The present invention relates to methods and apparatus used to control the pressure around and above a substrate. More particularly, the present invention relates to improved wafer area pressure control rings.
In the fabrication of semiconductor-based devices (e.g., integrated circuits) layers of material may alternately be deposited onto and etched from a substrate (e.g., the semiconductor wafer). As is well known in the art, the etching of the deposited layers may be accomplished by a variety of techniques, including plasma enhanced etching. In plasma-enhanced etching, the actual etching of the substrate takes place inside a plasma processing chamber. During etching, a plasma is formed from a suitable etchant source gas to etch areas of the substrate that are unprotected by the mask, leaving behind the desired pattern.
Among different types of plasma etching systems, those utilizing confinement rings have proven to be highly suitable for efficient production and/or for forming the ever shrinking features on the substrate. An example of such a system may be found in the commonly assigned U.S. Pat. No. 5,534,751, which is incorporated by reference herein. Although the use of confinement rings results in a significant improvement in the performance of plasma processing systems, current implementations can be improved. In particular, it is realized that improvements can be made in the way in which confinement rings are maintenanced and replaced. More particularly, significant improvements can be made in the way in which these rings are attached within the chamber.
To facilitate discussion,
The ring assembly 100 is typically a composite of 4 rings which (the top ring, ring no. 4, 125 being the thickest) according to desired pressure requirements can be raised or lowered with the aid of the stepped hanger 110. The operation of removing and reinstalling the WAP ring assembly has been identified as an ergonomic safety issue. Additionally, the use of tools and fasteners in conjunction with the installation and removal of the WAP rings increases the opportunity for ring damage, dropping of parts (e.g., screws and washers) into the pump, as well as an increased time component for replacement. It should be noted that the stepped hanger 110 is one continuous piece, i.e., the stepped portion is attached directly to the plunger shaft 115.
The combined hanger/stepped hanger design of the prior art is also unwieldy because while the technician is attaching the hanger to the plunger shaft, the quartz rings are loosely floating and must be securely held while the technician secures the screw 105 to the plunger shaft 115. Accordingly, it is desirable to simplify the removal and installation of these rings.
The Twist-N-Lock WAP ring assembly simplifies the existing WAP ring assembly by improving the method of suspending the WAP ring assembly from the cam plungers of the Dual Frequency Confined upper chamber assembly. The invention includes two design features: 1) unique stepped counter-bored radial slots in the top WAP ring(s); and 2) three Twist-N-Lock adapters fastened to the cam plungers. These features eliminate the requirement for tools or fasteners to perform the operation of removing and reinstalling the WAP ring assembly. The invention allows one technician to lift and twist the WAP ring assembly 5 degrees for installation and removal. Since no tools or fasteners are required, potential damage to the WAP ring assembly is reduced during the operation of removing and reinstalling. The present invention also separates the stepped hanger from the chamber hanger, reducing complexity in installation by separating the two functions. The time to perform the operation is reduced from 5 minutes to approximately 15 seconds, thus reducing MTTR (mean time to repair).
Two embodiments of the invention are given: one for processing 300 mm substrates and one for processing 200 mm substrates. The implementation with respect to both the 300 mm and 200 mm version is identical, but for the fact that the reduced ring size of the 200 mm ring creates special considerations with respect to the stepped hanger. In the 300 mm implementation the hanger drops into the cavity around the lower electrode. However, in the 200 mm version, the stepped hanger (absent modification) would contact directly with the lower electrode. Thus, in the 200 mm implementation, the single stepped hanger (of which there are three; i.e., one placed every 120 degrees) is replaced with 3 different sizes of hanging shafts which are loosely hung from the top ring allowing free movement upward when the shaft comes in contact with the lower electrode.
Additional advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
a is a bottom view of a 300 mm Twist-N-Lock WAP ring, with a bottom perspective given in
a is an expanded schematic of detail 2 of
b is a cut-out view of the hanging bore taken through line 3—3 of
c is a cross sectional view of the 300 mm Twist-N-Lock WAP ring taken through line 1—1 of
a is a perspective view of the 300 mm Twist-N-Lock stepped hanger.
b is a side view schematic of the 300 mm Twist-N-Lock stepped hanger.
c is a top view of the 300 mm Twist-N-Lock stepped hanger.
a is a bottom view of a 200 mm Twist-N-Lock WAP ring.
b shows a perspective bottom view of a 200 mm Twist-N-Lock WAP ring.
a is a top view of a 200 mm Twist-N-Lock WAP ring.
b is a cross sectional view of the 200 mm Twist-N-Lock WAP ring taken through line 4—4 of
c is a magnified schematic of detail 5 identified in
The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following descriptions, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
To facilitate discussion,
a is a bottom view schematic diagram of a Twist-N-Lock WAP ring used in conjunction with processing 300 mm wafer substrates. Three Twist-N-Lock bores 205 are machined every 120 degrees.
b shows a cross section of the Twist-N-Lock bore 205 taken through line 3—3 of
a shows a bottom schematic view of the 200 mm Twist-N-Lock ring with relevant dimensions given in inches. The hanging bore configuration is identical to that of the 300 mm ring. However, due to the decreased size (i.e., diameter) of the 200 mm ring, the stepped hanger if left in the same relative position, would strike the electrostatic chuck and not allow rings to collapse or the chamber to be shut properly. Therefore, the stepped hanger must be disposed of and the stepping of the rings handled differently. This is done by machining three sets of step shaft bores 805 in the ring. Placed in the three step shaft bore are three step shafts of different but consistent lengths, i.e, the first set is 0.924 inches long, second set, 1.140 inches long and the third set is 1.354 inches long.
Referring now to
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/281,049 filed Apr. 2, 2001.
Number | Name | Date | Kind |
---|---|---|---|
5534751 | Lenz et al. | Jul 1996 | A |
6113704 | Satoh et al. | Sep 2000 | A |
Number | Date | Country |
---|---|---|
11214487 | Aug 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20020139479 A1 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
60281049 | Apr 2001 | US |