1. Field of the Invention
The present invention relates to a fabrication method and a structure of a through silicon via (TSV).
2. Description of the Prior Art
In the field of semiconductor technology, a TSV structure is utilized for interconnect between die and die to provide electrical connection of the devices on each level, such that the linking distances of devices disposed on a chip can be remarkably reduced, and, in turn, the overall operation speed can be effectively increased. In another technology such as semiconductor packaging, there are many ways such as wire bonding or flip chip combining wire bonding technologies to stack IC chips vertically. In recent years, silicon interposer with TSV (through silicon via) interconnect technology has gained increasing attention. It provides relatively high routing density and very fine pitch with good electrical performance.
Ordinarily, the TSV structure is obtained by forming a via hole on the front side of a wafer by etching or laser process and filling the via hole with a conductive material, such as polysilicon, copper or tungsten, to form a conductive path (i.e. the interconnect structure) . Finally, the back side of the wafer, or die, is thinned to expose the conductive path.
However, the via hole is formed on the front side of the wafer, and after the conductive material is filled into the via hole, a surplus of the conductive material located on the interlayer dielectric is often removed by performing a chemical-mechanical polishing (CMP) process. In such process, a loading effect takes place during the grinding procedure that an abrasion rate in a region having a dense pattern and an abrasion rate in a region having a sparse (non-dense) pattern are different. Suffering from the loading effect, two regions which are supposed to be electrically separated from each other by removing conductive material using the CMP process tend to be not successfully separated due to a metal bridge structure formed on top surface of the TSV after the planarization; and accordingly the yield or quality of the products are affected.
Therefore, there is still a need for a novel fabrication method of TSV structures to avoid the aforesaid problems.
One objective of the present invention is to provide a method of fabricating a through silicon via structure and a through silicon via structure, which may avoid the aforesaid problems.
According to one embodiment of the present invention, a method of fabricating a through silicon via structure is provided. The method includes steps as follows. First, a substrate is provided. A first dielectric layer is formed on the substrate. The first dielectric layer is patterned to have at least one first opening. A via hole is formed in the first dielectric layer and the substrate. Thereafter, a second dielectric layer is formed on the first dielectric layer in compliance with a shape of the first dielectric layer. The second dielectric layer has at least one second opening corresponding to the at least one first opening. The second dielectric layer covers a sidewall of the via hole. Thereafter, a conductive material layer is formed to fill the via hole and the at least one second opening. The conductive material layer is planarized to form a through silicon via within the via hole.
According to another embodiment of the present invention, a through silicon via structure is provided and includes a substrate, a first dielectric layer, a via hole, a second dielectric layer, and a conductive layer. The first dielectric layer is disposed on the substrate and has at least one first opening. The via hole is disposed through the first dielectric layer and the substrate. The second dielectric layer is disposed within the at least one first opening and on a sidewall of the via hole. A conductive layer is disposed within the via hole having the second dielectric layer on the sidewall of the via hole; and thereby a through silicon via is formed.
According to the embodiments of the present invention, the interlayer dielectric-level zero (ILD-0) is utilized to form one or more openings near a via hole, and the opening/openings and the via hole are filled with a same conductive material. Accordingly, during a planarization process such as CMP process, the metal distribution on the planarized surface can be more uniform than that in the conventional technology, so that a significant loading effect will not occur and the bridge issue can be avoided or alleviated.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Embodiments of the present invention will be described in detail referring to
Referring to
Thereafter, referring to
Thereafter, referring to
Thereafter, referring to
Thereafter, referring to
Thereafter, Step 107 is performed to planarize the conductive material layer 26. For example, the conductive material layer 26 of the surface of substrate 10 is polished using a CMP process for planarization, so as to form a TSV 28 within the via hole 20 and dummy TSVs 30 and 32 within the openings 15 and 17, respectively, as shown in
Thereafter, the back side of the substrate may be thinned using, for example, a CMP process to expose the conductive material layer 26.
The layout of the dummy TSV with respect to the TSV may be designed as desired, without a certain limitation.
In the present invention, in the through silicon via structure, the substrate may further comprise a semiconductor element, such as the situation of a through silicon via structure of a chip. In other words, the present invention may be applied to electrical connection between layers of a chip stack. In other aspect, the through silicon via structure also can be a through silicon via structure within a silicon interposer. In other words, the present invention can be applied to a silicon interposer.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3150299 | Noyce | Sep 1964 | A |
3256465 | Weissenstem | Jun 1966 | A |
3323198 | Shortes | Jun 1967 | A |
3343256 | Smith | Sep 1967 | A |
3372070 | Zuk | Mar 1968 | A |
3462650 | Hennings | Aug 1969 | A |
3648131 | Stuby | Mar 1972 | A |
4394712 | Anthony | Jul 1983 | A |
4395302 | Courduvelis | Jul 1983 | A |
4616247 | Chang | Oct 1986 | A |
4773972 | Mikkor | Sep 1988 | A |
4939568 | Kato | Jul 1990 | A |
5214000 | Chazan | May 1993 | A |
5229647 | Gnadinger | Jul 1993 | A |
5286926 | Kimura | Feb 1994 | A |
5372969 | Moslehi | Dec 1994 | A |
5399898 | Rostoker | Mar 1995 | A |
5463246 | Matsunami | Oct 1995 | A |
5484073 | Erickson | Jan 1996 | A |
5502333 | Bertin | Mar 1996 | A |
5627106 | Hsu | May 1997 | A |
5793115 | Zavracky | Aug 1998 | A |
5977640 | Bertin | Nov 1999 | A |
6018196 | Noddin | Jan 2000 | A |
6143616 | Geusic | Nov 2000 | A |
6274937 | Ahn | Aug 2001 | B1 |
6309956 | Chiang | Oct 2001 | B1 |
6391777 | Chen | May 2002 | B1 |
6407002 | Lin | Jun 2002 | B1 |
6440640 | Yang | Aug 2002 | B1 |
6483147 | Lin | Nov 2002 | B1 |
6525419 | Deeter | Feb 2003 | B1 |
6548891 | Mashino | Apr 2003 | B2 |
6551857 | Leedy | Apr 2003 | B2 |
6627985 | Huppenthal | Sep 2003 | B2 |
6633083 | Woo | Oct 2003 | B2 |
6746936 | Lee | Jun 2004 | B1 |
6778275 | Bowes | Aug 2004 | B2 |
6800930 | Jackson | Oct 2004 | B2 |
6812193 | Brigham | Nov 2004 | B2 |
6831013 | Tsai | Dec 2004 | B2 |
6897148 | Halahan | May 2005 | B2 |
6924551 | Rumer | Aug 2005 | B2 |
6930048 | Li | Aug 2005 | B1 |
7034401 | Savastiouk | Apr 2006 | B2 |
7052937 | Clevenger | May 2006 | B2 |
7075133 | Padmanabhan | Jul 2006 | B1 |
7098070 | Chen | Aug 2006 | B2 |
7111149 | Eilert | Sep 2006 | B2 |
7166913 | Chinthakindi | Jan 2007 | B2 |
7222420 | Moriizumi | May 2007 | B2 |
7282951 | Huppenthal | Oct 2007 | B2 |
7323785 | Uchiyama | Jan 2008 | B2 |
7338896 | Vanhaelemeersch | Mar 2008 | B2 |
7402515 | Arana | Jul 2008 | B2 |
7432592 | Shi | Oct 2008 | B2 |
7531415 | Kwok | May 2009 | B2 |
7541677 | Kawano | Jun 2009 | B2 |
7732926 | Uchiyama | Jun 2010 | B2 |
7846837 | Kuo | Dec 2010 | B2 |
20010038972 | Lyons | Nov 2001 | A1 |
20040080041 | Kimura | Apr 2004 | A1 |
20040188817 | Hua | Sep 2004 | A1 |
20050112997 | Lin | May 2005 | A1 |
20050136635 | Savastiouk | Jun 2005 | A1 |
20050205991 | Chen | Sep 2005 | A1 |
20060035146 | Hayashi | Feb 2006 | A1 |
20060042834 | Lee | Mar 2006 | A1 |
20070117348 | Ramanathan | May 2007 | A1 |
20070126085 | Kawano | Jun 2007 | A1 |
20070178694 | Hiatt | Aug 2007 | A1 |
20070190692 | Erturk et al. | Aug 2007 | A1 |
20080073747 | Chao | Mar 2008 | A1 |
20080108193 | You | May 2008 | A1 |
20090127667 | Iwata | May 2009 | A1 |
20090134498 | Ikeda | May 2009 | A1 |
20090180257 | Park | Jul 2009 | A1 |
20090212438 | Kreupl et al. | Aug 2009 | A1 |
20090224405 | Chiou | Sep 2009 | A1 |
20100001379 | Lee | Jan 2010 | A1 |
20100084747 | Chen et al. | Apr 2010 | A1 |
20100140749 | Kuo | Jun 2010 | A1 |
20100140772 | Lin | Jun 2010 | A1 |
20100244247 | Chang | Sep 2010 | A1 |
20100257495 | Wu | Oct 2010 | A1 |
20100323478 | Kuo | Dec 2010 | A1 |
20110241205 | Kirby et al. | Oct 2011 | A1 |
20120091593 | Cheng et al. | Apr 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20130341799 A1 | Dec 2013 | US |