110185811 | Merrow et al. | Aug 2011 | A1 |
20110189934 | Merrow | Aug 2011 | A1 |
20110236163 | Smith et al. | Sep 2011 | A1 |
20110261483 | Campbell et al. | Oct 2011 | A1 |
20110305132 | Merrow et al. | Dec 2011 | A1 |
20110310724 | Martino | Dec 2011 | A1 |
20120023370 | Truebenbach | Jan 2012 | A1 |
20120034054 | Polyakov et al. | Feb 2012 | A1 |
20120050903 | Campbell et al. | Mar 2012 | A1 |
20120106351 | Gohel et al. | May 2012 | A1 |
20120321435 | Truebenbach | Dec 2012 | A1 |
20130071224 | Merrow et al. | Mar 2013 | A1 |
20130108253 | Akers et al. | May 2013 | A1 |
20130181576 | Shiozawa et al. | Jul 2013 | A1 |
20130200915 | Panagas | Aug 2013 | A1 |
20130256967 | Carvalho | Oct 2013 | A1 |
20130340445 | Yosef et al. | Dec 2013 | A1 |
20130345836 | Ikushima | Dec 2013 | A1 |
20140002123 | Lee | Jan 2014 | A1 |
20140093214 | Detofsky et al. | Apr 2014 | A1 |
20140160270 | Naito et al. | Jun 2014 | A1 |
20140260333 | Lopez et al. | Sep 2014 | A1 |
20140271064 | Merrow et al. | Sep 2014 | A1 |
20140306728 | Arena et al. | Oct 2014 | A1 |
20150127986 | Tahara | May 2015 | A1 |
20160041202 | Peng et al. | Feb 2016 | A1 |
20170059635 | Orchanian et al. | Mar 2017 | A1 |
20170277185 | Duda et al. | Sep 2017 | A1 |
20170285102 | Ding et al. | Oct 2017 | A1 |
20180294244 | Onozawa et al. | Oct 2018 | A1 |
20180313890 | Wolff | Nov 2018 | A1 |
20180314249 | Appu et al. | Nov 2018 | A1 |
20190064252 | Bowyer et al. | Feb 2019 | A1 |
20190064254 | Bowyer et al. | Feb 2019 | A1 |
20190064261 | Bowyer et al. | Feb 2019 | A1 |
20190064305 | Khalid | Feb 2019 | A1 |
20190277907 | Wolff et al. | Sep 2019 | A1 |
20200025823 | Teich et al. | Jan 2020 | A1 |
20200319231 | Adams et al. | Oct 2020 | A1 |
20210293877 | Gopal | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
1114109 | Jul 2003 | CM |
1177187 | Mar 1998 | CN |
1192544 | Sep 1998 | CN |
2341188 | Sep 1999 | CN |
3786944 | Nov 1993 | DE |
69111634 | May 1996 | DE |
69400145 | Oct 1996 | DE |
19701548 | Aug 1997 | DE |
19804813 | Sep 1998 | DE |
69614460 | Jun 2002 | DE |
69626584 | Dec 2003 | DE |
19861388 | Aug 2007 | DE |
0242970 | Feb 1987 | EP |
0277634 | Aug 1988 | EP |
0210497 | Dec 1988 | EP |
0356977 | Oct 1990 | EP |
0442642 | Jun 1991 | EP |
0466073 | Jan 1992 | EP |
0523633 | Jan 1993 | EP |
0582017 | Feb 1994 | EP |
0617570 | Sep 1994 | EP |
0635836 | Jan 1995 | EP |
0657887 | Jun 1995 | EP |
0757351 | Feb 1997 | EP |
0776009 | Jul 1997 | EP |
0757320 | Feb 1998 | EP |
0741508 | Oct 1998 | EP |
1045301 | Oct 2000 | EP |
0840476 | Jan 2001 | EP |
1209557 | May 2002 | EP |
1234308 | Aug 2002 | EP |
1422713 | May 2004 | EP |
1612798 | Jan 2006 | EP |
1760722 | Mar 2007 | EP |
2241118 | Aug 1991 | GB |
2276275 | Sep 1994 | GB |
2299436 | Oct 1996 | GB |
2312984 | Nov 1997 | GB |
2328782 | Mar 1999 | GB |
2347597 | Sep 2000 | GB |
2439844 | Jan 2008 | GB |
61115279 | Jun 1986 | JP |
62177621 | Aug 1987 | JP |
62239394 | Oct 1987 | JP |
62251915 | Nov 1987 | JP |
63002160 | Jan 1988 | JP |
63004483 | Jan 1988 | JP |
63016482 | Jan 1988 | JP |
63062057 | Mar 1988 | JP |
63201946 | Aug 1988 | JP |
63214972 | Sep 1988 | JP |
63269376 | Nov 1988 | JP |
S63195697 | Dec 1988 | JP |
84-089034 | Apr 1989 | JP |
2091565 | Mar 1990 | JP |
12098197 | Apr 1990 | JP |
2185784 | Jul 1990 | JP |
2199690 | Aug 1990 | JP |
2278375 | Nov 1990 | JP |
2297770 | Dec 1990 | JP |
3008066 | Jan 1991 | JP |
H03-8086 | Jan 1991 | JP |
H03-52183 | Mar 1991 | JP |
3078160 | Apr 1991 | JP |
H03-78160 | Apr 1991 | JP |
3105704 | May 1991 | JP |
3207947 | Sep 1991 | JP |
3210662 | Sep 1991 | JP |
3212859 | Sep 1991 | JP |
3214490 | Sep 1991 | JP |
3240821 | Oct 1991 | JP |
3295071 | Dec 1991 | JP |
4017134 | Jan 1992 | JP |
4143989 | May 1992 | JP |
4172658 | Jun 1992 | JP |
4214288 | Aug 1992 | JP |
4247385 | Sep 1992 | JP |
4259956 | Sep 1992 | JP |
4307440 | Oct 1992 | JP |
4325923 | Nov 1992 | JP |
5035053 | Feb 1993 | JP |
5035415 | Feb 1993 | JP |
5066896 | Mar 1993 | JP |
5068257 | Mar 1993 | JP |
5073566 | Mar 1993 | JP |
5073803 | Mar 1993 | JP |
5101603 | Apr 1993 | JP |
5173718 | Jul 1993 | JP |
5189163 | Jul 1993 | JP |
5204725 | Aug 1993 | JP |
5223551 | Aug 1993 | JP |
H05319520 | Dec 1993 | JP |
6004220 | Jan 1994 | JP |
6004981 | Jan 1994 | JP |
H6162645 | Jun 1994 | JP |
H6181561 | Jun 1994 | JP |
H6215515 | Aug 1994 | JP |
H6274943 | Sep 1994 | JP |
6314173 | Nov 1994 | JP |
7007321 | Jan 1995 | JP |
7029364 | Jan 1995 | JP |
H07-29364 | Jan 1995 | JP |
H07010212 | Jan 1995 | JP |
7037376 | Feb 1995 | JP |
7056654 | Mar 1995 | JP |
7111078 | Apr 1995 | JP |
7115497 | May 1995 | JP |
7201082 | Aug 1995 | JP |
7226023 | Aug 1995 | JP |
H07-230669 | Aug 1995 | JP |
1982246 | Oct 1995 | JP |
7257525 | Oct 1995 | JP |
7307059 | Nov 1995 | JP |
H087994 | Jan 1996 | JP |
8030398 | Feb 1996 | JP |
8030407 | Feb 1996 | JP |
8079672 | Mar 1996 | JP |
H08106776 | Apr 1996 | JP |
H08110821 | Apr 1996 | JP |
H08167231 | Jun 1996 | JP |
H08212015 | Aug 1996 | JP |
H08244313 | Sep 1996 | JP |
H08263525 | Oct 1996 | JP |
H08263909 | Oct 1996 | JP |
2553315 | Nov 1996 | JP |
H08297957 | Nov 1996 | JP |
0944445 | Feb 1997 | JP |
09082081 | Mar 1997 | JP |
H09064571 | Mar 1997 | JP |
2635127 | Jul 1997 | JP |
H09306094 | Nov 1997 | JP |
H09319466 | Dec 1997 | JP |
10040021 | Feb 1998 | JP |
10049365 | Feb 1998 | JP |
10064173 | Mar 1998 | JP |
10098521 | Apr 1998 | JP |
2771297 | Jul 1998 | JP |
10275137 | Oct 1998 | JP |
10281799 | Oct 1998 | JP |
10320128 | Dec 1998 | JP |
10340139 | Dec 1998 | JP |
2862679 | Mar 1999 | JP |
11134852 | May 1999 | JP |
11139839 | May 1999 | JP |
2906930 | Jun 1999 | JP |
11203201 | Jul 1999 | JP |
11213182 | Aug 1999 | JP |
11327800 | Nov 1999 | JP |
11353128 | Dec 1999 | JP |
11353129 | Dec 1999 | JP |
2000-056935 | Feb 2000 | JP |
2000066845 | Mar 2000 | JP |
2000112831 | Apr 2000 | JP |
2000113563 | Apr 2000 | JP |
2000114759 | Apr 2000 | JP |
2000125290 | Apr 2000 | JP |
2000132704 | May 2000 | JP |
2000149431 | May 2000 | JP |
3052183 | Jun 2000 | JP |
2000228686 | Aug 2000 | JP |
2000236188 | Aug 2000 | JP |
2000242598 | Sep 2000 | JP |
3097994 | Oct 2000 | JP |
2000278647 | Oct 2000 | JP |
2000305860 | Nov 2000 | JP |
2001005501 | Jan 2001 | JP |
2001023270 | Jan 2001 | JP |
2001100925 | Apr 2001 | JP |
2002042446 | Feb 2002 | JP |
2007087498 | Apr 2007 | JP |
2007188615 | Jul 2007 | JP |
2007220184 | Aug 2007 | JP |
2007293936 | Nov 2007 | JP |
2007305206 | Nov 2007 | JP |
2007305290 | Nov 2007 | JP |
2007328761 | Dec 2007 | JP |
2008503824 | Feb 2008 | JP |
2000235762 | Feb 2021 | JP |
19980035445 | Aug 1998 | KR |
0176527 | Apr 1999 | KR |
10-0214308 | Aug 1999 | KR |
10-0403039 | Dec 2003 | KR |
10-2004-0053235 | Jun 2004 | KR |
10-0639436 | Oct 2006 | KR |
10-2007-0024354 | Mar 2007 | KR |
10-2013-0093262 | Aug 2013 | KR |
10-2013-0111915 | Oct 2013 | KR |
10-1420185 | Sep 2014 | KR |
10-2017-0095655 | Aug 2017 | KR |
200486462 | May 2018 | KR |
10-2019-0106616 | Sep 2019 | KR |
45223 | Jan 1998 | SG |
387574 | Apr 2000 | TW |
583716 | May 1989 | UA |
198901682 | Feb 1989 | WO |
1997006532 | Feb 1997 | WO |
0049487 | Aug 2000 | WO |
0067253 | Nov 2000 | WO |
200104644 | Jan 2001 | WO |
0109627 | Feb 2001 | WO |
0141148 | Jun 2001 | WO |
03013783 | Feb 2003 | WO |
03021597 | Mar 2003 | WO |
03021598 | Mar 2003 | WO |
03067385 | Aug 2003 | WO |
2004006260 | Jan 2004 | WO |
2004114286 | Dec 2004 | WO |
2005024830 | Mar 2005 | WO |
2005024831 | Mar 2005 | WO |
2005083749 | Sep 2005 | WO |
2005109131 | Nov 2005 | WO |
2006030185 | Mar 2006 | WO |
2006048611 | May 2006 | WO |
2006100441 | Sep 2006 | WO |
2006100445 | Sep 2006 | WO |
2007031729 | Mar 2007 | WO |
2019217057 | Nov 2019 | WO |
Entry |
---|
International Search Report for International Application No. PCT/US2022/033894, dated Oct. 13, 2022, (3 pages). |
Written Opinion for International Application No. PCT/US2022/033894, dated Oct. 13, 2022, (5 pages). |
International Search Report for International Patent Application No. PCT/US2021/055895, dated Feb. 4, 2022, (3 pages). |
Written Opinion for International Patent Application No. PCT/US2021/055895, dated Feb. 4, 2022, (7 pages). |
International Preliminary Report on Patentability for PCT/US2018/046725, 6 pages (dated Mar. 12, 2020). |
Office Action dated Sep. 19, 2019 in U.S. Appl. No. 15/688,048; response thereto; and application as filed. |
Intemational Preliminary Report on Patentability for PCT/US2018/046734, 8 pages (dated Mar. 12, 2020). |
International Preliminary Report on Patentability for PCT/US2018/046740, 6 pages (dated Mar. 12, 2020). |
Final Office Action for U.S. Appl. No. 15/688,048 (50 pages) dated Feb. 18, 2020. |
Non-Final Office Action for U.S. Appl. No. 15/688,048 (50 pages) dated Jun. 12, 2020. |
Final Office Action for U.S. Appl. No. 15/688,104 (45 pages) dated Mar. 4, 2020. |
Final Office Action for U.S. Appl. No. 15/688,112 (43 pages) dated Dec. 11, 2019. |
Non-Final Office Action for U.S. Appl. No. 15/688,112 (66 pages) dated Mar. 5, 2020. |
International Search Report for PCT/US2019/38909, 3 pages (dated Oct. 11, 2019). |
Written Opinion for PCT/US2019/38909, 8 pages {dated Oct. 11, 2019). |
International Preliminary Report on Patentability for PCT/US2018/046720, 8 pages (dated Mar. 12, 2020). |
Office Action dated Oct. 2, 2019 in U.S. Appl. No. 15/688,073; response thereto; and application as filed. |
International Search Report for PCT/US2016/046720. 3 pages (dated Dec. 11, 2018). |
Written Opinion for PCT/US2016/046720 7 pages (dated Dec. 11, 2018). |
Abraham et al., “Thermal Proximity Imaging of Hard-Disk Substrates”, IEEE Transactions on Mathematics 36:3997-4004, Nov. 2000. |
Abramovitch, “Rejecting Rotational Disturbances on Small Disk Drives Using Rotational Accelerometers”, Proceedings of the 1996 IFAC World Congress in San Francisco, CA, 8 pages (Jul. 1996). |
Ali et al., “Modeling and Simulation of Hard Disk Drive Final Assembly Using a HDD Template” Proceedings of the 2007 Winter Simulation Conference, IEEE pp. 1641-1650 (2007). |
Anderson el al., “Clinical chemistry: concepts and applications”, The McGraw-Hill Companies, Inc. DP. 131-132 2003. |
Anderson et al., “High Reliability Variable Load Time Controllable Vibration Free Thermal Processing Environment”, Delphion, 3 pages (Dec. 1993). https://www.delphion.com/tdbs/tdb?order=93A +63418 (retrieved Mar. 18, 2009). |
Asbrand, “Engineers at One Company Share the Pride and the Profits of Successful Product Design”, Professional Issues, 4 pages. 1987. |
Bair et al., “Measurements of Asperity Temperatures of a Read/Write Head Slider Bearing in Hard Maanetic Recording Disks”, Journal of Tribology 113:547-554, Jul. 1991. |
Bakken et al., “Low Cost, Rack Mounted, Direct Access Disk Storage Device”, Delphion, 2 pages (Mar. 1977). http://www.delp;hion.com/tdbs/tdb (retrieved Mar. 3, 2005). |
Biber et al., “Disk Drive Drawer Thermal Management”, Advances in Electronic Packaging vol. 1:43-46, 1995. |
Christensen, “How Can Great firms Fail? Insights from the hard Disk Drive Industry”, Harvard Business School Press, pp. 1-26, 2006. |
Chung et al., “Vibration Absorber for Reduction of the In-plane Vibration in an Optical Disk Drive”, IEEE Transactions on Consumer Electronics, Vo. 48, May 2004. |
Curtis et al., “InPhase Professional Archive Drive Architecture”, InPhase Technologies, Inc., 6 pages (Dec. 17. 2007) http://www.science.edu/TechoftheYear/Nominees/InPhase. |
Exhibit 1 in Xyratex Technology, Ltd v. Teradyne, Inc.; Newspaper picture that displays the CSO tester; 1990. |
Exhibit 1314 in Xyratex Technology, Ltd. V. Teradyne, Inc.; Case, “Last products of Disk-File Development at Hursley and Millbrook,” IBM, Oct. 12, 1990. |
Exhibit 1315 in Xyratex Technology, Ltd. V. Teradyne, Inc.; Case, “History of Disk-File Development at Hursley and Millbrook,” IBM, Oct. 17, 1990. |
Exhibit 1326 in Xyratex Technology, Ltd v. Teradyne, Inc.; Image of the back of Exhibit 1 and Exhibit 2 photos, which display the photos dates; 1990. |
Exhibit 2 in Xyratex Technology, Ltd v. Teradyne, Inc.; Photos of the CSO tester obtained from Hitachi; 1990. |
Findeis et al., “Vibration Isolation Techniques Suitable for Portable Electronic Speckle Pattem Interferometry”, Proc. SPIE vol. 4704, pp. 159-167, 2002; http://www.not.uct.ac.za/Paoers/soiendt2002.pdf. |
FlexStar Technology, “A World of Storage Testing Solutions,” http://www.flexstar.com, 1 page (1999). |
FlexStar Technology, “Environment Chamber Products, ” http://www.flexstar.com, 1 page (1999). |
FlexStar Technology. “FlexStar's Family of Products, ” http://www.flexstar.com, 1 page (1999). |
FlexStar Technology, 30E/Cascade Users Manual, Doc #98-36387-00 Rev. 1.8, pp. 1-33, Jun. 1, 2004. |
Frankovich, “The Basics of Vibration Isolation Using Elastomeric Materials”, Aearo EAR Specially Composites, 8 pages (2005) http://www.isoloss.com/11dfs/engineering/Basicsofvibrationisolation. |
Grochowski et al., “Future Trends in Hard Disk Drives”, IEEE Transactions on Magnetics, 32(3): 1850-1854 (May 1996). |
Gurumurthi et al., “Disk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management”, International Symposium on Computer Architecture Proceedings of the 32nd Annual International Symposium on Computer Architecture, Technical Report CSE-05-001, pp. 38-49 (Feb. 2005). |
Gurumurthi et al., “Thermal Issues in Disk Drive Desian: Challenges and Possible Solutions”, ACM Transactions on Storage, 2(1): 41-73 (Feb. 2006). |
Gurumurthi, “The Need for temperature-Aware Storage Systems”, The Tenth Intersociety conference on Thermal and Thermomechanical Phenomena in Electronics, pp. 387-394, 2006. |
Haddad et al., “A new Mounting Adapter for Computer Peripherals with Improved Reliability, Thermal Distribution, Low Noise and Vibration Reduction”, ISPS, Advances in Information Storage and Processing Systems. 1:97-108, 1995. |
HighBeam Research website “ACT debuts six-zone catalytic gas heater. (American Catalytic Technologies offers new heaters)”, 4 pages (Oct. 26, 1998). http://www.highbeam.com. |
HighBeam Research website “Asynchronous Testing Increases Throughout”, 7 pages (Dec. 1, 2000). http://www.highbeam.com. |
High Beam Research website “Credence announces Production Release of the EPRO AQ Series for Integrated Test and Back-end Processing”, 4 pages (1995). http://www.highbeam.com. |
HighBeam Research website “Test Multiple Parts at Once for Air Leaks. (Brief Article)”, 1 page (1999) http://www.highbeam.com. |
Iwamiya, “Hard Drive Cooling Using a Thermoelectric Cooler”, EEP—vol. 19-2, Advances in Electronic Packaging, vol. 2:220 3-2208, ASME 1997. |
Johnson et al., “Performance Measurements of Tertiary Storage Devices”, Proceedings of the 24th VLDB Conference. New York. pp. 50-61 1998. |
Ku, “Investigation of Hydrodynamic Bearing Friction in Data Storage information System Spindle Motors”, ISPS vol. 1, Advances in Information Storage and Processing Systems, pp. 159-165, ASME 1995. |
Lindner, “Disk drive mounting”, IBM Technical Disclosure Brochure, vol. 16, No. 3, pp. 903-904 Aug. 1973. |
Low, Y.L. et al., “Thermal network model for temperature prediction in hard disk drive”, Microsyst Technol, 15: 1653-1656 (2009). |
McAuley, “Recursive Time Trapping for Synchronization of Product and CHAMBER Profiles for Stress Test”, Delphion, 3 pages (Jun. 1988), https://www.delphion.com/tdbs/tdb, (retrieved Mar. 18, 2009). |
Morgenstem, Micropolis Drives Target High-end Apps; Technology Provides Higher Uninterrupted Data Transfer. (Applications; Microdisk AV LS 3020 and 1050AV and 1760AV LT Stackable Hard Drive Systems) (Product Announcement) MacWeek, vol. 8, No. 6, p. 8; Feb. 7, 1994. |
Morris, “Zero Cost Power and Cooling Monitor System”, 3 pages (Jun. 1994) https://www.delphion.com/tdbs/tdb (retrieved Jan. 15, 2008). |
Nagarajan, “Survey of Cleaning and cleanliness Measurement in Disk Drive Manufacture”, North Carolina Department of Environment and Natural Resources, 13-21 (Feb. 1997). |
Park, “Vibration and Noise Reduction of an Optical Disk Drive by Using a Vibration Absorber Methods and Apparatus for Securing Disk Drives in a Disk”, IEEE Transactions on Consumer Electronics. vol. 48. Nov. 2002. |
Prater et al., “Thermal and Heat-Flow Aspects of Actuators for Hard Disk Drives”, InterSociety Conference on Thermal Phenomena, pp. 261-268 1994. |
Ruwart et al., “Performance Impact of External Vibration on Consumer-grade and enterprise-class Disk Drives”, Proceedings of the 22nd IEEE/13th Goddard Conference on Mass Storage Systems and Technologies 2005. |
Schroeder et al., “Disk Failures in the Real World: What does an MTTP of 1,000,000 hours mean to you?”, In FAST'07: 5th USENIX Conference on File and Storage Technologies, San Jose, CA, Feb. 14-16, 2007. |
Schulze et al., “How Reliable is a Raid?,” COMPCON Spring apos; 89, Thirty-Fourth IEEE Computer Society International Conference: Intellectual Leverage, Digest of papers; pp. 118-123. Feb. 27-Mar. 3, 1989. |
Seagate Product Marketing, “Seagate's Advanced Multidrive System (SAMS) Rotational Vibration Feature”, Publication TP-229D, Feb. 2000. |
Suwa et al., “Evaluation System for Residual Vibration from HDD Mounting Mechanism” IEEE Transactions on Magnetics, vol. 35. No. 2, pp. 868-873. Mar. 1999. |
Suwa et al., “Rotational Vibration Suppressor” IBM Technical Disclosure Bulletin Oct. 1991. |
Terwiesch et al., “An Exploratory Study of International Product Transfer and Production Ramp-Up in the Data Storage Industry”, The Information Storage Industry Center, University of California, pp. 1-31, 1999. ww w-iros.ucsd.edu/sloan/. |
Tzeng, “Dynamic Torque Characteristics of Disk-Drive Spindle Bearings”, ISPS—vol. 1, Advances in Information Storage and Processing Systems, pp. 57-63, ASME 1995. |
Tzeng, “Measurements of Transient Thermal Strains in a Disk-Drive Actuator”, InterSociety conference on Thermal Phenomena, pp. 269-274, 1994. |
Wilson—7000 disk Drive Analyzer Product Literature, date accessed Jan. 28, 2009, 2 pages. |
Winchester, “Automation Specialists Use Machine Vision as a System Development Tool”, IEE Computing & Control Engineering, Jun./Jul. 2003. |
Kyratex Product Test brochure, “Automated Production Test Solutions”, 2006. |
Kyratex Technology, Ltd. V. Teradyne, Inc., Amended Joint Trial Exhibit List of Xyralex and Teradyne. Case No. CV 08-04545 SJO (PLAx). Nov. 12, 2009. |
Kyratex Technology, Ltd. V. Teradyne, Inc., Teradyne, Inc's Prior Art Notice Pursuant to 35; U.S.C. Section 282. Case No. CV 08-04545 SJO (PLAx), Oct. 16, 2009. |
Kyratex to Debut its New Automated Test Solution for 2.5-inch Disk Drives at Diskcon USA 2004, PR Newswire Europe (2004). |
Kyratex, “Continuous Innovation—Production Test Systems” www.xyratex.com/Products/production-test-system (1995-2008). |
Kyratex, “Key Advantages—Production Test Systems” www.xyratex.com/Products/production-test-system (1995-2008). |
Kyratex, “Process Challenges in the Hard Drive Industry” slide presentation, Asian Diskcon (2006). |
Kyratex, “Production Test Systems” www.xyratex.com/Products/production-test-system (1995-2008). |
Kyratex, “Single cell—Production Test Systems” www.xyratex.com/Products/production-test system (1995-2008). |
Kyratex, “Storage Infrastructure” www.xyratex.com/Products/storage-infrastructure/default.aspx (1995-2008). |
Kyratex, “Testing Drives Colder—Production Test Systems” www.xyratex.com/Products/production-test-system (1995-2008). |
International Preliminary Report on Patentability in Application No. PCT/US2022/033894 dated Dec. 14, 2023, 7 pages. |
Boigenzahn et al., “Rotational Vibration Suppressor,” IBM Technical Disclosure Bulletin (Oct. 1991), 2 pages. |
Henderson, “HAD High Aerial Densities Require Solid Test Fixtures,” Flexstar Technology, (Feb. 26, 2007), 3 pages. |
Number | Date | Country | |
---|---|---|---|
20220404394 A1 | Dec 2022 | US |