This disclosure relates to the brazing and/or coating of components in etch chambers used in semiconductor processing.
In plasma processing chambers, components sometimes need to be joined together. Existing methods of joining components may result in joints that contain contaminants. In addition, the joint may have poor corrosion resistance. New ways are therefore needed to join components in plasma chambers.
Among other things, disclosed herein are methods for making a plasma chamber component. This method may include any or all of the following steps: providing first and second components made of aluminum or aluminum alloy; brazing the first and second components using a mixture of aluminum and silicon, to form a brazing interface; anodizing at least a portion of the first and second components, such that an anodized coating forms over the brazing interface; and conformally coating the anodized coating using atomic layer deposition, to form an ALD coating.
In various further embodiments of the above methods, the ALD coating may be a corrosion-resistant dielectric material. The ALD coating may be a plasma corrosion resistant oxide comprising yttrium, zirconium, and/or aluminum. The ALD coating may be alumina. The mixture of aluminum and silicon may be an approximately eutectic mixture comprising 5-20% silicon. The brazing may be performed at a temperature less than about 120° C. The first component may be a fluid distribution plate may include one or more open channels for distributing a fluid; in one embodiment, the step of brazing may cause the open channels to be at least partially enclosed by at least a portion of the second component. Further, The second component may comprise one or more fluid passages through the second component; the fluid passages may have a first end and a second end. In addition, the step of brazing may connect each first end to at least one of the channels for fluid communication between them. In another embodiment, the plasma chamber component may be an electrostatic chuck.
Also disclosed are embodiments of a plasma processing chamber. This chamber may include a first and a second component made of aluminum or aluminum alloy. It may include a brazing interface between the first and second components comprising a mixture of aluminum and silicon. It may include an anodized coating covering at least the brazing interface, such that the brazing interface is not exposed to the exterior of the part. It may further include a conformal ALD coating deposited by atomic layer deposition over the anodized coating.
In various further embodiments of the above plasma processing chambers, the first component may be a fluid distribution plate comprising one or more channels for distributing a fluid; at least a portion of the channels may be at least partially enclosed by at least a portion of the second component. The second component may comprise one or more fluid passages through the second component; the fluid passages may have a first end and a second end; each first end may open into at least one of the channels for fluid communication between them. In further embodiments, the ALD coating may be a corrosion resistant dielectric material. The ALD coating may be a plasma corrosion resistant oxide comprising yttrium, zirconium, and/or aluminum. The ALD coating is alumina. The mixture of aluminum and silicon is an approximately eutectic mixture comprising 5-20% silicon. The “part” mentioned above may be an electrostatic chuck.
These and other features of the present inventions will be described in more detail below in the detailed description and in conjunction with the following figures.
The disclosed inventions are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Inventions will now be described in detail with reference to a few of the embodiments thereof as illustrated in the accompanying drawings. In the following description, specific details are set forth in order to provide a thorough understanding of the present invention. However, the present invention may be practiced without some or all of these specific details, and the disclosure encompasses modifications which may be made in accordance with the knowledge generally available within this field of technology. Well-known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present disclosure.
It is often useful to create a hermetical joint between plasma processing chamber components of aluminum alloys to, for example, create a cavity for gas or fluid delivery. In one embodiment, a method of creating such a joint is vacuum brazing. In one embodiment, high-silicon-containing aluminum alloys may be used as a brazing foil. For example, the foil may comprise Al 4047 alloy with approximately 12% silicon, which is near eutectic composition. The silicon concentration can range over a margin that would include about 5-20%, or 10-15%. Other components may also be used, such as magnesium, which in some embodiments may act as a getter, especially when the brazing is done at temperatures higher than about 570° C. Preferably, the brazing composition is eutectic or near eutectic such that when the mixture melts, the solid and liquid compositions are approximately the same, and the melting point is lower than the melting point of the individual components. The lower melting point makes it possible to perform the brazing at lower temperatures. Mixtures with high flowability are preferred, to make a more uniform and conforming brazing joint.
Although a vacuum braze containing silicon can offer a solid structural joint, it could cause issues due to the silicon content. One problem is that when such a brazing joint containing silicon is anozided, the quality of the anodization may be very poor due to a silicon micromasking effect in anodization. This may compromise corrosion resistance at the braze line, especially when the braze line is near highly corrosive gasses such as chlorine, hydrogen bromide, or boron trichloride in dielectric etch chambers. This silicon-rich braze line, when exposed to plasma (for example, the exterior surfaces of braze line at the edge of an electrostatic chuck or gas distribution plate, may cause other issues. For example, fluorine radicals from the plasma may preferentially etch the silicon-rich phase away, degrading the structural soundness of the joint, causing flaking, or possibly creating a high chance of arcing or lightup.
In one embodiment, a brazing line may be protected using dense, super conformal, corrosion resistant atomic layer deposition (ALD) oxide coatings. In one embodiment, such a coating may be formed over an anodized aluminum layer. The ALD coating can be deposited even at low temperature (for example, below about 120° C. or even at room temperature of 20 or 30° C.). In this embodiment, thermal cracking of anodization on the surfaces other than the braze line (e.g., the Al 6061) can be avoided. Further, an ALD coating can penetrate into tortuous geometries, which can enable full protection of a braze line, which may have hidden features, such as internal gas channels.
Some features of an ALD coating may include operation at low temperatures, so as to avoid risk of cracking an anodization layer during coating. Therefore, ALD coating may be compatible with an anodization process. In addition, ALD may form deposits that are free of pinholes or pores, which provides a superior barrier against corrosive gasses and plasma species. ALD coatings are also typically very pure, and may be created without detectable metal impurities other than, perhaps, aluminum from coating. Carbon impurities may also be kept low. ALD coatings are also super-conformal, and uniform in their coating thickness, as well as aspect ratio independent. Coatings can therefore avoid undesirable alterations in the dimensions of the coated part.
Example ALD coating materials may include ceramics, dielectric materials, alumina, zirconia, yttria, combinations of aluminum, zirconium, yttrium, and/or oxygen such as YAG or YSZ, materials with corrosion-resistance, and materials known in the art to have superior resistance to radicals. The material may in several embodiments also be metal oxide, nitride, fluoride, or carbide, or combinations thereof.
Methods of ALD coating are known in the art. See, e.g., U.S. Patent Pub. No. 2014/0113457 A1 (published Apr. 24, 2014), incorporated herein by reference in its entirety. They use surface-mediated deposition reactions to deposit films on a layer-by-layer basis. In one example ALD process, a substrate surface, including a population of surface active sites, is exposed to a gas phase distribution of a first film precursor (P1). Some molecules of P1 may form a condensed phase atop the substrate surface, including chemisorbed species and physisorbed molecules of P1. The reactor is then evacuated to remove gas phase and physisorbed P1 so that only chemisorbed species remain. A second film precursor (P2) is then introduced to the reactor so that some molecules of P2 adsorb to the substrate surface. The reactor may again be evacuated, this time to remove unbound P2. Subsequently, thermal energy provided to the substrate activates surface reactions between adsorbed molecules of P1 and P2, forming a film layer. Finally, the reactor is evacuated to remove reaction by-products and possibly unreacted P1 and P2, ending the ALD cycle. Additional ALD cycles may be included to build film thickness.
The components 108 and 111 may be joined by brazing, via the brazing foil 110, as illustrated in
In another embodiment,
The components 208 and 211 may be joined by brazing, via the brazing foil 210, as illustrated in
While inventions have been described in terms of several preferred embodiments, there are alterations, permutations, and various substitute equivalents, which fall within the scope of this invention. There are many alternative ways of implementing the methods and apparatuses disclosed herein. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and various substitute equivalents as fall within the true spirit and scope of the present invention.