Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon

Information

  • Patent Grant
  • 8859436
  • Patent Number
    8,859,436
  • Date Filed
    Wednesday, March 11, 2009
    15 years ago
  • Date Issued
    Tuesday, October 14, 2014
    9 years ago
Abstract
Methods for processing an amorphous silicon thin film sample into a polycrystalline silicon thin film are disclosed. In one preferred arrangement, a method includes the steps of generating a sequence of excimer laser pulses, controllably modulating each excimer laser pulse in the sequence to a predetermined fluence, masking portions of each fluence controlled laser pulse in the sequence with a two dimensional pattern of slits to generate a sequence of fluence controlled pulses of line patterned beamlets, irradiating an amorphous silicon thin film sample with the sequence of fluence controlled slit patterned beamlets to effect melting of portions thereof, and controllably sequentially translating a relative position of the sample with respect to each of the fluence controlled pulse of slit patterned beamlets to thereby process the amorphous silicon thin film sample into a single or polycrystalline silicon thin film.
Description
BACKGROUND OF THE INVENTION

I. Field of the Invention


The present invention relates to techniques for semiconductor processing, and more particularly to semiconductor processing which may be performed at low temperatures.


II. Description of the Related Art


In the field of semiconductor processing, there have been several attempts to use lasers to convert thin amorphous silicon films into polycrystalline films. For example, in James Im et al., “Crystalline Si Films for Integrated Active-Matrix Liquid-Crystal Displays,” 11 MRS Bullitin 39 (1996), an overview of conventional excimer laser annealing technology is presented. In such a system, an excimer laser beam is shaped into a long beam which is typically up to 30 cm long and 500 micrometers or greater in width. The shaped beam is scanned over a sample of amorphous silicon to facilitate melting thereof and the formation of polycrystalline silicon upon resolidification of the sample.


The use of conventional excimer laser annealing technology to generate polycrystalline silicon is problematic for several reasons. First, the polycrystalline silicon generated in the process is typically small grained, of a random microstructure, and having a nonuniform grain sizes, therefore resulting in poor and nonuniform devices and accordingly, low manufacturing yield. Second, in order to obtain acceptable performance levels, the manufacturing throughput for producing polycrystalline silicon must be kept low. Also, the process generally requires a controlled atmosphere and preheating of the amorphous silicon sample, which leads to a reduction in throughput rates. Accordingly, there exists a need in the field to generate higher quality polycrystalline silicon at greater throughput rates. There likewise exists a need for manufacturing techniques which generate larger and more uniformly microstructured polycrystalline silicon thin films to be used in the fabrication of higher quality devices, such as flat panel displays.


SUMMARY OF THE INVENTION

An object of the present invention is to provide techniques for producing uniform large-grained and grain boundary location controlled polycrystalline thin film semiconductors using the sequential lateral solidification process.


A further object of the present invention is to form large-grained and grain boundary location manipulated polycrystalline silicon over substantially the entire semiconductor sample.


Yet another object of the present invention is to provide techniques for the fabrication of semiconductors devices useful for fabricating displays and other products where the predominant orientation of the semiconductor grain boundaries may be controllably aligned or misaligned with respect to the current flow direction of the device.


In order to achieve these objectives as well as others that will become apparent with reference to the following specification, the present invention provides methods for processing an amorphous silicon thin film sample into a polycrystalline silicon thin film are disclosed. In one preferred arrangement, a method includes the steps of generating a sequence of excimer laser pulses, controllably modulating each excimer laser pulse in the sequence to a predetermined fluence, homoginizing each modulated laser pulse in the sequence in a predetermined plane, masking portions of each homoginized fluence controlled laser pulse in the sequence with a two dimensional pattern of slits to generate a sequence of fluence controlled pulses of line patterned beamlets, each slit in the pattern of slits being sufficiently narrow to prevent inducement of significant nucleation in region of a silicon thin film sample irradiated by a beamlet corresponding to the slit, irradiating an amorphous silicon thin film sample with the sequence of fluence controlled slit patterned beamlets to effect melting of portions thereof corresponding to each fluence controlled patterned beamlet pulse in the sequence of pulses of patterned beamlets, and controllably sequentially translating a relative position of the sample with respect to each of the fluence controlled pulse of slit patterned beamlets to thereby process the amorphous silicon thin film sample into a single or polycrystalline silicon thin film.


In a preferred arrangement, the masking step includes masking portions of each homoginized fluence controlled laser pulse in said sequence with a two dimensional pattern of substantially parallel straight slits spaced a predetermined distance apart and linearly extending parallel to one direction of said plane of homoginization to generate a sequence of fluence controlled pulses of slit patterned beamlets. Advantageously, the translating provides for controllably sequentially translating the relative position of the sample in a direction perpendicular to each of the fluence controlled pulse of slit patterned beamlets over substantially the predetermined slit spacing distance, to the to thereby process the amorphous silicon thin film sample into polycrystalline silicon thin film having long grained, directionally controlled crystals.


In an especially preferred arrangement, the masking step comprises masking portions of each homoginized fluence controlled laser pulse in the sequence with a two dimensional pattern of substantially parallel straight slits of a predetermined width, spaced a predetermined distance being less than the predetermined width apart, and linearly extending parallel to one direction of the plane of homoginization to generate a sequence of fluence controlled pulses of slit patterned beamlets. In this arrangement, translating step comprises translating by a distance less than the predetermined width the relative position of the sample in a direction perpendicular to each of the fluence controlled pulse of slit patterned beamlets, to the to thereby process the amorphous silicon thin film sample into polycrystalline silicon thin film having long grained, directionally controlled crystals using just two laser pulses. In one exemplary embodiment, the predetermined width is approximately 4 micrometers, the predetermined spacing distance is approximately 2 micrometers, and the translating distance is approximately 3 micrometers.


In an alternative preferred arrangement, the masking step comprises masking portions of each homoginized fluence controlled laser pulse in the sequence with a two dimensional pattern of substantially parallel straight slits spaced a predetermined distance apart and linearly extending at substantially 45 degree angle with respect to one direction of the plane of homoginization to generate a sequence of fluence controlled pulses of slit patterned beamlets. In this arrangement, the translating step provides for controllably sequentially translating the relative position of the sample in a direction parallel to the one direction of the plane of homoginization over substantially the predetermined slit distance, to thereby process the amorphous silicon thin film sample into polycrystalline silicon thin film having long grained, directionally controlled crystals that are disoriented with respect to the XY axis of the thin silicon film.


In yet another preferred arrangement, the masking step comprises masking portions of each homoginized fluence controlled laser pulse in the sequence with a two dimensional pattern of intersecting straight slits, a first group of straight slits being spaced a first predetermined apart and linearly extending at substantially 45 degree angle with respect to a first direction of the plane of homoginization, and a second group of straight slits being spaced a second predetermined distance apart and linearly extending at substantially 45 degree angle with respect to a second direction of the plane of homoginization and intersecting the first group at substantially a 90 degree angle, to generate a sequence of fluence controlled pulses of slit patterned beamlets. The corresponding translating step provides for controllably sequentially translating the relative position of the sample in a direction parallel to the first direction of the plane of homoginization over substantially the first predetermined slit spacing distance, to thereby process the amorphous silicon thin film sample into polycrystalline silicon thin film having large diamond shaped crystals.


In still another alternative arrangement, the masking step comprises masking portions of each homoginized fluence controlled laser pulse in the sequence with a two dimensional pattern of sawtooth shaped slits spaced a predetermined distance apart and extending generally parallel to one direction of the plane of homoginization to generate a sequence of fluence controlled pulses of slit patterned beamlets. In this arrangement, the translating step provides for controllably sequentially translating the relative position of the sample in a direction perpendicular to each of the fluence controlled pulse of slit patterned beamlets over substantially the predetermined slit spacing distance, to the to thereby process the amorphous silicon thin film sample into polycrystalline silicon thin film having large hexagonal crystals.


In a modified arrangement, an alternative technique for processing an amorphous silicon thin film sample into a polycrystalline silicon thin film using a polka-dot pattern is provided. The technique includes generating a sequence of excimer laser pulses, homoginizing each laser pulse in the sequence in a predetermined plane, masking portions of each homoginized laser pulse in the sequence with a two dimensional pattern of substantially opaque dots to generate a sequence of pulses of dot patterned beamlets, irradiating an amorphous silicon thin film sample with the sequence of dot patterned beamlets to effect melting of portions thereof corresponding to each dot patterned beamlet pulse in the sequence of pulses of patterned beamlets, and controllably sequentially translating the sample relative to each of the pulses of dot patterned beamlets by alternating a translation direction in two perpendicular axis and in a distance less than the super lateral grown distance for the sample, to thereby process the amorphous silicon thin film sample into a polycrystalline silicon thin film.


The accompanying drawings, which are incorporated and constitute part of this disclosure, illustrate a preferred embodiment of the invention and serve to explain the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a functional diagram of a system for performing the lateral solidification process preferred to implement a preferred process of the present invention;



FIG. 2
a is an illustrative diagram showing a mask having a dashed pattern;



FIG. 2
b is an illustrative diagram of a crystallized silicon film resulting from the use of the mask shown in FIG. 2a in the system of FIG. 1;



FIG. 3
a is an illustrative diagram showing a mask having a chevron pattern;



FIG. 3
b is an illustrative diagram of a crystallized silicon film resulting from the use of the mask shown in FIG. 3a in the system of FIG. 1;



FIG. 4
a is an illustrative diagram showing a mask having a line pattern;



FIG. 4
b is an illustrative diagram of a crystallized silicon film resulting from the use of the mask shown in FIG. 4a in the system of FIG. 1;



FIG. 5
a is an illustrative diagram showing irradiated areas of a silicon sample using a mask having a line pattern;



FIG. 5
b is an illustrative diagram showing irradiated areas of a silicon sample using a mask having a line pattern after initial irradiation and sample translation has occurred;



FIG. 5
c is an illustrative diagram showing a crystallized silicon film after a second irradiation has occurred;



FIG. 6
a is an illustrative diagram showing a mask having a diagonal line pattern;



FIG. 6
b is an illustrative diagram of a crystallized silicon film resulting from the use of the mask shown in FIG. 6a in the system of FIG. 1;



FIG. 7
a is an illustrative diagram showing a mask having a sawtooth pattern;



FIG. 7
b is an illustrative diagram of a crystallized silicon film resulting from the use of the mask shown in FIG. 7a in the system of FIG. 1;



FIG. 8
a is an illustrative diagram showing a mask having a crossing diagonal line pattern;



FIG. 8
b is an illustrative diagram of a crystallized silicon film resulting from the use of the mask shown in FIG. 8a in the system of FIG. 1;



FIG. 9
a is an illustrative diagram showing a mask having a polka-dot pattern;



FIG. 9
b is an instructive diagram illustrating mask translation using the mask of FIG. 9a;



FIG. 9
c is an illustrative diagram of a crystallized silicon film resulting from the use of the mask shown in FIG. 9a in the system of FIG. 1 using the mask translation scheme shown in FIG. 9b;



FIG. 9
d is an illustrative diagram of an alternative crystallized silicon film resulting from the use of the mask shown in FIG. 9a in the system of FIG. 1 using the mask translation scheme shown in FIG. 9b; and



FIG. 10 is a flow diagram illustrating the steps implemented in the system of FIG. 1.





DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention provides techniques for producing uniform large-grained and grain boundary location controlled polycrystalline thin film semiconductors using the sequential lateral solidification process. In order to fully understand those techniques, the sequential lateral solidification process must first be appreciated.


The sequential lateral solidification process is a technique for producing large grained silicon structures through small-scale unidirectional translation of a silicon sample in between sequential pulses emitted by an excimer laser. As each pulse is absorbed by the sample, a small area of the sample is caused to melt completely and resolidify laterally into a crystal region produced by the preceding pulses of a pulse set.


A particularly advantageous sequential lateral solidification process and an apparatus to carry out that process are disclosed in our co-pending patent application entitled “Systems and Methods using Sequential Lateral Solidification for Producing Single or Polycrystalline Silicon Thin Films at Low Temperatures,” filed concurrently with the present application and assigned to the common assignee, the disclosure of which is incorporated by reference herein. While the foregoing disclosure is made with reference to the particular techniques described in our co-pending patent application, it should be understood that other sequential lateral solidification techniques could readily be adapted for use in the present invention.


With reference to FIG. 1, our co-pending patent application describes as a preferred embodiment a system including excimer laser 110, energy density modulator 120 to rapidly change the energy density of laser beam 111, beam attenuator and shutter 130, optics 140, 141, 142 and 143, beam homogenizer 144, lens system 145, 146, 148, masking system 150, lens system 161, 162, 163, incident laser pulse 164, thin silicon film sample 170, sample translation stage 180, granite block 190, support system 191, 192, 193, 194, 195, 196, and managing computer 100 X and Y direction translation of the silicon sample 170 may be effected by either movement of a mask 210 within masking system 150 or by movement of the sample translation stage 180 under the direction of computer 100.


As described in further detail in our co-pending application, an amorphous silicon thin film sample is processed into a single or polycrystalline silicon thin film by generating a plurality of excimer laser pulses of a predetermined fluence, controllably modulating the fluence of the excimer laser pulses, homoginizing the modulated laser pulses in a predetermined plane, masking portions of the homoginized modulated laser pulses into patterned beamlets, irradiating an amorphous silicon thin film sample with the patterned beamlets to effect melting of portions thereof corresponding to the beamlets, and controllably translating the sample with respect to the patterned beamlets and with respect to the controlled modulation to thereby process the amorphous silicon thin film sample into a single or polycrystalline silicon thin film by sequential translation of the sample relative to the patterned beamlets and irradiation of the sample by patterned beamlets of varying fluence at corresponding sequential locations thereon. The following embodiments of the present invention will now be described with reference to the foregoing processing technique.


Referring to FIGS. 2a and b, a first embodiment of the present invention will now be described. FIG. 2a illustrates a mask 210 incorporating a pattern of slits 220. The mask 210 is preferably fabricated from a quartz substrate, and includes either a metallic or dielectric coating which is etched by conventional techniques to form a mask pattern, such as that shown in FIG. 2a. Each slit 220 is of a breadth 230 which is chosen in accordance with the necessary dimensionality of the device that will be fabricated on the sample 170 in the particular location that corresponds to the slit 220. For example, the slits 220 should be approximately 25 micrometers across to fabricate a 25 micrometer semiconductor device, or in the case of a multi-part device, a channel in a device, in sample 170. The width 240 of the slit 220 is preferably between approximately two and five micrometers in order to be small enough to avoid nucleation in sample 170 and large enough to maximize lateral crystal growth for each excimer pulse. It should be understood that although FIG. 2a illustrates a regular pattern of slits 220, any pattern of slits could be utilized in accordance with the microstructures desired to be fabricated on film 170.


In accordance with the present invention, the sample 170 is translated with respect to the laser pulses 164, either by movement of masking system 150 or sample translation stage 180, in order to grow crystal regions in the sample 170. When the sample 170 is translated in the Y direction and mask 210 is used in masking system 150, a processed sample 250 having crystallized regions 260 is produced, as shown in FIG. 2b. The breadth 270 of each crystallized region will be approximately equal to the breadth 230 in the mask 210. The length 280 of each region will be approximately equal to the distance of Y translation effected by movement of the masking system 150 or translation stage 180, and as with the breadth, should be chosen in accordance with the final device characteristics. Each crystal region 260 will consist of polysilicon with long and directionally controlled grains.


Referring next to FIGS. 3a and b, a second embodiment of the present invention will now be described. FIG. 3a illustrates a mask 310 incorporating a pattern of chevrons 320. The breadth 320 of each chevron side will determine the size of the ultimate single crystal region to be formed in sample 170. When the sample 170 is translated in the Y direction and mask 310 is used in masking system 150, a processed sample 350 having crystallized regions 360 is produced, as shown in FIG. 3b. Each crystal region 360 will consist of a diamond shaped single crystal region 370 and two long grained, directionally controlled polycrystalline silicon regions 380 in the tails of each chevron.


While the embodiments described with reference to FIGS. 2 and 3 are advantageous to generate spatially separated devices on silicon sample 170, at least some of the silicon sample 170 is not utilized in the final semiconductor. In order to facilitate a more flexible configuration of devices that can be developed on the semiconductor sample 170, the following preferred embodiments will now be described.


Referring to FIGS. 4a and b, a third embodiment of the present invention will now be described. FIG. 4a illustrates a mask 410 incorporating a pattern of slits 420. Each slit 410 should extend as far across on the mask as the homogenized laser beam 149 incident on the mask permits, and must have a width 440 that is sufficiently narrow to prevent any nucleation from taking place in the irradiated region of sample 170. The width 440 will depend on a number of factors, including the energy density of the incident laser pulse, the duration of the incident laser pulse, the thickness of the silicon thin film sample, and the temperature and conductivity of the silicon substrate. For example, the slit should not be more than 2 micrometers wide when a 500 Angstrom film is to be irradiated at room temperature with a laser pulse of 30 ns and having an energy density that slightly exceeds the complete melt threshold of the sample.


When the sample 170 is translated in the Y direction and mask 410 is used in masking system 150, a processed sample 450 having crystallized regions 460 is produced, as shown in FIG. 4b. Each crystal region 460 will consist of long grained, directionally controlled crystals 470. Depending on the periodicity 421 of the masking slits 420 in sample 410, the length of the grains 470 will be longer or shorter. In order to prevent amorphous silicon regions from being left on sample 170, the Y translation distance must be smaller than the distance 421 between mask lines, and it is preferred that the translation be at least one micron smaller than this distance 421 to eliminate small crystals that inevitably form at the initial stage of a directionally controlled polycrystalline structure.


An especially preferred technique using a mask having a pattern of lines will next be described. Using a mask as shown in FIG. 4a where closely packed mask lines 420 having a width 440 of 4 micrometers are each spaced 2 micrometers apart, the sample 170 is irradiated with one laser pulse. As shown in FIG. 5a, the laser pulse will melt regions 510, 511, 512 on the sample, where each melt region is approximately 4 micrometers wide 520 and is spaced approximately 2 micrometers apart 521. This first laser pulse will induce the formation of crystal growth in the irradiated regions 510, 511, 512, starting from the melt boundaries 530 and proceeding into the melt region, so that polycrystalline silicon 540 forms in the irradiated regions, as shown in FIG. 5b.


In order to eliminate the numerous small initial crystals 541 that form at the melt boundaries 530, the sample 170 is translated three micrometers in the Y direction and again irradiated with a single excimer laser pulse. The second irradiation regions 551, 552, 553 cause the remaining amorphous silicon 542 and initial crystal regions 543 of the polycrystalline silicon 540 to melt, while leaving the central section 545 of the polycrystalline silicon to remain. As shown in FIG. 5c, the crystal structure which forms the central section 545 outwardly grows upon solidification of melted regions 542, 542, so that a directionally controlled long grained polycrystalline silicon device is formed on sample 170.


Referring to FIGS. 6a and b, a fourth embodiment of the present invention will now be described. FIG. 6a illustrates a mask 610 incorporating a pattern of diagonal lines 620. When the sample 170 is translated in the Y direction and mask 610 is used in masking system 150, a processed sample 650 having crystallized regions 660 is produced, as shown in FIG. 6b. Each crystal region 660 will consist of long grained, directionally controlled crystals 670.


As with the embodiment described above with respect to FIGS. 4a and b, the translation distance will depend on the desired crystal length. Also, the process described with reference to FIGS. 5a-c could readily be employed using a mask as shown in FIG. 6a, having 4 micrometer wide lines 620 that are each spaced apart by 2 micrometers. This embodiment is especially advantageous in the fabrication of displays or other devices that are oriented with respect to an XY axis, as the polycrystalline structure is not orthogonal to that axis and accordingly, the device performance will be independent of the X or Y coordinates.


Referring next to FIGS. 7a and b, a fifth embodiment of the present invention will now be described. FIG. 7a illustrates a mask 710 incorporating offset sawtooth wave patterns 720, 721. When the sample 170 is translated in the Y direction and mask 710 is used in masking system 150, a processed sample 750 having crystallized regions 760 is produced, as shown in FIG. 7b. Each crystal region 760 will consist of a row of hexagonal-rectangular crystals 770. If the translation distance is slightly greater than the periodicity of the sawtooth pattern, the crystals will be hexagons. This embodiment is beneficial in the generation of larger silicon grains and may increase device performance.


Referring next to FIGS. 8a and b, a sixth embodiment of the present invention will now be described. FIG. 8a illustrates a mask 810 incorporating a diagonal cross pattern 821, 822. When the sample 170 is translated in the Y direction and mask 810 is used in masking system 150, a processed sample 850 having crystallized regions 860 is produced, as shown in FIG. 8b. Each crystal region 860 will consist of a row of diamond shaped crystals 870. If the translation distance is slightly greater than the periodicity of the pattern, the crystals will be squares. This embodiment is also beneficial in the generation of larger silicon grains and may increase device performance.


Referring next to FIGS. 9a-d, a seventh embodiment of the present invention will now be described. FIG. 9a illustrates a mask 910 incorporating a polka-dot pattern 920. The polka-dot mask 910 is an inverted mask, where the polka-dots 920 correspond to masked regions and the remainder of the mask 921 is transparent. In order to fabricate large silicon crystals, the polka-dot pattern may be sequentially translated about the points on the sample 170 where such crystals are desired. For example, as shown in FIG. 9b, the polka-dot mask may be translated 931 a short distance in the positive Y direction after a first laser pulse, a short distance in the positive X direction 932 after a second laser pulse, and a short distance in the negative Y direction 933 after a third laser pulse to induce the formation of large crystals. If the separation distance between polka-dots is greater than two times the lateral growth distance, a crystalline structure 950 where crystals 960 separated by small grained polycrystalline silicon regions 961 is generated, as shown in FIG. 9c. If the separation distance is less or equal to two times the lateral growth distance so as to avoid nucleation, a crystalline structure 970 where crystals 980 are generated, as shown in FIG. 9d.


Referring next to FIG. 10, the steps executed by computer 100 to control the crystal growth process implemented with respect to FIG. 9 will be described. FIG. 10 is a flow diagram illustrating the basic steps implemented in the system of FIG. 1. The various electronics of the system shown in FIG. 1 are initialized 1000 by the computer to initiate the process. A thin silicon film sample is then loaded onto the sample translation stage 1005. It should be noted that such loading may be either manual or robotically implemented under the control of computer 100. Next, the sample translation stage is moved into an initial position 1015, which may include an alignment with respect to reference features on the sample. The various optical components of the system are focused 1020 if necessary. The laser is then stabilized 1025 to a desired energy level and reputation rate, as needed to fully melt the silicon sample in accordance with the particular processing to be carried out. If necessary, the attenuation of the laser pulses is finely adjusted 1030.


Next, the shutter is opened 1035 to expose the sample to a single pulse of irradiation and accordingly, to commence the sequential lateral solidification process. The sample is translated in the X or Y directions 1040 in an amount less than the super lateral grown distance. The shutter is again opened 1045 to expose the sample to a single pulse of irradiation, and the sample is again translated in the X or Y directions 1050 in an amount less than the super lateral growth distance. Of course, if the sample was moved in the X direction in step 1040, the sample should be moved in the Y direction in Step 1050 in order to create a polka-dot. The sample is then irradiated with a third laser pulse 1055. The process of sample translation and irradiation 1050, 1055 may be repeated 1060 to grow the polka-dot region with four or more laser pulses.


Next, if other areas on the sample have been designated for crystallization, the sample is repositioned 1065, 1066 and the crystallization process is repeated on the new area. If no further areas have been designated for crystallization, the laser is shut off 1070, the hardware is shut down 1075, and the process is completed 1080. Of course, if processing of additional samples is desired or if the present invention is utilized for batch processing, steps 1005, 1010, and 1035-1065 can be repeated on each sample.


The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. For example, the thin silicon film sample 170 could be replaced by a sample having pre-patterned islands of silicon film. Also, the line pattern mask could be used to grow polycrystalline silicon using two laser pulses as explained with reference to FIGS. 5a-c, then rotated by 90 degrees and used again in the same process to generate an array of square shaped single crystal silicon. It will thus be appreciated that those skilled in the art will be able to devise numerous systems and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the invention.

Claims
  • 1. On a supporting substrate, a semiconductor film processed by a method comprising: (a) generating a sequence of excimer laser pulses, each having a substantially predetermined size;(b) masking portions of each laser pulse in the sequence with a mask having one or more openings to generate a sequence of pulses of beamlets the shape of which at least partially corresponds to the shape of the one or more openings;(c) irradiating a thin film sample with the sequence of pulses of the beamlets having a predetermined size to effect melting of first portions of the thin film sample corresponding to the shape of the one or more openings in the mask;(d) based on dimensions of the openings of the mask, translating at least one of the thin film sample and the excimer laser pulses relative to the other one of the thin film sample and the excimer laser pulses so as to reach a further location; and(e) after (d), irradiating second portions of the thin film sample which correspond to sections of the further location using the sequence of pulses so as to at least partially melt the second portions, wherein the second portions partially overlap the first portions.
  • 2. The semiconductor film of claim 1, further comprising a plurality of semiconductor devices processed by the method recited in claim 1.
  • 3. The semiconductor film of claim 1, wherein the predefined pattern of openings in the mask is a two dimensional pattern of slits.
  • 4. The semiconductor film of claim 3, wherein the two dimensional pattern of slits is defined by a length corresponding to, or larger than, a predetermined laser pulse size and width corresponding to the slit width.
  • 5. The semiconductor film of claim 1, wherein the predefined pattern of openings in the mask is a two dimensional pattern of chevrons.
  • 6. The semiconductor film of claim 1, wherein the method of processing further comprises controllably modulating each excimer laser pulse in the sequence to a predetermined fluence.
  • 7. The semiconductor film of claim 1, wherein the thin film sample comprises a patterned film of silicon.
  • 8. On a supporting substrate, an integrated circuit comprising a plurality of thin-film transistors in which at least the active-channel region is processed by a method comprising: (a) generating a sequence of excimer laser pulses, each having a substantially predetermined size;(b) masking portions of each laser pulse in the sequence with a mask having one or more openings to generate a sequence of pulses of beamlets the shape of which at least partially corresponds to the shape of the one or more openings;(c) irradiating a thin film sample with the sequence of pulses of the beamlets having a predetermined size to effect melting of first portions of the thin film sample corresponding to the shape of the one or more openings in the mask;(d) based on dimensions of the openings of the mask, translating at least one of the thin film sample and the excimer laser pulses relative to the other one of the thin film sample and the excimer laser pulses so as to reach a further location; and(e) after (d), irradiating second portions of the thin film sample which correspond to sections of the further location using the sequence of pulses so as to at least partially melt the second portions, wherein the second portions partially overlap the first portions.
  • 9. The integrated circuit of claim 8, wherein the predefined pattern of openings in the mask is a two dimensional pattern of slits.
  • 10. The integrated circuit of claim 9, wherein the two dimensional pattern of slits is defined by a length corresponding to, or larger than, a predetermined laser pulse size and width corresponding to the slit width.
  • 11. The integrated circuit of claim 8, wherein the predefined pattern of openings in the mask is a two dimensional pattern of chevrons.
  • 12. The integrated circuit of claim 8, wherein the method of processing further comprises controllably modulating each excimer laser pulse in the sequence to a predetermined fluence.
  • 13. The integrated circuit of claim 8, wherein the thin film sample comprises a patterned film of silicon.
  • 14. A liquid-crystal display device comprising a plurality of pixel-controller thin-film transistors in which at least the active-channel region is processed by a method comprising: (a) generating a sequence of excimer laser pulses, each having a substantially predetermined size;(b) masking portions of each laser pulse in the sequence with a mask having one or more openings to generate a sequence of pulses of beamlets the shape of which at least partially corresponds to the shape of the one or more openings;(c) irradiating a thin film sample with the sequence of pulses of the beamlets having a predetermined size to effect melting of first portions of the thin film sample corresponding to the shape of the one or more openings in the mask;(d) based on dimensions of the openings of the mask, translating at least one of the thin film sample and the excimer laser pulses relative to the other one of the thin film sample and the excimer laser pulses so as to reach a further location; and(e) after (d), irradiating second portions of the thin film sample which correspond to sections of the further location using the sequence of pulses so as to at least partially melt the second portions, wherein the second portions partially overlap the first portions.
  • 15. The liquid-crystal display device of claim 14, wherein the predefined pattern of openings in the mask is a two dimensional pattern of slits.
  • 16. The liquid-crystal display device of claim 15, wherein the two dimensional pattern of slits is defined by a length corresponding to, or larger than, a predetermined laser pulse size and width corresponding to the slit width.
  • 17. The liquid-crystal display device of claim 14, wherein the predefined pattern of openings in the mask is a two dimensional pattern of chevrons.
  • 18. The liquid-crystal display device of claim 14, wherein the method of processing further comprises controllably modulating each excimer laser pulse in the sequence to a predetermined fluence.
  • 19. The liquid-crystal display device of claim 14, wherein the thin film sample comprises a patterned film of silicon.
  • 20. A liquid-crystal display device comprising a pixel-driver integrated circuit which comprises a plurality of thin-film transistors in which at least the active-channel region is processed by a method comprising: (a) generating a sequence of excimer laser pulses, each having a substantially predetermined size;(b) masking portions of each laser pulse in the sequence with a mask having one or more openings to generate a sequence of pulses of beamlets the shape of which at least partially corresponds to the shape of the one or more openings;(c) irradiating a thin film sample with the sequence of pulses of the beamlets having a predetermined size to effect melting of first portions of the thin film sample corresponding to the shape of the one or more openings in the mask;(d) based on dimensions of the openings of the mask, translating at least one of the thin film sample and the excimer laser pulses relative to the other one of the thin film sample and the excimer laser pulses so as to reach a further location; and(e) after (d), irradiating second portions of the thin film sample which correspond to sections of the further location using the sequence of pulses so as to at least partially melt the second portions, wherein the second portions partially overlap the first portions.
  • 21. The liquid-crystal display device of claim 20, wherein the predefined pattern of openings in the mask is a two dimensional pattern of slits.
  • 22. The liquid-crystal display device of claim 21, wherein the two dimensional pattern of slits is defined by a length corresponding to, or larger than, a predetermined laser pulse size and width corresponding to the slit width.
  • 23. The liquid-crystal display device of claim 20, wherein the predefined pattern of openings in the mask is a two dimensional pattern of chevrons.
  • 24. The liquid-crystal display device of claim 20, wherein the method of processing further comprises controllably modulating each excimer laser pulse in the sequence to a predetermined fluence.
  • 25. The liquid-crystal display device of claim 20, wherein the thin film sample comprises a patterned film of silicon.
  • 26. On a supporting substrate, a semiconductor film processed by a method comprising: growing a silicon grain having a length by completely melting a section of the silicon film to the interface using a first shot of a laser beam having a beam width that is greater than the length of the silicon grain, but less than twice the length of the silicon grain; andincreasing the length of the grown silicon grain by completely remelting part of the grown silicon grain using a second shot of the laser beam, wherein the remelted part is determined by displacing the laser beam relative to the substrate more than one-half of the beam width of the laser beam.
  • 27. The semiconductor film of claim 26, further comprising a plurality of semiconductor devices processed by the method recited in claim 26.
  • 28. On a supporting substrate, an integrated circuit comprising a plurality of thin-film transistors in which at least the active-channel region is processed by a method comprising: growing a silicon grain having a length by completely melting a section of the silicon film to the interface using a first shot of a laser beam having a beam width that is greater than the length of the silicon grain, but less than twice the length of the silicon grain; andincreasing the length of the grown silicon grain by completely remelting part of the grown silicon grain using a second shot of the laser beam, wherein the remelted part is determined by displacing the laser beam relative to the substrate more than one-half of the beam width of the laser beam.
  • 29. A liquid-crystal display device comprising a plurality of pixel-controller thin-film transistors in which at least the active-channel region is processed by a method comprising: growing a silicon grain having a length by completely melting a section of the silicon film to the interface using a first shot of a laser beam having a beam width that is greater than the length of the silicon grain, but less than twice the length of the silicon grain; andincreasing the length of the grown silicon grain by completely remelting part of the grown silicon grain using a second shot of the laser beam, wherein the remelted part is determined by displacing the laser beam relative to the substrate more than one-half of the beam width of the laser beam.
  • 30. A liquid-crystal display device comprising a pixel-driver integrated circuit which comprises a plurality of thin-film transistors in which at least the active-channel region is processed by a method comprising: growing a silicon grain having a length by completely melting a section of the silicon film to the interface using a first shot of a laser beam having a beam width that is greater than the length of the silicon grain, but less than twice the length of the silicon grain; andincreasing the length of the grown silicon grain by completely remelting part of the grown silicon grain using a second shot of the laser beam, wherein the remelted part is determined by displacing the laser beam relative to the substrate more than one-half of the beam width of the laser beam.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/744,493, filed May 4, 2007 now U.S. Pat. No. 7,679,028, which is a divisional of U.S. application Ser. No. 11/141,815, filed Jun. 1, 2005 now U.S. Pat. No. 7,319,056, which is a continuation of U.S. application Ser. No. 10/294,001, filed Nov. 13, 2002 now U.S. Pat. No. 7,029,996, which is a continuation of U.S. application Ser. No. 09/390,535, filed Sep. 3, 1999, which has issued as U.S. Pat. No. 6,555,449, which is a continuation-in-part of International Application PCT/US96/07730, filed May 28, 1996, and which is also a continuation-in-part of U.S. application Ser. No. 09/200,533, filed Nov. 27, 1998, which has issued as U.S. Pat. No. 6,322,625. The entire disclosures of the aforementioned priority applications are herein incorporated by reference in their entireties.

NOTICE OF GOVERNMENT RIGHTS

The U.S. Government has certain rights in this invention pursuant to the terms of the Defense Advanced Research Project Agency award number N66001-98-1-8913.

US Referenced Citations (305)
Number Name Date Kind
3632205 Marcy Jan 1972 A
4187126 Radd et al. Feb 1980 A
4234358 Celler et al. Nov 1980 A
4309225 Fan et al. Jan 1982 A
4382658 Shields et al. May 1983 A
4456371 Lin Jun 1984 A
4514895 Nishimura May 1985 A
4639277 Hawkins Jan 1987 A
4691983 Kobayashi et al. Sep 1987 A
4727047 Bolzer et al. Feb 1988 A
4758533 Magee et al. Jul 1988 A
4793694 Liu Dec 1988 A
4800179 Mukai Jan 1989 A
4804978 Tracy Feb 1989 A
4855014 Kakimoto et al. Aug 1989 A
4870031 Suguhara et al. Sep 1989 A
4940505 Schachameyer et al. Jul 1990 A
4970546 Suzuki et al. Nov 1990 A
4976809 Broadbent Dec 1990 A
4977104 Sawada et al. Dec 1990 A
5032233 Yu et al. Jul 1991 A
5061655 Ipposhi et al. Oct 1991 A
5076667 Stewart et al. Dec 1991 A
RE33836 Resor, III et al. Mar 1992 E
5095473 Gotoh Mar 1992 A
5145808 Sameshima et al. Sep 1992 A
5173441 Yu et al. Dec 1992 A
5204659 Sarma Apr 1993 A
5233207 Anzai Aug 1993 A
5247375 Mochizuki et al. Sep 1993 A
5281840 Sarma Jan 1994 A
5285236 Jain Feb 1994 A
5291240 Jain Mar 1994 A
5294811 Aoyama et al. Mar 1994 A
5304357 Sato et al. Apr 1994 A
5338959 Kim et al. Aug 1994 A
5373803 Noguchi et al. Dec 1994 A
5395481 McCarthy Mar 1995 A
5409867 Asano Apr 1995 A
5413958 Imahashi et al. May 1995 A
5417897 Asakawa et al. May 1995 A
5432122 Chae Jul 1995 A
5436095 Mizuno et al. Jul 1995 A
5453594 Konecny Sep 1995 A
5456763 Kaschmitter et al. Oct 1995 A
5466908 Hosoya et al. Nov 1995 A
5496768 Kudo Mar 1996 A
5512494 Tanabe Apr 1996 A
5523193 Nelson Jun 1996 A
5529951 Noguchi et al. Jun 1996 A
5534716 Takemura Jul 1996 A
5591668 Maegawa et al. Jan 1997 A
5614421 Yang Mar 1997 A
5614426 Funada et al. Mar 1997 A
5616506 Takemura Apr 1997 A
5620910 Teramoto Apr 1997 A
5643801 Ishihara et al. Jul 1997 A
5663579 Noguchi Sep 1997 A
5683935 Miyamato Nov 1997 A
5696388 Funada et al. Dec 1997 A
5710050 Makita et al. Jan 1998 A
5721606 Jain Feb 1998 A
5736709 Neiheisel Apr 1998 A
5742426 York Apr 1998 A
5756364 Tanaka et al. May 1998 A
5766989 Maegawa et al. Jun 1998 A
5767003 Noguchi Jun 1998 A
5817548 Noguchi et al. Oct 1998 A
5844588 Anderson Dec 1998 A
5858807 Kawamura Jan 1999 A
5861991 Fork Jan 1999 A
5893990 Russell et al. Apr 1999 A
5948291 Neylan et al. Sep 1999 A
5960323 Wakita Sep 1999 A
5981974 Makita Nov 1999 A
5986807 Fork Nov 1999 A
6002523 Tanaka Dec 1999 A
6014944 Aklufi et al. Jan 2000 A
6020224 Shimogaichi et al. Feb 2000 A
6045980 Edelkind et al. Apr 2000 A
6072631 Guenther et al. Jun 2000 A
6081381 Shalapenok et al. Jun 2000 A
6093934 Yamazaki et al. Jul 2000 A
6117301 Freudenberger et al. Sep 2000 A
6117752 Suzuki Sep 2000 A
6120976 Treadwell et al. Sep 2000 A
6130009 Smith et al. Oct 2000 A
6130455 Yoshinouchi Oct 2000 A
6136632 Higashi Oct 2000 A
6156997 Yamazaki et al. Dec 2000 A
6162711 Ma et al. Dec 2000 A
6169014 McCulloch Jan 2001 B1
6172820 Kuwahara Jan 2001 B1
6176922 Aklufi et al. Jan 2001 B1
6177301 Jung Jan 2001 B1
6184490 Schweizer Feb 2001 B1
6187088 Okumura Feb 2001 B1
6190985 Buynoski Feb 2001 B1
6193796 Yang Feb 2001 B1
6198141 Yamazaki et al. Mar 2001 B1
6203952 O'Brien et al. Mar 2001 B1
6222195 Yamada et al. Apr 2001 B1
6235614 Yang May 2001 B1
6242291 Kusumoto et al. Jun 2001 B1
6255146 Shimizu et al. Jul 2001 B1
6274488 Talwar et al. Aug 2001 B1
6285001 Fleming et al. Sep 2001 B1
6300175 Moon Oct 2001 B1
6313435 Shoemaker et al. Nov 2001 B1
6316338 Jung Nov 2001 B1
6320227 Lee et al. Nov 2001 B1
6322625 Im Nov 2001 B2
6326186 Park et al. Dec 2001 B1
6326286 Park et al. Dec 2001 B1
6333232 Kunikiyo Dec 2001 B1
6341042 Matsunaka et al. Jan 2002 B1
6348990 Igasaki et al. Feb 2002 B1
6353218 Yamazaki et al. Mar 2002 B1
6358784 Zhang et al. Mar 2002 B1
6368945 Im Apr 2002 B1
6388146 Onishi et al. May 2002 B1
6388386 Kunii et al. May 2002 B1
6392810 Tanaka May 2002 B1
6393042 Tanaka May 2002 B1
6407012 Miyasaka et al. Jun 2002 B1
6410373 Chang et al. Jun 2002 B1
6429100 Yoneda Aug 2002 B2
6432758 Cheng et al. Aug 2002 B1
6437284 Okamoto et al. Aug 2002 B1
6444506 Kusumoto et al. Sep 2002 B1
6445359 Ho Sep 2002 B1
6448612 Miyazaki et al. Sep 2002 B1
6451631 Grigoropoulos et al. Sep 2002 B1
6455359 Yamazaki et al. Sep 2002 B1
6468845 Nakajima et al. Oct 2002 B1
6471772 Tanaka Oct 2002 B1
6472684 Yamazaki et al. Oct 2002 B1
6476447 Yamazaki et al. Nov 2002 B1
6479837 Ogawa et al. Nov 2002 B1
6482722 Kunii et al. Nov 2002 B2
6493042 Bozdagi et al. Dec 2002 B1
6495067 Ono Dec 2002 B1
6495405 Voutsas et al. Dec 2002 B2
6501095 Yamaguchi et al. Dec 2002 B2
6504175 Mei et al. Jan 2003 B1
6506636 Yamazaki et al. Jan 2003 B2
6511718 Paz de Araujo et al. Jan 2003 B1
6512634 Tanaka Jan 2003 B2
6516009 Tanaka Feb 2003 B1
6521473 Jung Feb 2003 B1
6521492 Miyasaka et al. Feb 2003 B2
6526585 Hill Mar 2003 B1
6528359 Kusumoto et al. Mar 2003 B2
6531681 Markle et al. Mar 2003 B1
6535535 Yamazaki et al. Mar 2003 B1
6555422 Yamazaki et al. Apr 2003 B1
6555449 Im et al. Apr 2003 B1
6562701 Ishida et al. May 2003 B2
6563077 Im May 2003 B2
6573163 Voutsas et al. Jun 2003 B2
6573531 Im et al. Jun 2003 B1
6577380 Sposili et al. Jun 2003 B1
6582827 Im Jun 2003 B1
6590228 Voutsas et al. Jul 2003 B2
6599790 Yamazaki et al. Jul 2003 B1
6602765 Jiroku et al. Aug 2003 B2
6608326 Shinagawa et al. Aug 2003 B1
6621044 Jain et al. Sep 2003 B2
6635554 Im et al. Oct 2003 B1
6635932 Grigoropoulos et al. Oct 2003 B2
6660575 Zhang Dec 2003 B1
6667198 Shimoto et al. Dec 2003 B2
6693258 Sugano et al. Feb 2004 B2
6734635 Kunii et al. May 2004 B2
6741621 Asano May 2004 B2
6744069 Yamazaki et al. Jun 2004 B1
6746942 Sato et al. Jun 2004 B2
6750424 Tanaka Jun 2004 B2
6755909 Jung Jun 2004 B2
6767804 Crowder Jul 2004 B2
6770545 Yang Aug 2004 B2
6777276 Crowder et al. Aug 2004 B2
6784455 Maekawa et al. Aug 2004 B2
6830993 Im et al. Dec 2004 B1
6858477 Deane et al. Feb 2005 B2
6861328 Hara et al. Mar 2005 B2
6908835 Sposili et al. Jun 2005 B2
6916690 Chang Jul 2005 B2
6961117 Im Nov 2005 B2
6962860 Yamazaki et al. Nov 2005 B2
7029996 Im et al. Apr 2006 B2
7049184 Tanabe May 2006 B2
7078281 Tanaka et al. Jul 2006 B2
7091411 Falk et al. Aug 2006 B2
7119365 Takafuji et al. Oct 2006 B2
7144793 Gosain et al. Dec 2006 B2
7164152 Im Jan 2007 B2
7172952 Chung Feb 2007 B2
7183229 Yamanaka Feb 2007 B2
7187016 Arima Mar 2007 B2
7192479 Mitani et al. Mar 2007 B2
7192818 Lee et al. Mar 2007 B1
7199397 Huang et al. Apr 2007 B2
7217605 Kawasaki et al. May 2007 B2
7259081 Im Aug 2007 B2
7297982 Suzuki et al. Nov 2007 B2
7300858 Im Nov 2007 B2
7303980 Yamazaki et al. Dec 2007 B2
7311778 Im et al. Dec 2007 B2
7318866 Im Jan 2008 B2
7319056 Im et al. Jan 2008 B2
7326876 Jung Feb 2008 B2
7341928 Im Mar 2008 B2
7384476 You Jun 2008 B2
7507645 You Mar 2009 B2
7560321 Kato et al. Jul 2009 B2
7638728 Im Dec 2009 B2
7645337 Im Jan 2010 B2
7679028 Im et al. Mar 2010 B2
7700462 Tanaka et al. Apr 2010 B2
7804647 Mitani et al. Sep 2010 B2
20010001745 Im et al. May 2001 A1
20010029089 Tanaka Oct 2001 A1
20010030292 Brotherton Oct 2001 A1
20010041426 Im Nov 2001 A1
20020083557 Jung Jul 2002 A1
20020096680 Sugano et al. Jul 2002 A1
20020104750 Ito Aug 2002 A1
20020119609 Hatano et al. Aug 2002 A1
20020151115 Nakajima et al. Oct 2002 A1
20020197778 Kasahara et al. Dec 2002 A1
20030000455 Voutsas Jan 2003 A1
20030003242 Voutsas Jan 2003 A1
20030006221 Hong et al. Jan 2003 A1
20030013278 Jang et al. Jan 2003 A1
20030014337 Mathews et al. Jan 2003 A1
20030022471 Taketomi et al. Jan 2003 A1
20030029212 Im Feb 2003 A1
20030057418 Asano Mar 2003 A1
20030068836 Hongo et al. Apr 2003 A1
20030088848 Crowder May 2003 A1
20030089907 Yamaguchi et al. May 2003 A1
20030096489 Im et al. May 2003 A1
20030119286 Im et al. Jun 2003 A1
20030148565 Yamanaka Aug 2003 A1
20030148594 Yamazaki et al. Aug 2003 A1
20030194613 Voutsas et al. Oct 2003 A1
20030196589 Mitani et al. Oct 2003 A1
20040040938 Yamazaki et al. Mar 2004 A1
20040041158 Hongo et al. Mar 2004 A1
20040053450 Sposili et al. Mar 2004 A1
20040061843 Im Apr 2004 A1
20040127066 Jung Jul 2004 A1
20040140470 Kawasaki et al. Jul 2004 A1
20040169176 Peterson et al. Sep 2004 A1
20040182838 Das et al. Sep 2004 A1
20040222187 Lin Nov 2004 A1
20040224487 Yang Nov 2004 A1
20050003591 Takaoka et al. Jan 2005 A1
20050032249 Im et al. Feb 2005 A1
20050034653 Im et al. Feb 2005 A1
20050059224 Im Mar 2005 A1
20050059265 Im Mar 2005 A1
20050112906 Maekawa et al. May 2005 A1
20050139830 Takeda et al. Jun 2005 A1
20050141580 Partlo et al. Jun 2005 A1
20050142450 Jung Jun 2005 A1
20050142451 You Jun 2005 A1
20050202654 Im Sep 2005 A1
20050235903 Im Oct 2005 A1
20050236908 Rivin Oct 2005 A1
20060030164 Im Feb 2006 A1
20060035478 You Feb 2006 A1
20060040512 Im Feb 2006 A1
20060102901 Im et al. May 2006 A1
20060125741 Tanaka et al. Jun 2006 A1
20060211183 Duan et al. Sep 2006 A1
20060254500 Im et al. Nov 2006 A1
20070007242 Im Jan 2007 A1
20070010074 Im Jan 2007 A1
20070010104 Im Jan 2007 A1
20070020942 Im Jan 2007 A1
20070032096 Im Feb 2007 A1
20070051302 Gosian et al. Mar 2007 A1
20070108472 Jeong et al. May 2007 A1
20070111349 Im May 2007 A1
20070184638 Kang et al. Aug 2007 A1
20070215942 Chen et al. Sep 2007 A1
20080035863 Im et al. Feb 2008 A1
20080124526 Im May 2008 A1
20080176414 Im Jul 2008 A1
20090001523 Im Jan 2009 A1
20090045181 Im Feb 2009 A1
20090137105 Im May 2009 A1
20090173948 Im et al. Jul 2009 A1
20090189164 Im et al. Jul 2009 A1
20090218577 Im Sep 2009 A1
20090242805 Im Oct 2009 A1
20090309104 Im Dec 2009 A1
20100024865 Shah et al. Feb 2010 A1
20100032586 Im et al. Feb 2010 A1
20100065853 Im Mar 2010 A1
20100099273 Im Apr 2010 A1
20100197147 Im Aug 2010 A1
20100233888 Im Sep 2010 A1
Foreign Referenced Citations (82)
Number Date Country
19839718 Mar 2000 DE
10103670 Aug 2002 DE
681316 Aug 1995 EP
655774 Jul 1996 EP
1067593 Oct 2001 EP
2338342 Dec 1999 GB
2338343 Dec 1999 GB
2338597 Dec 1999 GB
S57-027035 Feb 1982 JP
S62-160781 Jul 1987 JP
62181419 Aug 1987 JP
S62-216320 Sep 1987 JP
H01-256114 Oct 1989 JP
H02-081422 Mar 1990 JP
2283036 Nov 1990 JP
H04-167419 Jun 1992 JP
4279064 Oct 1992 JP
H04-282869 Oct 1992 JP
5 041519 Feb 1993 JP
H05-048190 Feb 1993 JP
06-011729 Jan 1994 JP
6252048 Sep 1994 JP
H06-260502 Sep 1994 JP
6283422 Oct 1994 JP
7176757 Jul 1995 JP
H08-078330 Mar 1996 JP
H09-007968 Jan 1997 JP
1997-171971 Jun 1997 JP
H09-270393 Sep 1997 JP
9260681 Oct 1997 JP
H09-270393 Oct 1997 JP
9321310 Dec 1997 JP
10 189998 Jul 1998 JP
H10-244390 Sep 1998 JP
11064883 Mar 1999 JP
11281997 Oct 1999 JP
H11-297852 Oct 1999 JP
11330000 Nov 1999 JP
2000-223425 Aug 2000 JP
2000-315652 Nov 2000 JP
2000-346618 Dec 2000 JP
2001023920 Jan 2001 JP
2002-203809 Jul 2002 JP
2002-353142 Dec 2002 JP
2002-353159 Dec 2002 JP
2003-031496 Jan 2003 JP
2003-100653 Apr 2003 JP
2004-031809 Jan 2004 JP
2003-523723 Aug 2005 JP
2000-0053428 Aug 2000 KR
464960 Nov 2001 TW
564465 Dec 2003 TW
569350 Jan 2004 TW
9745827 Dec 1997 WO
9824118 Jun 1998 WO
9931719 Jun 1999 WO
0014784 Mar 2000 WO
0118854 Mar 2001 WO
0118855 Mar 2001 WO
0171786 Sep 2001 WO
WO0171791 Sep 2001 WO
WO 0173769 Oct 2001 WO
WO 0197266 Dec 2001 WO
0231869 Apr 2002 WO
0242847 May 2002 WO
0286954 May 2002 WO
02086955 Oct 2002 WO
03018882 Mar 2003 WO
03046965 Jun 2003 WO
2004075263 Aug 2003 WO
03084688 Oct 2003 WO
2004017379 Feb 2004 WO
2004017380 Feb 2004 WO
2004017381 Feb 2004 WO
2004017382 Feb 2004 WO
WO 2004030328 Sep 2004 WO
WO2005029546 Mar 2005 WO
WO2005029548 Mar 2005 WO
WO 2005029549 Mar 2005 WO
WO2005029550 Mar 2005 WO
WO2005029551 Mar 2005 WO
WO 2006055003 May 2006 WO
Non-Patent Literature Citations (154)
Entry
U.S. Appl. No. 60/253,256, filed Aug. 31, 2003, Im.
Im et al., “Controlled Super-Lateral Growth of Si Films for Microstructural Manipulation and Optimization”, Phys. Stat. Sol. (a), vol. 166, p. 603 (1998).
S.D. Brotherton et al., “Influence of Melt Depth in Laser Crystallized Poly-Si Thin Film Transistors,” 82 J. Appl. Phys. 4086 (1997).
J.S. Im et al., “Crystalline Si Films for Integrated Active-Matrix Liquid-Crystals Displays,” 21 MRS Bulletin 39 (1996).
Im et al., “Single-Crystal Si Films for Thin-Film Transistor Devices,” Appl. Phys. Lett., vol. 70 (25), p. 3434 (1997).
Sposili et al., “Sequential Lateral Solidification of Thin Silicon Films on SiO2”, Appl, Phys. Lett., vol. 69 (19), p. 2864 (1996).
Crowder et al., “Low-Temperature Single-Crystal Si TFT's Fabricated on Si Films processed via Sequential Lateral Solidification”, IEEE Electron Device Letter, vol. 19 (8), p. 306 (1998).
Sposili et al., “Single-Crystal Si Films via a Low-Substrate-Temperature Excimer-Laser Crystallization Method”, Mat. Res. Soc. Symp. Proc. vol. 452, pp. 953-958, 1997 Materials Research Society.
C. E. Nebel, “Laser Interference Structuring of A-SI:h” Amorphous Silicon Technology—1996, San Francisco, CA Apr. 8-12, 1996, Materials Research Society Symposium Proceedings, vol. 420, Pittsburgh, PA.
J. H. Jeon et al., “Two-step laser recrystallization of poly-Si for effective control of grain boundaries”, Journal of Non Crystalline Solids, North-Holland Publishing Company, NL, vol. 266-269, May 2000, pp. 645-649.
H. Endert et al., “Excimer Laser: A New Tool for Precision Micromaching,” 27 Optical and Quantum Electronics, 1319 (1995).
“Overview of Beam Delivery Systems for Excimer Lasers,” Micro/Las Lasersystem GMBH. 1999.
K.H. Weiner et al., “Ultrashallow Junction Formation Using Projection Gas Immersion Laser Doping (PGILD),” A Verdant Technologies Technical Brief, Aug. 20, 1997.
Hau-Riege C.S. et al., “The Effects Microstructural Transitions at Width Transitions on interconnect reliabity,” Journal of Applied Physics, Jun. 15, 2000, vol. 87, No. 12, pp. 8467-8472.
McWilliams et al., “Wafer-Scale Laser Pantography: Fabrication of N-Metal-Oxide-Semiconductor Transistors and Small-Scale Integrated Circuits by Direct-Write Laser-Induced Pyrolytic Reactions,” Applied Physics Letters, American Institute of Physics, New York, US, vol. 43, No. 10, Nov. 1983, pp. 946-948.
Mariucci et al., “Grain boundary location control by patterned metal film in excimer laser crystallized polysilicon,” Proceedings of the Figth International COnference on Polycrystalline Semiconductors, Schwabisch Gmund, Germany, Sep. 13-18, 1998, vol. 67-68, pp. 175-180.
Broadbent et al., “Excimer Laser Processing of Al-1%Cu/TiW Interconnect Layers,” 1989 Proceedings, Sixth International IEEE VLSI Multilevel Interconnection COnference, Santa Clara, CA, Jun. 12-13, 1989, pp. 336-345.
H.J. Kim and James S. Im, “Grain Boundary Location-Controlled Poly-Si Films for TFT Devices Obtained Via Novel Excimer Laser Process,” Abstracts for Symposium of Materials Research Society, Nov. 27 to Dec. 2, 1994, p. 230.
S.D. Brotherton, “Polycrystalline Silicon Thin Film Transistors,” 10 Semicond. Sci. Tech., pp. 721-738 (1995).
H. Watanabe et al., “Crystallization Process of Polycrystalline Silicon by KrF Excimer Laser Annealing,” 33 Japanese J. of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, pp. 4491-4498 (1994).
E. Fogarassy et al., “Pulsed Laser Crystallization of Hydrogen-Free a-Si Thin Films for High-Mobility Poly-Si TFT Fabrication,” 56 Applied Physics A—Solids and Surfaces, pp. 365-373 (1993).
Y. Miyata et al, “Low-Temperature Polycrystalline Silicon Thin-Film Transistors for Large-Area Liquid Crystal Display,” 31 Japanese J. of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, pp. 4559-4562 (1992).
Im et al., “Phase Transformation Mechanisms Involved in Excimer Laser Crystallization of Amorphous Silicon Films,” Appl. Phys. Lett., vol. 63 (14), p. 1969 (1993).
Im et al., “On the Super Lateral Growth Phenomenon Observed in Excimer Laser-Induced Crystallization of Thin Si Films,” Appl. Phys. Lett., vol. 64 (17), p. 2303 (1994).
Brochure from MicroLas Lasersystem, GmbH, “UV Optics Systems for Excimer Laser Based Micromaching and Marking”. 1999.
Ishida et al., “Ultra-shallow boxlike profiles fabricated by pulsed ultraviolet-laser doping process”, J. Vac. Sci. Technol. B 12(1), p. 399-403, 1994. (No month).
Yoshimoto, et al., “Excimer-Laser-Produced and Two-Dimensionally Position-Controlled Giant Si Grains on Organic SOG Underlayer”, p. 285-286, AM-LCD 2000. No month.
Ozawa et al., “Two-Dimensionally Position-Controlled Exicer-Laser-Crystallization of Silicon Thin Films on Glassy Substrate”, Jpn. J. Appl. Phys. vol. 38, Part 1, No. 10, p. 5700-5705, (1999). No month.
I.W. Boyd, Laser Processing of Thin Films and Microstructures, Oxidation, Deposition, and Etching of Insulators (Springer—Verlag Berlin Heidelber 1987).
N. Yamamuchi and R. Reif, Journal of Applied Physics, “Polycrystalline silicon thin films processed with silicon ion implantation and subsequent solid-phase crystallization: Theory, experiments, and thin-film transistor applications”—Apr. 1, 1994—vol. 75, Issue 7, pp. 3235-3257.
T. Noguchi, “Appearance of Single-Crystalline Properties in Fine-Patterned Si Thin Film Transistors (TFTs) by Solid Phase Crystallization (SPC),” Jpn. J. Appl. Phys. vol. 32 (1993) L1584-L1587.
Ishihara et al., “A Novel Double-Pulse Exicem-Laser Crystallization Method of Silicon Thin-Films,” Japanese Journal of Applied Physics, Publication Office Japanese Journal of Applied Physics, Tokyo, Japan, vol. 34, No. 8A, Aug. 1995, pp. 3976-3981.
Kim, H. J., “Excimer-Laser-Induced Crystallization of Amorophus Silicon Thin Films”, Ph. D. Dissertation Abstract, Columbia University, 1996.
Bergmann, R. et al., Nucleation and Growth of Crystalline Silicon Films on Glass for Solar Cells, Phys. Stat. Sol., 1998, pp. 587-602, vol. 166, Germany.
Biegelsen, D.K., L.E. Fennell and J.C. Zesch, Origin of oriented crystal growth of radiantly melted silicon on SiO/sub 2, Appl. Phys. Lett. 45, 546 (1984).
Boyd, Laser Processing of Thin Films and Microstructures, Oxidation, Deposition, and Etching of Insulators (Springer—Verlag Berlin Heidelber 1987).
Brotherton, S.D., et al., Characterisation of poly-Si TFTs in Directionally Solidified SLS Si, Asia Display/IDS'01, p. 387-390.
Crowder et al., “Parametric investigation of SLS-processed poly-silicon thin films for TFT application,” Preparations and Characterization, Elsevier, Sequoia, NL, vol. 427, No. 1-2, Mar. 3, 2003, pp. 101-107, XP004417451.
Crowder et al., “Sequential Lateral Solidification of PECVD and Sputter Deposited a-Si Films”, Mat. Res. Soc. Symp. Proc. 621:Q.9.7.1-9.7.6, 2000.
Dassow, R. et al. Laser-Crystallized Polycrystalline Silicon on Glass for Photovoltaic Applications, Solid State Phenomena, pp. 193-198, vols. 67-68, Scitec Publications, Switzerland.
Dassow, R. et al. Nd:YVO4 Laser Crystallization for Thin Film Transistors with a High Mobility, Mat. Res. Soc. Symp. Proc., 2000, Q9.3.1-Q9.3.6, vol. 621, Materials Research Society.
Dassow, R. et al., Laser crystallization of silicon for high-performance thin-film transistors, Semicond. Sci. Technol., 2000, pp. L31-L34, vol. 15, UK.
Dimitriadis, C.A., J. Stoemenos, P.A. Coxon, S. Friligkos, J. Antonopoulos and N.A. Economou, Effect of pressure on the growth of crystallites of low-pressure chemical-vapor-deposited polycrystalline silicon films and the effective electron mobility under high normal field in thin-film transistors, J. Appl. Phys. 73, 8402 (1993).
Geis et al., “Crystallographic orientation of silicon on an amorphous substrate using an artificial surface-relief grating and laser crystallization,” Appl. Phys. Lett. 35(1) Jul. 1, 1979, 71-74.
Geis et al., “Silicon graphoepitaxy using a strip-heater oven,” Appl. Phys. Lett. 37(5), Sep. 1, 1980, 454-456.
Geis et al., “Zone-Melting recrystallization of SI Films with a moveable-strip heater oven” J. Electro-Chem. Soc., 129: 2812 (1982).
Gupta et al., “Numerical Analysis of Excimer-laser induced melting and solidification of Si Thin Films”, Applied Phys. Lett., 71:99, 1997.
Hau-Reige et al., “Microstructural Evolution Induced by Scanned Laser Annealing in A1 Interconnects,” Appl. Phys. Lett., vol. 75, No. 10, p. 1464-1466, 1999.
Hawkins, W.G. et al., “Origin of lamellae in radiatively melted silicon films,” appl. Phys. Lett. 42(4), Feb. 15, 1983.
Hayzelden, C. and J.L. Batstone, Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films, J. Appl. Phys. 73, 8279 (1993).
Im, J.S., Method and system for producing crystalline thin films with a uniform crystalline orientation, U.S. Appl. No. 60/503,419; ref file No. 36013(BB); Columbia ref. M02-063.
Jung, Y.H., et al., Low Temperature Polycrystalline Si TFTs Fabricated with Directionally Crystallized Si Film, Mat. Res. Soc. Symp. Proc. vol. 621, Z8.3.1-6, 2000.
Jung, Y.H., et al., The Dependence of Poly-Si TFT Characteristics on the Relative Misorientation Between Grain Boundaries and the Active Channel, Mat. Res. Soc. Symp. Proc. vol. 621, Q9.14.1-6, 2000.
Kahlert, H., “Creating Crystals”, OE Magazine, Nov. 2001, 33-35.
Kim, C. et al., Development of SLS-Based SOG Display, IDMC 2005, Thu-15-02, 252-255.
Kim, H. J. et al., “Excimer Laser Induced Crystallization of Thin Amorphous Si Films on SiO2: Implications of Crystallized Microstructures for Phase Transformation Mechanisms,” Mat. Res. Soc. Symp. Proc., vol. 283, 1993.
Kim, H.J. et al., “New Excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si Films for Thin Film Transistors”, Applied Phys. Lett., 68: 1513.
Kim, H.J. et al., “Multiple Pulse Irradiation Effects in Excimer Laser-Induced Crystallization of Amorphous Si Films,” Mat. Res. Soc. Sym. Proc., 321:665-670 (1994).
Kim, H.-J., et al., “The effects of dopants on surface-energy-driven secondary grain growth in silicon films,” J. Appl. Phys. 67 (2), Jan. 15, 1990.
Kimura, M. and K. Egami, Influence of as-deposited film structure on (100) texture in laser-recrystallized silicon on fused quartz, Appl. Phys. Lett. 44, 420 (1984).
Knowles, D.S. et al., “P-59: Thin Beam Crystallization Method: a New Laser Annealing Tool with Lower Cost and Higher Yield for LTPS Panels,” SID 00 Digest, pp. 1-3 , 2005.
Kohler, J.R. et al., Large-grained polycrystalline silicon on glass by copper vapor laser annealing. Thin Solid Films, 1999, pp. 129-132, vol. 337, Elsevier.
Kung, K.T.Y. and R. Reif, Implant-dose dependence of grain size and (110) texture enhancements in polycrystalline Si films by seed selection through ion channeling, J. Appl. Phys. 59, 2422 (1986).
Kung, K.T.Y., R.B. Iverson and R. Reif, Seed selection through ion channeling to modify crystallographic orientations of polycrystalline Si films on SiO/sub 2/:Implant angle dependence, Appl. Phys. Lett. 46, 683 (1985).
Kuriyama, H., T. Nohda, S. Ishida, T. Kuwahara, S. Noguchi, S. Kiyama, S. Tsuda and S. Nakano, Lateral grain growth of poly-Si films with a specific orientation by an excimer laser annealing method, Jpn. J. Appl. Phys. 32, 6190 (1993).
Kuriyama, H., T. Nohda, Y. Aya, T. Kuwahara, K. Wakisaka, S. Kiyama and S. Tsuda, Comprehensive study of lateral grain growth in poly-Si films by excimer laser annealing and its application to thin film transistors, Jpn. J. Appl. Phys. 33, 5657 (1994).
Lee, S.-W. and S.-K. Joo, Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization, IEEE Electron Device Letters 17, 160 (1996).
Lee, S.-W., Y.-C. Jeon and S.-K. Joo, Pd induced lateral crystallization of amorphous Si thin films, Appl. Phys. Lett. 66, 1671 (1995).
Leonard, J.P. et al, “Stochastic modeling of solid nucleation in supercooled liquids”, Appl. Phys. Lett. 78:22, May 28, 2001, 3454-3456.
Limanov, A. et al., Single-Axis Projection Scheme for Conducting Sequential Lateral Solidification of Si Films for Large-Area Electronics, Mat. Res. Soc. Symp. Proc., 2001, D10.1.1-D10.1.7, vol. 685E, Materials Research Society.
Limanov, A. et al., The Study of Silicon Films Obtained by Sequential Lateral Solidification by Means of a 3-k-Hz Excimer Laser with a Sheetlike Beam, Russian Microelectronics, 1999, pp. 30-39, vol. 28, No. 1, Russia.
Mariucci et al., “Advanced excimer laser crystallization techniques,” Thin Solid Films, vol. 338, pp. 39-44, 2001.
Micro/Las Lasersystem, GmbH, “UV Optics Systems for Excimer Laser Based Micromaching and Marking” (1999).
Miyasaka, M., K. Makihira, T. Asano, E. Polychroniadis and J. Stoemenos, In situ observation of nickel metal-induced lateral crystallization of amorphous silicon thin films, Appl. Phys. Lett. 80, 944 (2002).
Nerding, M., S. Christiansen, R. Dassow, K. Taretto, J.R. Kohler and H.P. Strunk, Tailoring texture in laser crystallization of silicon thin-films on glass, Solid State Phenom. 93, 173 (2003).
Sato et al., “Mobility anisotropy of electrons in inversion layers on oxidized silicon surfaces” Physical Review B (State State) 4, 1950 (1971).
Smith, H.I. et al., “The Mechanism of Orientation in Si Graphoepitaxy by Laser or Strip Heater Recrystallization,” J. Electrochem. Soc.: Solid-State Science and Technology, Taiwan FPD, Jun. 11, 2005, pp. 1-12.
Song et al., “Single Crystal Si Islands on SiO2 Obtained Via Excimer Laser Irradiation of a Patterned Si Film”, Applied Phys. Lett., 68:3165, 1996.
Sposili et al., “Line-scan sequential lateral solidification of Si thin films”, Appl. Phys. A67, 273-6, 1998.
Thompson, C.V. and H.I. Smith, Surface-energy-driven secondary grain growth in ultrathin (<100 nm) films of silicon, Appl. Phys. Lett. 44, 603 (1984).
van der Wilt, “The Commercialization of the SLS Technology,” Taiwan FPD, Jun. 11, 2004, pp. 1-12.
Van Der Wilt, P.C., “State-of-the-Art Laser Crystallization of Si for Flat Panel Displays,” PhAST, May 18, 2004, pp. 1-34.
Van Der Wilt, P.C., “Textured poly-Si films for hybrid SLS,” Jul. 2004, pp. 1-5.
Voutsas, A. T., “Assessment of the Performance of Laser-Based Lateral-Crystallization Technology via Analysis and Modeling of Polysilicon Thin-Film-Transistor Mobility,” IEEE Transactions on Electronic Devices, vol. 50, No. 6, Jun. 2003.
Voutsas, A.T., A new era of crystallization: advances in polysilicon crystallization and crystal engineering, Applied Surface Science 250-262, 2003.
Voutsas, A.T., et al., Effect of process parameters on the structural characteristics of laterally grown, laser-annealed polycrystalline silicon films, Journal of Applied Physics, vol. 94, No. 12, p. 7445-7452, Dec. 15, 2003.
Weiner, K. H. et al. “Laser-assisted, Self-aligned Silicide Formation,” A Verdant Technologies technical brief, Aug. 7, 1997, 1-9.
Werner, J.H., et al. From polycrystalline to single crystalline silicon on glass, Thin Solid Films 383, 95-100, 2001.
White et al., “Characterization of thin-oxide MNOS memory transistors” IEEE Trans. Electron Devices ED-19, 1280 (1972).
Jeon et al., “New Excimer Laser Recrystallization of Poly-Si for Effective Grain Growth and Grain Boundary Arrangement,” Jpn. J. Appl. Phys. vol. 39 (Apr. 2000) pp. 2010-2014.
U.S. Appl. No. 12/419,821, filed Apr. 9, 2009, Im et al.
U.S. Appl. No. 12/567,414, filed Sep. 25, 2009, Im et al.
Gosain et al., “Formation of (100)-Textured Si Film Using an Excimer Laser on a Glass Substrate,” Jpn. J. Appl. Phys., vol. 42 (2003) pp. L135-L137, Feb. 15, 2003.
Andra et al., “Multicrystalline LLC-SI Thin Film Solar Cells on Low Temperature Glass”, 3rd World Conference on Photovoltaic Energy Conversion May 11-18, 2003, Osaka, Japan, Poster, pp. 1174-1177 (2003).
Andra et al., “A new technology for crystalline silicon thin film solar cells on glass based on laser crystallization”, Photovoltiac Specialists Conference. Conference Record of the Twenty-Eight IEEE, pp. 217-220 (2000).
Sinke et al., “Explosive crystallization of amorphous silicon: Triggering and propagation”, Applied Surface Science, 43:128-135 (1989).
U.S. Appl. No. 10/308,958, filed Dec. 3, 2002 (Abandoned).
U.S. Appl. No. 12/402,208, filed Mar. 11, 2009.
U.S. Appl. No. 12/419,821, filed Apr. 7, 2009.
U.S. Appl. No. 12/567,414, filed Sep. 25, 2009.
U.S. Appl. No. 09/390,535, Nov. 13, 2002 Amendment after Notice of allowance.
U.S. Appl. No. 09/390,535, Oct. 28, 2002 Issue Fee Payment.
U.S. Appl. No. 09/390,535, Oct. 23, 2002 Notice of Allowance.
U.S. Appl. No. 09/390,535, Aug. 26, 2002 Reponse to Non-Final Office Action.
U.S. Appl. No. 09/390,535, May 20, 2002 Non-Final Office Action.
U.S. Appl. No. 09/390,535, Apr. 4, 2002 Response to Non-Final Office Action.
U.S. Appl. No. 09/390,535, Nov. 2, 2001 Non-Final Office Action.
U.S. Appl. No. 09/390,535, Sep. 15, 2001 Response to Non-Final Office Action.
U.S. Appl. No. 09/390,535, Jul. 10, 2001 Non-Final Office Action.
U.S. Appl. No. 09/390,535, Jun. 18, 2001 Response to Final Office Action.
U.S. Appl. No. 09/390,535, Apr. 3, 2001 Final Office Action.
U.S. Appl. No. 09/390,535, Mar. 2, 2001 Response to Non-Final Office Action.
U.S. Appl. No. 09/390,535, Oct. 17, 2000 Non-Final Office Action.
U.S. Appl. No. 10/294,001, Feb. 13, 2006 Issue Fee payment.
U.S. Appl. No. 10/294,001, Jan. 27, 2006 Notice of Allowance.
U.S. Appl. No. 10/294,001, Nov. 10, 2005 Reponse to Non-Final Office Action.
U.S. Appl. No. 10/294,001, May 19, 2005 Non-Final Office Action.
U.S. Appl. No. 10/294,001, Feb. 16, 2005 Response to Restriction Requirement.
U.S. Appl. No. 10/294,001, Jan. 14, 2005 Restriction Requirement.
U.S. Appl. No. 10/294,001, Oct. 18, 2004 Response to Non-Final Office Action.
U.S. Appl. No. 10/294,001, Jul. 13, 2004 Non-Final Office Action.
U.S. Appl. No. 10/308,958, Mar. 14, 2005 Notice of Abandonment.
U.S. Appl. No. 10/308,958, Mar. 2, 2005 Notice of Allowance.
U.S. Appl. No. 10/308,958, Feb. 25, 2005 Express Abandonment.
U.S. Appl. No. 10/308,958, Dec. 3, 2004 Response to Non-Final Office Action.
U.S. Appl. No. 10/308,958, Sep. 22, 2004 Non-Final Office Action.
U.S. Appl. No. 10/308,958, May 20, 2004 Supplemental Amendment.
U.S. Appl. No. 10/308,958, May 19, 2004 Examiner's Interview Summary.
U.S. Appl. No. 10/308,958, Dec. 29, 2003 Examiner's Interview Summary.
U.S. Appl. No. 10/308,958, Oct. 9, 2003 Terminal Disclaimer filed.
U.S. Appl. No. 10/308,958, Sep. 22, 2003 Response to Non-Final Office Action.
U.S. Appl. No. 10/308,958, Jun. 17, 2003 Non-Final Office Action.
U.S. Appl. No. 11/141,815, Nov. 21, 2007 Issue Fee payment.
U.S. Appl. No. 11/141,815, Oct. 17, 2007 Notice of Allowance.
U.S. Appl. No. 11/141,815, Oct. 1, 2007 Response to Non-Final Office Action and Terminal Disclaimer filed.
U.S. Appl. No. 11/141,815, Jun. 1, 2007 Non-Final Office Action.
U.S. Appl. No. 11/373,773, Nov. 10, 2009 Issue Fee payment.
U.S. Appl. No. 11/373,773, Aug. 11, 2009 Notice of Allowance.
U.S. Appl. No. 11/373,773, May 5, 2009 Response to Non-Final Office Action.
U.S. Appl. No. 11/373,773, Dec. 5, 2008 Non-Final Office Action.
U.S. Appl. No. 11/744,493, Nov. 10, 2009 Issue Fee payment.
U.S. Appl. No. 11/744,493, Aug. 10, 2009 Notice of Allowance.
U.S. Appl. No. 11/744,493, Jun. 24, 2009 Request for Continued Examination (RCE).
U.S. Appl. No. 11/744,493, Mar. 27, 2009 Notice of Allowance.
U.S. Appl. No. 11/744,493, Dec. 23, 2008 Terminal Disclaimer filed.
U.S. Appl. No. 11/744,493, Sep. 23, 2008 Non-Final Office Action.
U.S. Appl. No. 12/419,821, Mar. 22, 2011 Non-Final Office Action.
U.S. Appl. No. 12/567,414, Jun. 1, 2011 Restriction Requirement.
Van der Wilt, P.C., “Textured poly-Si films for hybrid SLS”, Jul. 2004, pp. 1-5.
U.S. Appl. No. 12/419,821, filed Sep. 2, 2011 Non-Final Office Action.
U.S. Appl. No. 12/419,821, Jun. 10, 2011 Response to Non-Final Office Action.
U.S. Appl. No. 12/644,273, Jul. 19, 2011 Notice of Allowance.
Bergmann et al., “The future of crystalline silicon films on foreign substrates,” Thin Solid Films 403-404 (2002) 162-169.
van der Wilt et al., “A hybrid approach for obtaining orientation-controlled single-crystal Si regions on glass substrates”, Proc. of SPIE vol. 6106, 61060B-1-B-15, (2006) XP009151485.
Related Publications (1)
Number Date Country
20090173948 A1 Jul 2009 US
Divisions (1)
Number Date Country
Parent 11141815 Jun 2005 US
Child 11744493 US
Continuations (3)
Number Date Country
Parent 11744493 May 2007 US
Child 12402208 US
Parent 10294001 Nov 2002 US
Child 11141815 US
Parent 09390535 Sep 1999 US
Child 10294001 US
Continuation in Parts (2)
Number Date Country
Parent PCT/US96/07730 May 1996 US
Child 09390535 US
Parent 09200533 Nov 1998 US
Child PCT/US96/07730 US