Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing

Information

  • Patent Grant
  • 11634731
  • Patent Number
    11,634,731
  • Date Filed
    Monday, September 16, 2019
    4 years ago
  • Date Issued
    Tuesday, April 25, 2023
    a year ago
Abstract
Methods for increasing specificity of RNA-guided genome editing, e.g., editing using CRISPR/Cas9 systems, using truncated guide RNAs (tru-gRNAs).
Description
TECHNICAL FIELD

Methods for increasing specificity of RNA-guided genome editing, e.g., editing using CRISPR/Cas9 systems, using truncated guide RNAs (tru-gRNAs).


BACKGROUND

Recent work has demonstrated that clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems (Wiedenheft et al., Nature 482, 331-338 (2012); Horvath et al., Science 327, 167-170 (2010); Terns et al., Curr Opin Microbiol 14, 321-327 (2011)) can serve as the basis for performing genome editing in bacteria, yeast and human cells, as well as in vivo in whole organisms such as fruit flies, zebrafish and mice (Wang et al., Cell 153, 910-918 (2013); Shen et al., Cell Res (2013); Dicarlo et al., Nucleic Acids Res (2013); Jiang et al., Nat Biotechnol 31, 233-239 (2013); Jinek et al., Elife 2, e00471 (2013); Hwang et al., Nat Biotechnol 31, 227-229 (2013); Cong et al., Science 339, 819-823 (2013); Mali et al., Science 339, 823-826 (2013c); Cho et al., Nat Biotechnol 31, 230-232 (2013); Gratz et al., Genetics 194(4):1029-35 (2013)). The Cas9 nuclease from S. pyogenes (hereafter simply Cas9) can be guided via base pair complementarity between the first 20 nucleotides of an engineered guide RNA (gRNA) and the complementary strand of a target genomic DNA sequence of interest that lies next to a protospacer adjacent motif (PAM), e.g., a PAM matching the sequence NGG or NAG (Shen et al., Cell Res (2013); Dicarlo et al., Nucleic Acids Res (2013); Jiang et al., Nat Biotechnol 31, 233-239 (2013); Jinek et al., Elife 2, e00471 (2013); Hwang et al., Nat Biotechnol 31, 227-229 (2013); Cong et at, Science 339, 819-823 (2013); Mali et al., Science 339, 823-826 (2013c); Cho et al., Nat Biotechnol 31, 230-232 (2013); Jinek et al., Science 337, 816-821 (2012)). Previous studies performed in vitro (Jinek et al., Science 337, 816-821 (2012)), in bacteria (Jiang et al., Nat Biotechnol 31, 233-239 (2013)) and in human cells (Cong et al., Science 339, 819-823 (2013)) have shown that Cas9-mediated cleavage can, in some cases, be abolished by single mismatches at the gRNA/target site interface, particularly in the last 10-12 nucleotides (nts) located in the 3′ end of the 20 nt gRNA complementarity region.


SUMMARY

CRISPR-Cas genome editing uses a guide RNA, which includes both a complementarity region (which binds the target DNA by base-pairing) and a Cas9-binding region, to direct a Cas9 nuclease to a target DNA (see FIG. 1). The nuclease can tolerate a number of mismatches (up to five, as shown herein) in the complementarity region and still cleave; it is hard to predict the effects of any given single or combination of mismatches on activity. Taken together, these nucleases can show significant off-target effects but it can be challenging to predict these sites. Described herein are methods for increasing the specificity of genome editing using the CRISPR/Cas system, e.g., using Cas9 or Cas9-based fusion proteins. In particular, provided are truncated guide RNAs (tru-gRNAs) that include a shortened target complementarity region (i.e., less than 20 nts, e.g., 17-19 or 17-18 nts of target complementarity, e.g., 17, 18 or 19 nts of target complementarity), and methods of using the same. As used herein, “17-18 or 17-19” includes 17, 18, or 19 nucleotides.


In one aspect, the invention provides a guide RNA molecule (e.g., a single guide RNA or a crRNA) having a target complementarity region of 17-18 or 17-19 nucleotides, e.g., the target complementarity region consists of 17-18 or 17-19 nucleotides, e.g., the target complementarity region consists of 17-18 or 17-19 nucleotides of consecutive target complementarity. In some embodiments, the guide RNA includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence. In some embodiments, the target complementarity region consists of 17-18 nucleotides (of target complementarity). In some embodiments, the complementarity region is complementary to 17 consecutive nucleotides of the complementary strand of a selected target sequence. In some embodiments, the complementarity region is complementary to 18 consecutive nucleotides of the complementary strand of a selected target sequence.


In another aspect, the invention provides a ribonucleic acid consisting of the sequence:









(SEQ ID NO: 2404)


(X17-18 or X17-19)GUUUUAGAGCUA;





(SEQ ID NO: 2407)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGUUUUG;


or





(SEQ ID NO: 2408)


(X17-18 or X17-19)GUUUUAGAGCUAUGCU;





(SEQ ID NO: 1)


(X17-18 or X17-19)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAA


GGCUAGUCCG(XN);





(SEQ ID NO: 2)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGAAAAGCAUAGCAAGU


UAAAAUAAGGCUAGUCCGUUAUC(XN);





(SEQ ID NO: 3)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGUUUUGGAAACAAAAC


AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUC(XN);





(SEQ ID NO: 4)


(X17-18)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCG


UUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(XN),





(SEQ ID NO: 5)


(X17-18 or X17-19)GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAA


GGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC;





(SEQ ID NO: 6)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAA


GUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCG


GUGC;


or





(SEQ ID NO: 7)


(X17-18 or X17-19)GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAA


GUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCG


GUGC;







wherein X17-18 or X17-19 is a sequence (of 17-18 or 17-19 nucleotides) complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5′ of a protospacer adjacent motif (PAM), e.g., NGG NAG or NNGG (see, for example, the configuration in FIG. 1), and XN is any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9. In no case is the X17-18 or X17-19 identical to a sequence that naturally occurs adjacent to the rest of the RNA. In some embodiments the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3′ end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription. In some embodiments the RNA includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5′ end of the RNA molecule that is not complementary to the target sequence. In some embodiments, the target complementarity region consists of 17-18 nucleotides (of target complementarity). In some embodiments, the complementarity region is complementary to 17 consecutive nucleotides of the complementary strand of a selected target sequence. In some embodiments, the complementarity region is complementary to 18 consecutive


In another aspect, the invention provides DNA molecules encoding the ribonucleic acids described herein, and host cells harboring or expressing the ribonucleic acids or vectors.


In a further aspect, the invention provides methods for increasing specificity of RNA-guided genome editing in a cell, the method comprising contacting the cell with a guide RNA that includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence, as described herein.


In yet another aspect, the invention provides methods for inducing a single or double-stranded break in a target region of a double-stranded DNA molecule, e.g., in a genomic sequence in a cell. The methods include expressing in or introducing into the cell: a Cas9 nuclease or nickase; and a guide RNA that includes a sequence consisting of 17 or 18 or 19 nucleotides that are complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5′ of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, e.g., a ribonucleic acid as described herein.


Also provided herein are methods for modifying a target region of a double-stranded DNA molecule in a cell. The methods include expressing in or introducing into the cell: a dCas9-heterologous functional domain fusion protein (dCas9-HFD); and a guide RNA that includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence, as described herein.


In some embodiments, the guide RNA is (i) a single guide RNA that includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence, or (ii) a crRNA that includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence, and a tracrRNA.


In some embodiments, the target complementarity region consists of 17-18 nucleotides (of target complementarity). In some embodiments, the complementarity region is complementary to 17 consecutive nucleotides of the complementary strand of a selected target sequence. In some embodiments, the complementarity region is complementary to 18 consecutive


In no case is the X17-18 or X17-19 of any of the molecules described herein identical to a sequence that naturally occurs adjacent to the rest of the RNA. In some embodiments the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3′ end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription. In some embodiments the RNA includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5′ end of the RNA molecule that is not complementary to the target sequence.


In some embodiments, one or more of the nucleotides of the RNA is modified, e.g., locked (2′-O-4′-C methylene bridge), is 5′-methylcytidine, is 2′-O-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain, e.g., one or more of the nucleotides within or outside the target complementarity region X17-18 or X17-19. In some embodiments, some or all of the tracrRNA or crRNA, e.g., within or outside the X17-18 or X17-19 target complementarity region, comprises deoxyribonucleotides (e.g., is all or partially DNA, e.g. DNA/RNA hybrids).


In an additional aspect, the invention provides methods for modifying a target region of a double-stranded DNA molecule, e.g., in a genomic sequence in a cell. The methods include expressing in or introducing into the cell:


a dCas9-heterologous functional domain fusion protein (dCas9-HFD); and a guide RNA that includes a sequence consisting of 17-18 or 17-19 nucleotides that are complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5′ of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, e.g., a ribonucleic acid as described herein. In no case is the X17-18 or X17-19 identical to a sequence that naturally occurs adjacent to the rest of the RNA. In some embodiments the RNA includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5′ end of the RNA molecule that is not complementary to the target sequence.


In another aspect, the invention provides methods for modifying, e.g., introducing a sequence specific break into, a target region of a double-stranded DNA molecule, e.g., in a genomic sequence in a cell. The methods include expressing in or introducing into the cell: a Cas9 nuclease or nickase, or a dCas9-heterologous functional domain fusion protein (dCas9-HFD);


a tracrRNA, e.g., comprising or consisting of the sequence GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUA UCAACUUGAAAAAGUGGCACCGAGUCGGUGC (SEQ ID NO:8) or an active portion thereof;


UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCA CCGAGUCGGUGC (SEQ ID NO:2405) or an active portion thereof; AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGC (SEQ ID NO:2407) or an active portion thereof;


CAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGA AAAAGUGGCACCGAGUCGGUGC (SEQ ID NO:2409) or an active portion thereof;


UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUG (SEQ ID NO:2410) or an active portion thereof;


UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCA (SEQ ID NO:2411) or an active portion thereof; or


UAGCAAGUUAAAAUAAGGCUAGUCCG (SEQ ID NO:2412) or an active portion thereof; and


a crRNA that includes a sequence consisting of 17-18 or 17-19 nucleotides that are complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5′ of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG; in some embodiments the crRNA has the sequence:









(SEQ ID NO: 2404)


(X17-18 or X17-19)GUUUUAGAGCUA;





(SEQ ID NO: 2407)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGUUUUG;


or





(SEQ ID NO: 2408)


(X17-18 or X17-19)GUUUUAGAGCUAUGCU.





In some embodiments the crRNA is


(SEQ ID NO: 2407)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGUUUUG


and





the tracrRNA is


(SEQ ID NO: 8)


GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUA


UCAACUUGAAAAAGUGGCACCGAGUCGGUGC;





the cRNA is


(SEQ ID NO: 2404)


(X17-18 or X17-19)GUUUUAGAGCUA


and





the tracrRNA is


(SEQ ID NO: 2405)


UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCA


CCGAGUCGGUGC;


or





the cRNA is


(SEQ ID NO: 2408)


(X17-18 or X17-19)GUUUUAGAGCUAUGCU


and





the tracrRNA is


(SEQ ID NO: 2406)


AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU


GGCACCGAGUCGGUGC.






In no case is the X17-18 or X17-19 identical to a sequence that naturally occurs adjacent to the rest of the RNA. In some embodiments the RNA (e.g., tracrRNA or crRNA) includes one or more U, e.g., 2 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3′ end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription. In some embodiments the RNA (e.g., tracrRNA or crRNA) includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5′ end of the RNA molecule that is not complementary to the target sequence. In some embodiments, one or more of the nucleotides of the crRNA or tracrRNA is modified, e.g., locked (2′-O-4′-C methylene bridge), is 5′-methylcytidine, is 2′-O-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain, e.g., one or more of the nucleotides within or outside the sequence X17-18 or X17-19. In some embodiments, some or all of the tracrRNA or crRNA, e.g., within or outside the X17-18 or X17-19 target complementarity region, comprises deoxyribonucleotides (e.g., is all or partially DNA, e.g. DNA/RNA hybrids).


In some embodiments, the dCas9-heterologous functional domain fusion protein (dCas9-HFD) comprises a HFD that modifies gene expression, histones, or DNA, e.g., transcriptional activation domain, transcriptional repressors (e.g., silencers such as Heterochromatin Protein 1 (HP1), e.g., HP1α or HP1β), enzymes that modify the methylation state of DNA (e.g., DNA methyltransferase (DNMT) or TET proteins, e.g., TET1), or enzymes that modify histone subunit (e.g., histone acetyltransferases (HAT), histone deacetylases (HDAC), or histone demethylases). In preferred embodiments, the heterologous functional domain is a transcriptional activation domain, e.g., a VP64 or NF-κB p65 transcriptional activation domain; an enzyme that catalyzes DNA demethylation, e.g., a TET protein family member or the catalytic domain from one of these family members; or histone modification (e.g., LSD1, histone methyltransferase, HDACs, or HATs) or a transcription silencing domain, e.g., from Heterochromatin Protein 1 (HP1), e.g., HP1α or HP1β; or a biological tether, e.g., MS2, CRISPR/Cas Subtype Ypest protein 4 (Csy4) or lambda N protein. dCas9-HFD are described in a U.S. Provisional Patent Applications U.S. Ser. No. 61/799,647, Filed on Mar. 15, 2013, U.S. Ser. No. 61/838,148, filed on Jun. 21, 2013, and PCT International Application No. PCT/US14/27335, all of which are incorporated herein by reference in its entirety.


In some embodiments, the methods described herein result in an indel mutation or sequence alteration in the selected target genomic sequence.


In some embodiments, the cell is a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.


Other features and advantages of the invention will be apparent from the following detailed description and figures, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1: Schematic illustrating a gRNA/Cas9 nuclease complex bound to its target DNA site. Scissors indicate approximate cleavage points of the Cas9 nuclease on the genomic DNA target site. Note the numbering of nucleotides on the guide RNA proceeds in an inverse fashion from 5′ to 3′. Figure discloses SEQ ID NOS 2691-2693, respectively, in order of appearance.



FIG. 2A: Schematic illustrating a rationale for truncating the 5′ complementarity region of a gRNA. Thick grey lines=target DNA site, thin dark grey line structure=gRNA, black lines show base pairing (or lack thereof) between gRNA and target DNA site.



FIG. 2B: Schematic overview of the EGFP disruption assay. Repair of targeted Cas9-mediated double-stranded breaks in a single integrated EGFP-PEST reporter gene by error-prone NHEJ-mediated repair leads to frame-shift mutations that disrupt the coding sequence and associated loss of fluorescence in cells.



FIGS. 2C-F: Activities of RNA-guided nucleases (RGNs) harboring single guide RNAs (gRNAs) bearing (C) single mismatches, (D) adjacent double mismatches, (E) variably spaced double mismatches, and (F) increasing numbers of adjacent mismatches assayed on three different target sites in the EGFP reporter gene sequence. Mean activities of replicates are shown, normalized to the activity of a perfectly matched single gRNA. Error bars indicate standard errors of the mean. Positions mismatched in each single gRNA are highlighted in grey in the grid below. Sequences of the three EGFP target sites were as follows:











EGFP Site 1



(SEQ ID NO: 9)



GGGCACGGGCAGCTTGCCGGTGG







EGFP Site 2



(SEQ ID NO: 10)



GATGCCGTTCTTCTGCTTGTCGG







EGFP Site 3



(SEQ ID NO: 11)



GGTGGTGCAGATGAACTTCAGGG







FIG. 2G: Mismatches at the 5′ end of the gRNA make CRISPR/Cas more sensitive more 3′ mismatches. The gRNAs Watson-Crick base pair between the RNA&DNA with the exception of positions indicated with an “m” which are mismatched using the Watson-Crick transversion (i.e., EGFP Site #2 M18-19 is mismatched by changing the gRNA to its Watson-Crick partner at positions 18 & 19. Although positions near the 5′ of the gRNA are generally very well tolerated, matches in these positions are important for nuclease activity when other residues are mismatched. When all four positions are mismatched, nuclease activity is no longer detectable. This further demonstrates that matches at these 5′ position can help compensate for mismatches at other more 3′ positions. Note these experiments were performed with a non-codon optimized version of Cas9 which can show lower absolute levels of nuclease activity as compared to the codon optimized version.



FIG. 2H: Efficiency of Cas9 nuclease activities directed by gRNAs bearing variable length complementarity regions ranging from 15 to 25 nts in a human cell-based U2OS EGFP disruption assay. Expression of a gRNA from the U6 promoter requires the presence of a 5′ G and therefore it was only possible to evaluate gRNAs harboring certain lengths of complementarity to the target DNA site (15, 17, 19, 20, 21, 23, and 25 nts). Figure discloses SEQ ID NOS 2694-2700, respectively, in order of appearance.



FIG. 3A: Efficiencies of EGFP disruption in human cells mediated by Cas9 and full-length or shortened gRNAs for four target sites in the EGFP reporter gene. Lengths of complementarity regions and corresponding target DNA sites are shown. Ctrl=control gRNA lacking a complementarity region. Figure discloses SEQ ID NOS 2701, 9, 2702, 10, 2703-2704, 11 and 2705-2707, respectively, in order of appearance.



FIG. 3B: Efficiencies of targeted indel mutations introduced at seven different human endogenous gene targets by matched standard RGNs (Cas9 and standard full-length gRNAs) and tru-RGNs (Cas9 and gRNAs bearing truncations in their 5′ complementarity regions). Lengths of gRNA complementarity regions and corresponding target DNA sites are shown. Indel frequencies were measured by T7EI assay. Ctrl=control gRNA lacking a complementarity region. Figure discloses SEQ ID NOS 2708-2721, respectively, in order of appearance.



FIG. 3C: DNA sequences of indel mutations induced by RGNs using a tru-gRNA or a matched full-length gRNA targeted to the EMX1 site. The portion of the target DNA site that interacts with the gRNA complementarity region is highlighted in grey with the first base of the PAM sequence shown in lowercase. Deletions are indicated by dashes highlighted in grey and insertions by italicized letters highlighted in grey. The net number of bases deleted or inserted and the number of times each sequence was isolated are shown to the right. Figure discloses SEQ ID NOS 2722-2754, respectively, in order of appearance.



FIG. 3D: Efficiencies of precise HDR/ssODN-mediated alterations introduced at two endogenous human genes by matched standard and tru-RGNs. % HDR was measured using a BamHI restriction digest assay (see the Experimental Procedures for Example 2). Control gRNA=empty U6 promoter vector.



FIG. 3E: U2OS.EGFP cells were transfected with variable amounts of full-length gRNA expression plasmids (top) or tru-gRNA expression plasmids (bottom) together with a fixed amount of Cas9 expression plasmid and then assayed for percentage of cells with decreased EGFP expression. Mean values from duplicate experiments are shown with standard errors of the mean. Note that the data obtained with tru-gRNA matches closely with data from experiments performed with full-length gRNA expression plasmids instead of tru-gRNA plasmids for these three EGFP target sites.



FIG. 3F: U2OS.EGFP cells were transfected with variable amount of Cas9 expression plasmid together with fixed amounts of full-length gRNA expression plasmids (top) or tru-gRNA expression plasmids (bottom) for each target (amounts determined for each tru-gRNA from the experiments of FIG. 3E). Mean values from duplicate experiments are shown with standard errors of the mean. Note that the data obtained with tru-gRNA matches closely with data from experiments performed with full-length gRNA expression plasmids instead of tru-gRNA plasmids for these three EGFP target sites. The results of these titrations determined the concentrations of plasmids used in the EGFP disruption assays performed in Examples 1 and 2.



FIG. 4A: Schematic illustrating locations of VEGFA sites 1 and 4 targeted by gRNAs for paired double nicks. Target sites for the full-length gRNAs are underlined with the first base in the PAM sequence shown in lowercase. Location of the BamHI restriction site inserted by HDR with a ssODN donor is shown. Figure discloses SEQ ID NOS 2755-2756, respectively, in order of appearance.



FIG. 4B: A tru-gRNA can be used with a paired nickase strategy to efficiently induce indel mutations. Substitution of a full-length gRNA for VEGFA site 1 with a tru-gRNA does not reduce the efficiency of indel mutations observed with a paired full-length gRNA for VEGFA site 4 and Cas9-D10A nickases. Control gRNA used is one lacking a complementarity region.



FIG. 4C: A tru-gRNA can be used with a paired nickase strategy to efficiently induce precise HDR/ssODN-mediated sequence alterations. Substitution of a full-length gRNA for VEGFA site 1 with a tru-gRNA does not reduce the efficiency of indel mutations observed with a paired full-length gRNA for VEGFA site 4 and Cas9-D10A nickases with an ssODN donor template. Control gRNA used is one lacking a complementarity region.



FIG. 5A: Activities of RGNs targeted to three sites in EGFP using full-length (top) or tru-gRNAs (bottom) with single mismatches at each position (except at the 5′-most base which must remain a G for efficient expression from the U6 promoter). Grey boxes in the grid below represent positions of the Watson-Crick transversion mismatches. Empty gRNA control used is a gRNA lacking a complementarity region. RGN activities were measured using the EGFP disruption to assay and values shown represent the percentage of EGFP-negative observed relative to an RGN using a perfectly matched gRNA. Experiments were performed in duplicate and means with error bars representing standard errors of the mean are shown.



FIG. 5B: Activities of RGNs targeted to three sites in EGFP using full-length (top) or tru-gRNAs (bottom) with adjacent double mismatches at each position (except at the 5′-most base which must remain a G for efficient expression from the U6 promoter). Data presented as in 5A.



FIG. 6A: Absolute frequencies of on- and off-target indel mutations induced by RGNs targeted to three different endogenous human gene sites as measured by deep sequencing. Indel frequencies are shown for the three target sites from cells in which targeted RGNs with a full-length gRNA, a tru-gRNA, or a control gRNA lacking a complementarity region were expressed. Absolute counts of indel mutations used to make these graphs can be found in Table 3B.



FIG. 6B: Fold-improvements in off-target site specificities of three tru-RGNs. Values shown represent the ratio of on/off-target activities of tru-RGNs to on/off-target activities of standard RGNs for the off-target sites shown, calculated using the data from (A) and Table 3B. For the sites marked with an asterisk (*), no indels were observed with the tru-RGN and therefore the values shown represent conservative statistical estimates for the fold-improvements in specificities for these off-target sites (see Results and Experimental Procedures).



FIG. 6C, top: Comparison of the on-target and an off-target site identified by T7EI assay for the tru-RGN targeted to VEGFA site 1 (more were identified by deep sequencing). Note that the full-length gRNA is mismatched to the two nucleotides at the 5′ end of the target site and that these are the two nucleotides not present in the tru-gRNA target site. Mismatches in the off-target site relative to the on-target are highlighted in bold underlined text. Mismatches between the gRNAs and the off-target site are shown with X's. Figure discloses SEQ ID NOS 2757 and 2758, respectively, in order of appearance.



FIG. 6C, bottom: Indel mutation frequencies induced in the off-target site by RGNs bearing full-length or truncated gRNAs. Indel mutation frequencies were determined by T7EI assay. Note that the off-target site in this figure is one that we had examined previously for indel mutations induced by the standard RGN targeted to VEGFA site 1 and designated as site OT1-30 in that earlier study (Example 1 and Fu et al., Nat Biotechnol. 31(9):822-6 (2013)). It is likely that we did not identify off-target mutations at this site in our previous experiments because the frequency of indel mutations appears to be at the reliable detection limit of the T7EI assay (2-5%). Figure discloses SEQ ID NOS 2759 and 2760, respectively, in order of appearance.



FIGS. 7A-D: DNA sequences of indel mutations induced by RGNs using tru-gRNAs or matched full-length gRNAs targeted to VEGFA sites 1 and 3. Sequences depicted as in FIG. 3C. FIGS. 7A-D disclose SEQ ID NOS 2761-2888, respectively, in order of appearance.



FIG. 7E. Indel mutation frequencies induced by tru-gRNAs bearing a mismatched 5′ G nucleotide. Indel mutation frequencies in human U2OS.EGFP cells induced by Cas9 directed by tru-gRNAs bearing 17, 18 or 20 nt complementarity regions for VEGFA sites 1 and 3 and EMX1 site 1 are shown. Three of these gRNAs contain a mismatched 5′ G (indicated by positions marked in bold text). Bars indicate results from experiments using full-length gRNA (20 nt), tru-gRNA (17 or 18 nt), and tru-gRNA with a mismatched 5′ G nucleotide (17 or 18 nt with boldface T at 5′ end). (Note that no activity was detectable for the mismatched tru-gRNA to EMX1 site 1.) Figure discloses SEQ ID NOS 2890-2898, respectively, in order of appearance.



FIGS. 8A-C: Sequences of off-target indel mutations induced by RGNs in human U2OS.EGFP cells. Wild-type genomic off-target sites recognized by RGNs (including the PAM sequence) are highlighted in grey and numbered as in Table 1 and Table B. Note that the complementary strand is shown for some sites. Deleted bases are shown as dashes on a grey background. Inserted bases are italicized and highlighted in grey. FIGS. 8A-C disclose SEQ ID NOS 2899-2974, respectively, in order of appearance.



FIGS. 9A-C: Sequences of off-target indel mutations induced by RGNs in human HEK293 cells. Wild-type genomic off-target sites recognized by RGNs (including the PAM sequence) are highlighted in grey and numbered as in Table 1 and Table B. Note that the complementary strand is shown for some sites. Deleted bases are shown as dashes on a grey background. Inserted bases are italicized and highlighted in grey. *Yielded a large number of single bp indels. FIGS. 9A-C disclose SEQ ID NOS 2975-3037 and 2889, respectively, in order of appearance.





DETAILED DESCRIPTION

CRISPR RNA-guided nucleases (RGNs) have rapidly emerged as a facile and efficient platform for genome editing. Although Marraffini and colleagues (Jiang et al., Nat Biotechnol 31, 233-239 (2013)) recently performed a systematic investigation of Cas9 RGN specificity in bacteria, the specificities of RGNs in human cells have not been extensively defined. Understanding the scope of RGN-mediated off-target effects in human and other eukaryotic cells will be critically essential if these nucleases are to be used widely for research and therapeutic applications. The present inventors have used a human cell-based reporter assay to characterize off-target cleavage of Cas9-based RGNs. Single and double mismatches were tolerated to varying degrees depending on their position along the guide RNA (gRNA)-DNA interface. Off-target alterations induced by four out of six RGNs targeted to endogenous loci in human cells were readily detected by examination of partially mismatched sites. The off-target sites identified harbor up to five mismatches and many are mutagenized with frequencies comparable to (or higher than) those observed at the intended on-target site. Thus RGNs are highly active even with imperfectly matched RNA-DNA interfaces in human cells, a finding that might confound their use in research and therapeutic applications.


The results described herein reveal that predicting the specificity profile of any given RGN is neither simple nor straightforward. The EGFP reporter assay experiments show that single and double mismatches can have variable effects on RGN activity in human cells that do not strictly depend upon their position(s) within the target site. For example, consistent with previously published reports, alterations in the 3′ half of the sgRNA/DNA interface generally have greater effects than those in the 5′ half (Jiang et al., Nat Biotechnol 31, 233-239 (2013); Cong et al., Science 339, 819-823 (2013); Jinek et al., Science 337, 816-821 (2012)); however, single and double mutations in the 3′ end sometimes also appear to be well tolerated whereas double mutations in the 5′ end can greatly diminish activities. In addition, the magnitude of these effects for mismatches at any given position(s) appears to be site-dependent. Comprehensive profiling of a large series of RGNs with testing of all possible nucleotide substitutions (beyond the Watson-Crick transversions used in our EGFP reporter experiments) may help provide additional insights into the range of potential off-targets. In this regard, the recently described bacterial cell-based method of Marraffini and colleagues (Jiang et al., Nat Biotechnol 31, 233-239 (2013)) or the in vitro, combinatorial library-based cleavage site-selection methodologies previously applied to ZFNs by Liu and colleagues (Pattanayak et al., Nat Methods 8, 765-770 (2011)) might be useful for generating larger sets of RGN specificity profiles.


Despite these challenges in comprehensively predicting RGN specificities, it was possible to identify bona fide off-targets of RGNs by examining a subset of genomic sites that differed from the on-target site by one to five mismatches. Notably, under conditions of these experiments, the frequencies of RGN-induced mutations at many of these off-target sites were similar to (or higher than) those observed at the intended on-target site, enabling the detection of mutations at these sites using the T7EI assay (which, as performed in our laboratory, has a reliable detection limit of ˜2 to 5% mutation frequency). Because these mutation rates were very high, it was possible to avoid using deep sequencing methods previously required to detect much lower frequency ZFN- and TALEN-induced off-target alterations (Pattanayak et al., Nat Methods 8, 765-770 (2011); Perez et al., Nat Biotechnol 26, 808-816 (2008); Gabriel et al., Nat Biotechnol 29, 816-823 (2011); Hockemeyer et al., Nat Biotechnol 29, 731-734 (2011)). Analysis of RGN off-target mutagenesis in human cells also confirmed the difficulties of predicting RGN specificities—not all single and double mismatched off-target sites show evidence of mutation whereas some sites with as many as five mismatches can also show alterations. Furthermore, the bona fide off-target sites identified do not exhibit any obvious bias toward transition or transversion differences relative to the intended target sequence (Table E; grey highlighted rows). Although off-target sites were seen for a number of RGNs, identification of these sites was neither comprehensive nor genome-wide in scale. For the six RGNs studied, only a very small subset of the much larger total number of potential off-target sequences in the human genome (sites that differ by three to six nucleotides from the intended target site; compare Tables E and C) was examined. Although examining such large numbers of loci for off-target mutations by T7EI assay is neither a practical nor a cost-effective strategy, the use of high-throughput sequencing in future studies might enable the interrogation of larger numbers of candidate off-target sites and provide a more sensitive method for detecting bona fide off-target mutations. For example, such an approach might enable the unveiling of additional off-target sites for the two RGNs for which we failed to uncover any off-target mutations. In addition, an improved understanding both of RGN specificities and of any epigenomic factors (e.g., DNA methylation and chromatin status) that may influence RGN activities in cells might also reduce the number of potential sites that need to be examined and thereby make genome-wide assessments of RGN off-targets more practical and affordable.


As described herein, a number of strategies can be used to minimize the frequencies of genomic off-target mutations. For example, the specific choice of RGN target site can be optimized; given that off-target sites that differ at up to five positions from the intended target site can be efficiently mutated by RGNs, choosing target sites with minimal numbers of off-target sites as judged by mismatch counting seems unlikely to be effective; thousands of potential off-target sites that differ by four or five positions within the 20 bp RNA:DNA complementarity region will typically exist for any given RGN targeted to a sequence in the human genome (see, for example, Table C). It is also possible that the nucleotide content of the gRNA complementarity region might influence the range of potential off-target effects. For example, high GC-content has been shown to stabilize RNA:DNA hybrids (Sugimoto et al., Biochemistry 34, 11211-11216 (1995)) and therefore might also be expected to make gRNA/genomic DNA hybridization more stable and more tolerant to mismatches. Additional experiments with larger numbers of gRNAs will be needed to assess if and how these two parameters (numbers of mismatched sites in the genome and stability of the RNA:DNA hybrid) influence the genome-wide specificities of RGNs. However, it is important to note that even if such predictive parameters can be defined, the effect of implementing such guidelines would be to further restrict the targeting range of RGNs.


One potential general strategy for reducing RGN-induced off-target effects might be to reduce the concentrations of gRNA and Cas9 nuclease expressed in the cell. This idea was tested using the RGNs for VEGFA target sites 2 and 3 in U2OS.EGFP cells; transfecting less sgRNA- and Cas9-expressing plasmid decreased the mutation rate at the on-target site but did not appreciably change the relative rates of off-target mutations (Tables 2A and 2B). Consistent with this, high-level off-target mutagenesis rates were also observed in two other human cell types (HEK293 and K562 cells) even though the absolute rates of on-target mutagenesis are lower than in U2OS.EGFP cells. Thus, reducing expression levels of gRNA and Cas9 in cells is not likely to provide a solution for reducing off-target effects. Furthermore, these results also suggest that the high rates of off-target mutagenesis observed in human cells are not caused by overexpression of gRNA and/or Cas9.









TABLE 2A







Indel mutation frequencies at on- and off-target genomic sites induced by


different amounts of Cas9- and single gRNA-expressing plasmids


for the RGN targeted to VEGFA Target Site 2














250 ng gRNA/750 ng
12.5 ng gRNA/50 ng




SEQ
Cas9 Mean
Cas9 Mean 




ID
indel frequency
indel frequency


Site
Sequence
NO:
(%) ± SEM
(%) ± SEM





T2
GACCCCCTCCACCCCGCCTCCGG
12
50.2 ± 4.9
25.4 ± 4.8


(On-target)









OT2-1
GACCCCCCCCACCCCGCCCCCGG
13
14.4 ± 3.4
 4.2 ± 0.2





OT2-2
GGGCCCCTCCACCCCGCCTCTGG
14
20.0 ± 6.2
 9.8 ± 1.1





OT2-6


CTA
CCCCTCCACCCCGCCTCCGG

15
 8.2 ± 1.4
 6.0 ± 0.5





OT2-9
GCCCCCACCCACCCCGCCTCTGG
16
50.7 ± 5.6
16.4 ± 2.1





OT2-15


T
ACCCCCCACACCCCGCCTCTGG

17
 9.7 ± 4.5
 2.1 ± 0.0





OT2-17


ACA
CCCCCCCACCCCGCCTCAGG

18
14.0 ± 2.8
 7.1 ± 0.0





OT2-19


ATT
CCCCCCCACCCCGCCTCAGG

19
17.0 ± 3.3
 9.2 ± 0.4





OT2-20


CC
CCACCCCCACCCCGCCTCAGG

20
 6.1 ± 1.3
N.D.





OT2-23


CG
CCCTCCCCACCCCGCCTCCGG

21
44.4 ± 6.7
35.1 ± 1.8





OT2-24


CT
CCCCACCCACCCCGCCTCAGG

22
62.8 ± 5.0
44.1 ± 4.5





OT2-29


TG
CCCCTCCCACCCCGCCTCTGG

23
13.8 ± 5.2
 5.0 ± 0.2





OT2-34


AGG
CCCCCACACCCCGCCTCAGG

24
 2.8 ± 1.5
N.D.





Amounts of gRNA- and Cas9-expressing plasmids transfected into U2OS.EGFP cells for these assays are shown at the top of each column. (Note that data for 250 ng gRNA/750 ng Cas9 are the same as those presented in Table 1.) Mean indel frequencies were determined using the T7EI assay from replicate samples as described in Methods. OT = Off-target sites, numbered as in Table 1 and Table B. Mismatches from the on-target site (within the 20 bp region to which the gRNA hybridizes) are highlighted as bold, underlined text. ND. = none detected













TABLE 2B







Indel mutation frequencies at on- and off-target genomic sites induced by


different amounts of Cas9- and single gRNA-expressing plasmids for the RGN


targeted to VEGFA Target Site 3














250 ng gRNA/750 ng
12.5 ng gRNA/250 ng




SEQ
Cas9 Mean
Cas9 Mean 




ID
indel frequency
indel frequency


Site
Sequence
NO:
(%) ± SEM
(%) ± SEM





T3
GGTGAGTGAGTGTGTGCGTGTGG
25
49.4 ± 3.8
33.0 ± 3.7


(On-target)









OT3-1
GGTGAGTGAGTGTGTGTGTGAGG
26
 7.4 ± 3.4
N.D.





OT3-2


A
GTGAGTGAGTGTGTGTGTGGGG

27
24.3 ± 9.2
 9.8 ± 4.2





OT3-4
GCTGAGTGAGTGTATGCGTGTGG
28
20.9 ± 11.8
 4.2 ± 1.2





OT3-9
GGTGAGTGAGTGCGTGCGGGTGG
29
 3.2 ± 0.3
N.D.





OT3-17
GTTGAGTGAATGTGTGCGTGAGG
30
 2.9 ± 0.2
N.D.





OT3-18


T
GTGGGTGAGTGTGTGCGTGAGG

31
13.4 ± 4.2
 4.9 ± 0.0





OT3-20


A
GAGAGTGAGTGTGTGCATGAGG

32
16.7 ± 3.5
 7.9 ± 2.4





Amounts of gRNA- and Cas9-expressing plasmids transfected into U2OS.EGFP cells for these assays are shown at the top of each column. (Note that data for 250 ng gRNA/750 ng Cas9 are the same as those presented in Table 1.) Mean indel frequencies were determined using the T7EI assay from replicate samples as described in Methods. OT = Off-target sites, numbered as in Table 1 and Table B. ND. = none detected






The finding that significant off-target mutagenesis can be induced by RGNs in three different human cell types has important implications for broader use of this genome-editing platform. For research applications, the potentially confounding effects of high frequency off-target mutations will need to be considered, particularly for experiments involving either cultured cells or organisms with slow generation times for which the outcrossing of undesired alterations would be challenging. One way to control for such effects might be to utilize multiple RGNs targeted to different DNA sequences to induce the same genomic alteration because off-target effects are not random but instead related to the targeted site. However, for therapeutic applications, these findings clearly indicate that the specificities of RGNs will need to be carefully defined and/or improved if these nucleases are to be used safely in the longer term for treatment of human diseases.


Methods for Improving Specificity


As shown herein, CRISPR-Cas RNA-guided nucleases based on the S. pyogenes Cas9 protein can have significant off-target mutagenic effects that are comparable to or higher than the intended on-target activity (Example 1). Such off-target effects can be problematic for research and in particular for potential therapeutic applications. Therefore, methods for improving the specificity of CRISPR-Cas RNA guided nucleases (RGNs) are needed.


As described in Example 1, Cas9 RGNs can induce high-frequency indel mutations at off-target sites in human cells (see also Cradick et al., 2013; Fu et al., 2013; Hsu et al., 2013; Pattanayak et al., 2013). These undesired alterations can occur at genomic sequences that differ by as many as five mismatches from the intended on-target site (see Example 1). In addition, although mismatches at the 5′ end of the gRNA complementarity region are generally better tolerated than those at the 3′ end, these associations are not absolute and show site-to-site-dependence (see Example 1 and Fu et al., 2013; Hsu et al., 2013; Pattanayak et al., 2013). As a result, computational methods that rely on the number and/or positions of mismatches currently have limited predictive value for identifying bona fide off-target sites. Therefore, methods for reducing the frequencies of off-target mutations remain an important priority if RNA-guided nucleases are to be used for research and therapeutic applications.


Truncated Guide RNAs (tru-gRNAs) Achieve Greater Specificity


Guide RNAs generally speaking come in two different systems: System 1, which uses separate crRNA and tracrRNAs that function together to guide cleavage by Cas9, and System 2, which uses a chimeric crRNA-tracrRNA hybrid that combines the two separate guide RNAs in a single system (referred to as a single guide RNA or sgRNA, see also Jinek et al., Science 2012; 337:816-821). The tracrRNA can be variably truncated and a range of lengths has been shown to function in both the separate system (system 1) and the chimeric gRNA system (system 2). For example, in some embodiments, tracrRNA may be truncated from its 3′ end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts. In some embodiments, the tracrRNA molecule may be truncated from its 5′ end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts. Alternatively, the tracrRNA molecule may be truncated from both the 5′ and 3′ end, e.g., by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nts on the 5′ end and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts on the 3′ end. See, e.g., Jinek et al., Science 2012; 337:816-821; Mali et al., Science. 2013 Feb. 15; 339(6121):823-6; Cong et al., Science. 2013 Feb. 15; 339(6121):819-23; and Hwang and Fu et al., Nat Biotechnol. 2013 March; 31(3):227-9; Jinek et al., Elife 2, e00471 (2013)). For System 2, generally the longer length chimeric gRNAs have shown greater on-target activity but the relative specificities of the various length gRNAs currently remain undefined and therefore it may be desirable in certain instances to use shorter gRNAs. In some embodiments, the gRNAs are complementary to a region that is within about 100-800 bp upstream of the transcription start site, e.g., is within about 500 bp upstream of the transcription start site, includes the transcription start site, or within about 100-800 bp, e.g., within about 500 bp, downstream of the transcription start site. In some embodiments, vectors (e.g., plasmids) encoding more than one gRNA are used, e.g., plasmids encoding, 2, 3, 4, 5, or more gRNAs directed to different sites in the same region of the target gene.


The present application describes a strategy for improving RGN specificity based on the seemingly counterintuitive idea of shortening, rather than lengthening, the gRNA complementarity region. These shorter gRNAs can induce various types of Cas9-mediated on-target genome editing events with efficiencies comparable to (or, in some cases, higher than) full-length gRNAs at multiple sites in a single integrated EGFP reporter gene and in endogenous human genes. In addition, RGNs using these shortened gRNAs exhibit increased sensitivity to small numbers of mismatches at the gRNA-target DNA interface. Most importantly, use of shortened gRNAs substantially reduces the rates of genomic off-target effects in human cells, yielding improvements of specificity as high as 5000-fold or more at these sites. Thus, this shortened gRNA strategy provides a highly effective approach for reducing off-target effects without compromising on-target activity and without the need for expression of a second, potentially mutagenic gRNA. This approach can be implemented on its own or in conjunction with other strategies such as the paired nickase method to reduce the off-target effects of RGNs in human cells.


Thus, one method to enhance specificity of CRISPR/Cas nucleases shortens the length of the guide RNA (gRNA) species used to direct nuclease specificity. Cas9 nuclease can be guided to specific 17-18 nt genomic targets bearing an additional proximal protospacer adjacent motif (PAM), e.g., of sequence NGG, using a guide RNA, e.g., a single gRNA or a crRNA (paired with a tracrRNA), bearing 17 or 18 nts at its 5′ end that are complementary to the complementary strand of the genomic DNA target site (FIG. 1).


Although one might expect that increasing the length of the gRNA complementarity region would improve specificity, the present inventors (Hwang et al., PLoS One. 2013 Jul. 9; 8(7):e68708) and others (Ran et al., Cell. 2013 Sep. 12; 154(6):1380-9) have previously observed that lengthening the target site complementarity region at the 5′ end of the gRNA actually makes it function less efficiently at the on-target site.


By contrast, experiments in Example 1 showed that gRNAs bearing multiple mismatches within a standard length 5′ complementarity targeting region could still induce robust Cas9-mediated cleavage of their target sites. Thus, it was possible that truncated gRNAs lacking these 5′-end nucleotides might show activities comparable to their full-length counterparts (FIG. 2A). It was further speculated that these 5′ nucleotides might normally compensate for mismatches at other positions along the gRNA-target DNA interface and therefore predicted that shorter gRNAs might be more sensitive to mismatches and thus induce lower levels of off-target mutations (FIG. 2A).


Decreasing the length of the DNA sequence targeted might also decrease the stability of the gRNA:DNA hybrid, making it less tolerant of mismatches and thereby making the targeting more specific. That is, truncating the gRNA sequence to recognize a shorter DNA target might actually result in a RNA-guided nuclease that is less tolerant to even single nucleotide mismatches and is therefore more specific and has fewer unintended off-target effects.


This strategy for shortening the gRNA complementarity region could potentially be used with RNA guided proteins other than S. pyogenes Cas9 including other Cas proteins from bacteria or archaea as well as Cas9 variants that nick a single strand of DNA or have no-nuclease activity such as a dCas9 bearing catalytic inactivating mutations in one or both nuclease domains. This strategy can be applied to systems that utilize a single gRNA as well as those that use dual gRNAs (e.g., the crRNA and tracrRNA found in naturally occurring systems).


Thus, described herein is a single guide RNA comprising a crRNA fused to a normally trans-encoded tracrRNA, e.g., a single Cas9 guide RNA as described in Mali et al., Science 2013 Feb. 15; 339(6121):823-6, but with a sequence at the 5′ end that is complementary to fewer than 20 nucleotides (nts), e.g., 19, 18, or 17 nts, preferably 17 or 18 nts, of the complementary strand to a target sequence immediately 5′ of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG. In some embodiments, the shortened Cas9 guide RNA consists of the sequence:









(SEQ ID NO: 2404)


(X17-18 or X17-19)GUUUUAGAGCUA;





(SEQ ID NO: 2407)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGUUUUG;


or





(SEQ ID NO: 2408)


(X17-18 or X17-19)GUUUUAGAGCUAUGCU;





(SEQ ID NO: 1)


(X17-18 or X17-19)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAA


GGCUAGUCCG(XN);





(SEQ ID NO: 2)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGAAAAGCAUAGCAAGU


UAAAAUAAGGCUAGUCCGUUAUC(XN);





(SEQ ID NO: 3)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGUUUUGGAAACAAAAC


AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUC(XN);





(SEQ ID NO: 4)


(X17-18)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCG


UUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(XN),





(SEQ ID NO: 5)


(X17-18 or X17-19)GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAA


GGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC;





(SEQ ID NO: 6)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAA


GUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCG


GUGC;


or





(SEQ ID NO: 7)


(X17-18 or X17-19)GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAA


GUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCG


GUGC;







wherein X17-18 or X17-19 is the nucleotide sequence complementary to 17-18 or 17-19 consecutive nucleotides of the target sequence, respectively. Also described herein are DNAs encoding the shortened Cas9 guide RNAs that have been described previously in the literature (Jinek et al., Science. 337(6096):816-21 (2012) and Jinek et al., Elife. 2:e00471 (2013)).


The guide RNAs can include XN which can be any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9.


In some embodiments, the guide RNA includes one or more Adenine (A) or Uracil (U) nucleotides on the 3′ end. In some embodiments the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3′ end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.


Modified RNA oligonucleotides such as locked nucleic acids (LNAs) have been demonstrated to increase the specificity of RNA-DNA hybridization by locking the modified oligonucleotides in a more favorable (stable) conformation. For example, 2′-O-methyl RNA is a modified base where there is an additional covalent linkage between the 2′ oxygen and 4′ carbon which when incorporated into oligonucleotides can improve overall thermal stability and selectivity (formula I).




embedded image


Thus in some embodiments, the tru-gRNAs disclosed herein may comprise one or more modified RNA oligonucleotides. For example, the truncated guide RNAs molecules described herein can have one, some or all of the 17-18 or 17-19 nts 5′ region of the guideRNA complementary to the target sequence are modified, e.g., locked (2′-O-4′-C methylene bridge), 5′-methylcytidine, 2′-O-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain (peptide nucleic acid), e.g., a synthetic ribonucleic acid.


In other embodiments, one, some or all of the nucleotides of the tru-gRNA sequence may be modified, e.g., locked (2′-O-4′-C methylene bridge), 5′-methylcytidine, 2′-O-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain (peptide nucleic acid), e.g., a synthetic ribonucleic acid.


In a cellular context, complexes of Cas9 with these synthetic gRNAs could be used to improve the genome-wide specificity of the CRISPR/Cas9 nuclease system.


Exemplary modified or synthetic tru-gRNAs may comprise, or consist of, the following sequences:









(SEQ ID NO: 2404)


(X17-18 or X17-19)GUUUUAGAGCUA;





(SEQ ID NO: 2407)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGUUUUG;


or





(SEQ ID NO: 2408)


(X17-18 or X17-19)GUUUUAGAGCUAUGCU;





(SEQ ID NO: 1)


(X17-18 or X17-19)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAA


GGCUAGUCCG(XN);





(SEQ ID NO: 2)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGAAAAGCAUAGCAAGU


UAAAAUAAGGCUAGUCCGUUAUC(XN);





(SEQ ID NO: 3)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGUUUUGGAAACAAAAC


AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUC(XN);





(SEQ ID NO: 4)


(X17-18)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCG


UUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(XN),





(SEQ ID NO: 5)


(X17-18 or X17-19)GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAA


GGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC;





(SEQ ID NO: 6)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAA


GUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCG


GUGC;


or





(SEQ ID NO: 7)


(X17-18 or X17-19)GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAA


GUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCG


GUGC;







wherein X17-18 or X17-19 is a sequence complementary to 17-18 or 17-19 nts of a target sequence, respectively, preferably a target sequence immediately 5′ of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, and further wherein one or more of the nucleotides are locked, e.g., one or more of the nucleotides within the sequence X17-18 or X17-19, one or more of the nucleotides within the sequence XN, or one or more of the nucleotides within any sequence of the tru-gRNA. XN is any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9. In some embodiments the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3′ end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.


Although some of the examples described herein utilize a single gRNA, the methods can also be used with dual gRNAs (e.g., the crRNA and tracrRNA found in naturally occurring systems). In this case, a single tracrRNA would be used in conjunction with multiple different crRNAs expressed using the present system, e.g., the following: (X17-18 or X17-19) GUUUUAGAGCUA (SEQ ID NO:2404); (X17-18 or X17-19) GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407); or (X17-18 or X17-19) GUUUUAGAGCUAUGCU (SEQ ID NO:2408); and a tracrRNA sequence. In this case, the crRNA is used as the guide RNA in the methods and molecules described herein, and the tracrRNA can be expressed from the same or a different DNA molecule. In some embodiments, the methods include contacting the cell with a tracrRNA comprising or consisting of the sequence GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUA UCAACUUGAAAAAGUGGCACCGAGUCGGUGC (SEQ ID NO:8) or an active portion thereof (an active portion is one that retains the ability to form complexes with Cas9 or dCas9). In some embodiments, the tracrRNA molecule may be truncated from its 3′ end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts. In another embodiment, the tracrRNA molecule may be truncated from its 5′ end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts. Alternatively, the tracrRNA molecule may be truncated from both the 5′ and 3′ end, e.g., by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nts on the 5′ end and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts on the 3′ end. Exemplary tracrRNA sequences in addition to SEQ ID NO:8 include the following:


UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCA CCGAGUCGGUGC (SEQ ID NO:2405) or an active portion thereof;


AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGC (SEQ ID NO:2407) or an active portion thereof;


CAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGA AAAAGUGGCACCGAGUCGGUGC (SEQ ID NO:2409) or an active portion thereof;


UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUG (SEQ ID NO:2410) or an active portion thereof; UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCA (SEQ ID NO:2411) or an active portion thereof; or UAGCAAGUUAAAAUAAGGCUAGUCCG (SEQ ID NO:2412) or an active portion thereof.


In some embodiments wherein (X17-18 or X17-19) GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407) is used as a crRNA, the following tracrRNA is used:


GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUA UCAACUUGAAAAAGUGGCACCGAGUCGGUGC (SEQ ID NO:8) or an active portion thereof. In some embodiments wherein (X17-18 or X17-19) GUUUUAGAGCUA (SEQ ID NO:2404) is used as a crRNA, the following tracrRNA is used:


UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCA CCGAGUCGGUGC (SEQ ID NO:2405) or an active portion thereof. In some embodiments wherein (X17-18 or X17-19) GUUUUAGAGCUAUGCU (SEQ ID NO:2408) is used as a crRNA, the following tracrRNA is used:


AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGC (SEQ ID NO:2406) or an active portion thereof.


In addition, in a system that uses separate crRNA and tracrRNA, one or both can be synthetic and include one or more modified (e.g., locked) nucleotides or deoxyribonucleotides.


In some embodiments, the single guide RNAs and/or crRNAs and/or tracrRNAs can include one or more Adenine (A) or Uracil (U) nucleotides on the 3′ end.


Existing Cas9-based RGNs use gRNA-DNA heteroduplex formation to guide targeting to genomic sites of interest. However, RNA-DNA heteroduplexes can form a more promiscuous range of structures than their DNA-DNA counterparts. In effect, DNA-DNA duplexes are more sensitive to mismatches, suggesting that a DNA-guided nuclease may not bind as readily to off-target sequences, making them comparatively more specific than RNA-guided nucleases. Thus, the truncated guide RNAs described herein can be hybrids, i.e., wherein one or more deoxyribonucleotides, e.g., a short DNA oligonucleotide, replaces all or part of the gRNA, e.g., all or part of the complementarity region of a gRNA. This DNA-based molecule could replace either all or part of the gRNA in a single gRNA system or alternatively might replace all of part of the crRNA in a dual crRNA/tracrRNA system. Such a system that incorporates DNA into the complementarity region should more reliably target the intended genomic DNA sequences due to the general intolerance of DNA-DNA duplexes to mismatching compared to RNA-DNA duplexes. Methods for making such duplexes are known in the art, See, e.g., Barker et al., BMC Genomics. 2005 Apr. 22; 6:57; and Sugimoto et al., Biochemistry. 2000 Sep. 19; 39(37):11270-81.


Exemplary modified or synthetic tru-gRNAs may comprise, or consist of, the following sequences:









(SEQ ID NO: 1)


(X17-18 or X17-19)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAA


GGCUAGUCCG(XN);





(SEQ ID NO: 2)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGAAAAGCAUAGCAAGU


UAAAAUAAGGCUAGUCCGUUAUC(XN);





(SEQ ID NO: 3)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGUUUUGGAAACAAAAC


AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUC(XN);





(SEQ ID NO: 4)


(X17-18)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCG


UUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(XN),





(SEQ ID NO: 5)


(X17-18 or X17-19)GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAA


GGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC;





(SEQ ID NO: 6)


(X17-18 or X17-19)GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAA


GUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCG


GUGC;


or





(SEQ ID NO: 7)


(X17-18 or X17-19)GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAA


GUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCG


GUGC;







wherein X17-18 or X17-19 is a sequence complementary to 17-18 or 17-19 nts of a target sequence, respectively, preferably a target sequence immediately 5′ of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, and further wherein one or more of the nucleotides are deoxyribonucleotides, e.g., one or more of the nucleotides within the sequence X17-18 or X17-19, one or more of the nucleotides within the sequence XN, or one or more of the nucleotides within any sequence of the tru-gRNA. XN is any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9. In some embodiments the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3′ end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.


In addition, in a system that uses separate crRNA and tracrRNA, one or both can be synthetic and include one or more deoxyribonucleotides.


In some embodiments, the single guide RNAs or crRNAs or tracrRNAs includes one or more Adenine (A) or Uracil (U) nucleotides on the 3′ end.


In some embodiments, the gRNA is targeted to a site that is at least three or more mismatches different from any sequence in the rest of the genome in order to minimize off-target effects.


The methods described can include expressing in a cell, or contacting the cell with, a shortened Cas9 gRNA (tru-gRNA) as described herein (optionally a modified or DNA/RNA hybrid tru-gRNA), plus a nuclease that can be guided by the shortened Cas9 gRNAs, e.g., a Cas9 nuclease, e.g., as described in Mali et al., a Cas9 nickase as described in Jinek et al., 2012; or a dCas9-heterofunctional domain fusion (dCas9-HFD).


Cas9


A number of bacteria express Cas9 protein variants. The Cas9 from Streptococcus pyogenes is presently the most commonly used; some of the other Cas9 proteins have high levels of sequence identity with the S. pyogenes Cas9 and use the same guide RNAs. Others are more diverse, use different gRNAs, and recognize different PAM sequences as well (the 2-5 nucleotide sequence specified by the protein which is adjacent to the sequence specified by the RNA). Chylinski et al. classified Cas9 proteins from a large group of bacteria (RNA Biology 10:5, 1-12; 2013), and a large number of Cas9 proteins are listed in supplementary FIG. 1 and supplementary table 1 thereof, which are incorporated by reference herein. Additional Cas9 proteins are described in Esvelt et al., Nat Methods. 2013 November; 10(11):1116-21 and Fonfara et al., “Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems.” Nucleic Acids Res. 2013 Nov. 22. [Epub ahead of print] doi:10.1093/nar/gkt1074.


Cas9 molecules of a variety of species can be used in the methods and compositions described herein. While the S. pyogenes and S. thermophilus Cas9 molecules are the subject of much of the disclosure herein, Cas9 molecules of, derived from, or based on the Cas9 proteins of other species listed herein can be used as well. In other words, while the much of the description herein uses S pyogenes and S. thermophilus Cas9 molecules, Cas9 molecules from the other species can replace them. Such species include those set forth in the following table, which was created based on supplementary FIG. 1 of Chylinski et al., 2013.












Alternative Cas9 proteins








GenBank



Acc No.
Bacterium











303229466

Veillonella
atypica ACS-134-V-Col7a



34762592

Fusobacterium
nucleatum subsp. vincentii



374307738

Filifactor
alocis ATCC 35896



320528778

Solobacterium
moorei F0204



291520705

Coprococcus
catus GD-7



42525843

Treponema
denticola ATCC 35405



304438954

Peptomphilus
duerdenii ATCC BAA-1640



224543312

Catenibacterium
mitsuokai DSM 15897



24379809

Streptococcus
mutans UA159



15675041

Streptococcus
pyogenes SF370



16801805

Listeria
innocua Clip11262



116628213

Streptococcus
thermophilus LMD -9



323463801

Staphylococcus
pseudintermedius ED99



352684361

Acidaminococcus
intestini RyC-MR95



302336020

Olsenella
uli DSM 7084



366983953

Oenococcus
kitaharae DSM 17330



310286728

Bifidobacterium
bifidum S17



258509199

Lactobacillus
rhamnosus GG



300361537

Lactobacillus
gasseri JV-V03



169823755

Finegoldia
magna ATCC 29328



47458868

Mycoplasma
mobile 163K



284931710

Mycoplasma
gallisepticum str. F



363542550

Mycoplasma
ovipneumoniae SC01



384393286

Mycoplasma
canis PG 14



71894592

Mycoplasma
synoviae 53



238924075

Eubacterium
rectale ATCC 33656



116627542

Streptococcus
thermophilus LMD-9



315149830

Enterococcus
faecalis TX0012



315659848

Staphylococcus
lugdunensis M23590



160915782

Eubacterium
dolichum DSM 3991



336393381

Lactobacillus
coryniformis subsp. torquens



310780384

Ilyobacter
polytropus DSM 2926



325677756

Ruminococcus
albus 8



187736489

Akkermansia
mucimphila ATCC BAA-835



117929158

Acidothermus
cellulolyticus 11B



189440764

Bifidobacterium
longum DJO10A



283456135

Bifidobacterium
dentium Bd1



38232678

Corynebacterium
diphtheriae NCTC 13129



187250660

Elusimicrobium
minutum Pei191



319957206

Nitratifractor
salsuginis DSM 16511



325972003

Sphaerochaeta
globus str. Buddy



261414553

Fibrobacter
succinogenes subsp. succinogenes



60683389

Bacteroides
fragilis NCTC 9343



256819408

Capnocytophaga
ochracea DSM 7271



90425961

Rhodopseudomonas
palustris BisB18



373501184

Prevotella
micans F0438



294674019

Prevotella
ruminicola 23



365959402

Flavobacterium
columnare ATCC 49512



312879015

Aminomonas
paucivorans DSM 12260



83591793

Rhodospirillum
rubrum ATCC 11170



294086111

Candidatus
Puniceispirillum
marinum IMCC1322



121608211

Verminephrobacter
eiseniae EF01-2



344171927

Ralstonia
syzygii R24



159042956

Dinoroseobacter
shibae DFL 12



288957741

Azospirillum sp-B510



92109262

Nitrobacter
hamburgensis X14



148255343

Bradyrhizobium sp-BTAi1



34557790

Wolinella
succinogenes DSM 1740



218563121

Campylobacter
jejuni subsp. jejuni



291276265

Helicobacter
mustelae 12198



229113166

Bacillus
cereus Rock1-15



222109285

Acidovorax
ebreus TPSY



189485225

uncultured Termite group 1



182624245

Clostridium
perfringens D str.



220930482

Clostridium
cellulolyticum H10



154250555

Parvibaculum
lavamentivorans DS-1



257413184

Roseburia
intestinalis L1-82



218767588

Neisseria
meningitidis Z2491



15602992

Pasteurella
multocida subsp. multocida



319941583

Sutterella
wadsworthensis 3 1



254447899

gamma proteobacterium HTCC5015



54296138

Legionella
pneumophila str. Paris



331001027

Parasutterella
excrementihominis YIT 11859



34557932

Wolinella
succinogenes DSM 1740



118497352

Francisella
novicida U112











The constructs and methods described herein can include the use of any of those Cas9 proteins, and their corresponding guide RNAs or other guide RNAs that are compatible. The Cas9 from Streptococcus thermophilus LMD-9 CRISPR1 system has also been shown to function in human cells in Cong et al (Science 339, 819 (2013)). Cas9 orthologs from N. meningitides are described in Hou et al., Proc Natl Acad Sci USA. 2013 Sep. 24; 110(39):15644-9 and Esvelt et al., Nat Methods. 2013 November; 10(11):1116-21. Additionally, Jinek et al. showed in vitro that Cas9 orthologs from S. thermophilus and L. innocua, (but not from N meningitidis or C. jejuni, which likely use a different guide RNA), can be guided by a dual S. pyogenes gRNA to cleave target plasmid DNA, albeit with slightly decreased efficiency.


In some embodiments, the present system utilizes the Cas9 protein from S. pyogenes, either as encoded in bacteria or codon-optimized for expression in mammalian cells, containing mutations at D10, E762, H983, or D986 and H840 or N863, e.g., D10A/D10N and H840A/H840N/H840Y, to render the nuclease portion of the protein catalytically inactive; substitutions at these positions could be alanine (as they are in Nishimasu al., Cell 156, 935-949 (2014)) or they could be other residues, e.g., glutamine, asparagine, tyrosine, serine, or aspartate, e.g., E762Q, H983N, H983Y, D986N, N863D, N863S, or N863H (FIG. 1C). The sequence of the catalytically inactive S pyogenes Cas9 that can be used in the methods and compositions described herein is as follows; the exemplary mutations of D10A and H840A are in bold and underlined.










(SEQ ID NO: 33)



        10         20         30         40         50         60



MDKKYSIGLA IGTNSVGWAV ITDEYKVPSK KFKVLGNTDR HSIKKNLIGA LLFDSGETAE





        70         80         90        100        110        120


ATRLKRTARR RYTRRKNRIC YLQEIFSNEM AKVDDSFFHR LEESFLVEED KKHERHPIFG





       130        140        150        160        170        180


NIVDEVAYHE KYPTIYHLRK KLVDSTDKAD LRLIYLALAH MIKFRGHFLI EGDLNPDNSD





       190        200        210        220        230        240


VDKLFIQLVQ TYNQLFEENP INASGVDAKA ILSARLSKSR RLENLIAQLP GEKKNGLFGN





       250        260        270        280        290        300


LIALSLGLTP NFKSNFDLAE DAKLQLSKDT YDDDLDNLLA QIGDQYADLF LAAKNLSDAI





       310        320        330        340        350        360


LLSDILRVNT EITKAPLSAS MIKRYDEHHQ DLTLLKALVR QQLPEKYKEI FFDQSKNGYA





       370        380        390        400        410        420


GYIDGGASQE EFYKFIKPIL EKMDGTEELL VKLNREDLLR KQRTFDNGSI PHQIHLGELH





       430        440        450        460        470        480


AILRRQEDFY PFLKDNREKI EKILTFRIPY YVGPLARGNS RFAWMTRKSE ETITPWNFEE





       490        500        510        520        530        540


VVDKGASAQS FIERMTNFDK NLPNEKVLPK HSLLYEYFTV YNELTKVKYV TEGMRKPAFL





       550        560        570        580        590        600


SGEQKKAIVD LLFKTNRKVT VKQLKEDYFK KIECFDSVEI SGVEDRFNAS LGTYHDLLKI





       610        620        630        640        650        660


IKDKDFLDNE ENEDILEDIV LTLTLFEDRE MIEERLKTYA HLFDDKVMKQ LKRRRYTGWG





       670        680        690        700        710        720


RLSRKLINGI RDKQSGKTIL DFLKSDGFAN RNFMQLIHDD SLTFKEDIQK AQVSGQGDSL





       730        740        750        760        770        780


HEHIANLAGS PAIKKGILQT VKVVDELVKV MGRHKPENIV IEMARENQTT QKGQKNSRER





       790        800        810        820        830        840


MKRIEEGIKE LGSQILKEHP VENTQLQNEK LYLYYLQNGR DMYVDQELDI NRLSDYDVDA





       850        860        870        880        890        900


IVPQSFLKDD SIDNKVLTRS DKNRGKSDNV PSEEVVKKMK NYWRQLLNAK LITQRKFDNL





       910        920        930        940        950        960


TKAERGGLSE LDKAGFIKRQ LVETRQITKH VAQILDSRMN TKYDENDKLI REVKVITLKS





       970        980        990       1000       1010       1020


KLVSDFRKDF QFYKVREINN YHHAHDAYLN AVVGTALIKK YPKLESEFVY GDYKVYDVRK





      1030       1040       1050       1060       1070       1080


MIAKSEQEIG KATAKYFFYS NIMNFFKTEI TLANGEIRKR PLIETNGETG EIVWDKGRDF





      1090       1100       1110       1120       1130       1140


ATVRKVLSMP QVNIVKKTEV QTGGFSKESI LPKRNSDKLI ARKKDWDPKK YGGFDSPTVA





      1150       1160       1170       1180       1190       1200


YSVLVVAKVE KGKSKKLKSV KELLGITIME RSSFEKNPID FLEAKGYKEV KKDLIIKLPK





      1210       1220       1230       1240       1250       1260


YSLFELENGR KRMLASAGEL QKGNELALPS KYVNFLYLAS HYEKLKGSPE DNEQKQLFVE





      1270       1280       1290       1300       1310       1320


QHKHYLDEII EQISEFSKRV ILADANLDKV LSAYNKHRDK PIREQAENII HLFTLTNLGA





      1330       1340       1350       1360


PAAFKYFDTT IDRKRYTSTK EVLDATLIHQ SITGLYETRI DLSQLGGD






In some embodiments, the Cas9 nuclease used herein is at least about 50% identical to the sequence of S. pyogenes Cas9, i.e., at least 50% identical to SEQ ID NO:33. In some embodiments, the nucleotide sequences are about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100% identical to SEQ ID NO:33. In some embodiments, any differences from SEQ ID NO:33 are in non-conserved regions, as identified by sequence alignment of sequences set forth in Chylinski et al., RNA Biology 10:5, 1-12; 2013 (e.g., in supplementary FIG. 1 and supplementary table 1 thereof); Esvelt et al., Nat Methods. 2013 November; 10(11):1116-21 and Fonfara et al., Nucl. Acids Res. (2014) 42 (4): 2577-2590. [Epub ahead of print 2013 Nov. 22] doi:10.1093/nar/gkt1074.


To determine the percent identity of two sequences, the sequences are aligned for optimal comparison purposes (gaps are introduced in one or both of a first and a second amino acid or nucleic acid sequence as required for optimal alignment, and non-homologous sequences can be disregarded for comparison purposes). The length of a reference sequence aligned for comparison purposes is at least 50% (in some embodiments, about 50%, 55%, 60%, 65%, 70%, 75%, 85%, 90%, 95%, or 100% of the length of the reference sequence is aligned). The nucleotides or residues at corresponding positions are then compared. When a position in the first sequence is occupied by the same nucleotide or residue as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.


The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For purposes of the present application, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package, using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.


Cas9-HFD


Cas9-HFD are described in a U.S. Provisional Patent Applications U.S. Ser. No. 61/799,647, Filed on Mar. 15, 2013, U.S. Ser. No. 61/838,148, filed on Jun. 21, 2013, and PCT International Application No. PCT/US14/27335, all of which are incorporated herein by reference in its entirety.


The Cas9-HFD are created by fusing a heterologous functional domain (e.g., a transcriptional activation domain, e.g., from VP64 or NF-κB p65), to the N-terminus or C-terminus of a catalytically inactive Cas9 protein (dCas9). In the present case, as noted above, the dCas9 can be from any species but is preferably from S. pyogenes, In some embodiments, the Cas9 contains mutations in the D10 and H840 residues, e.g., D10N/D10A and H840A/H840N/H840Y, to render the nuclease portion of the protein catalytically inactive, e.g., as shown in SEQ ID NO:33 above.


The transcriptional activation domains can be fused on the N or C terminus of the Cas9. In addition, although the present description exemplifies transcriptional activation domains, other heterologous functional domains (e.g., transcriptional repressors (e.g., KRAB, ERD, SID, and others, e.g., amino acids 473-530 of the ets2 repressor factor (ERF) repressor domain (ERD), amino acids 1-97 of the KRAB domain of KOX1, or amino acids 1-36 of the Mad mSIN3 interaction domain (SID); see Beerli et al., PNAS USA 95:14628-14633 (1998)) or silencers such as Heterochromatin Protein 1 (HP1, also known as swi6), e.g., HP1α or HP1β; proteins or peptides that could recruit long non-coding RNAs (lncRNAs) fused to a fixed RNA binding sequence such as those bound by the MS2 coat protein, endoribonuclease Csy4, or the lambda N protein; enzymes that modify the methylation state of DNA (e.g., DNA methyltransferase (DNMT) or TET proteins); or enzymes that modify histone subunits (e.g., histone acetyltransferases (HAT), histone deacetylases (HDAC), histone methyltransferases (e.g., for methylation of lysine or arginine residues) or histone demethylases (e.g., for demethylation of lysine or arginine residues)) as are known in the art can also be used. A number of sequences for such domains are known in the art, e.g., a domain that catalyzes hydroxylation of methylated cytosines in DNA. Exemplary proteins include the Ten-Eleven-Translocation (TET)1-3 family, enzymes that converts 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) in DNA.


Sequences for human TET1-3 are known in the art and are shown in the following table:

















GenBank Accession Nos.











Gene
Amino Acid
Nucleic Acid







TET1
NP_085128.2
NM_030625.2



TET2*
NP_001120680.1 (var 1)
NM_001127208.2




NP_060098.3 (var 2)
NM_017628.4



TET3
NP_659430.1
NM_144993.1







*Variant (1) represents the longer transcript and encodes the longer isoform (a). Variant (2) differs in the 5′ UTR and in the 3′ UTR and coding sequence compared to variant 1. The resulting isoform (b) is shorter and has a distinct C-terminus compared to isoform a.






In some embodiments, all or part of the full-length sequence of the catalytic domain can be included, e.g., a catalytic module comprising the cysteine-rich extension and the 2OGFeDO domain encoded by 7 highly conserved exons, e.g., the Tet1 catalytic domain comprising amino acids 1580-2052, Tet2 comprising amino acids 1290-1905 and Tet1 comprising amino acids 966-1678. See, e.g., FIG. 1 of Iyer et al., Cell Cycle. 2009 Jun. 1; 8(11):1698-710. Epub 2009 Jun. 27, for an alignment illustrating the key catalytic residues in all three Tet proteins, and the supplementary materials thereof (available at ftp site ftp.ncbi.nih.gov/pub/aravind/DONS/supplementary_material_DONS.html) for full length sequences (see, e.g., seq 2c); in some embodiments, the sequence includes amino acids 1418-2136 of Tet1 or the corresponding region in Tet2/3.


Other catalytic modules can be from the proteins identified in Iyer et al., 2009.


In some embodiments, the heterologous functional domain is a biological tether, and comprises all or part of (e.g., DNA binding domain from) the MS2 coat protein, endoribonuclease Csy4, or the lambda N protein. These proteins can be used to recruit RNA molecules containing a specific stem-loop structure to a locale specified by the dCas9 gRNA targeting sequences. For example, a dCas9 fused to MS2 coat protein, endoribonuclease Csy4, or lambda N can be used to recruit a long non-coding RNA (lncRNA) such as XIST or HOTAIR; see, e.g., Keryer-Bibens et al., Biol. Cell 100:125-138 (2008), that is linked to the Csy4, MS2 or lambda N binding sequence. Alternatively, the Csy4, MS2 or lambda N protein binding sequence can be linked to another protein, e.g., as described in Keryer-Bibens et al., supra, and the protein can be targeted to the dCas9 binding site using the methods and compositions described herein. In some embodiments, the Csy4 is catalytically inactive.


In some embodiments, the fusion proteins include a linker between the dCas9 and the heterologous functional domains. Linkers that can be used in these fusion proteins (or between fusion proteins in a concatenated structure) can include any sequence that does not interfere with the function of the fusion proteins. In preferred embodiments, the linkers are short, e.g., 2-20 amino acids, and are typically flexible (i.e., comprising amino acids with a high degree of freedom such as glycine, alanine, and serine). In some embodiments, the linker comprises one or more units consisting of GGGS (SEQ ID NO:34) or GGGGS (SEQ ID NO:35), e.g., two, three, four, or more repeats of the GGGS (SEQ ID NO:34) or GGGGS (SEQ ID NO:35) unit. Other linker sequences can also be used.


Expression Systems


In order to use the guide RNAs described, it may be desirable to express them from a nucleic acid that encodes them. This can be performed in a variety of ways. For example, the nucleic acid encoding the guide RNA can be cloned into an intermediate vector for transformation into prokaryotic or eukaryotic cells for replication and/or expression. Intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors, or insect vectors, for storage or manipulation of the nucleic acid encoding the guide RNA for production of the guide RNA. The nucleic acid encoding the guide RNA can also be cloned into an expression vector, for administration to a plant cell, animal cell, preferably a mammalian cell or a human cell, fungal cell, bacterial cell, or protozoan cell.


To obtain expression, a sequence encoding a guide RNA is typically subcloned into an expression vector that contains a promoter to direct transcription. Suitable bacterial and eukaryotic promoters are well known in the art and described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual (3d ed. 2001); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al., eds., 2010). Bacterial expression systems for expressing the engineered protein are available in, e.g., E. coli, Bacillus sp., and Salmonella (Palva et al., 1983, Gene 22:229-235). Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available.


The promoter used to direct expression of a nucleic acid depends on the particular application. For example, a strong constitutive promoter is typically used for expression and purification of fusion proteins. In contrast, when the guide RNA is to be administered in vivo for gene regulation, either a constitutive or an inducible promoter can be used, depending on the particular use of the guide RNA. In addition, a preferred promoter for administration of the guide RNA can be a weak promoter, such as HSV TK or a promoter having similar activity. The promoter can also include elements that are responsive to transactivation, e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, 1992, Proc. Natl. Acad. Sci. USA, 89:5547; Oligino et al., 1998, Gene Ther., 5:491-496; Wang et al., 1997, Gene Ther., 4:432-441; Neering et al., 1996, Blood, 88:1147-55; and Rendahl et al., 1998, Nat. Biotechnol., 16:757-761).


In addition to the promoter, the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic. A typical expression cassette thus contains a promoter operably linked, e.g., to the nucleic acid sequence encoding the gRNA, and any signals required, e.g., for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination. Additional elements of the cassette may include, e.g., enhancers, and heterologous spliced intronic signals.


The particular expression vector used to transport the genetic information into the cell is selected with regard to the intended use of the gRNA, e.g., expression in plants, animals, bacteria, fungus, protozoa, etc. Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and commercially available tag-fusion expression systems such as GST and LacZ.


Expression vectors containing regulatory elements from eukaryotic viruses are often used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus. Other exemplary eukaryotic vectors include pMSG; pAV009/A+, pMTO10/A+, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 late promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.


The vectors for expressing the guide RNAs can include RNA Pol III promoters to drive expression of the guide RNAs, e.g., the H1, U6 or 7SK promoters. These human promoters allow for expression of gRNAs in mammalian cells following plasmid transfection. Alternatively, a T7 promoter may be used, e.g., for in vitro transcription, and the RNA can be transcribed in vitro and purified. Vectors suitable for the expression of short RNAs, e.g., siRNAs, shRNAs, or other small RNAs, can be used.


Some expression systems have markers for selection of stably transfected cell lines such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase. High yield expression systems are also suitable, such as using a baculovirus vector in insect cells, with the gRNA encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.


The elements that are typically included in expression vectors also include a replicon that functions in E. coli, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of recombinant sequences.


Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of protein, which are then purified using standard techniques (see, e.g., Colley et al., 1989, J. Biol. Chem., 264:17619-22; Guide to Protein Purification, in Methods in Enzymology, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, 1977, J. Bacteriol. 132:349-351; Clark-Curtiss & Curtiss, Methods in Enzymology 101:347-362 (Wu et al., eds, 1983).


Any of the known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, nucleofection, liposomes, microinjection, naked DNA, plasmid vectors, viral vectors, both episomal and integrative, and any of the other well-known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the gRNA.


The present invention includes the vectors and cells comprising the vectors.


EXAMPLES

The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.


Example 1. Assessing Specificity of RNA-Guided Endonucleases

CRISPR RNA-guided nucleases (RGNs) have rapidly emerged as a facile and efficient platform for genome editing. This example describes the use of a human cell-based reporter assay to characterize off-target cleavage of Cas9-based RGNs.


Materials and Methods


The following materials and methods were used in Example 1.


Construction of Guide RNAs


DNA oligonucleotides (Table A) harboring variable 20 nt sequences for Cas9 targeting were annealed to generate short double-strand DNA fragments with 4 bp overhangs compatible with ligation into BsmBI-digested plasmid pMLM3636. Cloning of these annealed oligonucleotides generates plasmids encoding a chimeric +103 single-chain guide RNA with 20 variable 5′ nucleotides under expression of a U6 promoter (Hwang et al., Nat Biotechnol 31, 227-229 (2013); Mali et al., Science 339, 823-826 (2013)). pMLM3636 and the expression plasmid pJDS246 (encoding a codon optimized version of Cas9) used in this study are both available through the non-profit plasmid distribution service Addgene (addgene.org/crispr-cas).










TABLE A







gRNA Target Sequence Position
Oligos for genterating gRNA expression plasmid







EGFP Target Site 1






























20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
oligonucleotide 1 (5′ to 3′)
#
oligonucleotide 2 (5′ to 3′)
#





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGCACGGGCAGCTTGCCGGG
 36.
AAAACCCGGCAAGCTGCCCGTGCCCG
230.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
c
ACACCGGGCACGGGCAGCTTGCCGCG
 37.
AAAACGCGGCAAGCTGCCCGTGCCCG
231.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
c
G
ACACCGGGCACGGGCAGCTTGCCCGG
 38.
AAAACCGGGCAAGCTGCCCGTGCCCG
232.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
g
G
G
ACACCGGGCACGGGCAGCTTGCGGGG
 39.
AAAACCCCGCAAGCTGCCCGTGCCCG
233.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
G
g
C
G
G
ACACCGGGCACGGGCAGCTTGGCGGG
 40.
AAAACCCGCCAAGCTGCCCGTGCCCG
234.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
c
C
C
G
G
ACACCGGGCACGGGCAGCTTCCCGGG
 41.
AAAACCCGGGAAGCTGCCCGTGCCCG
235.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
a
G
C
C
G
G
ACACCGGGCACGGGCAGCTAGCCGGG
 42.
AAAACCCGGCTAGCTGCCCGTGCCCG
236.





G
G
G
C
A
C
G
G
G
C
A
G
C
a
T
G
C
C
G
G
ACACCGGGCACGGGCAGCATGCCGGG
 43.
AAAACCCGGCATGCTGCCCGTGCCCG
237.





G
G
G
C
A
C
G
G
G
C
A
G
g
T
T
G
C
C
G
G
ACACCGGGCACGGGCAGGTTGCCGGG
 44.
AAAACCCGGCAACCTGCCCGTGCCCG
238.





G
G
G
C
A
C
G
G
G
C
A
c
C
T
T
G
C
C
G
G
ACACCGGGCACGGGCACCTTGCCGGG
 45.
AAAACCCGGCAAGGTGCCCGTGCCCG
239.





G
G
G
C
A
C
G
G
G
C
t
G
C
T
T
G
C
C
G
G
ACACCGGGCACGGGCTGCTTGCCGGG
 46.
AAAACCCGGCAAGCAGCCCGTGCCCG
240.





G
G
G
C
A
C
G
G
G
g
A
G
C
T
T
G
C
C
G
G
ACACCGGGCACGGGGAGCTTGCCGGG
 47.
AAAACCCGGCAAGCTCCCCGTGCCCG
241.





G
G
G
C
A
C
G
G
c
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGCACGGCCAGCTTGCCGGG
 48.
AAAACCCGGCAAGCTGGCCGTGCCCG
242.





G
G
G
C
A
C
G
c
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGCACGCGCAGCTTGCCGGG
 49.
AAAACCCGGCAAGCTGCGCGTGCCCG
243.





G
G
G
C
A
C
c
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGCACCGGCAGCTTGCCGGG
 50.
AAAACCCGGCAAGCTGCCGGTGCCCG
244.





G
G
G
C
A
g
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGCAGGGGCAGCTTGCCGGG
 51.
AAAACCCGGCAAGCTGCCCCTGCCCG
245.





G
G
G
C
t
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGCTCGGGCAGCTTGCCGGG
 52.
AAAACCCGGCAAGCTGCCCGAGCCCG
246.





G
G
G
g
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGGACGGGCAGCTTGCCGGG
 53.
AAAACCCGGCAAGCTGCCCGTCCCCG
247.





G
G
c
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGCCACGGGCAGCTTGCCGGG
 54.
AAAACCCGGCAAGCTGCCCGTGGCCG
248.





G
c
G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCGCACGGGCAGCTTGCCGGG
 55.
AAAACCCGGCAAGCTGCCCGTGCGCG
249.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGCACGGGCAGCTTGCCCCG
 56.
AAAACGGGGCAAGCTGCCCGTGCCCG
250.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
G
g
g
G
G
ACACCGGGCACGGGCAGCTTGGGGGG
 57.
AAAACCCCCCAAGCTGCCCGTGCCCG
251.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
a
c
C
C
G
G
ACACCGGGCACGGGCAGCTACCCGGG
 58.
AAAACCCGGGTAGCTGCCCGTGCCCG
252.





G
G
G
C
A
C
G
G
G
C
A
G
g
a
T
G
C
C
G
G
ACACCGGGCACGGGCAGGATGCCGGG
 59.
AAAACCCGGCATCCTGCCCGTGCCCG
253.





G
G
G
C
A
C
G
G
G
C
t
c
C
T
T
G
C
C
G
G
ACACCGGGCACGGGCTCCTTGCCGGG
 60.
AAAACCCGGCAAGGAGCCCGTGCCCG
254.





G
G
G
C
A
C
G
G
c
g
A
G
C
T
T
G
C
C
G
G
ACACCGGGCACGGCGAGCTTGCCGGG
 61.
AAAACCCGGCAAGCTCGCCGTGCCCG
255.





G
G
G
C
A
C
c
c
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGCACCCGCAGCTTGCCGGG
 62.
AAAACCCGGCAAGCTGCGGGTGCCCG
256.





G
G
G
C
t
g
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGCTGGGGCAGCTTGCCGGG
 63.
AAAACCCGGCAAGCTGCCCCAGCCCG
257.





G
G
c
g
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGCGACGGGCAGCTTGCCGGG
 64.
AAAACCCGGCAAGCTGCCCGTCGCCG
258.





G
c
c
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCCCACGGGCAGCTTGCCGGG
 65.
AAAACCCGGCAAGCTGCCCGTGCGGG
259.





G
c
C
g
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCCGACGGGCAGCTTGCCGGG
 66.
AAAACCCGGCAAGCTGCCCGTGCCCG
260.





G
c
c
g
t
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCCGTCGGGCAGCTTGCCGGG
 67.
AAAACCCGGCAAGCTGCCCGTGCCCG
261.





G
c
c
g
t
g
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCCGTGGGGCAGCTTGCCGGG
 68.
AAAACCCGGCAAGCTGCCCGTGCCCG
262.





G
c
c
g
t
g
c
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCCGTGCGGCAGCTTGCCGGG
 69.
AAAACCCGGCAAGCTGCCCGTGCCCG
263.





G
c
c
g
t
g
c
c
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCCGTGCCGCAGCTTGCCGGG
 70.
AAAACCCGGCAAGCTGCCCGTGCCCG
264.





G
c
c
g
t
g
c
c
c
C
A
G
C
T
T
G
C
C
G
G
ACACCGCCGTGCCCCAGCTTGCCGGG
 71.
AAAACCCGGCAAGCTGCCCGTGCCCG
265.





G
c
c
g
t
g
c
c
c
g
A
G
C
T
T
G
C
C
G
G
ACACCGCCGTGCCCGAGCTTGCCGGG
 72.
AAAACCCGGCAAGCTGCCCGTGCCCG
266.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
g
G
c
ACACCGGGCACGGGCAGCTTGCGGCG
 73.
AAAACGCCGCAAGCTGCCCGTGCCCG
267.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
c
C
g
G
G
ACACCGGGCACGGGCAGCTTCCGGGG
 74.
AAAACCCCGGAAGCTGCCCGTGCCCG
268.





G
G
G
C
A
C
G
G
G
C
a
t
g
c
g
G
C
C
G
G
ACACCGGGCACGGGCAGCATGCGGGG
 75.
AAAACCCCGCATGCTGCCCGTGCCCG
269.





G
G
G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGCACGGGCACCTTGCGGGG
 76.
AAAACCCCGCAAGGTGCCCGTGCCCG
270.





G
G
G
C
A
C
G
G
G
g
A
G
C
T
T
G
C
g
G
G
ACACCGGGCACGGGGAGCTTGCGGGG
 77.
AAAACCCCGCAAGCTCCCCGTGCCCG
271.





G
G
G
C
A
C
G
c
G
C
A
G
C
T
T
G
C
g
G
G
ACACCGGGCACGCGCAGCTTGCGGGG
 78.
AAAACCCCGCAAGCTGCGCGTGCCCG
272.





G
G
G
C
A
g
G
G
G
C
A
G
C
T
T
G
C
g
G
G
ACACCGGGCAGGGGCAGCTTGCGGGG
 79.
AAAACCCCGCAAGCTGCCCCTGCCCG
273.





G
G
G
g
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGGGACGGGCAGCTTGCGGGG
 80.
AAAACCCCGCAAGCTGCCCGTCCCCG
274.





G
c
G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
g
G
G
ACACCGCGCACGGGCAGCTTGCGGGG
 81.
AAAACCCCGCAAGCTGCCCGTGCGCG
275.





G
G
G
C
A
C
G
G
G
g
A
G
C
T
T
G
C
C
G
c
ACACCGGGCACGGGGAGCTTGCCGCG
 82.
AAAACGCGGCAAGCTCCCCGTGCCCG
276.





G
G
G
C
A
C
G
G
G
g
A
G
C
T
T
c
C
C
G
G
ACACCGGGCACGGGGAGCTTCCCGGG
 83.
AAAACCCGGGAAGCTCCCCGTGCCCG
277.





G
G
G
C
A
C
G
G
G
g
A
G
C
a
T
G
C
C
G
G
ACACCGGGCACGGGGAGCATGCCGGG
 84.
AAAACCCGGCATGCTCCCCGTGCCCG
278.





G
G
G
C
A
C
G
G
G
g
A
c
C
T
T
G
C
C
G
G
ACACCGGGCACGGGGACCTTGCCGGG
 85.
AAAACCCGGCAAGGTCCCCGTGCCCG
279.





G
G
G
C
A
C
G
c
G
g
A
G
C
T
T
G
C
C
G
G
ACACCGGGCACGCGGAGCTTGCCGGG
 86.
AAAACCCGGCAAGCTCCGCGTGCCCG
280.





G
G
G
C
A
g
G
G
G
g
A
G
C
T
T
G
C
C
G
G
ACACCGGGCAGGGGGAGCTTGCCGGG
 87.
AAAACCCGGCAAGCTCCCCCTGCCCG
281.





G
G
G
g
A
C
G
G
G
g
A
G
C
T
T
G
C
C
G
G
ACACCGGGGACGGGGAGCTTGCCGGG
 88.
AAAACCCGGCAAGCTCCCCGTCCCCG
282.





G
c
G
C
A
C
G
G
G
g
A
G
C
T
T
G
C
C
G
G
ACACCGCGCACGGGGAGCTTGCCGGG
 89.
AAAACCCGGCAAGCTCCCCGTGCGCG
283.





G
c
G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
c
ACACCGCGCACGGGCAGCTTGCCGCG
 90.
AAAACGCGGCAAGCTGCCCGTGCGCG
284.





G
c
G
C
A
C
G
G
G
C
A
G
C
T
T
c
C
C
G
G
ACACCGCGCAGGGGGAGGTTCCCGGG
 91.
AAAACCCGGGAAGCTGCCCGTGCGCG
285.





G
c
G
C
A
C
G
G
G
C
A
G
C
a
T
G
C
C
G
G
ACACCGCGCAGGGGGAGGATGCCGGG
 92.
AAAACCCGGCATGCTGCCCGTGCGCG
286.





G
c
G
C
A
C
G
G
G
C
A
c
C
T
T
G
C
C
G
G
ACACCGCGCACGGGCACCTTGCCGGG
 93.
AAAACCCGGCAAGGTGCCCGTGCGCG
287.





G
c
G
C
A
C
G
c
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCGCACGCGCAGCTTGCCGGG
 94.
AAAACCCGGCAAGCTGCGCGTGCGCG
288.





G
c
G
C
A
g
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCGCAGGGGGAGGTTGCCGGG
 95.
AAAACCCGGCAAGCTGCCCCTGCGCG
289.





G
c
G
g
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCGGACGGGCAGCTTGCCGGG
 96.
AAAACCCGGCAAGCTGCCCGTCCGCG
290.










EGFP TARGET SITE 2






























20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
oligonucleotide 1 (5′ to 3′)
#
oligonucleotide 2 (5′ to 3′)
#





G
A
T
G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGATGCCGTTGTTGTGGTTGTG
 97.
AAAACACAAGCAGAAGAACGGCATCG
291.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
a
ACACCGATGCCGTTCTTCTGCTTGAG
 98.
AAAACACAAGCAGAAGAACGGCATCG
292.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
c
T
ACACCGATGCCGTTCTTCTGCTTCTG
 99.
AAAACACAAGCAGAAGAACGGCATCG
293.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
G
C
T
a
G
T
ACACCGATGCCGTTGTTGTGGTAGTG
100
AAAACACAAGCAGAAGAACGGCATCG
294.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
G
C
a
T
G
T
ACACCGATGCCGTTCTTCTGCATGTG
101
AAAACACAAGCAGAAGAACGGCATCG
295.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
G
g
T
T
G
T
ACACCGATGCCGTTCTTCTGGTTGTG
102
AAAACACAAGCAGAAGAACGGCATCG
296.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
c
C
T
T
G
T
ACACCGATGCCGTTCTTCTCCTTGTG
103
AAAACACAAGCAGAAGAACGGCATCG
297.





G
A
T
G
C
C
G
T
T
C
T
T
C
a
G
C
T
T
G
T
ACACCGATGCCGTTGTTGAGGTTGTG
104
AAAACACAAGCAGAAGAACGGCATCG
298.





G
A
T
G
C
C
G
T
T
C
T
T
g
T
G
C
T
T
G
T
ACACCGATGCCGTTCTTGTGCTTGTG
105
AAAACACAAGCAGAAGAACGGCATCG
299.





G
A
T
G
C
C
G
T
T
C
T
a
C
T
G
C
T
T
G
T
ACACCGATGCCGTTGTAGTGGTTGTG
106
AAAACACAAGCAGAAGAACGGCATCG
300.





G
A
T
G
C
C
G
T
T
C
a
T
C
T
G
C
T
T
G
T
ACACCGATGCCGTTCATCTGCTTGTG
107
AAAACACAAGCAGAAGAACGGCATCG
301.





G
A
T
G
C
C
G
T
T
g
T
T
C
T
G
C
T
T
G
T
ACACCGATGCCGTTGTTCTGCTTGTG
108
AAAACACAAGCAGAAGAACGGCATCG
302.





G
A
T
G
C
C
G
T
a
C
T
T
C
T
G
C
T
T
G
T
ACACCGATGCCGTACTTCTGCTTGTG
109
AAAACACAAGCAGAAGAACGGCATCG
303.





G
A
T
G
C
C
G
a
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGATGCCGATCTTCTGCTTGTG
110
AAAACACAAGCAGAAGAACGGCATCG
304.





G
A
T
G
C
C
c
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGATGCCCTTCTTCTGCTTGTG
111
AAAACACAAGCAGAAGAACGGCATCG
305.





G
A
T
G
C
g
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGATGCGGTTCTTCTGCTTGTG
112
AAAACACAAGCAGAAGAACGGCATCG
306.





G
A
T
G
g
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGATGGCGTTCTTCTGCTTGTG
113
AAAACACAAGCAGAAGAACGGCATCG
307.





G
A
T
c
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGATCCCGTTCTTGTGGTTGTG
114
AAAACACAAGCAGAAGAACGGCATCG
308.





G
A
t
G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGAAGCCGTTCTTGTGGTTGTG
115
AAAACACAAGCAGAAGAACGGCATCG
309.





G
a
T
G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGTTGCCGTTCTTGTGGTTGTG
116
AAAACACAAGCAGAAGAACGGCATCG
310.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
c
a
ACACCGATGCCGTTCTTCTGCTTCAG
117
AAAACTGAAGCAGAAGAACGGCATCG
311.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
G
C
a
a
G
T
ACACCGATGCCGTTCTTGTGGAAGTG
118
AAAACACAAGCAGAAGAACGGCATCG
312.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
c
g
T
T
G
T
ACACCGATGCCGTTCTTCTCGTTGTG
119
AAAACACAAGCAGAAGAACGGCATCG
313.





G
A
T
G
C
C
G
T
T
C
T
T
g
a
G
C
T
T
G
T
ACACCGATGCCGTTCTTGAGGTTGTG
120
AAAACACAAGCTCAAGAACGGCATCG
314.





G
A
T
G
C
C
G
T
T
C
a
a
C
T
G
C
T
T
G
T
ACACCGATGCCGTTCAAGTGGTTGTG
121
AAAACACAAGCAGAAGAACGGCATCG
315.





G
A
T
G
C
C
G
T
a
g
T
T
C
T
G
C
T
T
G
T
ACACCGATGCCGTACTTGTGGTTGTG
122
AAAACACAAGCAGAAGAACGGCATCG
316.





G
A
T
G
C
C
c
a
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGATGCCCATCTTGTGGTTGTG
123
AAAACACAAGCAGAAGAACGGCATCG
317.





G
A
T
G
g
g
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGATGGGGTTCTTCTGCTTGTG
124
AAAACACAAGCAGAAGAACGGCATCG
318.





G
A
a
c
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGAACCCGTTCTTCTGCTTGTG
125
AAAACACAAGCAGAAGAACGGCATCG
319.





G
t
a
G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGTAGCCCTTGTTGTGGTTGTG
126
AAAACACAAGCAGAAGAACGGCAAGG
320.





G
t
a
c
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGTACCCCTTGTTGTGGTTGTG
127
AAAACACAAGCAGAAGAACGGGTACG
321.





G
t
a
c
g
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGTAGGCCTTGTTGTGGTTGTG
128
AAAACACAAGCAGAAGAACGCGTACG
322.





G
t
a
c
g
g
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGTACGGGTTGTTGTGGTTGTG
129
AAAACACAAGCAGAAGAACCCGTACG
323.





G
t
a
c
g
g
c
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGTACGGCTTCTTCTGCTTGTG
130
AAAACACAAGCAGAAGAAGCCGTACG
324.





G
t
a
c
g
g
c
a
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGTACGGCATCTTCTGCTTGTG
131
AAAACACAAGCAGAAGATGCCGTACG
325.





G
t
a
c
g
g
c
a
a
C
T
T
C
T
G
C
T
T
G
T
ACACCGTACGGCAACTTCTGCTTGTG
132
AAAACACAAGCAGAAGTTGCCGTACG
326.





G
t
a
c
g
g
c
a
a
g
T
T
C
T
G
C
T
T
G
T
ACACCGTACGGCAAGTTCTGCTTGTG
133
AAAACACAAGCAGAACTTGCCGTACG
327.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
G
C
T
a
G
a
ACACCGATGCCGTTCTTCTGCTAGAG
134
AAAACTCTAGCAGAAGAACGGCATCG
328.





G
A
T
G
C
C
G
T
T
C
T
T
C
T
G
g
T
a
G
T
ACACCGATGCCGTTCTTCTGGTAGTG
135
AAAACACTACCAGAAGAACGGCATCG
329.





G
A
T
G
C
C
G
T
T
C
T
T
C
a
G
C
T
a
G
T
ACACCGATGCCGTTCTTCAGCTAGTG
136
AAAACACTAGCTGAAGAACGGCATCG
330.





G
A
T
G
C
C
G
T
T
C
T
a
C
T
G
C
T
a
G
T
ACACCGATGCCGTTCTACTGCTAGTG
137
AAAACACTAGCAGTAGAACGGCATCG
331.





G
A
T
G
C
C
G
T
T
g
T
T
C
T
G
C
T
a
G
T
ACACCGATGCCGTTGTTCTGCTAGTG
138
AAAACACTAGCAGAACAACGGCATCG
332.





G
A
T
G
C
C
G
a
T
C
T
T
C
T
G
C
T
a
G
T
ACACCGATGCCGATCTTCTGCTAGTG
139
AAAACACTAGCAGAAGATCGGCATCG
333.





G
A
T
G
C
g
G
T
T
C
T
T
C
T
G
C
T
a
G
T
ACACCGATGCGGTTCTTCTGCTAGTG
140
AAAACACTAGCAGAAGAACCGCATCG
334.





G
A
T
c
C
C
G
T
T
C
T
T
C
T
G
C
T
a
G
T
ACACCGATCCCGTTCTTCTGCTAGTG
141
AAAACACTAGCAGAAGAACGGGATCG
335.





G
t
T
G
C
C
G
T
T
C
T
T
C
T
G
C
T
a
G
T
ACACCGTTGCCGTTCTTCTGCTAGTG
142
AAAACACTAGCAGAAGAACGGCAACG
336.





G
A
T
G
C
C
G
T
T
g
T
T
C
T
G
C
T
T
G
a
ACACCGATGCCGTTGTTCTGCTTGAG
143
AAAACTCAAGCAGAACAACGGCATCG
337.





G
A
T
G
C
C
G
T
T
g
T
T
C
T
G
g
T
T
G
T
ACACCGATGCCGTTGTTCTGGTTGTG
144
AAAACACAACCAGAACAACGGCATCG
338.





G
A
T
G
C
C
G
T
T
g
T
T
C
a
G
C
T
T
G
T
ACACCGATGCCGTTGTTCAGCTTGTG
145
AAAACACAAGCTGAACAACGGCATCG
339.





G
A
T
G
C
C
G
T
T
g
T
a
C
T
G
C
T
T
G
T
ACACCGATGCCGTTGTACTGCTTGTG
146
AAAACACAAGCAGTACAACGGCATCG
340.





G
A
T
G
C
C
G
a
T
g
T
T
C
T
G
C
T
T
G
T
ACACCGATGCCGATGTTCTGCTTGTG
147
AAAACACAAGCAGAACATCGGCATCG
341.





G
A
T
G
C
g
G
T
T
g
T
T
C
T
G
C
T
T
G
T
ACACCGATGCGGTTGTTCTGCTTGTG
148
AAAACACAAGCAGAACAACCGCATCG
342.





G
A
T
c
C
C
G
T
T
g
T
T
C
T
G
C
T
T
G
T
ACACCGATCCCGTTGTTCTGCTTGTG
149
AAAACACAAGCAGAACAACGGGATCG
343.





G
t
T
G
C
C
G
T
T
g
T
T
C
T
G
C
T
T
G
T
ACACCGTTGCCGTTGTTCTGCTTGTG
150
AAAACACAAGCAGAACAACGGCAACG
344.





G
t
T
G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
a
ACACCGTTGCCGTTCTTCTGCTTGAG
151
AAAACTCAAGCAGAAGAACGGCAACG
345.





G
t
T
G
C
C
G
T
T
C
T
T
C
T
G
g
T
T
G
T
ACACCGTTGCCGTTCTTCTGGTTGTG
152
AAAACACAACCAGAAGAACGGCAACG
346.





G
t
T
G
C
C
G
T
T
C
T
T
C
a
G
C
T
T
G
T
ACACCGTTGCCGTTGTTCAGCTTGTG
153
AAAACACAAGCTGAAGAACGGCAACG
347.





G
t
T
G
C
C
G
T
T
C
T
a
C
T
G
C
T
T
G
T
ACACCGTTGCCGTTGTACTGCTTGTG
154
AAAACACAAGCAGTAGAACGGCAACG
348.





G
t
T
G
C
C
G
a
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGTTGCCGATCTTCTGCTTGTG
155
AAAACACAAGCAGAAGATCGGCAACG
349.





G
t
T
G
C
g
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGTTGCGGTTCTTCTGCTTGTG
156
AAAACACAAGCAGAAGAACCGCAACG
350.





G
t
T
c
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGTTCCCGTTCTTCTGCTTGTG
157
AAAACACAAGCAGAAGAACGGGAACG
351.










EGFP TARGET SITE 3






























20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
oligonucleotide 1 (5′ to 3′)
#
oligonucleotide 2 (5′ to 3′)
#





G
G
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGTGGAGATGAAGTTGAG
158
AAAACTGAAGTTCATCTGCACCACCG
352.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
g
ACACCGGTGGTGCAGATGAACTTCTG
159
AAAACAGAAGTTCATCTGCACCACCG
353.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
g
A
ACACCGGTGGTGCAGATGAACTTGAG
160
AAAACTCAAGTTCATCTGCACCACCG
354.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
a
C
A
ACACCGGTGGTGCAGATGAACTACAG
161
AAAACTGTAGTTCATCTGCACCACCG
355.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
A
C
a
T
C
A
ACACCGGTGGTGCAGATGAACATCAG
162
AAAACTGATGTTCATCTGCACCACCG
356.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
A
g
T
T
C
A
ACACCGGTGGTGGAGATGAAGTTGAG
163
AAAACTGAACTTCATCTGCACCACCG
357.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
t
C
T
T
C
A
ACACCGGTGGTGGAGATGATGTTGAG
164
AAAACTGAAGATCATCTGCACCACCG
358.





G
G
T
G
G
T
G
C
A
G
A
T
G
t
A
C
T
T
C
A
ACACCGGTGGTGGAGATGTAGTTGAG
165
AAAACTGAAGTACATCTGCACCACCG
359.





G
G
T
G
G
T
G
C
A
G
A
T
c
A
A
C
T
T
C
A
ACACCGGTGGTGGAGATGAAGTTGAG
166
AAAACTGAAGTTGATCTGCACCACCG
360.





G
G
T
G
G
T
G
C
A
G
A
a
G
A
A
C
T
T
C
A
ACACCGGTGGTGGAGAAGAAGTTGAG
167
AAAACTGAAGTTCTTCTGCACCACCG
361.





G
G
T
G
G
T
G
C
A
G
t
T
G
A
A
C
T
T
C
A
ACACCGGTGGTGGAGTTGAAGTTGAG
168
AAAACTGAAGTTCAACTGCACCACCG
362.





G
G
T
G
G
T
G
C
A
c
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGTGGAGATGAAGTTGAG
169
AAAACTGAAGTTCATGTGCACCACCG
363.





G
G
T
G
G
T
G
C
t
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGTGGTGATGAAGTTGAG
170
AAAACTGAAGTTCATCAGCACCACCG
364.





G
G
T
G
G
T
G
g
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGTGGAGATGAAGTTGAG
171
AAAACTGAAGTTCATCTCCACCACCG
365.





G
G
T
G
G
T
c
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGTCCAGATGAACTTCAG
172
AAAACTGAAGTTCATCTGGACCACCG
366.





G
G
T
G
G
a
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGAGGAGATGAAGTTGAG
173
AAAACTGAAGTTCATCTGCTCCACCG
367.





G
G
T
G
c
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGTGGAGATGAAGTTGAG
174
AAAACTGAAGTTCATCTGCAGCACCG
368.





G
G
T
c
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGTGGAGATGAAGTTGAG
175
AAAACTGAAGTTCATCTGCACGACCG
369.





G
G
a
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGAGGTGGAGATGAAGTTGAG
176
AAAACTGAAGTTCATCTGCACCTCCG
370.





G
c
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
t
ACACCGCTGGTGGAGATGAAGTTGAG
177
AAAACTGAAGTTCATCTGCACCAGCG
371.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
g
A
ACACCGGTGGTGCAGATGAACTTGTG
178
AAAACACAAGTTCATCTGCACCACCG
372.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
A
C
a
a
C
A
ACACCGGTGGTGGAGATGAAGAAGAG
179
AAAACTGTTGTTCATCTGCACCACCG
373.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
t
g
T
T
C
A
ACACCGGTGGTGGAGATGATGTTGAG
180
AAAACTGAACATCATCTGCACCACCG
374.





G
G
T
G
G
T
G
C
A
G
A
T
c
t
A
C
T
T
C
A
ACACCGGTGGTGCAGATCTACTTCAG
181
AAAACTGAAGTAGATCTGCACCACCG
375.





G
G
T
G
G
T
G
C
A
G
t
a
G
A
A
C
T
T
C
A
ACACCGGTGGTGGAGTAGAAGTTGAG
182
AAAACTGAAGTTCTACTGCACCACCG
376.





G
G
T
G
G
T
G
C
t
c
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGTGGTGATGAAGTTGAG
183
AAAACTGAAGTTCATGAGCACCACCG
377.





G
G
T
G
G
T
c
g
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGTGGAGATGAAGTTGAG
184
AAAACTGAAGTTCATCTCGACCACCG
378.





G
G
T
G
c
a
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGAGGAGATGAAGTTGAG
185
AAAACTGAAGTTCATCTGCTGCACCG
379.





G
G
a
c
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGAGGTGGAGATGAAGTTGAG
186
AAAACTGAAGTTCATCTGCACGTCCG
380.





G
c
a
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCAGGTGGAGATGAAGTTGAG
187
AAAACTGAAGTTCATCTGCACCAGGG
381.





G
c
a
c
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCACGTGGAGATGAAGTTGAG
188
AAAACTGAAGTTCATCTGCACGTGCG
382.





G
c
a
c
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCACCTGGAGATGAAGTTGAG
189
AAAACTGAAGTTCATCTGCAGGTGCG
383.





G
c
a
c
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCACCAGGAGATGAAGTTGAG
190
AAAACTGAAGTTCATCTGCTGGTGCG
384.





G
c
a
c
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCACCACCAGATGAAGTTGAG
191
AAAACTGAAGTTCATCTGGTGGTGCG
385.





G
c
a
c
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCACCAGGAGATGAAGTTGAG
192
AAAACTGAAGTTCATCTCGTGGTGCG
386.





G
c
a
c
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCACCACGTGATGAAGTTGAG
193
AAAACTGAAGTTCATCACGTGGTGCG
387.





G
c
a
c
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCACCACGTGATGAAGTTGAG
194
AAAACTGAAGTTCATGACGTGGTGCG
388.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
a
C
t
ACACCGGTGGTGCAGATGAACTACTG
195
AAAACAGTAGTTCATCTGCACCACCG
389.





G
G
T
G
G
T
G
C
A
G
A
T
G
A
A
g
T
a
C
A
ACACCGGTGGTGCAGATGAAGTACAG
196
AAAACTGTACTTCATCTGCACCACCG
390.





G
G
T
G
G
T
G
C
A
G
A
T
G
t
A
C
T
a
C
A
ACACCGGTGGTGCAGATGTACTACAG
197
AAAACTGTAGTACATCTGCACCACCG
391.





G
G
T
G
G
T
G
C
A
G
A
a
G
A
A
C
T
a
C
A
ACACCGGTGGTGCAGAAGAACTACAG
198
AAAACTGTAGTTCTTCTGCACCACCG
392.





G
G
T
G
G
T
G
C
A
c
A
T
G
A
A
C
T
a
C
A
ACACCGGTGGTGCACATGAACTACAG
199
AAAACTGTAGTTCATGTGCACCACCG
393.





G
G
T
G
G
T
G
g
A
G
A
T
G
A
A
C
T
a
C
A
ACACCGGTGGTGGAGATGAACTACAG
200
AAAACTGTAGTTCATCTCCACCACCG
394.





G
G
T
G
G
a
G
C
A
G
A
T
G
A
A
C
T
a
C
A
ACACCGGTGGAGCAGATGAACTACAG
201
AAAACTGTAGTTCATCTGCTCCACCG
395.





G
G
T
c
G
T
G
C
A
G
A
T
G
A
A
C
T
a
C
A
ACACCGGTCGTGCAGATGAACTACAG
202
AAAACTGTAGTTCATCTGCACGACCG
396.





G
c
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
a
C
A
ACACCGCTGGTGCAGATGAACTACAG
203
AAAACTGTAGTTCATCTGCACCAGCG
397.





G
G
T
G
G
T
G
C
A
c
A
T
G
A
A
C
T
T
C
t
ACACCGGTGGTGCACATGAACTTCTG
204
AAAACAGAAGTTCATGTGCACCACCG
398.





G
G
T
G
G
T
G
C
A
c
A
T
G
A
A
g
T
T
C
A
ACACCGGTGGTGCACATGAAGTTCAG
205
AAAACTGAACTTCATGTGCACCACCG
399.





G
G
T
G
G
T
G
C
A
c
A
T
G
t
A
C
T
T
C
A
AGAGGGGTGGTGGAGATGTAGTTGAG
206
AAAACTGAAGTACATGTGCACCACCG
400.





G
G
T
G
G
T
G
C
A
c
A
a
G
A
A
C
T
T
C
A
ACACCGGTGGTGCACAAGAACTTCAG
207
AAAACTGAAGTTCTTGTGCACCACCG
401.





G
G
T
G
G
T
G
g
A
c
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGTGGACATGAACTTCAG
208
AAAACTGAAGTTCATGTCCACCACCG
402.





G
G
T
G
G
a
G
C
A
c
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGAGCACATGAACTTCAG
209
AAAACTGAAGTTCATGTGCTCCACCG
403.





G
G
T
c
G
T
G
C
A
c
A
T
G
A
A
C
T
T
C
A
ACACCGGTCGTGCACATGAACTTCAG
210
AAAACTGAAGTTCATGTGCACGACCG
404.





G
c
T
G
G
T
G
C
A
c
A
T
G
A
A
C
T
T
C
A
ACACCGCTGGTGCACATGAACTTCAG
211
AAAACTGAAGTTCATGTGCACCAGCG
405.





G
c
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
t
ACACCGCTGGTGCAGATGAACTTCTG
212
AAAACAGAAGTTCATCTGCACCAGCG
406.





G
c
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCTGGTGCAGATGAAGTTCAG
213
AAAACTGAACTTCATCTGCACCAGCG
407.





G
c
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCTGGTGGAGATGTAGTTGAG
214
AAAACTGAAGTACATCTGCACCAGCG
408.





G
c
T
G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
AGACCGCTGGTGGAGAAGAAGTTGAG
215
AAAACTGAAGTTCTTCTGCACCAGCG
409.





G
c
T
G
G
T
G
g
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCTGGTGGAGATGAAGTTGAG
216
AAAACTGAAGTTCATCTCCACCAGCG
410.





G
c
T
G
G
a
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCTGGAGGAGATGAAGTTGAG
217
AAAACTGAAGTTCATCTGCTCCAGCG
411.





G
c
T
c
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCTCGTGGAGATGAAGTTGAG
218
AAAACTGAAGTTCATCTGCACGAGCG
412.










Endogenous Target 1 (VEGFA Site 1)






























20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
oligonucleotide 1 (5′ to 3′)
#
oligonucleotide 2 (5′ to 3′)
#





G
G
G
T
G
G
G
G
G
G
A
G
T
T
T
G
C
T
C
C
ACACCGGGTGGGGGGAGTTTGCTCCG
219
AAAACGGAGCAAACTCCCCCCCACCG
413.























220

414.










Endogenous Target 2 (VEGFA Site 2):






























20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
oligonucleotide 1 (5′ to 3′)
#
oligonucleotide 2 (5′ to 3′)
#





G
A
C
C
C
C
C
T
C
C
A
C
C
C
C
G
C
C
T
C
ACACCGACCCCCTCCACCCCGCCTCG
221
AAAACGAGGCGGGGTGGAGGGGGTCG
415.























222

416.










Endogenous Target 3 (VEGFA Site 3):






























20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
oligonucleotide 1 (5′ to 3′)
#
oligonucleotide 2 (5′ to 3′)
#





G
G
T
G
A
G
T
G
A
G
T
G
T
G
T
G
C
G
T
G
ACACCGGTGAGTGAGTGTGTGCGTGG
223
AAAACCACGCACACACTCACTCACCG
417.























224

418.










Endogenous Target 4 (EMX1):






























20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
oligonucleotide 1 (5′ to 3′)
#
oligonucleotide 2 (5′ to 3′)
#





G
A
G
T
C
C
G
A
G
C
A
G
A
A
G
A
A
G
A
A
ACACCGAGTCCGAGCAGAAGAAGAAG
225
AAAACTTCTTCTTCTGCTCGGACTCG
419.























226

420.










Endogenous Target 5 (RNF2):






























20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
oligonucleotide 1 (5′ to 3′)
#
oligonucleotide 2 (5′ to 3′)
#





G
T
C
A
T
C
T
T
A
G
T
C
A
T
T
A
C
C
T
G
ACACCGTCATCTTAGTCATTACCTGG
227
AAAACCAGGTAATGACTAAGATGACG
421.























228

422.










Endogenous Target 6 (FANCF):






























20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
oligonucleotide 1 (5′ to 3′)
#
oligonucleotide 2 (5′ to 3′)
#





G
G
A
A
T
C
C
C
T
T
C
T
G
C
A
G
C
A
C
C
ACACCGGAATCCCTTCTGCAGCACCG
229
AAAACGGTGCTGCAGAAGGGATTCCG
423.





Sequences of oligonucleotides used to generate expression plasmids encoding single gRNAs/variant single gRNAs targeted to sites in the EGFP reporter gene and single gRNAs targeted to six endogenous human gene targets. #, SEQ ID NO:.






EGFP Activity Assays


U2OS.EGFP cells harboring a single integrated copy of an EGFP-PEST fusion gene were cultured as previously described (Reyon et al., Nat Biotech 30, 460-465 (2012)). For transfections, 200,000 cells were Nucleofected with the indicated amounts of sgRNA expression plasmid and pJDS246 together with 30 ng of a Td-tomato-encoding plasmid using the SE Cell Line 4D-Nucleofector™ X Kit (Lonza) according to the manufacturer's protocol. Cells were analyzed 2 days post-transfection using a BD LSRII flow cytometer. Transfections for optimizing gRNA/Cas9 plasmid concentration were performed in triplicate and all other transfections were performed in duplicate.


PCR Amplification and Sequence Verification of Endogenous Human Genomic Sites


PCR reactions were performed using Phusion Hot Start 11 high-fidelity DNA polymerase (NEB) with PCR primers and conditions listed in Table B. Most loci amplified successfully using touchdown PCR (98° C., 10 s; 72-62° C., —1° C./cycle, 15 s; 72° C., 30 s]10 cycles, [98° C., 10 s; 62° C., 15 s; 72° C., 30 s]25 cycles). PCR for the remaining targets were performed with 35 cycles at a constant annealing temperature of 68° C. or 72° C. and 3% DMSO or 1M betaine, if necessary. PCR products were analyzed on a QIAXCEL capillary electrophoresis system to verify both size and purity. Validated products were treated with ExoSap-IT (Affymetrix) and sequenced by the Sanger method (MGH DNA Sequencing Core) to verify each target site.

















TABLE B












non-










Watson-









Watson-
Crick



Actual Target in

SEQ ID

SEQ ID
PCR
Crick Trans-
Trans-
Trans-


U2OS.EGFP cells
Forward PCR Primer
NO
Reverse PCR Primer
NO:
Conditions
versions
versions
itions








TCCAGATGGCACATTGTCAG
436.
AGGGAGCAGGAAAGTGAGGT
748.
DMSO









GGGGCCCACTCTTCTTCCAT
437.
ACCCAGACTCCTGGTGTGGC
749.
No DMSO
0
0
1






GCTAAGCAGAGATGCCTATGCC
438.
ACCACCCTTTCCCCCAGAAA
750.
DMSO
2
0
0






ACCCCACAGCCAGGTTTTCA
439.
GAATCACTGCACCTGGCCATC
751.
DMSO
0
0
2






TGCGGCAACTTCAGACAACC
440.
TAAAGGGCGTGCTGGGAGAG
752.
DMSO
1
1
0






GCATGTCAGGATCTGACCCC
441.
TGCAGGGCCATCTTGTGTGT
753.
DMSO
0
2
0






CCACCACATGTTCTGGGTGC
442.
CTGGGTCTGTTCCCTGTGGG
754.
DMSO
1
1
1






GGCTCTCCCTGCCCTAGTTT
443.
GCAGGTCAAGTTGGAACCCG
755.
DMSO
0
2
1






GGGGCTGAGAACACATGAGATGCA
444.
AGATTTGTGCACTGCCTGCCT
756.
DMSO
1
0
2






CCCGACCTCCGCTCCAAAGC
445.
GGACCTCTGCACACCCTGGC
757.
DMSO
2
1
0






TGCAAGGTCGCATAGTCCCA
446.
CAGGAGGGGGAAGTGTGTCC
758.
DMSO
1
1
1






GCCCATTCTTTTTGCAGTGGA
447.
GAGAGCAAGTTTGTTCCCCAGG
759.
DMSO
0
1
2






GCCCCCAGCCCCTCTGTTTC
448.
GCTGCTGGTAGGGGAGCTGG
760.
DMSO
1
2
0






CGGCTGCCTTCCCTGAGTCC
449.
GGGTGACGCTTGCCATGAGC
761.
72° C. Anneal,
1
2
0







3% DMSO









TGACCCTGGAGTACAAAATGTTCCCA
450.
GCTGAGACAACCAGCCCAGCT
762.
72° C. Anneal,
2
1
0







3% DMSO









TGCCTCCACCCTTAGCCCCT
451.
GCAGCCGATCCACACTGGGG
763.
DMSO
1
0
2






AACTCAGGACAACACTGCCTGT
452.
CCCAGGAGCAGGGTACAATGC
764.
DMSO
0
1
2






TCCTCCTTGGAGAGGGGCCC
453.
CCTTGGAAGGGGCCTTGGTGG
765.
DMSO
0
3
0






CCGAGGGCATGGGCAATCCT
454.
GGCTGCTGCGAGTTGCCAAC
766.
DMSO
0
1
3






TGCTTTGCATGGGGTCTCAGACA
455.
GGGTTGCTTGCCCTCTGTGT
767.
DMSO
0
2
2






AGCTCCTTCTCATTTCTCTTCTGCTGT
456.
CACAGAAGGATGTGTGCAGGTT
768.
DMSO
0
2
2






AGCAGACACAGGTGAATGCTGCT
457.
GGTCAGGTGTGCTGCTAGGCA
769.
DMSO
1
1
2






CCTGTGGGGCTCTCAGGTGC
458.
ACTGCCTGCCAAAGTGGGTGT
770.
No DMSO TD
1
1
2






AGCTGCACTGGGGAATGAGT
459.
TGCCGGGTAATAGCTGGCTT
771.
DMSO
0
1
3






CCAGCCTGGGCAACAAAGCG
460.
GGGGGCTTCCAGGTCACAGG
772.
72° C. Anneal,
0
3
1







3% DMSO, 6%










DMSO









TACCCCCACTGCCCCATTGC
461.
ACAGGTCCATGCTTAGCAGAGG
773.
DMSO
0
1
3





G










GGGTGATTGAAGTTTGCT
ACGGATTCACGACGGAGGTGC
462.
CCGAGTCCGTGGCAGAGAGC
774.
DMSO
0/1
2
2


CCAGG










GGGTGATTGAAGTTTGCT










GCAGG










(SEQ ID NO: 424)














TGTGGTTGAAGTAGGGGACAGGT
463.
TGGCCCAATTGGAAGTGATTTC
775.
DMSO
3
1
0





GT











TGGGATGGCAGAGTCATCAACGT
464.
GGCCCAATCGGTAGAGGATGCA
776.
DMSO
0
3
1






ATGGGGCGCTCCAGTCTGTG
465.
TGCACCCACACAGCCAGCAA
777.
DMSO
0
3
1






GGGGAGGGAGGACCAGGGAA
466.
AATTAGCTGGGCGCGGTGGT
778.
72° C. Anneal,
0
1
3







3% DMSO









ATCCCGTGCAGGAAGTCGCC
467.
CAGGCGGCCCCTTGAGGAAT
779.
DMSO
3
1
0






CCCCAACCCTTTGCTCAGCG
468.
TGAGGAGAACACCACAGGCAGA
780.
DMSO
1
2
1






ATCGACGAGGAGGGGGCCTT
469.
CCCCTCACTCAAGCAGGCCC
781.
DMSO
0
3
1






TGCTCAAGGGGCCTGTTCCA
470.
CAGGGGCAGTGGCAGGAGTC
782.
No DMSO
1
3
0






TGCCTGGCACGCAGTAGGTG
471.
GGGAAGGGGGAACAGGTGCA
783.
DMSO
0
0
5






Not optimized




1
1
3






ACCTGGGCTTGCCACTAGGG
472.
GCTGCTCGCAGTTAAGCACCA
784.
DMSO
1
3
1






GTGGCCGGGCTACTGCTACC
473.
GGTTCCACAAGCTGGGGGCA
785.
DMSO
3
2
0






Not optimized




1
3
1






GCAAGAGGCGGAGGAGACCC
474.
AGAGTCATCCATTTCCTGGGGG
786.
DMSO
2
3
0





C











GGGGTCAGTGGTGATATCCCCCT
475.
AGGGAATCCTTTTTCCATTGCT
787.
1M betaine,
1
4
0





TGTTT

TD









AGAGAGGCCACGTGGAGGGT
476.
GCCTCCCCTCCTCCTTCCCA
788.
DMSO
1
3
1






GACAGTGCCTTGCGATGCAC
477.
TCTGACCGGTATGCCTGACG
789.
DMSO
3
2
0






TGTGTGAACGCAGCCTGGCT
478.
TGGTCTAGTACTTCCTCCAGCC
790.
DMSO
3
1
1





TT











GGTTCTCCCTTGGCTCCTGTGA
479.
CCCACTGCTCCTAGCCCTGC
791.
DMSO
1
3
1






TGAAGTCAACAATCTAAGCTTCCACCT
480.
AGCTTTGGTAGTTGGAGTCTTT
792.
DMSO
3
1
2





GAAGG











TGATTGGGCTGCAGTTCATGTACA
481.
GCACAGCCTGCCCTTGGAAG
793.
DMSO
2
1
3






TCCATGGGCCCCTCTGAAAGA
482.
AGCGGCTTCTGCTTCTGCGA
794.
DMSO
1
0
5






GCGGTTGGTGGGGTTGATGC
483.
GAGTTCCTCCTCCCGCCAGT
795.
DMSO
2
0
4






AGGCAAGATTTTCCAGTGTGCAAGA
484.
GCTTTTGCCTGGGACTCCGC
796.
DMSO
2
0
4






GCTGCTGGTCGGGCTCTCTG
485.
GCTCTGTCCCACTTCCCCTGG
797.
No DMSO TD
3
1
2






GCTGCGAGGCTTCCGTGAGA
486.
CGCCCCTAGAGCTAAGGGGGT
798.
DMSO
3
2
1






CCAGGAGCCTGAGAGCTGCC
487.
AGGGCTAGGACTGCAGTGAGC
799.
DMSO
1
3
2






CTGTGCTCAGCCTGGGTGCT
488.
GCCTGGGGCTGTGAGTAGTTT
800.
DMSO
2
3
1






AGCTCGCGCCAGATCTGTGG
489.
ACTTGGCAGGCTGAGGCAGG
801.
72° C. Anneal,
4
2
0







3% DMSO









AGAGAAGTCGAGGAAGAGAGAG
490.
CAGCAGAAAGTTCATGGTTTCG
802.
DMSO









TGGACAGCTGCAGTACTCCCTG
491.
ACTGATCGATGATGGCCTATGGG
803.
DMSO
0
0
2





T











CAAGATGTGCACTTGGGCTA
492.
GCAGCCTATTGTCTCCTGGT
804.
DMSO
1
0
1






GTCCAGTGCCTGACCCTGGC
493.
AGCATCATGCCTCCAGCTTCA
805.
DMSO
1
1
1






GCTCCCGATCCTCTGCCACC
494.
GCAGCTCCCACCACCCTCAG
806.
DMSO
1
2
0






GGGGACAGGCAGGCAAGGAG
495.
GTGCGTGTCCGTTCACCCCT
807.
DMSO
1
1
1






AAGGGGCTGCTGGGTAGGAC
496.
CGTGATTCGAGTTCCTGGCA
808.
DMSO
2
1
0






GACCCTCAGGAAGCTGGGAG
497.
CTGCGAGATGCCCCAAATCG
809.
1M betaine,
1
0
2







TD









CCGCGGCGCTCTGCTAGA
498.
TGCTGGGATTACAGGCGCGA
810.
DMSO
1
1
1






CCAGGTGGTGTCAGCGGAGG
499.
TGCCTGGCCCTCTCTGAGTCT
811.
DMSO
0
2
1






CGACTCCACGGCGTCTCAGG
500.
CAGCGCAGTCCAGCCCGATG
812.
1M betaine,
2
1
0







TD









CTTCCCTCCCCCAGCACCAC
501.
GCTACAGGTTGCACAGTGAGAGG
813.
DMSO
1
1
1





T











CCCCGGGGAGTCTGTCCTGA
502.
CCCAGCCGTTCCAGGTCTTCC
814.
72° C. Anneal,
1
0
2







3% DMSO









GAAGCGCGAAAACCCGGCTC
503.
TCCAGGGTCCTTCTCGGCCC
815.
DMSO
1
0
2






AGGGTGGTCAGGGAGGCCTT
504.
CATGGGGCTCGGACCTCGTC
816.
DMSO
2
0
1






GGGAAGAGGCAGGGCTGTCG
505.
TGCCAGGAAGGAAGCTGGCC
817.
72° C. Anneal,
0
2
1







3% DMSO









GAGTGACGATGAGCCCCGGG
506.
CCCTTAGCTGCAGTCGCCCC
818.
68° C. Anneal
0
1
3







3% DMSO,









CCCATGAGGGGTTTGAGTGC
507.
TGAAGATGGGCAGTTTGGGG
819.
DMSO
0
2
2






CACCTGGGGCATCTGGGTGG
508.
ACTGGGGTTGGGGAGGGGAT
820.
DMSO
2
0
2






TCATGATCCCCAAAAGGGCT
509.
CCATTTGTGCTGATCTGTGGGT
821.
DMSO
1
0
3






TGGTGCCCAGAATAGTGGCCA
510.
AGGAAATGTGTTGTGCCAGGGC
822.
DMSO
1
2
1






GCCTCAGACAACCCTGCCCC
511.
GCCAAGTGTTACTCATCAAGAAA
823.
No DMSO TD
2
1
1





GTGG











GCCGGGACAAGACTGAGTTGGG
512.
TCCCGAACTCCCGCAAAACG
824.
DMSO
1
2
1






TGCTGCAGGTGGTTCCGGAG
513.
CTGGAACCGCATCCTCCGCA
825.
No DMSO TD
1
0
3






ACACTGGTCCAGGTCCCGTCT
514.
GGCTGTGCCTTCCGATGGAA
826.
DMSO
2
1
1





CTCTCCCCCCACCCCCCC
ATCGCGCCCAAAGCACAGGT
515.
AGGCTTCTGGAAAAGTCCTCAAT
827.
DMSO
3
0
2


TCTGG


GCA







(SEQ ID NO: 425)














Not optimized




1
1
2






CCCTCATGGTGGTCTTACGGCA
516.
AGCCACACATCTTTCTGGTAGGG
828.
DMSO
1
1
2






TGCGTCGCTCATGCTGGGAG
517.
AGGGTGGGGTGTACTGGCTCA
829.
DMSO
0
3
1






GAGCTGAGACGGCACCACTG
518.
TGGCCTTGAACTCTTGGGCT
830.
1M betaine,
0
1
3







TD









Not optimized




1
2
1






AGTGAGAGTGGCACGAACCA
519.
CAGTAGGTGGTCCCTTCCGC
831.
DMSO
2
1
1






Not optimized


832.
1
1
3







GGGAGAACCTTGTCCAGCCT
520.
AAGCCGAAAAGCTGGGCAAA
833.
DMSO
0
2
3






CTTCCCAGTGTGGCCCGTCC
521.
ACACAGTCAGAGCTCCGCCG
834.
DMSO
1
1
3






Not optimized




1
0
4






CTGAGAGGGGGAGGGGGAGG
522.
TCGACTGGTCTTGTCCTCCCA
835.
68° C. Anneal,
3
0
2







3% DMSO









CAGCCTGCTGCATCGGAAAA
523.
TGCAGCCAAGAGAAAAAGCCT
836.
1M betaine,
1
0
4







TD









TCCCTCTGACCCGGAACCCA
524.
ACCCGACTTCCTCCCCATTGC
837.
DMSO
2
1
2






TGGGGGTTGCGTGCTIGICA
525.
GCCAGGAGGACACCAGGACC
838.
DMSO
4
1
0






ATCAGGTGCCAGGAGGACAC
526.
GGCCTGAGAGTGGAGAGTGG
839.
DMSO
4
1
0






Not optimized




1
4
0






TGAGCCACATGAATCAAGGCCTCC
527.
ACCTCTCCAAGTCTCAGTAACTCT
840.
DMSO
1
3
1





CT











GGTCCCTCTGTGCAGTGGAA
528.
CTTTGGTGGACCTGCACAGC
841.
DMSO
2
2
2






GCGAGGCTGCTGACTTCCCT
529.
GCTGGGACTACAGACATGTGCCA
842.
DMSO
2
2
2





ATTTCCTCCCCCCCC-
ATTGCAGGCGTGTCCAGGCA
530.
AAATCCTGCATGGTGATGGGAGT
843.
DMSO
1
1
5


CCTCAGG










(SEQ ID NO: 426)














TGCTCTGCCATTTATGTCCTATGAACT
531.
ACAGCCTCTTCTCCATGACTGAGC
844.
DMSO
1
3
2






TCCGCCCAAACAGGAGGCAG
532.
GCGGTGGGGAAGCCATTGAG
845.
DMSO
2
3
1






GGGGGTCTGGCTCACCTGGA
533.
CCTGTCGGGAGAGTGCCTGC
846.
DMSO
3
1
2






TCCTGGTTCATTTGCTAGAACTCTGGA
534.
ACTCCAGATGCAACCAGGGCT
847.
DMSO
3
2
1






CGTGTGGTGAGCCTGAGTCT
535.
GCTTCACCGTAGAGGCTGCT
848.
DMSO
3
0
3






AGGCCCTGATAATTCATGCTACCAA
536.
TCAGTGACAACCTTTTGTATTCGG
849.
DMSO
0
2
4





CA











Not optimized




2
2
2







537.












TCCAGATGGCACATTGTCAG
538.
AGGGAGCAGGAAAGTGAGGT
850.
DMSO









GCAGGCAAGCTGTCAAGGGT
539.
CACCGACACACCCACTCACC
851.
DMSO
0
0
1






GAGGGGGAAGTCACCGACAA
540.
TACCCGGGCCGTCTGTTAGA
852.
DMSO
0
0
2






GACACCCCACACACTCTCATGC
541.
TGAATCCCTTCACCCCCAAG
853.
DMSO
1
0
1






TCCTTTGAGGTTCATCCCCC
542.
CCAATCCAGGATGATTCCGC
854.
DMSO
1
0
1






CAGGGCCAGGAACACAGGAA
543.
GGGAGGTATGTGCGGGAGTG
855.
DMSO
1
1
0






TGCAGCCTGAGTGAGCAAGTGT
544.
GCCCAGGTGCTAAGCCCCTC
856.
DMSO
1
0
1






TACAGCCTGGGTGATGGAGC
545.
TGTGTCATGGACTTTCCCATTGT
857.
1M betaine,
1
1
0







TD









GGCAGGCATTAAACTCATCAGGTCC
546.
TCTCCCCCAAGGTATCAGAGAGCT
858.
DMSO
1
1
0






GGGCCTCCCTGCTGGTTCTC
547.
GCTGCCGTCCGAACCCAAGA
859.
DMSO
0
1
1






ACAAACGCAGGTGGACCGAA
548.
ACTCCGAAAATGCCCCGCAGT
860.
DMSO
1
1
0






AGGGGAGGGGACATTGCCT
549.
TTGAGAGGGTTCAGTGGTTGC
861.
DMSO
1
0
1






CTAATGCTTACGGCTGCGGG
550.
AGCCAACGGCAGATGCAAAT
862.
DMSO
1
0
1






GAGCGAAGTTAACCCACCGC
551.
CACACATGCACATGCCCCTG
863.
68° C., 3%
2
0
0







DMSO









GCATGTGTCTAACTGGAGACAATAGCA
552.
TCCCCCATATCAACACACACA
864.
DMSO
2
0
0






GCCCCTCCCGCCTTTTGTGT
553.
TGGGCAAAGGACATGAAACAGAC
865.
DMSO
2
0
0





A











GCCTCAGCTCTGCTCTTAAGCCC
554.
ACGAACAGATCATTTTTCATGGCT
866.
DMSO
2
0
0





TCC











CTCCAGAGCCTGGCCTACCA
555.
CCCTCTCCGGAAGTGCCTTG
867.
DMSO
0
1
1






TCTGTCACCACACAGTTACCACC
556.
GTTGCCTGGGGATGGGGTAT
868.
DMSO
0
1
1






GGGGACCCTCAAGAGGCACT
557.
GGGCATCAAAGGATGGGGAT
869.
DMSO
2
0
1






TGTGGAGGGTGGGACCTGGT
558.
ACAGTGAGGTGCGGTCTTTGGG
870.
DMSO
1
0
2






CGGGGTGGCAGTGACGTCAA
559.
GGTGCAGTCCAAGAGCCCCC
871.
DMSO
0
0
3






AGCTGAGGCAGAGTCCCCGA
560.
GGGAGACAGAGCAGCGCCTC
872.
DMSO
1
1
1






ACCACCAGACCCCACCTCCA
561.
AGGACGACTTGTGCCCCATTCA
873.
72° C. Anneal,
1
1
1







3% DMSO









GGGTCAGGACGCAGGTCAGA
562.
TCCACCCACCCACCCATCCT
874.
72° C. Anneal,
2
0
1







3% DMSO









ACACTCTGGGCTAGGTGCTGGA
563.
GCCCCCTCACCACATGATGCT
875.
DMSO
2
0
1






GGGGCCATTCCTCTGCTGCA
564.
TGGGGATCCTTGCTCATGGC
876.
DMSO
3
0
0






ACACACTGGCTCGCATTCACCA
565.
CCTGCACGAGGCCAGGTGTT
877.
DMSO
2
1
0






TGGGCACGTAGTAAACTGCACCA
566.
CTCGCCGCCGTGACTGTAGG
878.
DMSO
0
3
1






TCAGCTGGTCCTGGGCTTGG
567.
AGAGCACTGGGTAGCAGTCAGT
879.
DMSO
2
1
0






AGACACAGCCAGGGCCTCAG
568.
GGTGGGCGTGTGTGTGTACC
880.
68° C., 3%
1
1
1







DMSO









ACACTCTCACACACGCACCAA
569.
GAGAAGTCAGGGCTGGCGGG
881.
72° C. Anneal,
1
2
0







3% DMSO









ACTGCCTGCATTTCCCCGGT
570.
TGGTGAGGGCTTCAGGGAGC
882.
DMSO
1
1
1






GCCAGGTTCATTGACTGCCC
571.
TCCTTCTACACATCGGCGGC
883.
DMSO
2
1
0






CGAGGGAGCCGAGTTCGTAA
572.
CTGACCTGGGGCTCTGGTAC
884.
DMSO
1
2
0






TCCTCGGGAAGTCATGGCTTCA
573.
GCACTGAGCAACCAGGAGCAC
885.
DMSO
2
1
0






Not optimized




1
0
3






TAAACCGTTGCCCCCGCCTC
574.
GCTCCCCTGCCAGGTGAACC
886.
DMSO
2
1
1






CCTGCTGAGACTCCAGGTCC
575.
CTGCGGAGTGGCTGGCTATA
887.
DMSO
2
0
2






CTCGGGGACTGACAAGCCGG
576.
GGAGCAGCTCTTCCAGGGCC
888.
DMSO
3
0
1






CCCCGACCAAAGCAGGAGCA
577.
CTGGCAGCCTCTGGATGGGG
889.
DMSO
1
2
1






Not optimized




0
3
1






ATTTCAGAGCCCCGGGGAAA
578.
AGGCCGCGGTGTTATGGTTA
890.
DMSO
1
2
1






GCCAGTGGCTTAGTGTCTTTGTGT
579.
TGACATATTTTCCTGGGCCATGGG
891.
DMSO
2
1
1





T











TGCCAGAAGAACATGGGCCAGA
580.
CCATGCTGACATCATATACTGGGA
892.
DMSO
3
1
0





AGC











GCGTGTCTCTGTGTGCGTGC
581.
CCAGGCTGGGCACACAGGTT
893.
DMSO
3
1
0






Not optimized




2
2
0






TGCCCAGTCCAATATTTCAGCAGCT
582.
AGGATGAGTTCATGTCCTTTGTG
894.
DMSO
2
2
0





GGG











GGGTGAAAATTTGGTACTGTTAGCTGT
583.
AATGACTCATTCCCTGGGTATCTC
895.
DMSO
2
2
0





CCA











TGCCCCATCAATCACCTCGGC
584.
CAAGGTCGGCAGGGCAGTGA
896.
DMSO
1
2
2






GCCTCCTCTGCCGCTGGTAA
585.
TGAGAGTTCCTGTTGCTCCACACT
897.
DMSO
1
2
2






Not optimized




2
2
1






GCCACCAAAATAGCCAGCGT
586.
ACATGCATCTGTGTGTGCGT
898.
DMSO
3
0
2






ACAGACTGACCCTTGAAAAATACCAGT
587.
TGTATCTTTCTTGCCAATGGTTTTC
899.
DMSO
2
1
2





CC











AGCCAAATTTCTCAACAGCAGCACT
588.
TCCTGGAGAGCAGGCATTTTTGT
900.
DMSO
3
1
1






ACCTCCTTGTGCTGCCTGGC
589.
GGCGGGAAGGTAACCCTGGG
901.
DMSO
2
1
2






CACAAAGCTCTACCTTTCCAGTAGTGT
590.
TGATCCGATGGTTGTTCACAGCT
902.
DMSO
3
1
1






TGTGGGGATTACCTGCCTGGC
591.
ACGCACAAAAATGCCCTTGTCA
903.
DMSO
2
2
1






TGAGGCAGACCAGTCATCCAGC
592.
GCCCGAGCACAGTGTAGGGC
904.
DMSO
2
3
0






ATTAGCTGGGCGTGGCGGAG
593.
ACTGCATCTCATCTCAGGCAGCT
905.
DMSO
2
1
3






TGAAGCAGAAGGAGTGGAGAAGGA
594.
TCAGCTTCACATCTGTTTCAGTTC
906.
DMSO
4
0
2





AGT











TGGTGGAGTGTGTGTGTGGT
595.
AGAGCAGAAAGAGAGTGCCCA
907.
DMSO
1
3
2






GCCCCTGTACGTCCTGACAGC
596.
TGCACAAGCCACTTAGCCTCTCT
908.
DMSO
3
1
2






AGCGCAGGTAAACAGGCCCA
597.
TCTCTCGCCCCGTTTCCTTGT
909.
DMSO
3
1
2






ATGGGTGCCAGGTACCACGC
598.
ACAGCAGGAAGGAGCCGCAG
910.
DMSO
2
3
1






CGGGCGGGTGGACAGATGAG
599.
AGGAGGTCTCGAGCCAGGGG
911.
DMSO
2
3
1






TCAACCTAGTGAACACAGACCACTGA
600.
GTCTATATACAGCCCACAACCTCA
912.
DMSO
1
2
3





TGT











GCCAGGGCCAGTGGATTGCT
601.
TGTCATTTCTTAGTATGTCAGCCG
913.
DMSO
2
4
0





GA











GAGCCCCACCGGTTCAGTCC
602.
GCCAGAGCTACCCACTCGCC
914.
DMSO
1
3
2







603.












GGAGCAGCTGGTCAGAGGGG
604.
GGGAAGGGGGACACTGGGGA
915.
DMSO









TCTCTCCTTCAACTCATGACCAGCT
605.
ATCTGCACATGTATGTACAGGAG
916.
DMSO
0
1
1





TCAT










AAGACAGAGGAGAAGAAG
TGGGGAATCTCCAAAGAACCCCC
606.
AGGGTGTACTGTGGGAACTTTGC
917.
DMSO
2
1
1


AAGGG


A







(SEQ ID NO: 427)














GATGGCCCCACTGAGCACGT
607.
ACTTCGTAGAGCCTTAAACATGTG
918.
DMSO
1
0
2





GC











AGGATTAATGTTTAAAGTCACTGGTGG
608.
TCAAACAAGGTGCAGATACAGCA
919.
1M betaine,
1
0
2







TD









TCCAAGCCACTGGTTTCTCAGTCA
609.
TGCTCTGTGGATCATATTTTGGGG
920.
DMSO
0
1
2





GA











ACTTTCAGAGCTTGGGGCAGGT
610.
CCCACGCTGAAGTGCAATGGC
921.
DMSO
1
1
1






CAAAGCATGCCTTTCAGCCG
611.
GGCTCTTCGATTTGGCACCT
922.
1M betaine,
1
1
1







TD









Not optimized




1
0
2






GGACTCCCTGCAGCTCCAGC
612.
AGGAACACAGGCCAGGCTGG
923.
72° C. Anneal,
0
0
3







6% DMSO









CCCTTTAGGCACCTTCCCCA
613.
CCGACCTTCATCCCTCCTGG
924.
DMSO
0
1
2






TGATTCTGCCTTAGAGTCCCAGGT
614.
TGGGCTCTGTGTCCCTACCCA
925.
DMSO
0
3
0






Not optimized




2
1
0






AGGCAGGAGAGCAAGCAGGT
615.
ACCCTGACTACTGACTGACCGCT
926.
DMSO
0
1
2






CTCCCCATTGCGACCCGAGG
616.
AGAGGCATTGACTTGGAGCACCT
927.
DMSO
1
2
0






CTGGAGCCCAGCAGGAAGGC
617.
CCTCAGGGAGGGGGCCTGAT
928.
DMSO
1
2
0






ACTGTGGGCGTTGTCCCCAC
618.
AGGTCGGTGCAGGGTTTAAGGA
929.
DMSO
1
0
3






GGCGCTCCCTTTTTCCCTTTGT
619.
CGTCACCCATCGTCTCGTGGA
930.
DMSO
2
0
2






TGCCATCTATAGCAGCCCCCT
620.
GCATCTTGCTAACCGTACTTCTTC
931.
DMSO
1
0
3





TGA











GTGGAGACGCTAAACCTGTGAGGT
621.
GCTCCTGGCCTCTTCCTACAGC
932.
DMSO
1
2
1






CCGAACTTCTGCTGAGCTTGATGC
622.
CCAAGTCAATGGGCAACAAGGGA
933.
DMSO
0
2
2






Not optimized



1
1
2







TGCCCCCAAGACCTTTCTCC
623.
ATGGCAGGCAGAGGAGGAAG
934.
DMSO
2
0
2






GGGTGGGGCCATTGTGGGTT
624.
CTGGGGCCAGGGTTTCTGCC
935.
DMSO
3
0
1






TGGAGAACATGAGAGGCTTGCAA
625.
TCCTTCTGTAGGCAATGGGAACA
936.
DMSO
3
0
1





A











GCCACATGGTAGAAGTCGGC
626.
GGCAGATTTCCCCCATGCTG
937.
1M betaine,
1
2
1







TD









TGTACACCCCAAGTCCTCCC
627.
AAGGGGAGTGTGCAAGCCTC
938.
DMSO
3
1
0






AGGTCTGGCTAGAGATGCAGCA
628.
AGTCCAACACTCAGGTGAGACCC
939.
DMSO
3
1
0





T











CCAAGAGGACCCAGCTGTTGGA
629.
GGGTATGGAATTCTGGATTAGCA
940.
DMSO
0
2
2





GAGC











ACCATCTCTTCATTGATGAGTCCCAA
630.
ACACTGTGAGTATGCTTGGCGT
941.
DMSO
2
2
0






GGCTGCGGGGAGATGAGCTC
631.
TCGGATGCTTTTCCACAGGGCT
942.
DMSO
2
2
1






TCTTCCAGGAGGGCAGCTCC
632.
CCAATCCTGAGCTCCTACAAGGCT
943.
DMSO
1
0
4






GAGCTGCACTGGATGGCACT
633.
TGCTGGTTAAGGGGTGTTTTGGA
944.
DMSO
1
1
3






TCTGGGAAGGTGAGGAGGCCA
634.
TGGGGGACAATGGAAAAGCAAT
945.
DMSO
0
2
3





GA











CTTGCTCCCAGCCTGACCCC
635.
AGCCCTTGCCATGCAGGACC
946.
DMSO
3
1
1






GGGATTTTTATCTGTTGGGTGCGAA
636.
AACCACAGATGTACCCTCAAAGCT
947.
DMSO
2
2
1






ACCCATCAGGACCGCAGCAC
637.
TCTGGAACCTGGGAGGCGGA
948.
72° C. Anneal,
3
1
1







3% DMSO









CGTCCCTCACAGCCAGCCTC
638.
CCTCCTTGGGCCTGGGGTTC
949.
DMSO
1
3
1






CCCTCTGCAAGGTGGAGTCTCC
639.
AGATGTTCTGTCCCCAGGCCT
950.
DMSO
1
3
1






GGCTTCCACTGCTGAAGGCCT
640.
TGCCGCTCCACATACCCTCC
951.
DMSO
2
1
2






AGCATTGCCTGTCGGGTGATGT
641.
AGCACCTATTGGACACTGGTTCTC
952.
DMSO
1
3
1





T











TCTAGAGCAGGGGCACAATGC
642.
TGGAGATGGAGCCTGGTGGGA
953.
DMSO
2
2
1






GGTCTCAGAAAATGGAGAGAAAGCACG
643.
CCCACAGAAACCTGGGCCCT
954.
DMSO
1
2
3






GGTTGCTGATACCAAAACGTTTGCCT
644.
TGGGTCCTCTCCACCTCTGCA
955.
DMSO
0
3
3






ACTCTCCTTAAGTACTGATATGGCTGT
645.
CAGAATCTTGCTCTGTTGCCCA
956.
DMSO
0
4
2






Not optimized




2
2
2






Not optimized




2
2
2






CAATGCCTGCAGTCCTCAGGA
646.
TCCCAAGAGAAAACTCTGTCCTGA
957.
DMSO
4
1
1





CA











GCATTGGCTGCCCAGGGAAA
647.
TGGCTGTGCTGGGCTGTGTT
958.
DMSO
2
2
2






CCACAAGCCTCAGCCTACCCG
648.
ACAGGTGCCAAAACACTGCCT
959.
DMSO
2
1
3





TCATTGCAGCAGAAGAAG
GCCTCTTGCAAATGAGACTCCTTT
649.
CGATCAGTCCCCTGGCGTCC
960.
DMSO
2/1
2/3
2


AAAGG










TCATTGTAGCAGAAGAAG










AAAGG










(SEQ ID NO: 428)














TCCCAGAATCTGCCTCCGCA
650.
AGGGGTTTCCAGGCACATGGG
961.
DMSO
0
4
2







651.

962.










TCCTAAAAATCAGTTTTGAGATTTACTTCC
652.
AAAGTGTTAGCCAACATACAGAA
963.
DMSO








GTCAGGA







GGTATCTAAGTCATTACC
ACATCTGGGGAAAGCAAAAGTCAACA
653.
TGTCTGAGTATCTAGGCTAAAAG
964.
DMSO
1/2
1
1


TGTGG


TGGT







GGTATCTAAGTCAATACC










TGTGG










(SEQ ID NO: 429)











ACGATCTTGUTCATTTCCCTGTACA
654.
AGTGCTTTGTGAACTGAAAAGCA
965.
DMSO
0
3
0





AACA











GCACCTTGGTGCTGCTAAATGCC
655.
GGGCAACTGAACAGGCATGAATG
966.
DMSO
1
2
0





G











AACTGTCCTGCATCCCCGCC
656.
GGTGCACCTGGATCCACCCA
967.
DMSO
1
1
1






Not optimized




1
1
1






CATCACCCTCCACCAGGCCC
657.
ACCACTGCTGCAGGCTCCAG
968.
72° C. Anneal,
0
3
0







3% DMSO









Not optimized




2
0
2






CCTGACCCGTGGTTCCCGAC
658.
TGGTGCGTGGTGTGTGTGGT
969.
72° C. Anneal,
1
2
1







3% DMSO









TGGGAACATTGGAGAAGTTTCCTGA
659.
CCATGTGACTACTGGGCTGCCC
970.
DMSO
1
1
2






AGCCTTGGCAAGCAACTCCCT
660.
GGTTCTCTCTCTCAGAAAAGAAA
971.
DMSO
1
0
3





GAGG











GGCAGCGGACTTCAGAGCCA
661.
GCCAGAGGCTCTCAGCAGTGC
972.
DMSO
1
0
3






CCAGCCTGGTCAATATGGCA
662.
ACTGTGCCCAGCCCCATATT
973.
DMSO
2
1
1






ATGCCAACACTCGAGGGGCC
663.
CGGGTTGTGGCACCGGGTTA
974.
DMSO
2
1
1






TTGCTCTAGTGGGGAGGGGG
664.
AGAGTTCAGGCATGAAAAGAAGC
975.
DMSO
3
0
1





AACA











AGCTGAAGATAGCAGTGTTTAAGCCT
665.
TGCAATTTGAGGGGCTCTCTTCA
976.
DMSO
1
1
2






AGTCACTGGAGTAAGCCTGCCT
666.
TGCCAGCCAAAAGTTGTTAGTGT
977.
DMSO
2
0
2





GT











GGGTCTCCCTCAGTGCCCTG
667.
TGTGTGGTAGGGAGCAAAACGAC
978.
DMSO
2
0
2





A











TGGGGGCTGTTAAGAGGCACA
668.
TGACCACACACACCCCCACG
979.
DMSO
1
2
1






TCAAAACAGATTGACCAAGGCCAAAT
669.
TGTGTTTTTAAGCTGCACCCCAGG
980.
DMSO
1
0
3






TCTGGCACCAGGACTGATTGTACA
670.
GCACGCAGCTGACTCCCAGA
981.
DMSO
1
2
1






Not optimized




1
0
3






AGCATCTGTGATACCCTACCTGTCT
671.
ACCAGGGCTGCCACAGAGTC
982.
DMSO
1
0
3






TAGTCTTGTTGCCCAGGCTG
672.
CTCGGCCCCTGAGAGTTCAT
983.
DMSO
1
2
1





TCCATCTCACTCATTACC
CTGCAACCAGGGCCCTTACC
673.
GAGCAGCAGCAAAGCCACCG
984.
DMSO
1
1
2


TGAGGTCCATCTCACTCA










TTACCTGATG










(SEQ ID NO: 430)














GCCTGGAGAGCAAGCCTGGG
674.
AGCCGAGACAATCTGCCCCG
985.
DMSO
1
1
2





TTTATATTAGTGATTACC
AGTGAAACAAACAAGCAGCAGTCTGA
675.
GGCAGGTCTGACCAGTGGGG
986.
No DMSO TD
1
2
1


TGCGG










(SEQ ID NO: 431)














AGGCTCAGAGAGGTAAGCAATGGA
676.
TGAGTAGACAGAAATGTTACCGG
987.
DMSO
3
0
2





TGTT











TCAGAGATGTTAAAGCCTTGGTGGG
677.
AGTGAACCAAGGGAATGGGGGA
988.
DMSO
3
0
2






TGTGCTTTCTGGGGTAGTGGCA
678.
CACCTCAGCCCTGTAGTCCTGG
989.
DMSO
0
4
1






CCATTGGGTGACTGAATGCACA
679.
GCCACTGTCCCCAGCCTATT
990.
1M betaine,
1
3
1







TD









ACCAAGAAAGTGAAAAGGAAACCC
680.
TGAGATGGCATACGATTTACCCA
991.
DMSO
1
2
2






AGGGTGGGGACTGAAAGGAGCT
681.
TGGCATCACTCAGAGATTGGAAC
992.
DMSO
3
1
1





ACA











ACCAGTGCTGTGTGACCTTGGA
682.
TCCTATGGGAGGGGAGGCTTCT
993.
DMSO
3
1
1






CCAGGTGTGGTGGTTCATGAC
683.
GCATACGGCAGTAGAATGAGCC
994.
68° C., 3%
4
0
1







DMSO









CAGGCGCTGGGTTCTTAGCCT
684.
CCTTCCTGGGCCCCATGGTG
995.
DMSO
2
3
0






TGGGGTCCAAGATGTCCCCT
685.
TGAAACTGCTTGATGAGGTGTGG
996.
DMSO
1
2
2





A











GCTGGGCTTGGTGGTATATGC
686.
ACTTGCAAAGCTGATAACTGACT
997.
DMSO
5
0
1





GA











AGTTGGTGTCACTGACAATGGGA
687.
CGCAGCGCACGAGTTCATCA
998.
DMSO
3
0
3






AGAGGAGGCACAATTCAACCCCT
688.
GGCTGGGGAGGCCTCACAAT
999.
DMSO
1
1
4






GGGAAAGTTTGGGAAAGTCAGCA
689.
AGGACAAGCTACCCCACACC
1000.
DMSO
1
3
2






TGGTGCATCAAAGGGTTGCTTCT
690.
TCATTCCAGCACGCCGGGAG
1001.
DMSO
0
3
3






CCCAGGCTGCCCATCACACT
691.
TGGAGTAAGTATACCTTGGGGAC
1002.
DMSO
1
3
2





CT











TCAGTGCCCCTGGGTCCTCA
692.
TGTGCAAATACCTAGCACGGTGC
1003.
DMSO
4
2
0






AGCACTCCCTTTTGAATTTTGGTGCT
693.
ACTGAAGTCCAGCCTCTTCCATTT
1004.
DMSO
2
1
3





CA











GAAACCGGTCCCTGGTGCCA
694.
GGGGAGTAGAGGGTAGTGTTGC
1005.
DMSO
2
0
4





C











TTGCGGGTCCCTGTGGAGTC
695.
AGGTGCCGTGTTGTGCCCAA
1006.
DMSO
1
2
3







696.

1007.










GCCCTACATCTGCTCTCCCTCCA
697.
GGGCCGGGAAAGAGTTGCTG
1008.
DMSO









TTGGAGTGTGGCCCGGGTTG
698.
ACCTCTCTTTCTCTGCCTCACTGT
1009.
DMSO
0
1
1






CACACCATGCTGATCCAGGC
699.
GCAGTACGGAAGCACGAAGC
1010.
DMSO
1
1
1






CTCCAGGGCTCGCTGTCCAC
700.
CTGGGCTCTGCTGGTTCCCC
1011.
DMSO
0
2
1






CTGTGGTAGCCGTGGCCAGG
701.
CCCCATACCACCTCTCCGGGA
1012.
DMSO
0
2
1






GGTGGCGGGACTTGAATGAG
702.
CCAGCGTGTTTCCAAGGGAT
1013.
1M betaine,
0
1
2







TD








GGAATCCCCTCTCCAGCC
CCAGAGGTGGGGCCCTGTGA
703.
TTTCCACACTCAGTTCTGCAGGA
1014.
DMSO
1
1
1/2


CCTGG










GGAATCCCCTCTCCAGCC










TCTGG










(SEQ ID NO: 432)













GGAATCTCTTCCTTGGCA
TGTGACTGGTTGTCCTGCTTTCCT
704.
GCAGTGTTTTGTGGTGATGGGCA
1015.
1M betaine
0
1
5


TCTGG




TD





(SEQ ID NO: 433)














CTGGCCAAGGGGTGAGTGGG
705.
TGGGACCCCAGCAGCCAATG
1016.
DMSO
1
0
2






ACGGTGTGCTGGCTGCTCTT
706.
ACAGTGCTGACCGTGCTGGG
1017.
DMSO
1
1
1






TGGTTTGGGCCTCAGGGATGG
707.
TGCCTCCCACAAAAATGTCTACCT
1018.
DMSO
0
0
3






TGGTTTGGGCCTCAGGGATGG
708.
ACCCCTTATCCCAGAACCCATGA
1019.
DMSO
0
0
3






TCCAAGTCAGCGATGAGGGCT
709.
TGGGAGCTGTTCCTTTTTGGCCA
1020.
DMSO
0
3
0






CACCCCTCTCAGCTTCCCAA
710.
GCTAGAGGGTCTGCTGCCTT
1021.
DMSO
1
2
0






AGACCCCTTGGCCAAGCACA
711.
CTTGCTCTCACCCCGCCTCC
1022.
DMSO
2
1
0






ACATGTGGGAGGCGGACAGA
712.
TCTCACTTTGCTGTTACCGATGTC
1023.
DMSO
0
1
3





G











GGACGACTGTGCCTGGGACA
713.
AGTGCCCAGAGTGTTGTAACTGC
1024.
72° C. Anneal
0
1
3





T

3% DMSO,









GGAGAGCTCAGCGCCAGGTC
714.
CAGCGTGGCCCGTGGGAATA
1025.
DMSO
1
1
2






GCTGAAGTGCTCTGGGGTGCT
715.
ACCCCACTGTGGATGAATTGGTA
1026.
DMSO
1
1
2





CC











TCGGGGTGCACATGGCCATC
716.
TTGCCTCGCAGGGGAAGCAG
1027.
DMSO
0
1
3






CTCGTGGGAGGCCAACACCT
717.
AGCCACCAACACATACCAGGCT
1028.
DMSO
2
0
2






GCATGCCTTTAATCCCGGCT
718.
AGGATTTCAGAGTGATGGGGCT
1029.
DMSO
2
1
1






CGCCCAGCCACAAAGTGCAT
719.
GCAAATTTCTGCACCTACTCTAGG
1030.
DMSO
1
1
2





CCT











AGCTCACAAGAATTGGAGGTAACAGT
720.
GCAGTCACCCTTCACTGCCTGT
1031.
DMSO
1
1
2






AAACTGGGCTGGGCTTCCGG
721.
GGGGCTAAGGCATTGTCAGACCC
1032.
DMSO
2
0
2






GCAGGTAGGCAGTCTGGGGC
722.
TCTCCTGCCTCAGCCTCCCA
1033.
1M betaine,
1
2
1







TD









GCAGGTAGGCAGTCTGGGGC
723.
TCTCCTGCCTCAGCCTCCCA
1034.
1M betaine,
1
2
1







TD









GCAGGTAGGCAGTCTGGGGC
724.
TCTCCTGCCTCAGCCTCCCA
1035.
1M betaine,
1
2
1







TD









GCTCTGGGGTAGAAGGAGGC
725.
GGCCTGTCAACCAACCAACC
1036.
DMSO
2
2
0






TGACATGTTGTGTGCTGGGC
726.
AAATCCTGCAGCCTCCCCTT
1037.
DMSO
0
2
2






TCCTGGTGAGATCGTCCACAGGA
727.
TCCTCCCCACTCAGCCTCCC
1038.
DMSO
0
3
1






TCCTAATCCAAGTCCTTTGTTCAGACA
728.
AGGGACCAGCCACTACCCTTCA
1039.
DMSO
2
2
0






GGGACACCAGTTCCTTCCAT
729.
GGGGGAGATTGGAGTTCCCC
1040.
DMSO
1
0
4






ACACCACTATCAAGGCAGAGTAGGT
730.
TCTGCCTGGGGTGCTTTCCC
1041.
DMSO
1
1
3






CTGGGAGCGGAGGGAAGTGC
731.
GCCCCGACAGATGAGGCCTC
1042.
DMSO
1
2
2





CAGATTACTGCTGCAGCA
CGGGTCTCGGAATGCCTCCA
732.
ACCCAGGAATTGCCACCCCC
1043.
DMSO
1
2
3


CCGGG










(SEQ ID NO: 434)














TTGCTGTGGTCCCGGTGGTG
733.
GCAGACACTAGAGCCCGCCC
1044.
DMSO
3
2
0






GGTGTGGTGACAGGTCGGGT
734.
ACCTGCGTCTCTGTGCTGCA
1045.
DMSO
2
3
0






CTCCCAGGACAGTGCTCGGC
735.
CCTGGCCCCATGCTGCCTG
1046.
DMSO
2
2
1






TGCGTAGGTTTTGCCTCTGTGA
736.
AGGGAATGATGTTTTCCACCCCCT
1047.
DMSO
2
3
0






CTCCGCAGCCACCGTTGGTA
737.
TGCATTGACGTACGATGGCTCA
1048.
DMSO
1
3
1






ACCTGCAGCATGAACTCTCGCA
738.
ACCTGAGCAACATGACTCACCTG
1049.
DMSO
2
1
2





G










ACACAAACTTCTGCAGCA
TCTCCAGTTTCTTGCTCTCATGG
739.
ACCATTGGTGAACCCAGTCA
1050.
1M betaine,
3/2
3
1


CCTGG




TD





ACACAAACTTCTGCAGCA










CGTGG










(SEQ ID NO: 435)














TGGGGTGGTGGTCTTGAATCCA
740.
TCAGCTATAACCTGGGACTTGTGC
1051.
DMSO
2
1
3





T











AGCAGCCAGTCCAGTGTCCTG
741.
CCCTTTCATCGAGAACCCCAGGG
1052.
DMSO
3
1
2






TGGACGCTGCTGGGAGGAGA
742.
GAGGTCTCGGGCTGCTCGTG
1053.
DMSO
0
3
3






AGGTTTGCACTCTGTTGCCTGG
743.
TGGGGTGATTGGTTGCCAGGT
1054.
DMSO
3
2
1






TCTTCCTTTGCCAGGCAGCACA
744.
TGCAGGAATAGCAGGTATGAGGA
1055.
DMSO
4
0
2





GT











GGACGCCTACTGCCTGGACC
745.
GCCCTGGCAGCCCATGGTAC
1056.
DMSO
3
0
3






AGGCAGTCATCGCCTTGCTA
746.
GGTCCCACCTTCCCCTACAA
1057.
DMSO
2
3
1






Not optimized




3
1
2






CCCCAGCCCCCACCAGTTTC
747.
CAGCCCAGGCCACAGCTTCA
1058.
DMSO
1
4
1





Sequences and characteristics of genomic on- and off-target sites for six RGNs targeted to endogenous human genes and primers and PCR conditions used to amplify these sites.






Determination of RGN-Induced On- and Off-Target Mutation Frequencies in Human Cells


For U2OS.EGFP and K562 cells, 2×105 cells were transfected with 250 ng of gRNA expression plasmid or an empty U6 promoter plasmid (for negative controls), 750 ng of Cas9 expression plasmid, and 30 ng of td-Tomato expression plasmid using the 4D Nucleofector System according to the manufacturer's instructions (Lonza). For HEK293 cells, 1.65×105 cells were transfected with 125 ng of gRNA expression plasmid or an empty U6 promoter plasmid (for the negative control), 375 ng of Cas9 expression plasmid, and 30 ng of a td-Tomato expression plasmid using Lipofectamine LTX reagent according to the manufacturer's instructions (Life Technologies). Genomic DNA was harvested from transfected U2OS.EGFP, HEK293, or K562 cells using the QIAamp DNA Blood Mini Kit (QIAGEN), according to the manufacturer's instructions. To generate enough genomic DNA to amplify the off-target candidate sites, DNA from three Nucleofections (for U2OS.EGFP cells), two Nucleofections (for K562 cells), or two Lipofectamine LTX transfections was pooled together before performing T7EI. This was done twice for each condition tested, thereby generating duplicate pools of genomic DNA representing a total of four or six individual transfections. PCR was then performed using these genomic DNAs as templates as described above and purified using Ampure XP beads (Agencourt) according to the manufacturer's instructions. T7EI assays were performed as previously described (Reyon et al., 2012, supra).


DNA Sequencing of NHEJ-Mediated Indel Mutations


Purified PCR products used for the T7EI assay were cloned into Zero Blunt TOPO vector (Life Technologies) and plasmid DNAs were isolated using an alkaline lysis miniprep method by the MGH DNA Automation Core. Plasmids were sequenced using an M13 forward primer (5′-GTAAAACGACGGCCAG-3′ (SEQ ID NO:1059) by the Sanger method (MGH DNA Sequencing Core).


Example 1a. Single Nucleotide Mismatches

To begin to define the specificity determinants of RGNs in human cells, a large-scale test was performed to assess the effects of systematically mismatching various positions within multiple gRNA/target DNA interfaces. To do this, a quantitative human cell-based enhanced green fluorescent protein (EGFP) disruption assay previously described (see Methods above and Reyon et al., 2012, supra) that enables rapid quantitation of targeted nuclease activities (FIG. 2B) was used. In this assay, the activities of nucleases targeted to a single integrated EGFP reporter gene can be quantified by assessing loss of fluorescence signal in human U2OS.EGFP cells caused by inactivating frameshift insertion/deletion (indel) mutations introduced by error prone non-homologous end-joining (NHEJ) repair of nuclease-induced double-stranded breaks (DSBs) (FIG. 2B). For the studies described here, three ˜100 nt single gRNAs targeted to different sequences within EGFP were used, as follows:











EGFP Site 1



(SEQ ID NO: 9)



GGGCACGGGCAGCTTGCCGGTGG







EGFP Site 2



(SEQ ID NO: 10)



GATGCCGTTCTTCTGCTTGTCGG







EGFP Site 3



(SEQ ID NO: 11)



GGTGGTGCAGATGAACTTCAGGG







Each of these gRNAs can efficiently direct Cas9-mediated disruption of EGFP expression (see Example 1e and 2a, and FIG. 3E (top) and 3F (top)).


In initial experiments, the effects of single nucleotide mismatches at 19 of 20 nucleotides in the complementary targeting region of three EGFP-targeted gRNAs were tested. To do this, variant gRNAs were generated for each of the three target sites harboring Watson-Crick transversion mismatches at positions 1 through 19 (numbered 1 to 20 in the 3′ to 5′ direction; see FIG. 1) and the abilities of these various gRNAs to direct Cas9-mediated EGFP disruption in human cells tested (variant gRNAs bearing a substitution at position 20 were not generated because this nucleotide is part of the U6 promoter sequence and therefore must remain a guanine to avoid affecting expression.)


For EGFP target site #2, single mismatches in positions 1-10 of the gRNA have dramatic effects on associated Cas9 activity (FIG. 2C, middle panel), consistent with previous studies that suggest mismatches at the 5′ end of gRNAs are better tolerated than those at the 3′ end (Jiang et al., Nat Biotechnol 31, 233-239 (2013); Cong et al., Science 339, 819-823 (2013); Jinek et al., Science 337, 816-821 (2012)). However, with EGFP target sites #1 and #3, single mismatches at all but a few positions in the gRNA appear to be well tolerated, even within the 3′ end of the sequence. Furthermore, the specific positions that were sensitive to mismatch differed for these two targets (FIG. 2C, compare top and bottom panels)—for example, target site #1 was particularly sensitive to a mismatch at position 2 whereas target site #3 was most sensitive to mismatches at positions 1 and 8.


Example 1b. Multiple Mismatches

To test the effects of more than one mismatch at the gRNA/DNA interface, a series of variant gRNAs bearing double Watson-Crick transversion mismatches in adjacent and separated positions were created and the abilities of these gRNAs to direct Cas9 nuclease activity were tested in human cells using the EGFP disruption assay. All three target sites generally showed greater sensitivity to double alterations in which one or both mismatches occur within the 3′ half of the gRNA targeting region. However, the magnitude of these effects exhibited site-specific variation, with target site #2 showing the greatest sensitivity to these double mismatches and target site #1 generally showing the least. To test the number of adjacent mismatches that can be tolerated, variant gRNAs were constructed bearing increasing numbers of mismatched positions ranging from positions 19 to 15 in the 5′ end of the gRNA targeting region (where single and double mismatches appeared to be better tolerated).


Testing of these increasingly mismatched gRNAs revealed that for all three target sites, the introduction of three or more adjacent mismatches results in significant loss of RGN activity. A sudden drop off in activity occurred for three different EGFP-targeted gRNAs as one makes progressive mismatches starting from position 19 in the 5′ end and adding more mismatches moving toward the 3′ end. Specifically, gRNAs containing mismatches at positions 19 and 19+18 show essentially full activity whereas those with mismatches at positions 19+18+17, 19+18+17+16, and 19+18+17+16+15 show essentially no difference relative to a negative control (FIG. 2F). (Note that we did not mismatch position 20 in these variant gRNAs because this position needs to remain as a G because it is part of the U6 promoter that drives expression of the gRNA.)


Additional proof of that shortening gRNA complementarity might lead to RGNs with greater specificities was obtained in the following experiment: for four different EGFP-targeted gRNAs (FIG. 2H), introduction of a double mismatch at positions 18 and 19 did not significantly impact activity. However, introduction of another double mismatch at positions 10 and 11 then into these gRNAs results in near complete loss of activity. Interestingly introduction of only the 10/11 double mismatches does not generally have as great an impact on activity.


Taken together, these results in human cells confirm that the activities of RGNs can be more sensitive to mismatches in the 3′ half of the gRNA targeting sequence. However, the data also clearly reveal that the specificity of RGNs is complex and target site-dependent, with single and double mismatches often well tolerated even when one or more mismatches occur in the 3′ half of the gRNA targeting region. Furthermore, these data also suggest that not all mismatches in the 5′ half of the gRNA/DNA interface are necessarily well tolerated.


In addition, these results strongly suggest that gRNAs bearing shorter regions of complementarity (specifically ˜17 nts) will be more specific in their activities. We note that 17 nts of specificity combined with the 2 nts of specificity conferred by the PAM sequence results in specification of a 19 bp sequence, one of sufficient length to be unique in large complex genomes such as those found in human cells.


Example 1c. Off-Target Mutations

To determine whether off-target mutations for RGNs targeted to endogenous human genes could be identified, six single gRNAs that target three different sites in the VEGFA gene, one in the EMX1 gene, one in the RNF2 gene, and one in the FANCF gene were used (Table 1 and Table A). These six gRNAs efficiently directed Cas9-mediated indels at their respective endogenous loci in human U20S.EGFP cells as detected by T7 Endonuclease I (T7EI) assay (Methods above and Table 1). For each of these six RGNs, we then examined dozens of potential off-target sites (ranging in number from 46 to as many as 64) for evidence of nuclease-induced NHEJ-mediated indel mutations in U20S.EGFP cells. The loci assessed included all genomic sites that differ by one or two nucleotides as well as subsets of genomic sites that differ by three to six nucleotides and with a bias toward those that had one or more of these mismatches in the 5′ half of the gRNA targeting sequence (Table B). Using the T7EI assay, four off-target sites (out of 53 candidate sites examined) for VEGFA site 1, twelve (out of 46 examined) for VEGFA site 2, seven (out of 64 examined) for VEGFA site 3 and one (out of 46 examined) for the EMX1 site (Table 1 and Table B) were readily identified. No off-target mutations were detected among the 43 and 50 potential sites examined for the RNF2 or FANCF genes, respectively (Table B). The rates of mutation at verified off-target sites were very high, ranging from 5.6% to 125% (mean of 40%) of the rate observed at the intended target site (Table 1). These bona fide off-targets included sequences with mismatches in the 3′ end of the target site and with as many as a total of five mismatches, with most off-target sites occurring within protein coding genes (Table 1). DNA sequencing of a subset of off-target sites provided additional molecular confirmation that indel mutations occur at the expected RGN cleavage site (FIGS. 8A-C).









TABLE 1







On- and off-target mutations induced by RGNs


designed to endogenous human genes















SEQ















Site

ID
Indel Mutation Frequency (%) ± SEM















Target
name
Sequence
NO:
U2OS.EGFP
HEK293
K562
Gene





Target 1
T1
GGGTGGGGGGAGTTTGCTCCTGG
1059.
26.0 ± 2.9
10.5 ± 0.07
3.33 ± 0.42
VEGFA


(VEGFA
OT1-3
GGATGGAGGGAGTTTGCTCCTGG
1060.
25.7 ± 9.1
18.9 ± 0.77
2.93 ± 0.04
IGDCC3


Site 1)
OT1-4
GGGAGGGTGGAGTTTGCTCCTGG
1061.
 9.2 ± 0.8
8.32 ± 0.51
N.D.
LOC116437



OT1-6


C
GGGGGAGGGAGTTTGCTCCTGG

1062.
 5.3 ± 0.2
3.67 ± 0.09
N.D.
CACNA2D



OT1-11
GGGGAGGGGAAGTTTGCTCCTGG
1063.
17.1 ± 4.7
8.54 ± 0.16
N.D.






Target 2
T2
GACCCCCTCCACCCCGCCTCCGG
1064.
50.2 ± 4.9
38.6 ± 1.92
15.0 ± 0.25
VEGFA


(VEGFA
OT2-1
GACCCCCCCCACCCCGCCCCCGG
1065.
14.4 ± 3.4
33.6 ± 1.17
4.10 ± 0.05
FMN1


Site 2)
OT2-2
GGGCCCCTCCACCCCGCCTCTGG
1066.
20.0 ± 6.2
15.6 ± 0.30
3.00 ± 0.06
PAX6



OT2-6


CTA
CCCCTCCACCCCGCCTCCGG

1067.
 8.2 ± 1.4
15.0 ± 0.64
5.24 ± 0.22
PAPD7



OT2-9
GCCCCCACCCACCCCGCCTCTGG
1068.
50.7 ± 5.6
30.7 ± 1.44
7.05 ± 0.48
LAMA3



OT2-15


T
ACCCCCCACACCCCGCCTCTGG

1069.
 9.7 ± 4.5
6.97 ± 0.10
1.34 ± 0.15
SPNS3



OT2-17


ACA
CCCCCCCACCCCGCCTCAGG

1070.
14.0 ± 2.8
12.3 ± 0.45
1.80 ± 0.03




OT2-19


ATT
CCCCCCCACCCCGCCTCAGG

1071.
17.0 ± 3.3
19.4 ± 1.35
N.D.
HDLBP



OT2-20


CC
CCACCCCCACCCCGCCTCAGG

1072.
 6.1 ± 1.3
N.D.
N.D.
ABLIM1



OT2-23


CG
CCCTCCCCACCCCGCCTCCGG

1073.
44.4 ± 6.7
28.7 ± 1.15
4.18 ± 0.37
CALY



OT2-24


CT
CCCCACCCACCCCGCCTCAGG

1074.
62.8 ± 5.0
29.8 ± 1.08
21.1 ± 1.68




OT2-29


TG
CCCCTCCCACCCCGCCTCTGG

1075.
13.8 ± 5.2
N.D.
N.D.
ACLY



OT2-34


AGG
CCCCCACACCCCGCCTCAGG

1076.
 2.8 ± 1.5
N.D.
N.D.






Target 3
T3
GGTGAGTGAGTGTGTGCGTGTGG
1077.
49.4 ± 3.8
35.7 ± 1.26
27.9 ± 0.52
VEGFA


(VEGFA
OT3-1
GGTGAGTGAGTGTGTGTGTGAGG
1078.
 7.4 ± 3.4
8.97 ± 0.80
N.D.
(abParts)


Site 3)
OT3-2


A
GTGAGTGAGTGTGTGTGTGGGG

1079.
24.3 ± 9.2
23.9 ± 0.08
 8.9 ± 0.16
MAX



OT3-4
GCTGAGTGAGTGTATGCGTGTGG
1080.
20.9 ± 11.8
11.2 ± 0.23
N.D.




OT3-9
GGTGAGTGAGTGCGTGCGGGTGG
1081.
 3.2 ± 0.3
2.34 ± 0.21
N.D.
TPCN2



OT3-17
GTTGAGTGAATGTGTGCGTGAGG
1082.
 2.9 ± 0.2
1.27 ± 0.02
N.D.
SLIT1



OT3-18


T
GTGGGTGAGTGTGTGCGTGAGG

1083.
13.4 ± 4.2
12.1 ± 0.24
2.42 ± 0.07
COMDA



OT3-20


A
GAGAGTGAGTGTGTGCATGAGG

1084.
16.7 ± 3.5
7.64 ± 0.05
1.18 ± 0.01






Target 4
T4
GAGTCCGAGCAGAAGAAGAAGGG
1085.
42.1 ± 0.4
26.0 ± 0.70
10.7 ± 0.50
EMX1


(EMX1)
OT4-1
GAGTTAGAGCAGAAGAAGAAAGG
1086.
16.8 ± 0.2
8.43 ± 1.32
2.54 ± 0.02
HCN1





Target 5
T5
GTCATCTTAGTCATTACCTGTGG
1087.
26.6 ± 6.0
---
---
RNF2


(RNF2)












Target 6
T6
GGAATCCCTTCTGCAGCACCAGG
1088.
33.2 ± 6.5
---
---
FANCF


(FANCF)





″OT″ indicates off-target sites (with numbering of sites as in Table E). Mismatches from the on- target (within the 20 bp region to which the gRNA hybridizes) are highlighted as bold, underlined text. Mean indel mutation frequencies in U2OS.EGFP, HEK293, and K562 cells were determined as described in Methods. Genes in which sites were located (if any) are shown. All sites listed failed to show any evidence of modification in cells transfected with Cas9 expression plasmid and a control U6 promoter plasmid that did not express a functional gRNA. N.D. = none detected; --- = not tested.






Example 1d. Off-Target Mutations in Other Cell Types Having established that RGNs can induce off-target mutations with high frequencies in U20S.EGFP cells, we next sought to determine whether these nucleases would also have these effects in other types of human cells. We had chosen U20S.EGFP cells for our initial experiments because we previously used these cells to evaluate the activities of TALENs15 but human HEK293 and K562 cells have been more widely used to test the activities of targeted nucleases. Therefore, we also assessed the activities of the four RGNs targeted to VEGFA sites 1, 2, and 3 and the EMX1 site in HEK293 and K562 cells. We found that each of these four RGNs efficiently induced NHEJ-mediated indel mutations at their intended on-target site in these two additional human cell lines (as assessed by T7EI assay) (Table 1), albeit with somewhat lower mutation frequencies than those observed in U20S.EGFP cells. Assessment of the 24 off-target sites for these four RGNs originally identified in U2OS.EGFP cells revealed that many were again mutated in HEK293 and K562 cells with frequencies similar to those at their corresponding on-target site (Table 1). As expected, DNA sequencing of a subset of these off-target sites from HEK293 cells provided additional molecular evidence that alterations are occurring at the expected genomic loci (FIGS. 9A-C). We do not know for certain why in HEK293 cells four and in K562 cells eleven of the off-target sites identified in U20S.EGFP cells did not show detectable mutations. However, we note that many of these off-target sites also showed relatively lower mutation frequencies in U20S.EGFP cells. Therefore, we speculate that mutation rates of these sites in HEK293 and K562 cells may be falling below the reliable detection limit of our T7EI assay (˜2-5%) because RGNs generally appear to have lower activities in HEK293 and K562 cells compared with U20S.EGFP cells in our experiments. Taken together, our results in HEK293 and K562 cells provide evidence that the high-frequency off-target mutations we observe with RGNs will be a general phenomenon seen in multiple human cell types.


Example 1e. Titration of gRNA- and Cas9-Expressing Plasmid Amounts Used for the EGFP Disruption Assay

Single gRNAs were generated for three different sequences (EGFP SITES 1-3, shown above) located upstream of EGFP nucleotide 502, a position at which the introduction of frameshift mutations via non-homologous end-joining can robustly disrupt expression of EGFP (Maeder, M. L. et al., Mol Cell 31, 294-301 (2008); Reyon, D. et al., Nat Biotech 30, 460-465 (2012)).


For each of the three target sites, a range of gRNA-expressing plasmid amounts (12.5 to 250 ng) was initially transfected together with 750 ng of a plasmid expressing a codon-optimized version of the Cas9 nuclease into our U2OS.EGFP reporter cells bearing a single copy, constitutively expressed EGFP-PEST reporter gene. All three RGNs efficiently disrupted EGFP expression at the highest concentration of gRNA-encoding plasmid (250 ng) (FIG. 3E (top)). However, RGNs for target sites #1 and #3 exhibited equivalent levels of disruption when lower amounts of gRNA-expressing plasmid were transfected whereas RGN activity at target site #2 dropped immediately when the amount of gRNA-expressing plasmid transfected was decreased (FIG. 3E(top)).


The amount of Cas9-encoding plasmid (range from 50 ng to 750 ng) transfected into our U2OS.EGFP reporter cells was titrated and EGFP disruption assayed. As shown in FIG. 3F (top), target site #1 tolerated a three-fold decrease in the amount of Cas9-encoding plasmid transfected without substantial loss of EGFP disruption activity. However, the activities of RGNs targeting target sites #2 and #3 decreased immediately with a three-fold reduction in the amount of Cas9 plasmid transfected (FIG. 3F (top)). Based on these results, 25 ng/250 ng, 250 ng/750 ng, and 200 ng/750 ng of gRNA-/Cas9-expressing plasmids were used for EGFP target sites #1, #2, and #3, respectively, for the experiments described in Examples 1a-1d.


The reasons why some gRNA/Cas9 combinations work better than others in disrupting EGFP expression is not understood, nor is why some of these combinations are more or less sensitive to the amount of plasmids used for transfection. Although it is possible that the range of off-target sites present in the genome for these three gRNAs might influence each of their activities, no differences were seen in the numbers of genomic sites that differ by one to six bps for each of these particular target sites (Table C) that would account for the differential behavior of the three gRNAs.









TABLE C







Numbers of off-target sites in the human genome


for six RGNs targeted to endogenous human


genes and three RGNs targeted to the EGFP reporter gene









Number of mismatches to on-target site














Target Site
0
1
2
3
4
5
6

















Target 1
1
1
4
32
280
2175
13873


(VEGFA Site 1)









Target 2
1
0
2
35
443
3889
17398


(VEGFA Site 2)









Target 3
1
1
17
377
6028
13398
35517


(VEGFA Site 3)









Target 4 (EMX)
1
0
1
18
276
2309
15731


Target 5 (RNF2)
1
0
0
6
116
976
7443


Target 6 (FANCF)
1
0
1
18
271
1467
9551


EGFP Target Site #1
0
0
3
10
156
1365
9755


EGFP Target Site #2
0
0
0
11
96
974
7353


EGFP Target Site #3
0
0
1
14
165
1439
10361





Off-target sites for each of the six RGNs targeted to the VEGFA, RNF2, FANCF, and EMX1 genes and the three RGNs targeted to EGFP Target Sites #1, #2 and #3 were identified in human genome sequence build GRCh37. Mismatches were only allowed for the 20 nt region to which the gRNA anneals and not to the PAM sequence.






Example 2: Shortening gRNA Complementarity Length to Improve RGN Cleavage Specificity

It was hypothesized that off-target effects of RGNs might be minimized without compromising on-target activity simply by decreasing the length of the gRNA-DNA interface, an approach that at first might seem counterintuitive. Longer gRNAs can actually function less efficiently at the on-target site (see below and Hwang et al., 2013a; Ran et al., 2013). In contrast, as shown above in Example 1, gRNAs bearing multiple mismatches at their 5′ ends could still induce robust cleavage of their target sites (FIGS. 2A and 2C-2F), suggesting that these nucleotides might not be required for full on-target activity. Therefore, it was hypothesized that truncated gRNAs lacking these 5′ nucleotides might show activities comparable to full-length gRNAs (FIG. 2A). It was speculated that if the 5′ nucleotides of full-length gRNAs are not needed for on-target activity then their presence might also compensate for mismatches at other positions along the gRNA-target DNA interface. If this were true, it was hypothesized that gRNAs might have greater sensitivity to mismatches and thus might also induce substantially lower levels of Cas9-mediated off-target mutations (FIG. 2A).


Experimental Procedures


The following experimental procedures were used in Example 2.


Plasmid Construction


All gRNA expression plasmids were assembled by designing, synthesizing, annealing, and cloning pairs of oligonucleotides (IDT) harboring the complementarity region into plasmid pMLM3636 (available from Addgene) as described above (Example 1). The resulting gRNA expression vectors encode a ˜100 nt gRNA whose expression is driven by a human U6 promoter. The sequences of all oligonucleotides used to construct gRNA expression vectors are shown in Table D. The Cas9 D10A nickase expression plasmid (pJDS271) bearing a mutation in the RuvC endonuclease domain was generated by mutating plasmid pJDS246 using a QuikChange kit (Agilent Technologies) with the following primers: Cas9 D10A sense primer 5% tggataaaaagtattctattggtttagccatcggcactaattccg-3′ (SEQ ID NO:1089); Cas9 D10A antisense primer 5′-cggaattagtgccgatggctaaaccaatagaatactttttatcca-3′ (SEQ ID NO:1090). All the targeted gRNA plasmids and the Cas9 nickase plasmids used in this study are available through the non-profit plasmid distribution service Addgene (addgene.org/crispr-cas).









TABLE D





Sequences of oligonucleotides used to construct gRNA expression plasmids







EGFP Target Site 1



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)
SEQ ID NO:







G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCACGGGCAGCTTGCCGGG
1091
AAAACGGGGCAAGCTGCCCGTGCG
1180.







G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
c
ACACCGCACGGGCAGCTTGCCGCG
1092
AAAACGCGGCAAGCTGCCCGTGCG
1181.







G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
c
G
ACACCGCACGGGCAGCTTGCCCGG
1093
AAAACCGGGCAAGCTGCCCGTGCG
1182.







G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
g
G
G
ACACCGCACGGGCAGCTTGCGGGG
1094
AAAACCCCGCAAGCTGCCCGTGCG
1183.







G
C
A
C
G
G
G
C
A
G
C
T
T
G
g
C
G
G
ACACCGCACGGGCAGCTTGGCGGG
1095
AAAACCCGCCAAGCTGCCCGTGCG
1184.







G
C
A
C
G
G
G
C
A
G
C
T
T
c
C
C
G
G
ACACCGCACGGGCAGCTTCCCGGG
1096
AAAACCCGGGAAGCTGCCCGTGCG
1185.







G
C
A
C
G
G
G
C
A
G
C
T
a
G
C
C
G
G
ACACCGCACGGGCAGCTAGCCGGG
1097
AAAACCCGGCTAGCTGCCCGTGCG
1186.







G
C
A
C
G
G
G
C
A
G
C
c
T
G
C
C
G
G
ACACCGCACGGGCAGCATGCCGGG
1098
AAAACCCGGCATGCTGCCCGTGCG
1187.







G
C
A
C
G
G
G
C
A
G
g
T
T
G
C
C
G
G
ACACCGCACGGGCAGGTTGCCGGG
1099
AAAACCCGGCAACCTGCCCGTGCG
1188.







G
C
A
C
G
G
G
C
A
c
C
T
T
G
C
C
G
G
ACACCGCACGGGCACCTTGCCGGG
1100
AAAACCCGGCAAGGTGCCCGTGCG
1189.







G
C
A
C
G
G
G
C
t
G
C
T
T
G
C
C
G
G
ACACCGCACGGGCTGCTTGCCGGG
1101
AAAACCCGGCAAGCAGCCCGTGCG
1190.







G
C
A
C
G
G
G
g
A
G
C
T
T
G
C
C
G
G
ACACCGCACGGGGAGCTTGCCGGG
1102
AAAACCCGGCAAGCTCCCCGTGCG
1191.







G
C
A
C
G
G
c
C
A
G
C
T
T
G
C
C
G
G
ACACCGCACGGCCAGCTTGCCGGG
1103
AAAACCCGGCAAGCTGGCCGTGCG
1192.







G
C
A
C
G
c
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCACGCGCAGCTTGCCGGG
1104
AAAACCCGGCAAGCTGCGCGTGCG
1193.







G
C
A
C
c
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCACCGGCAGCTTGCCGGG
1105
AAAACCCGGCAAGCTGCCGGTGCG
1194.







G
C
A
g
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCAGGGGCAGCTTGCCGGG
1106
AAAACCCGGCAAGCTGCCCCTGCG
1195.







G
C
t
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCTCGGGCAGCTTGCCGGG
1107
AAAACCCGGCAAGCTGCCCGAGCG
1196.







G
g
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGACGGGCAGCTTGCCGGG
1108
AAAACCCGGCAAGCTGCCCGTCCG
1197.







G
C
A
C
G
G
G
C
A
G
C
T
T
G
C
C
c
c
ACACCGCACGGGCAGCTTGCCCCG
1109
AAAACGGGGCAAGCTGCCCGTGCG
1198.







G
C
A
C
G
G
G
C
A
G
C
T
T
G
g
g
G
G
ACACCGCACGGGCAGCTTGGGGGG
1110
AAAACCCCCCAAGCTGCCCGTGCG
1199.







G
C
A
C
G
G
G
C
A
G
C
T
a
c
C
C
G
G
ACACCGCACGGGCAGCTACCCGGG
1111
AAAACCCGGGTAGCTGCCCGTGCG
1200.







G
C
A
C
G
G
G
C
A
G
g
a
T
G
C
C
G
G
ACACCGCACGGGCAGGATGCCGGG
1112
AAAACCCGGCATCCTGCCCGTGCG
1201.







G
C
A
C
G
G
G
C
t
c
C
T
T
G
C
C
G
G
ACACCGCACGGGCTCCTTGCCGGG
1113
AAAACCCGGCAAGGAGCCCGTGCG
1202.







G
C
A
C
G
G
c
g
A
G
C
T
T
G
C
C
G
G
ACACCGCACGGCGAGCTTGCCGGG
1114
AAAACCCGGCAAGCTCGCCGTGCG
1203.







G
C
A
C
c
c
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCACCCGCAGCTTGCCGGG
1115
AAAACCCGGCAAGCTGCGGGTGCG
1204.







G
C
A
g
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGCTGGGGCAGCTTGCCGGG
1116
AAAACCCGGCAAGCTGCCCCAGCG
1205.







g
t
A
C
G
G
G
C
A
G
C
T
T
G
C
C
G
G
ACACCGGTCGGGCAGCTTGCCGGG
1117
AAAACCCGGCAAGCTGCCCGACCG
1206.










EGFP Target Site 2



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)








G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGCCGTTCTTCTGCTTGTG
1118
AAAACACAAGCAGAAGAACGGCG
1207.








G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
G
A
ACACCGCCGTTCTTCTGCTTGAG
1119
AAAACTCAAGCAGAAGAACGGCG
1208.








G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
c
T
ACACCGCCGTTCTTCTGCTTCTG
1120
AAAACAGAAGCAGAAGAACGGCG
1209.








G
C
C
G
T
T
C
T
T
C
T
G
C
T
a
G
T
ACACCGCCGTTCTTCTGCTAGTG
1121
AAAACACTAGCAGAAGAACGGCG
1210.








G
C
C
G
T
T
C
T
T
C
T
G
C
a
T
G
T
ACACCGCCGTTCTTCTGCATGTG
1122
AAAACACATGCAGAAGAACGGCG
1211.








G
C
C
G
T
T
C
T
T
C
T
G
g
T
T
G
T
ACACCGCCGTTCTTCTGGTTGTG
1123
AAAACACAACCAGAAGAACGGCG
1212.








G
C
C
G
T
T
C
T
T
C
T
c
C
T
T
G
T
ACACCGCCGTTCTTCTCCTTGTG
1124
AAAACACAAGGAGAAGAACGGCG
1213.








G
C
C
G
T
T
C
T
T
C
a
G
C
T
T
G
T
ACACCGCCGTTCTTCAGCTTGTG
1125
AAAACACAAGCTGAAGAACGGCG
1214.








G
C
C
G
T
T
C
T
T
g
T
G
C
T
T
G
T
ACACCGCCGTTCTTGTGCTTGTG
1126
AAAACACAAGCACAAGAACGGCG
1215.








G
C
C
G
T
T
C
T
a
C
T
G
C
T
T
G
T
ACACCGCCGTTCTACTGCTTGTG
1127
AAAACACAAGCAGTAGAACGGCG
1216.








G
C
C
G
T
T
C
a
T
C
T
G
C
T
T
G
T
ACACCGCCGTTCATCTGCTTGTG
1128
AAAACACAAGCAGATGAACGGCG
1217.








G
C
C
G
T
T
g
T
T
C
T
G
C
T
T
G
T
ACACCGCCGTTGTTCTGCTTGTG
1129
AAAACACAAGCAGAACAACGGCG
1218.








G
C
C
G
T
a
C
T
T
C
T
G
C
T
T
G
T
ACACCGCCGTACTTCTGCTTGTG
1130
AAAACACAAGCAGAAGTACGGCG
1219.








G
C
C
G
a
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGCCGATCTTCTGCTTGTG
1131
AAAACACAAGCAGAAGATCGGCG
1220.








G
C
C
c
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGCCCTTCTTCTGCTTGTG
1132
AAAACACAAGCAGAAGAAGGGCG
1221.








G
C
g
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGCGGTTCTTCTGCTTGTG
1133
AAAACACAAGCAGAAGAACCGCG
1222.








G
g
C
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGGCGTTCTTCTGCTTGTG
1134
AAAACACAAGCAGAAGAACGCCG
1223.








G
C
C
G
T
T
C
T
T
C
T
G
C
T
T
c
a
ACACCGCCGTTCTTCTGCTTCAG
1135
AAAACTGAAGCAGAAGAACGGCG
1224.








G
C
C
G
T
T
C
T
T
C
T
G
C
a
a
G
T
ACACCGCCGTTCTTCTGCAAGTG
1136
AAAACACTTGCAGAAGAACGGCG
1225.








G
C
C
G
T
T
C
T
T
C
T
c
g
T
T
G
T
ACACCGCCGTTCTTCTCGTTGTG
1137
AAAACACAACGAGAAGAACGGCG
1226.








G
C
C
G
T
T
C
T
T
g
a
G
C
T
T
G
T
ACACCGCCGTTCTTGAGCTTGTG
1138
AAAACACAAGCTCAAGAACGGCG
1227.








G
C
C
G
T
T
C
a
a
C
T
G
C
T
T
G
T
ACACCGCCGTTCAACTGCTTGTG
1139
AAAACACAAGCAGTTGAACGGCG
1228.








G
C
C
G
T
a
g
T
T
C
T
G
C
T
T
G
T
ACACCGCCGTAGTTCTGCTTGTG
1140
AAAACACAAGCAGAACTACGGCG
1229.








G
C
C
c
a
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGCCCATCTTCTGCTTGTG
1141
AAAACACAAGCAGAAGATGGGCG
1230.








G
g
g
G
T
T
C
T
T
C
T
G
C
T
T
G
T
ACACCGGGGTTCTTCTGCTTGTG
1142
AAAACACAAGCAGAAGAACCCCG
1231.










EGFP Target Site 3



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)








G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGCAGATGAACTTCAG
1143
AAAACTCTAGTTCATCTGCACCG
1232.








G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
C
t
ACACCGGTGCAGATGAACTTCTG
1144
AAAACTCAAGTTCATCTGCACCG
1233.








G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
g
A
ACACCGGTGCAGATGAACTTGAG
1145
AAAACTGTAGTTCATCTGCACCG
1234.








G
G
T
G
C
A
G
A
T
G
A
A
C
T
a
C
A
ACACCGGTGCAGATGAACTACAG
1146
AAAACTGATGTTCATCTGCACCG
1235.








G
G
T
G
C
A
G
A
T
G
A
A
C
a
T
C
A
ACACCGGTGCAGATGAACATCAG
1147
AAAACTGAACTTCATCTGCACCG
1236.








G
G
T
G
C
A
G
A
T
G
A
A
g
T
T
C
A
ACACCGGTGCAGATGAAGTTCAG
1148
AAAACTGAAGATCATCTGCACCG
1237.








G
G
T
G
C
A
G
A
T
G
A
t
C
T
T
C
A
ACACCGGTGCAGATGATCTTCAG
1149
AAAACTGAAGTACATCTGCACCG
1238.








G
G
T
G
C
A
G
A
T
G
t
A
C
T
T
C
A
ACACCGGTGCAGATGTACTTCAG
1150
AAAACTGAAGTTGATCTGCACCG
1239.








G
G
T
G
C
A
G
A
T
c
A
A
C
T
T
C
A
ACACCGGTGCAGATCAACTTCAG
1151
AAAACTGAAGTTCTTCTGCACCG
1240.








G
G
T
G
C
A
G
A
a
G
A
A
C
T
T
C
A
ACACCGGTGCAGAAGAACTTCAG
1152
AAAACTGAAGTTCAACTGCACCG
1241.








G
G
T
G
C
A
G
t
T
G
A
A
C
T
T
C
A
ACACCGGTGCAGTTGAACTTCAG
1153
AAAACTGAAGTTCATGTGCACCG
1242.








G
G
T
G
C
A
c
A
T
G
A
A
C
T
T
C
A
ACACCGGTGCACATGAACTTCAG
1154
AAAACTGAAGTTCATCAGCACCG
1243.








G
G
T
G
C
t
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGCTGATGAACTTCAG
1155
AAAACTGAAGTTCATCTCCACCG
1244.








G
G
T
G
g
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTGGAGATGAACTTCAG
1156
AAAACTGAAGTTCATCTGGACCG
1245.








G
G
T
c
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTCCAGATGAACTTCAG
1157
AAAACTGAAGTTCATCTGCTCCG
1246.








G
G
a
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGAGCAGATGAACTTCAG
1158
AAAACTGAAGTTCATCTGCAGCG
1247.








G
c
T
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCTGCAGATGAACTTCAG
1159
AAAACTGAAGTTCATCTGCAGCG
1248.








G
G
T
G
C
A
G
A
T
G
A
A
C
T
T
g
t
ACACCGGTGCAGATGAACTTGTG
1160
AAAACACAAGTTCATCTGCACCG
1249.








G
G
T
G
C
A
G
A
T
G
A
A
C
a
a
C
A
ACACCGGTGCAGATGAACAACAG
1161
AAAACTGTTGTTCATCTGCACCG
1250.








G
G
T
G
C
A
G
A
T
G
A
g
g
T
T
C
A
ACACCGGTGCAGATGATGTTCAG
1162
AAAACTGAACATCATCTGCACCG
1251.








G
G
T
G
C
A
G
A
T
c
t
A
C
T
T
C
A
ACACCGGTGCAGATCTACTTCAG
1163
AAAACTGAAGTAGATCTGCACCG
1252.








G
G
T
G
C
A
G
t
a
G
A
A
C
T
T
C
A
ACACCGGTGCAGTAGAACTTCAG
1164
AAAACTGAAGTTCTACTGCACCG
1253.








G
G
T
G
C
t
c
A
T
G
A
A
C
T
T
C
A
ACACCGGTGCTCATGAACTTCAG
1165
AAAACTGAAGTTCATGAGCACCG
1254.








G
G
T
c
g
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGGTCGAGATGAACTTCAG
1166
AAAACTGAAGTTCATCTCGACCG
1255.








G
c
a
G
C
A
G
A
T
G
A
A
C
T
T
C
A
ACACCGCAGCAGATGAACTTCAG
1167
AAAACTGAAGTTCATCTGCTGCG
1256.










Endogenous Target 1 (VEGFA Site 1 tru-gRNA):



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)







G
T
G
G
G
G
G
G
A
G
T
T
T
G
C
T
C
C
ACACCGTGGGGGGACTTTGCTCCG
1168
AAAACGGAGCAAACTCCCCCCACG
1257.










Endogenous Target 3 (VEGFA Site 3 tru-gRNA):



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)








G
A
G
T
G
A
G
T
G
T
G
T
G
C
G
T
G
ACACCGAGTGAGTGTGTGCGTGG
1169
AAAACCACGCACACACTCACTCG
1258.










Endogenous Target 4 (EMX1 Site 1 tru-gRNA):



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)







G
T
C
C
G
A
G
C
A
G
A
A
G
A
A
G
A
A
ACACCGTCCGAGCAGAAGAAGAAG
1170
AAAACTTCTTCTTCTGCTCGGACG
1259.










CTLA full-length gRNA



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)





G
C
A
G
A
T
G
T
A
G
T
G
T
T
T
C
C
A
C
A
ACACCGCAGATGTAGTGTTTCCACAG
1171
AAAACTGTGGAAACACTACATCTGCG
1260.










CTLA thru-gRNA



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)








G
A
T
G
T
A
G
T
G
T
T
T
C
C
A
C
A
ACACCGATGTAGTGTTTCCACAG
1172
AAAACTGTGGAAACACTACATCG
1261.










VEGFA site 4 full-length gRNA



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)





T
C
C
C
T
C
T
T
T
A
G
C
C
A
G
A
G
C
C
G
ACACCTCCCTCTTTAGCCAGAGCCGG
1173
AAAACCGGCTCTGGCCTAAAGGGAG
1262.










EMX1 site 2 full-length gRNA



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)





G
C
C
G
T
T
T
G
T
A
C
T
T
T
G
T
C
C
T
C
ACACCGCCGTTTGTACTTTGCCTCG
1174
AAAACGAGGACAAAGTACAAACGGCG
1263.










EMX1 site 2 tru-gRNA



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)








G
T
T
T
G
T
A
C
T
T
T
G
T
C
C
T
C
ACACCGTTTGTACTTTGTCCTCG
1175
AAAACGAGGACAAAGTACAAACG
1264.










EMX1 site 3 full-length gRNA



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)





F
F
F
A
A
G
A
C
T
G
A
G
G
C
T
A
C
A
T
A
ACACCGGGAAGACTGAGGCTACATAG
1176
AAAACTATGTAGCCTCAGTCTTCCCG
1265.










EMX1 site 3 tru-gRNA



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)







G
A
A
G
A
C
T
G
A
G
G
C
T
A
C
A
T
A
ACACCGAAGACTGAGGCTACATAG
1177
AAAACTATGTAGCCTCAGTCTTCG
1266.










EMX1 site 4 full-length gRNA



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)





G
A
G
G
C
C
C
C
C
A
G
A
G
C
A
G
C
C
A
C
ACACCGAGGCCCCCAGAGCAGCCACG
1178
AAAACGTGGCTGCTCTGGGGGCCCTCG
1267.










EMX1 site 4 tru-gRNA



















































SEQ
























oligo-
ID
oligo-



20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
nucleotide 1 (5′ to 3′)
NO:
nucleotide 2 (5′ to 3′)








G
C
C
C
C
C
A
G
A
G
C
A
G
C
C
A
C
ACACCGCCCCCAGAGCAGCCACG
1179
AAAACGTGGCTGCTCTGGGGGCG
1268.









Human Cell-Based EGFP Disruption Assay


U2OS.EGFP cells harboring a single-copy, integrated EGFP-PEST gene reporter have been previously described (Reyon et al., 2012). These cells were maintained in Advanced DMEM (Life Technologies) supplemented with 10% FBS, 2 mM GlutaMax (Life Technologies), penicillin/streptomycin and 400 μg/ml G418. To assay for disruption of EGFP expression, 2×105 U2OS.EGFP cells were transfected in duplicate with gRNA expression plasmid or an empty U6 promoter plasmid as a negative control, Cas9 expression plasmid (pJDS246) (Example 1 and Fu et al., 2013), and 10 ng of td-Tomato expression plasmid (to control for transfection efficiency) using a LONZA 4D-Nucleofector™, with SE solution and DN100 program according to the manufacturer's instructions. We used 25 ng/250 ng, 250 ng/750 ng, 200 ng/750 ng, and 250 ng/750 ng of gRNA expression plasmid/Cas9 expression plasmid for experiments with EGFP site #1, #2, #3, and #4, respectively. Two days following transfection, cells were trypsinized and resuspended in Dulbecco's modified Eagle medium (DMEM, Invitrogen) supplemented with 10% (vol/vol) fetal bovine serum (FBS) and analyzed on a BD LSRII flow cytometer. For each sample, transfections and flow cytometry measurements were performed in duplicate.


Transfection of Human Cells and Isolation of Genomic DNA


To assess the on-target and off-target indel mutations induced by RGNs targeted to endogenous human genes, plasmids were transfected into U2OS.EGFP or HEK293 cells using the following conditions: U2OS.EGFP cells were transfected using the same conditions as for the EGFP disruption assay described above. HEK293 cells were transfected by seeding them at a density of 1.65×105 cells per well in 24 well plates in Advanced DMEM (Life Technologies) supplemented with 10% FBS and 2 mM GlutaMax (Life Technologies) at 37° C. in a CO2 incubator. After 22-24 hours of incubation, cells were transfected with 125 ng of gRNA expression plasmid or an empty U6 promoter plasmid (as a negative control), 375 ng of Cas9 expression plasmid (pJDS246) (Example 1 and Fu et al., 2013), and 10 ng of a td-Tomato expression plasmid, using Lipofectamine LTX reagent according to the manufacturer's instructions (Life Technologies). Medium was changed 16 hours after transfection. For both types of cells, genomic DNA was harvested two days post-transfection using an Agencourt DNAdvance genomic DNA isolation kit (Beckman) according to the manufacturer's instructions. For each RGN sample to be assayed, 12 individual 4D transfection replicates were performed, genomic DNA was isolated from each of these 12 transfections, and then these samples were combined to create two “duplicate” pools each consisting of six pooled genomic DNA samples. Indel mutations were then assessed at on-target and off-target sites from these duplicate samples by T7EI assay, Sanger sequencing, and/or deep sequencing as described below.


To assess frequencies of precise alterations introduced by HDR with ssODN donor templates, 2×105 U20S.EGFP cells were transfected 250 ng of gRNA expression plasmid or an empty U6 promoter plasmid (as a negative control), 750 ng Cas9 expression plasmid (pJDS246), 50 pmol of ssODN donor (or no ssODN for controls), and 10 ng of td-Tomato expression plasmid (as the transfection control). Genomic DNA was purified three days after transfection using Agencourt DNAdvance and assayed for the introduction of a BamHI site at the locus of interest as described below. All of these transfections were performed in duplicate.


For experiments involving Cas9 nickases, 2×105 U20S.EGFP cells were transfected with 125 ng of each gRNA expression plasmid (if using paired gRNAs) or 250 ng of gRNA expression plasmid (if using a single gRNA), 750 ng of Cas9-D10A nickase expression plasmid (pJDS271), 10 ng of td-Tomato plasmid, and (if performing HDR) 50 pmol of ssODN donor template (encoding the BamHI site). All transfections were performed in duplicate. Genomic DNA harvested two days after transfection (if assaying for indel mutations) or three days after transfection (if assaying for HDR/ssODN-mediated alterations) using the Agencourt DNAdvance genomic DNA isolation kit (Beckman).


T7EI Assays for Quantifying Frequencies of Indel Mutations


T7EI assays were performed as previously described (Example 1 and Fu et al., 2013). In brief, PCR reactions to amplify specific on-target or off-target sites were performed with Phusion high-fidelity DNA polymerase (New England Biolabs) using one of the two following programs: (1) Touchdown PCR program [(98° C., 10 s; 72-62° C., —1° C./cycle, 15 s; 72° C., 30 s)×10 cycles, (98° C., 10 s; 62° C., 15 s; 72° C., 30 s)×25 cycles] or (2) Constant Tm PCR program [(98° C., 10 s; 68° C. or 72° C., 15 s; 72° C., 30 s)×35 cycles], with 3% DMSO or 1 M betaine if necessary. All primers used for these amplifications are listed in Table E. Resulting PCR products ranged in size from 300 to 800 bps and were purified by Ampure XP beads (Agencourt) according to the manufacturer's instructions. 200 ng of purified PCR products were hybridized in 1× NEB buffer 2 in a total volume of 19 μl and denatured to form heteroduplexes using the following conditions: 95° C., 5 minutes; 95 to 85° C., −2° C./s; 85 to 25° C., −0.1° C./s; hold at 4° C. 1 μl of T7 Endonuclease I (New England Biolabs, 10 units/μl) was added to the hybridized PCR products and incubated at 37° C. for 15 minutes. The T7EI reaction was stopped by adding 2 μl of 0.25 M EDTA solution and the reaction products were purified using AMPure XP beads (Agencourt) with elution in 20 μl 0.1×EB buffer (QIAgen). Reactions products were then analyzed on a QIAXCEL capillary electrophoresis system and the frequencies of indel mutations were calculated using the same formula as previously described (Reyon et al., 2012).





















TABLE E








Mis-














matches














in







non-




Expected

target







Watson-




Off-Target

compared






Watson-
Crick



Publi-
Sequenes
SEQ
to on-
Actual Target
Forward
SEQ
Reverse
SEQ

Crick
Trans



cation
(Expected)-
ID
target
in U2OS.EGFP
PCR
ID
PCR
ID
PCR
Trans-
-ver-
Trans-


ID
HS GRCh37
NO:
site
cells
Primer
NO:
Primer
NO:
Conditions
versions
sions
itions







Target 1
GGGTGGGGGGAG
1269.
0

TCCAGATGGCACA
1270.
AGGGAGCA
1271.
DMSO






TTTGCTCCTGG



TTGTCAG

GGAAAGTG














AGGT










OT1-1
GGGTGGGGGGAG
1272.
1

GGGGCCCACTCTT
1273.
ACCCAGAC
1274.
No
0
0
1



TTTGCCCCAGG



CTTCCAT

TCCTGGTG

DMSO












TGGC










OT1-2
GCGTGGGGGGTG
1275.
2

GCTAAGCAGAGAT
1276.
ACCACCCT
1277.
DMSO
2
0
0



TTTGCTCCCGG



GCCTATGCC

TTCCCCCA














GAAA










OT1-3
GGATGGAGGGAG
1278.
2

ACCCCACAGCCAG
1279.
GAATCACT
1280.
DMSO
0
0
2



TTTGCTCCTGG



GTTTTCA

GCACCTGG














CCATC










OT1-4
GGGAGGGTGGAG
1281.
2

TGCGGCAACTTCA
1282.
TAAAGGGC
1283.
DMSO
1
1
0



TTTGCTCCTGG



GACAACC

GTGCTGGG














AGAG










OT1-5
GGGTGGGTGGAG
1284.
2

GCATGTCAGGATC
1285.
TGCAGGGC
1286.
DMSO
0
2
0



TTTGCTACTGG



TGACCCC

CATCTTGT














GTGT










OT1-6

CGGGGGAGGGAG

1287.
3

CCACCACATGTTC
1288.
CTGGGTCT
1289.
DMSO
1
1
1



TTTGCTCCTGG



TGGGTGC

GTTCCCTG














TGGG










OT1-7
GAGTGGGTGGAG
1290.
3

GGCTCTCCCTGCC
1291.
GCAGGTCA
1292.
DMSO
0
2
1



TTTGCTACAGG



CTAGTTT

AGTTGGAA














CCCG










OT1-8
GGGAGGGGAGAG
1293.
3

GGGGCTGAGAACA
1294.
AGATTTGT
1295.
DMSO
1
0
2



TTTGTTCCAGG



CATGAGATGCA

GCACTGCC














TGCCT










OT1-9
GGGAGGGGGCAG
1296.
3

CCCGACCTCCGCT
1297.
GGACCTCT
1298.
DMSO
2
1
0




GTTGCTCCAGG




CCAAAGC

GCACACCC














TGGC










OT1-10
GGGAGGGGGGAG
1299.
3

TGCAAGGTCGCAT
1300.
CAGGAGGG
1301.
DMSO
1
1
1



TGTGTTCCGGG



AGTCCCA

GGAAGTGT














GTCC










OT1-11
GGGGAGGGGAAG
1302.
3

GCCCATTCTTTTT
1303.
GAGAGCAA
1304.
DMSO
0
1
2



TTTGCTCCTGG



GCAGTGGA

GTTTGTTC














CCCAGG










OT1-12
GGGGGTGGGGAC
1305.
3

GCCCCCAGCCCCT
1306.
GCTGCTGG
1307.
DMSO
1
2
0



TTTGCTCCAGG



CTGTTTC

TAGGGGAG














CTGG










OT1-13
GGGTCGGGGGAG
1308.
3

CGGCTGCCTTCCC
1309.
GGGTGACG
1310.
72° C.
1
2
0



TGGGCTCCAGG



TGAGTCC

CTTGCCAT

Anneal,












GAGC

3%














DMSO








OT1-14
GGGTGGCTGGAG
1311.
3

TGACCCTGGAGTA
1312.
GCTGAGAC
1313.
72° C.
2
1
0



TTTGCTGCTGG



CAAAATGTTCCCA

AACCAGCC

Anneal,












CAGCT

3%














DMSO








OT1-15
GGGTGGGGGGTG
1314.
3

TGCCTCCACCCTT
1315.
GCAGCCGA
1316.
DMSO
1
0
2




CCTGCTCCAGG




AGCCCCT

TCCACACT














GGGG










OT1-16
GGTTGAGGGGAG
1317.
3

AACTCAGGACAAC
1318.
CCCAGGAG
1319.
DMSO
0
1
2



TCTGCTCCAGG



ACTGCCTGT

CAGGGTAC














AATGC










OT1-17
GTGTGGGTGGCG
1320.
3

TCCTCCTTGGAGA
1321.
CCTTGGAA
1322.
DMSO
0
3
0



TTTGCTCCAGG



GGGGCCC

GGGGCCTT














GGTGG










OT1-18

AGGTGGTGGGAG

1323.
4

CCGAGGGCATGGG
1324.
GGCTGCTG
1325.
DMSO
0
1
3




CTTGTTCCTGG




CAATCCT

CGAGTTGC














CAAC










OT1-19

AGTTTGGGGGAG

1326.
4

TGCTTTGCATGGG
1327.
GGGTTGCT
1328.
DMSO
0
2
2



TTTGCCCCAGG



GTCTCAGACA

TGCCCTCT














GTGT










OT1-20

ATGTGTGGGGAA

1329.
4

AGCTCCTTCTCAT
1330.
CACAGAAG
1331.
DMSO
0
2
2



TTTGCTCCAGG



TTCTCTTCTGCTG

GATGTGTG












T

CAGGTT










OT1-21

CAGTGGGGGGAG

1332.
4

AGCAGACACAGGT
1333.
GGTCAGGT
1334.
DMSO
1
1
2




CTTTCTCCTGG




GAATGCTGCT

GTGCTGCT














AGGCA










OT1-22
GAGGGGGAGCAG
1335.
4

CCTGTGGGGCTCT
1336.
ACTGCCTG
1337.
No
1
1
2



TTTGCTCCAGG



CAGGTGC

CCAAAGTG

DMSO












GGTGT

TD








OT1-23
GGAGGAGGGGAG
1338.
4

AGCTGCACTGGGG
1339.
TGCCGGGT
1340.
DMSO
0
1
3



TCTGCTCCAGG



AATGAGT

AATAGCTG














GCTT










OT1-24
GGAGGGGGGGCT
1341.
4

CCAGCCTGGGCAA
1342.
GGGGGCTT
1343.
72° C.
0
3
1



TTTGCTCCAGG



CAAAGCG

CCAGGTCA

Anneal,












CAGG

3%














DMSO,














6%














DMSO








OT1-25
GGGCAAGGGGAG
1344.
4

TACCCCCACTGCC
1345.
ACAGGTCC
1346.
DMSO
0
1
3




GTTGCTCCTGG




CCATTGC

ATGCTTAG














CAGAGGG










OT1-26
GGGTGATTGAAG
1347.
4
GGGTGATTGAAGTT
ACGGATTCACGAC
1348.
CCGAGTCC
1349.
DMSO
0/1
2
2



TTTGCTCCAGG


TGCTCCAGG (SEQ
GGAGGTGC

GTGGCAGA











ID NO: 2225)


GAGC











GGGTGATTGAAGTT














TGCTGCAGG (SEQ














ID NO: 2226)













OT1-27
GGGTGTGGGGTC
1350.
4

TGTGGTTGAAGTA
1351.
TGGCCCAA
1352.
DMSO
3
1
0




ATTGCTCCAGG




GGGGACAGGT

TTGGAAGT














GATTTCGT










OT1-28
GGTGGGGGTGGG
1353.
4

TGGGATGGCAGAG
1354.
GGCCCAAT
1355.
DMSO
0
3
1



TTTGCTCCTGG



TCATCAACGT

CGGTAGAG














GATGCA










OT1-29
GTGGGGGTAGAG
1356.
4

ATGGGGCGCTCCA
1357.
TGCACCCA
1358.
DMSO
0
3
1



TTTGCTCCAGG



GTCTGTG

CACAGCCA














GCAA










OT1-30

TAGTGGAGGGAG

1359.
4

GGGGAGGGAGGAC
1360.
AATTAGCT
1361.
72° C.
0
1
3




CTTGCTCCTGG




CAGGGAA

GGGCGCGG

Anneal,












TGGT

3%














DMSO








OT1-31

TGCTCGGGGGAG

1362.
4

ATCCCGTGCAGGA
1363.
CAGGCGGC
1364.
DMSO
3
1
0



TTTGCACCAGG



AGTCGCC

CCCTTGAG














GAAT










OT1-32

TGGAGAGGGGAG

1365.
4

CCCCAACCCTTTG
1366.
TGAGGAGA
1367.
DMSO
1
2
1



TTGGCTCCTGG



CTCAGCG

ACACCACA














GGCAGA










OT1-33

TGGTGTTGGGAG

1368.
4

ATCGACGAGGAGG
1369.
CCCCTCAC
1370.
DMSO
0
3
1



TCTGCTCCAGG



GGGCCTT

TCAAGCAG














GCCC










OT1-34

TTGGGGGGGCAG

1371.
4

TGCTCAAGGGGCC
1372.
CAGGGGCA
1373.
No
1
3
0



TTTGCTCCTGG



TGTTCCA

GTGGCAGG

DMSO












AGTC










OT1-35

AAGTAAGGGAAG

1374.
5

TGCCTGGCACGCA
1375.
GGGAAGGG
1376.
DMSO
0
0
5



TTTGCTCCTGG



GTAGGTG

GGAACAGG














TGCA










OT1-36

AGAAGAGGGGAT

1377.
5

Not optimized




1
1
3



TTTGCTCCTGG
















OT1-37

ATCTGGGGTGAT

1378.
5

ACCTGGGCTTGCC
1379.
GCTGCTCG
1380.
DMSO
1
3
1



TTTGCTCCTGG



ACTAGGG

CAGTTAAG














CACCA










OT1-38

CTCTGCTGGGAG

1381.
5

GTGGCCGGGCTAC
1382.
GGTTCCAC
1383.
DMSO
3
2
0



TTTGCTCCTGG



TGCTACC

AAGCTGGG














GGCA










OT1-39

CTGGTGGGGGAG

1384.
5

Not optimized




1
3
1




CTTGCTCCAGG

















OT1-40

CTTTCGGGGGAG

1385.
5

GCAAGAGGCGGAG
1386.
AGAGTCAT
1387.
DMSO
2
3
0



TTTGCGCCGGG



GAGACCC

CCATTTCC














TGGGGGC










OT1-41

CTTTGGGGTTAG

1388.
5

GGGGTCAGTGGTG
1389.
AGGGAATC
1390.
1M
1
4
0



TTTGCTCCTGG



ATATCCCCCT

CTTTTTCC

betaine,












ATTGCTTG

TD












TTT










OT1-42
GCTCTGGGGTAG
1391.
5

AGAGAGGCCACGT
1392.
GCCTCCCC
1393.
DMSO
1
3
1



TTTGCTCCAGG



GGAGGGT

TCCTCCTT














CCCA










OT1-43
GTCTCTCGGGAG
1394.
5

GACAGTGCCTTGC
1395.
TCTGACCG
1396.
DMSO
3
2
0



TTTGCTCCGGG



GATGCAC

GTATGCCT














GACG










OT1-44

TCCTGAGGGCAG

1397.
5

TGTGTGAACGCAG
1398.
TGGTCTAG
1399.
DMSO
3
1
1



TTTGCTCCAGG



CCTGGCT

TACTTCCT














CCAGCCTT










OT1-45

TCTTTGGGAGAG

1400.
5

GGTTCTCCCTTGG
1401.
CCCACTGC
1402.
DMSO
1
3
1



TTTGCTCCAGG



CTCCTGTGA

TCCTAGCC














CTGC










OT1-46

ACAACTGGGGAG

1403.
6

TGAAGTCAACAAT
1404.
AGCTTTGG
1405.
DMSO
3
1
2



TTTGCTCCTGG



CTAAGCTTCCACC

TAGTTGGA












T

GTCTTTGA














AGG










OT1-47

ACAAGGTGGAAG

1406.
6

TGATTGGGCTGCA
1407.
GCACAGCC
1408.
DMSO
2
1
3



TTTGCTCCTGG



GTTCATGTACA

TGCCCTTG














GAAG










OT1-48

ACATAGAAGGAG

1409.
6

TCCATGGGCCCCT
1410.
AGCGGCTT
1411.
DMSO
1
0
5



TTTGCTCCAGG



CTGAAAGA

CTGCTTCT














GCGA










OT1-49

AGACCCAGGGAG

1412.
6

GCGGTTGGTGGGG
1413.
GAGTTCCT
1414.
DMSO
2
0
4



TTTGCTCCCGG



TTGATGC

CCTCCCGC














CAGT










OT1-50

AGACCCAGGGAG

1415.
6

AGGCAAGATTTTC
1416.
GCTTTTGC
1417.
DMSO
2
0
4



TTTGCTCCCGG



CAGTGTGCAAGA

CTGGGACT














CCGC










OT1-51

CACGGAGGGGTG

1418.
6

GCTGCTGGTCGGG
1419.
GCTCTGTC
1420.
No
3
1
2



TTTGCTCCTGG



CTCTCTG

CCACTTCC

DMSO












CCTGG

TD








OT1-52

CAGAGCTTGGAG

1421.
6

GCTGCGAGGCTTC
1422.
CGCCCCTA
1423.
DMSO
3
2
1



TTTGCTCCAGG



CGTGAGA

GAGCTAAG














GGGGT










OT1-53

CTATTGATGGAG

1424.
6

CCAGGAGCCTGAG
1425.
AGGGCTAG
1426.
DMSO
1
3
2



TTTGCTCCTGG



AGCTGCC

GACTGCAG














TGAGC










OT1-54

CTTTCTAGGGAG

1427.
6

CTGTGCTCAGCCT
1428.
GCCTGGGG
1429.
DMSO
2
3
1



TTTGCTCCTGG



GGGTGCT

CTGTGAGT














AGTTT










OT1-55
GCCATGCTGGAG
1430.
6

AGCTCGCGCCAGA
1431.
ACTTGGCA
1432.
72° C.
4
2
0



TTTGCTCCAGG



TCTGTGG

GGCTGAGG

Anneal,












CAGG

3%














DMSO










1433.



1434.

1435.









Target 2
GACCCCCTCCAC
1436.
0

AGAGAAGTCGAGG
1437.
CAGCAGAA
1438.
DMSO






CCCGCCTCCGG



AAGAGAGAG

AGTTCATG














GTTTCG










OT2-1
GACCCCCCCCAC
1439.
2

TGGACAGCTGCAG
1440.
ACTGATCG
1441.
DMSO
0
0
2



CCCGCCCCCGG



TACTCCCTG

ATGATGGC














CTATGGGT










OT2-2
GGGCCCCTCCAC
1442.
2

CAAGATGTGCACT
1443.
GCAGCCTA
1444.
DMSO
1
0
1



CCCGCCTCTGG



TGGGCTA

TTGTCTCC














TGGT










OT2-3

AACCCCATCCAC

1445.
3

GTCCAGTGCCTGA
1446.
AGCATCAT
1447.
DMSO
1
1
1



CCGGCCTCAGG



CCCTGGC

GCCTCCAG














CTTCA










OT2-4

CACCCCCTCAAC

1448.
3

GCTCCCGATCCTC
1449.
GCAGCTCC
1450.
DMSO
1
2
0




ACCGCCTCAGG




TGCCACC

CACCACCC














TCAG










OT2-5

CACCCCCTCCCC

1451.
3

GGGGACAGGCAGG
1452.
GTGCGTGT
1453.
DMSO
1
1
1




TCCGCCTCAGG




CAAGGAG

CCGTTCAC














CCCT










OT2-6

CTACCCCTCCAC

1454.
3

AAGGGGCTGCTGG
1455.
CGTGATTC
1456.
DMSO
2
1
0



CCCGCCTCCGG



GTAGGAC

GAGTTCCT














GGCA










OT2-7
GACCCGCCCCGC
1457.
3

GACCCTCAGGAAG
1458.
CTGCGAGA
1459.
1M
1
0
2



CCCGCCTCTGG



CTGGGAG

TGCCCCAA

betaine,












ATCG

TD








OT2-8
GATCGACTCCAC
1460.
3

CCGCGGCGCTCTG
1461.
TGCTGGGA
1462.
DMSO
1
1
1



CCCGCCTCTGG



CTAGA

TTACAGGC














GCGA










OT2-9
GCCCCCACCCAC
1463.
3

CCAGGTGGTGTCA
1464.
TGCCTGGC
1465.
DMSO
0
2
1



CCCGCCTCTGG



GCGGAGG

CCTCTCTG














AGTCT










OT2-10
GCCCCGCTCCTC
1466.
3

CGACTCCACGGCG
1467.
CAGCGCAG
1468.
1M
2
1
0



CCCGCCTCCGG



TCTCAGG

TCCAGCCC

betaine,












GATG

TD








OT2-11
GGCCCCCTCCAC
1469.
3

CTTCCCTCCCCCA
1470.
GCTACAGG
1471.
DMSO
1
1
1



CAGGCCTCAGG



GCACCAC

TTGCACAG














TGAGAGGT










OT2-12
GGCCCCCTCCTC
1472.
3

CCCCGGGGAGTCT
1473.
CCCAGCCG
1474.
72° C.
1
0
2



CTCGCCTCTGG



GTCCTGA

TTCCAGGT

Anneal,












CTTCC

3%














DMSO








OT2-13
GGCGCCCTCCAC
1475.
3

GAAGCGCGAAAAC
1476.
TCCAGGGT
1477.
DMSO
1
0
2



CCTGCCTCGGG



CCGGCTC

CCTTCTCG














GCCC










OT2-14
GTCCTCCACCAC
1478.
3

AGGGTGGTCAGGG
1479.
CATGGGGC
1480.
DMSO
2
0
1



CCCGCCTCTGG



AGGCCTT

TCGGACCT














CGTC










OT2-15

TACCCCCCACAC

1481.
3

GGGAAGAGGCAGG
1482.
TGCCAGGA
1483.
72° C.
0
2
1



CCCGCCTCTGG



GCTGTCG

AGGAAGCT

Anneal,












GGCC

3%














DMSO








OT2-16

AACCCATTCCAC

1484.
4

GAGTGACGATGAG
1485.
CCCTTAGC
1486.
68° C.
0
1
3



CCTGCCTCAGG



CCCCGGG

TGCAGTCG

Anneal,












CCCC

3%














DMSO








OT2-17

ACACCCCCCCAC

1487.
4

CCCATGAGGGGTT
1488.
TGAAGATG
1489.
DMSO
0
2
2



CCCGCCTCAGG



TGAGTGC

GGCAGTTT














GGGG










OT2-18

AGCCCCCACCTC

1490.
4

CACCTGGGGCATC
1491.
ACTGGGGT
1492.
DMSO
2
0
2



CCCGCCTCGGG



TGGGTGG

TGGGGAGG














GGAT










OT2-19

ATTCCCCCCCAC

1493.
4

TCATGATCCCCAA
1494.
CCATTTGT
1495.
DMSO
1
0
3



CCCGCCTCAGG



AAGGGCT

GCTGATCT














GTGGGT










OT2-20

CCCCACCCCCAC

1496.
4

TGGTGCCCAGAAT
1497.
AGGAAATG
1498.
DMSO
1
2
1



CCCGCCTCAGG



AGTGGCCA

TGTTGTGC














CAGGGC










OT2-21

CCCCCCCACCAC

1499.
4

GCCTCAGACAACC
1500.
GCCAAGTG
1501.
No
2
1
1



CCCGCCCCGGG



CTGCCCC

TTACTCAT

DMSO












CAAGAAAG

TD












TGG










OT2-22

CCCCCCCCCCCC

1502.
4

GCCGGGACAAGAC
1503.
TCCCGAAC
1504.
DMSO
1
2
1



CCCGCCTCAGG



TGAGTTGGG

TCCCGCAA














AACG










OT2-23

CGCCCTCCCCAC

1505.
4

TGCTGCAGGTGGT
1506.
CTGGAACC
1507.
No
1
0
3



CCCGCCTCCGG



TCCGGAG

GCATCCTC

DMSO












CGCA

TD








OT2-24

CTCCCCACCCAC

1508.
4

ACACTGGTCCAGG
1509.
GGCTGTGC
1510.
DMSO
2
1
1



CCCGCCTCAGG



TCCCGTCT

CTTCCGAT














GGAA










OT2-25

CTCTCCCCCCAC

1511.
4

CTCTCCCCCCACCC

ATCGCGCCCAAAG
1512.
AGGCTTCT
1513.
DMSO
3
0
2



CCCGCCTCTGG


CCCCTCTGG (SEQ
CACAGGT

GGAAAAGT











ID NO: 2227)


CCTCAATG














CA










OT2-26
GCCTCTCTGCAC
1514.
4

Not optimized




1
1
2



CCCGCCTCAGG
















OT2-27
GTCACTCCCCAC
1515.
4

CCCTCATGGTGGT
1516.
AGCCACAC
1517.
DMSO
1
1
2



CCCGCCTCTGG



CTTACGGCA

ATCTTTCT














GGTAGGG










OT2-28

TGCCCCCTCCCC

1518.
4

TGCGTCGCTCATG
1519.
AGGGTGGG
1520.
DMSO
0
3
1



CCAGCCTCTGG



CTGGGAG

GTGTACTG














GCTCA










OT2-29

TGCCCCTCCCAC

1521.
4

GAGCTGAGACGGC
1522.
TGGCCTTG
1523.
1M
0
1
3



CCCGCCTCTGG



ACCACTG

AACTCTTG

betaine,












GGCT

TD








OT2-30

TTCCCCTTCCAC

1524.
4

Not optimized




1
2
1



CCAGCCTCTGG
















OT2-31

TTCTCCCTCCTC

1525.
4

AGTGAGAGTGGCA
1526.
CAGTAGGT
1527.
DMSO
2
1
1



CCCGCCTCGGG



CGAACCA

GGTCCCTT














CCGC










OT2-32

ACCCTCGCCCAC

1528.
5

Not optimized




1
1
3



CCCGCCTCAGG
















OT2-33

AGCCAACCCCAC

1529.
5

GGGAGAACCTTGT
1530.
AAGCCGAA
1531.
DMSO
0
2
3



CCCGCCTCTGG



CCAGCCT

AAGCTGGG














CAAA










OT2-34

AGGCCCCCACAC

1532.
5

CTTCCCAGTGTGG
1533.
ACACAGTC
1534.
DMSO
1
1
3



CCCGCCTCAGG



CCCGTCC

AGAGCTCC














GCCG










OT2-35

AGGCCCCCCCGC

1535.
5

Not optimized




1
0
4



CCCGCCTCAGG
















OT2-36

ATCTGCCACCAC

1536.
5

CTGAGAGGGGGAG
1537.
TCGACTGG
1538.
68° C.
3
0
2



CCCGCCTCCGG



GGGGAGG

TCTTGTCC

Anneal,












TCCCA

3%














DMSO








OT2-37

CATCTTCCCCAC

1539.
5

CAGCCTGCTGCAT
1540.
TGCAGCCA
1541.
1M
1
0
4



CCCGCCTCTGG



CGGAAAA

AGAGAAAA

betaine,












AGCCT

TD








OT2-38

CTTTCCCTCCAC

1542.
5

TCCCTCTGACCCG
1543.
ACCCGACT
1544.
DMSO
2
1
2



CCAGCCTCTGG



GAACCCA

TCCTCCCC














ATTGC










OT2-39
GTCGAGGTCCAC
1545.
5

TGGGGGTTGCGTG
1546.
GCCAGGAG
1547.
DMSO
4
1
0



CCCGCCTCAGG



CTTGTCA

GACACCAG














GACC










OT2-40
GTCGAGGTCCAC
1548.
5

ATCAGGTGCCAGG
1549.
GGCCTGAG
1550.
DMSO
4
1
0



CCCGCCTCAGG



AGGACAC

AGTGGAGA














GTGG










OT2-41

TCAGACCTCCAC

1551.
5

Not optimized




1
4
0



CCCGCCTCAGG
















OT2-42

TGCAACCTCCTC

1552.
5

TGAGCCACATGAA
1553.
ACCTCTCC
1554.
DMSO
1
3
1



CCCGCCTCGGG



TCAAGGCCTCC

AAGTCTCA














GTAACTCT














CT










OT2-43

ACCAGTCTGCAC

1555.
6

GGTCCCTCTGTGC
1556.
CTTTGGTG
1557.
DMSO
2
2
2



CCCGCCTCTGG



AGTGGAA

GACCTGCA














CAGC










OT2-44

ACTACCCACCTC

1558.
6

GCGAGGCTGCTGA
1559.
GCTGGGAC
1560.
DMSO
2
2
2



CCCGCCTCAGG



CTTCCCT

TACAGACA














TGTGCCA










OT2-45

ATTTCCCCCCCC

1561.
6

ATTTCCTCCCCCCC

ATTGCAGGCGTGT
1562.
AAATCCTG
1563.
DMSO
1
1
5



CCCGCCTCAGG


C-CCTCAGG (SEQ
CCAGGCA

CATGGTGA











ID NO:2228)


TGGGAGT










OT2-46

CCACCATCCCAC

1564.
6

TGCTCTGCCATTT
1565.
ACAGCCTC
1566.
DMSO
1
3
2



CCCGCCTCTGG



ATGTCCTATGAAC

TTCTCCAT












T

GACTGAGC










OT2-47

CCCAAGCCCCAC

1567.
6

TCCGCCCAAACAG
1568.
GCGGTGGG
1569.
DMSO
2
3
1



CCCGCCTCGGG



GAGGCAG

GAAGCCAT














TGAG










OT2-48

CCGCGCTTCCGC

1570.
6

GGGGGTCTGGCTC
1571.
CCTGTCGG
1572.
DMSO
3
1
2



CCCGCCTCTGG



ACCTGGA

GAGAGTGC














CTGC










OT2-49

CCTGCCATGCAC

1573.
6

TCCTGGTTCATTT
1574.
ACTCCAGA
1575.
DMSO
3
2
1



CCCGCCTCAGG



GCTAGAACTCTGG

TGCAACCA












A

GGGCT










OT2-50

CTGCCTCCTCAC

1576.
6

CGTGTGGTGAGCC
1577.
GCTTCACC
1578.
DMSO
3
0
3



CCCGCCTCAGG



TGAGTCT

GTAGAGGC














TGCT










OT2-51

TCTTCTTTCCAC

1579.
6

AGGCCCTGATAAT
1580.
TCAGTGAC
1581.
DMSO
0
2
4



CCCGCCTCAGG



TCATGCTACCAA

AACCTTTT














GTATTCGG














CA










OT2-52

TTGACCCCCCGC

1582.
6

Not optimized




2
2
2



CCCGCCTCAGG
















Target 3
GGTGAGTGAGTG
1583.
0

TCCAGATGGCACA
1584.
AGGGAGCA
1585.
DMSO






TGTGCGTGTGG



TTGTCAG

GGAAAGTG














AGGT










OT3-1
GGTGAGTGAGTG
1586.
1

GCAGGCAAGCTGT
1587.
CACCGACA
1588.
DMSO
0
0
1



TGTGTGTGAGG



CAAGGGT

CACCCACT














CACC










OT3-2

AGTGAGTGAGTG

1589.
2

GAGGGGGAAGTCA
1590.
TACCCGGG
1591.
DMSO
0
0
2



TGTGTGTGGGG 



CCGACAA

CCGTCTGT














TAGA










OT3-3

AGTGTGTGAGTG

1592.
2

GACACCCCACACA
1593.
TGAATCCC
1594.
DMSO
1
0
1



TGTGCGTGTGG



CTCTCATGC

TTCACCCC














CAAG










OT3-4
GCTGAGTGAGTG
1595.
2

TCCTTTGAGGTTC
1596.
CCAATCCA
1597.
DMSO
1
0
1



TATGCGTGTGG



ATCCCCC

GGATGATT














CCGC










OT3-5
GGTGAGTCAGTG
1598.
2

CAGGGCCAGGAAC
1599.
GGGAGGTA
1600.
DMSO
1
1
0



TGTGAGTGAGG



ACAGGAA

TGTGCGGG














AGTG










OT3-6
GGTGAGTGAGAG
1601.
2

TGCAGCCTGAGTG
1602.
GCCCAGGT
1603.
DMSO
1
0
1



TGTGTGTGTGG



AGCAAGTGT

GCTAAGCC














CCTC










OT3-7
GGTGAGTGAGTG
1604.
2

TACAGCCTGGGTG
1605.
TGTGTCAT
1606.
1M
1
1
0




AGTGAGTGAGG




ATGGAGC

GGACTTTC

betaine,












CCATTGT

TD








OT3-8
GGTGAGTGAGTG
1607.
2

GGCAGGCATTAAA
1608.
TCTCCCCC
1609.
DMSO
1
1
0




AGTGAGTGAGG




CTCATCAGGTCC

AAGGTATC














AGAGAGCT










OT3-9
GGTGAGTGAGTG
1610.
2

GGGCCTCCCTGCT
1611.
GCTGCCGT
1612.
DMSO
0
1
1




CGTGCGGGTGG




GGTTCTC

CCGAACCC














AAGA










OT3-10
GGTGAGTGTGTG
1613.
2

ACAAACGCAGGTG
1614.
ACTCCGAA
1615.
DMSO
1
1
0



TGTGAGTGTGG



GACCGAA

AATGCCCC














GCAGT










OT3-11
GGTGAGTGTGTG
1616.
2

AGGGGAGGGGACA
1617.
TTGAGAGG
1618.
DMSO
1
0
1



TGTGCATGTGG



TTGCCT

GTTCAGTG














GTTGC










OT3-12
GGTGTGTGAGTG
1619.
2

CTAATGCTTACGG
1620.
AGCCAACG
1621.
DMSO
1
0
1



TGTGTGTGTGG



CTGCGGG

GCAGATGC














AAAT










OT3-13
GGTGTGTGTGTG
1622.
2

GAGCGAAGTTAAC
1623.
CACACATG
1624.
68° C.,
2
0
0



TGTGCGTGCGG



CCACCGC

CACATGCC

3%












CCTG

DMSO








OT3-14
GGTGTGTGTGTG
1625.
2

GCATGTGTCTAAC
1626.
TCCCCCAT
1627.
DMSO
2
0
0



TGTGCGTGTGG



TGGAGACAATAGC

ATCAACAC












A

ACACA










OT3-15
GGTGTGTGTGTG
1628.
2

GCCCCTCCCGCCT
1629.
TGGGCAAA
1630.
DMSO
2
0
0



TGTGCGTGTGG



TTTGTGT

GGACATGA














AACAGACA










OT3-16
GGTGTGTGTGTG
1631.
2

GCCTCAGCTCTGC
1632.
ACGAACAG
1633.
DMSO
2
0
0



TGTGCGTGTGG



TCTTAAGCCC

ATCATTTT














TCATGGCT














TCC










OT3-17
GTTGAGTGAATG
1634.
2

CTCCAGAGCCTGG
1635.
CCCTCTCC
1636.
DMSO
0
1
1



TGTGCGTGAGG



CCTACCA

GGAAGTGC














CTTG










OT3-18

TGTGGGTGAGTG

1637.
2

TCTGTCACCACAC
1638.
GTTGCCTG
1639.
DMSO
0
1
1



TGTGCGTGAGG



AGTTACCACC

GGGATGGG














GTAT










OT3-19

ACTGTGTGAGTG

1640.
3

GGGGACCCTCAAG
1641.
GGGCATCA
1642.
DMSO
2
0
1



TGTGCGTGAGG



AGGCACT

AAGGATGG














GGAT










OT3-20

AGAGAGTGAGTG

1643.
3

TGTGGAGGGTGGG
1644.
ACAGTGAG
1645.
DMSO
1
0
2



TGTGCATGAGG



ACCTGGT

GTGCGGTC














TTTGGG










OT3-21

AGCGAGTGGGTG

1646.
3

CGGGGTGGCAGTG
1647.
GGTGCAGT
1648.
DMSO
0
0
3



TGTGCGTGGGG



ACGTCAA

CCAAGAGC














CCCC










OT3-22

AGGGAGTGACTG

1649.
3

AGCTGAGGCAGAG
1650.
GGGAGACA
1651.
DMSO
1
1
1



TGTGCGTGTGG



TCCCCGA

GAGCAGCG














CCTC










OT3-23

AGTGAGTGAGTG

1652.
3

ACCACCAGACCCC
1653.
AGGACGAC
1654.
72C
1
1
1




AGTGAGTGAGG




ACCTCCA

TTGTGCCC

Anneal,












CATCA

3%














DMSO








OT3-24

CATGAGTGAGTG

1655.
3

GGGTCAGGACGCA
1656.
TCCACCCA
1657.
72° C.
2
0
1



TGTGGGTGGGG



GGTCAGA

CCCACCCA

Anneal,












TCCT

3%














DMSO








OT3-25

CGTGAGTGTGTG

1658.
3

ACACTCTGGGCTA
1659.
GCCCCCTC
1660.
DMSO
2
0
1



TATGCGTGTGG



GGTGCTGGA

ACCACATG














ATGCT










OT3-26
GGACTGTGAGTG
1661.
3

GGGGCCATTCCTC
1662.
TGGGGATC
1663.
DMSO
3
0
0



TGTGCGTGAGG



TGCTGCA

CTTGCTCA














TGGC










OT3-27
GGTGTGTGCCTG
1664.
3

ACACACTGGCTCG
1665.
CCTGCACG
1666.
DMSO
2
1
0



TGTGCGTGTGG



CATTCACCA

AGGCCAGG














TGTT










OT3-28
GTTTCATGAGTG
1667.
3

TGGGCACGTAGTA
1668.
CTCGCCGC
1669.
DMSO
0
3
1



TGTGCGTGGGG



AACTGCACCA

CGTGACTG














TAGG










OT3-29

TGAGTGTGAGTG

1670.
3

TCAGCTGGTCCTG
1671.
AGAGCACT
1672.
DMSO
2
1
0



TGTGCGTGGGG



GGCTTGG

GGGTAGCA














GTCAGT










OT3-30

TGCCAGTGAGTG

1673.
3

AGACACAGCCAGG
1674.
GGTGGGCG
1675.
68° C.,
1
1
1



TGTGCGTGTGG



GCCTCAG

TGTGTGTG

3%












TACC

DMSO








OT3-31

TGGGTGTGAGTG

1676.
3

ACACTCTCACACA
1677.
GAGAAGTC
1678.
72° C.
1
2
0



TGTGCGTGTGG



CGCACCAA

AGGGCTGG

Anneal,












CGGG

3%














DMSO








OT3-32

TGTATGTGAGTG

1679.
3

ACTGCCTGCATTT
1680.
TGGTGAGG
1681.
DMSO
1
1
1



TGTGCGTGTGG



CCCCGGT

GCTTCAGG














GAGC










OT3-33

TGTGAGAGAGAG

1682.
3

GCCAGGTTCATTG
1683.
TCCTTCTA
1684.
DMSO
2
1
0



TGTGCGTGTGG



ACTGCCC

CACATCGG














CGGC










OT3-34

TGTGCCTGAGTG

1685.
3

CGAGGGAGCCGAG
1686.
CTGACCTG
1687.
DMSO
1
2
0



TGTGCGTGTGG



TTCGTAA

GGGCTCTG














GTAC










OT3-35

TGTGTGTGTGTG

1688.
3

TCCTCGGGAAGTC
1689.
GCACTGAG
1690.
DMSO
2
1
0



TGTGCGTGTGG



ATGGCTTCA

CAACCAGG














AGCAC










OT3-36

AGCGTGTGAGTG

1691.
4

Not optimized




1
0
3



TATGCGTGGGG
















OT3-37

ATTGAGTGTGTG

1692.
4

TAAACCGTTGCCC
1693.
GCTCCCCT
1694.
DMSO
2
1
1




AGTGCGTGGGG




CCGCCTC

GCCAGGTG














AACC










OT3-38

CATGTGTGGGTG

1695.
4

CCTGCTGAGACTC
1696.
CTGCGGAG
1697.
DMSO
2
0
2



TGTGCGTGTGG



CAGGTCC

TGGCTGGC














TATA










OT3-39

CCCGAGTGTGTG

1698.
4

CTCGGGGACTGAC
1699.
GGAGCAGC
1700.
DMSO
3
0
1



TGTGCGTGTGG



AAGCCGG

TCTTCCAG














GGCC










OT3-40

CTGGAGTGAGTG

1701.
4

CCCCGACCAAAGC
1702.
CTGGCAGC
1703.
DMSO
1
2
1



TGTGTGTGTGG



AGGAGCA

CTCTGGAT














GGGG










OT3-41
GTTTCATGAGTG
1704.
4

Not optimized




0
3
1



TGTGCGTGGGG
















OT3-42

TATGTGTGCGTG

1705.
4

ATTTCAGAGCCCC
1706.
AGGCCGCG
1707.
DMSO
1
2
1



TGTGCGTGTGG



GGGGAAA

GTGTTATG














GTTA










OT3-43

TATGTGTGTGTG

1708.
4

GCCAGTGGCTTAG
1709.
TGACATAT
1710.
DMSO
2
1
1



TGTGCGTGGGG



TGTCTTTGTGT

TTTCCTGG














GCCATGGG














T










OT3-44

TCTGTGTGTGTG

1711.
4

TGCCAGAAGAACA
1712.
CCATGCTG
1713.
DMSO
3
1
0



TGTGCGTGGGG



TGGGCCAGA

ACATCATA














TACTGGGA














AGC










OT3-45

TCTGTGTGTGTG

1714.
4

GCGTGTCTCTGTG
1715.
CCAGGCTG
1716.
DMSO
3
1
0



TGTGCGTGTGG



TGCGTGC

GGCACACA














GGTT










OT3-46

TGAGCGTGAGTG

1717.
4

Not optimized




2
2
0



TGAGCGTGTGG
















OT3-47

TGTCTTTGAGTG

1718.
4

TGCCCAGTCCAAT
1719.
AGGATGAG
1720.
DMSO
2
2
0



TGTGCGTGTGG



ATTTCAGCAGCT

TTCATGTC














CTTTGTGG














GG










OT3-48

TTTGTGTGTGTG

1721.
4

GGGTGAAAATTTG
1722.
AATGACTC
1723.
DMSO
2
2
0



TGTGCGTGTGG



GTACTGTTAGCTG

ATTCCCTG












T

GGTATCTC














CCA










OT3-49

AAGGCGTGTGTG

1724.
5

TGCCCCATCAATC
1725.
CAAGGTCG
1726.
DMSO
1
2
2



TGTGCGTGTGG



ACCTCGGC

GCAGGGCA














GTGA










OT3-50

AATTCGTGTGTG

1727.
5

GCCTCCTCTGCCG
1728.
TGAGAGTT
1729.
DMSO
1
2
2



TGTGCGTGGGG



CTGGTAA

CCTGTTGC














TCCACACT










OT3-51

ATGGTGTGTGTG

1730.
5

Not optimized




2
2
1



TGTGCGTGTGG
















OT3-52

CACGTGTGTGTG

1731.
5

GCCACCAAAATAG
1732.
ACATGCAT
1733.
DMSO
3
0
2



TGTGCGTGTGG



CCAGCGT

CTGTGTGT














GCGT










OT3-53
GAAATTTGAGTG
1734.
5

ACAGACTGACCCT
1735.
TGTATCTT
1736.
DMSO
2
1
2



TGTGCGTGTGG



TGAAAAATACCAG 

TCTTGCCA












T

ATGGTTTT














CCC










OT3-54

TAAGTGTGTGTG

1737.
5

AGCCAAATTTCTC
1738.
TCCTGGAG
1739.
DMSO
3
1
1



TGTGCGTGTGG



AACAGCAGCACT

AGCAGGCA














TTTTTGT










OT3-55

TATATGTGTGTG

1740.
5

ACCTCCTTGTGCT
1741.
GGCGGGAA
1742.
DMSO
2
1
2



TGTGCGTGGGG



GGTAACCC

GCCTGGC














TGGG










OT3-56

TATCTGTGTGTG

1743.
5

CACAAAGCTCTAC
1744.
TGATCCGA
1745.
DMSO
3
1
1



TGTGCGTGTGG



CTTTCCAGTAGTG

TGGTTGTT












T

CACAGCT










OT3-57

TTTATGTGTGTG

1746.
5

TGTGGGGATTACC
1747.
ACGCACAA
1748.
DMSO
2
2
1



TGTGCGTGTGG



TGCCTGGC

AAATGCCC














TTGTCA










OT3-58

TTTTTGTGTGTG

1749.
5

TGAGGCAGACCAG
1750.
GCCCGAGC
1751.
DMSO
2
3
0



TGTGCGTGGGG



TCATCCAGC

ACAGTGTA














GGGC










OT3-59

AAAAATTGTGTG

1752.
6

ATTAGCTGGGCGT
1753.
ACTGCATC
1754.
DMSO
2
1
3



TGTGCGTGGGG



GGCGGAG

TCATCTCA














GGCAGCT










OT3-60

ACAATGTGTGTG

1755.
6

TGAAGCAGAAGGA
1756.
TCAGCTTC
1757.
DMSO
4
0
2



TGTGCGTGTGG



GTGGAGAAGGA

ACATCTGT














TTCAGTTC














AGT










OT3-61

ATGTGGTGTGTG

1758.
6

TGGTGGAGTGTGT
1759.
AGAGCAGA
1760.
DMSO
1
3
2



TGTGCGTGTGG



GTGTGGT

AAGAGAGT














GCCCA










OT3-62

CAAAATTGTGTG

1761.
6

GCCCCTGTACGTC
1762.
TGCACAAG
1763.
DMSO
3
1
2



TGTGCGTGTGG



CTGACAGC

CCACTTAG














CCTCTCT










OT3-63

CCCTGGTGTGTG

1764.
6

AGCGCAGGTAAAC
1765.
TCTCTCGC
1766.
DMSO
3
1
2



TGTGCGTGTGG



AGGCCCA

CCCGTTTC














CTTGT










OT3-64

TCCGCTTGTGTG

1767.
6

ATGGGTGCCAGGT
1768.
ACAGCAGG
1769.
DMSO
2
3
1



TGTGCGTGGGG



ACCACGC

AAGGAGCC














GCAG










OT3-65
TCCTCGTGTGTG
1770.
6

CGGGCGGGTGGAC
1771.
AGGAGGTC
1772.
DMSO
2
3
1



TGTGCGTGTGG



AGATGAG

TCGAGCCA














GGGG










OT3-66

TTAAGGTGGGTG

1773.
6

TCAACCTAGTGAA
1774.
GTCTATAT
1775.
DMSO
1
2
3



TGTGCGTGGGG



CACAGACCACTGA

ACAGCCCA














CAACCTCA














TGT










OT3-67

TTATATTGTGTG

1776.
6

GCCAGGGCCAGTG
1777.
TGTCATTT
1778.
DMSO
2
4
0



TGTGCGTGGGG



GATTGCT

CTTAGTAT














GTCAGCCG














GA










OT3-68

TTGAGGAGAGTG

1779.
6

GAGCCCCACCGGT
1780.
GCCAGAGC
1781.
DMSO
1
3
2



TGTGCGTGAGG



TCAGTCC

TACCCACT














CGCC












1782.



1783.

1784.









Target 4
GAGTCCGAGCAG
1785.
0

GGAGCAGCTGGTC
1786.
GGGAAGGG
1787.
DMSO






AAGAAGAAGGG



AGAGGGG

GGACACTG














GGGA










OT4-1
GAGTTAGAGCAG
1788.
2

TCTCTCCTTCAAC
1789.
ATCTGCAC
1790.
DMSO
0
1
1



AAGAAGAAAGG



TCATGACCAGCT

ATGTATGT














ACAGGAGT














CAT










OT4-2

AAGTCAGAGGAG

1791.
3

AAGACAGAGGAGAA

TGGGGAATCTCCA
1792.
AGGGTGTA
1793.
DMSO
2
1
1



AAGAAGAAGGG


GAAGAAGGG (SEQ
AAGAACCCCC

CTGTGGGA











ID NO: 2229)


ACTTTGCA










OT4-3

AAGTCCGAGGAG

1794.
3

GATGGCCCCACTG
1795.
ACTTCGTA
1796.
DMSO
1
0
2



AGGAAGAAAGG



AGCACGT

GAGCCTTA














AACATGTG














GC










OT4-4

AAGTCTGAGCAC

1797.
3

AGGATTAATGTTT
1798.
TCAAACAA
1799.
1M
1
0
2



AAGAAGAATGG



AAAGTCACTGGTG

GGTGCAGA

betaine,










G

TACAGCA

TD








OT4-5

ACGTCTGAGCAG

1800.
3

TCCAAGCCACTGG
1801.
TGCTCTGT
1802.
DMSO
0
1
2



AAGAAGAATGG



TTTCTCAGTCA

GGATCATA














TTTTGGGG














GA










OT4-6
GACTCCTAGCAA
1803.
3

ACTTTCAGAGCTT
1804.
CCCACGCT
1805.
DMSO
1
1
1



AAGAAGAATGG



GGGGCAGGT

GAAGTGCA














ATGGC










OT4-7
GAGACTGAGAAG
1806.
3

CAAAGCATGCCTT
1807.
GGCTCTTC
1808.
1M
1
1
1



AAGAAGAAAGG



TCAGCCG

GATTTGGC

betaine,












ACCT

TD








OT4-8
GAGCCGGAGCAG
1809.
3

Not optimized




1
0
2



AAGAAGGAGGG
















OT4-9
GAGCCTGAGCAG
1810.
3

GGACTCCCTGCAG
1811.
AGGAACAC
1812.
72° C.
0
0
3



AAGGAGAAGGG



CTCCAGC

AGGCCAGG

Anneal,












CTGG

6%














DMSO








OT4-10
GAGGCCGAGCAG
1813.
3

CCCTTTAGGCACC
1814.
CCGACCTT
1815.
DMSO
0
1
2



AAGAAAGACGG



TTCCCCA

CATCCCTC














CTGG










OT4-11
GAGTAAGAGAAG
1816.
3

TGATTCTGCCTTA
1817.
TGGGCTCT
1818.
DMSO
0
3
0



AAGAAGAAGGG



GAGTCCCAGGT

GTGTCCCT














ACCCA










OT4-12
GAGTAGGAGGAG
1819.
3

Not optimized




2
1
0



AAGAAGAAAGG
















OT4-13
GAGTCCGGGAAG
1820.
3

AGGCAGGAGAGCA
1821.
ACCCTGAC
1822.
DMSO
0
1
2




GAGAAGAAAGG




AGCAGGT

TACTGACT














GACCGCT










OT4-14
GATTCCTACCAG
1823.
3

CTCCCCATTGCGA
1824.
AGAGGCAT
1825.
DMSO
1
2
0



AAGAAGAATGG



CCCGAGG

TGACTTGG














AGCACCT










OT4-15
GCGACAGAGCAG
1826.
3

CTGGAGCCCAGCA
1827.
CCTCAGGG
1828.
DMSO
1
2
0



AAGAAGAAGGG



GGAAGGC

AGGGGGCC














TGAT










OT4-16

AAATCCAACCAG

1829.
4

ACTGTGGGCGTTG
1830.
AGGTCGGT
1831.
DMSO
1
0
3



AAGAAGAAAGG



TCCCCAC

GCAGGGTT














TAAGGA










OT4-17

AAGTCTGAGGAC

1832.
4

GGCGCTCCCTTTT
1833.
CGTCACCC
1834.
DMSO
2
0
2



AAGAAGAATGG



TCCCTTTGT

ATCGTCTC














GTGGA










OT4-18

AAGTTGGAGCAG

1835.
4

TGCCATCTATAGC
1836.
GCATCTTG
1837.
DMSO
1
0
3




GAGAAGAAGGG




AGCCCCCT

CTAACCGT














ACTTCTTC














TGA










OT4-19

AATACAGAGCAG

1838.
4

GTGGAGACGCTAA
1839.
GCTCCTGG
1840.
DMSO
1
2
1



AAGAAGAATGG



ACCTGTGAGGT

CCTCTTCC














TACAGC










OT4-20

AGGTACTAGCAG

1841.
4

CCGAACTTCTGCT
1842.
CCAAGTCA
1843.
DMSO
0
2
2



AAGAAGAAAGG



GAGCTTGATGC

ATGGGCAA














CAAGGGA










OT4-21

AGGTGCTAGCAG

1844.
4

Not optimized




1
1
2



AAGAAGAAGGG
















OT4-22

AGGTGGGAGCAG

1845.
4

TGCCCCCAAGACC
1846.
ATGGCAGG
1847.
DMSO
2
0
2



AAGAAGAAGGG



TTTCTCC

CAGAGGAG














GAAG










OT4-23

CAAACGGAGCAG

1848.
4

GGGTGGGGCCATT
1849.
CTGGGGCC
1850.
DMSO
3
0
1



AAGAAGAAAGG



GTGGGTT

AGGGTTTC














TGCC










OT4-24

CACTCTGAGGAG

1851.
4

TGGAGAACATGAG
1852.
TCCTTCTG
1853.
DMSO
3
0
1



AAGAAGAAAGG



AGGCTTGCAA

TAGGCAAT














GGGAACAA










OT4-25

CAGTCATGGCAG

1854.
4

GCCACATGGTAGA
1855.
GGCAGATT
1856.
1M
1
2
1



AAGAAGAAAGG



AGTCGGC

TCCCCCAT

betaine,












GCTG

TD








OT4-26

CCGTCCCAGCAG

1857.
4

TGTACACCCCAAG
1858.
AAGGGGAG
1859.
DMSO
3
1
0




TAGAAGAATGG




TCCTCCC

TGTGCAAG














CCTC










OT4-27
GTCTGCGATCAG
1860.
4

AGGTCTGGCTAGA
1861.
AGTCCAAC
1862.
DMSO
3
1
0



AAGAAGAAAGG



GATGCAGCA

ACTCAGGT














GAGACCCT










OT4-28

TAATCCAATCAG

1863.
4

CCAAGAGGACCCA
1864.
GGGTATGG
1865.
DMSO
0
2
2



AAGAAGAAGGG



GCTGTTGGA

AATTCTGG














ATTAGCAG














AGC










OT4-29

TATACGGAGCAG

1866.
4

ACCATCTCTTCAT
1867.
ACACTGTG
1868.
DMSO
2
2
0



AAGAAGAATGG



TGATGAGTCCCAA

AGTATGCT














TGGCGT










OT4-30

ACTTCCCTGCAG

1869.
5

GGCTGCGGGGAGA
1870.
TCGGATGC
1871.
DMSO
2
2
1



AAGAAGAAAGG



TGAGCTC

TTTTCCAC














AGGGCT










OT4-31

AGGACTGGGCAG

1872.
5

TCTTCCAGGAGGG
1873.
CCAATCCT
1874.
DMSO
1
0
4



AAGAAGAAGGG



CAGCTCC

GAGCTCCT














ACAAGGCT










OT4-32

AGGTTGGAGAAG

1875.
5

GAGCTGCACTGGA
1876.
TGCTGGTT
1877.
DMSO
1
1
3



AAGAAGAAGGG



TGGCACT

AAGGGGTG














TTTTGGA










OT4-33

AGTTCAGAGCAG

1878.
5

TCTGGGAAGGTGA
1879.
TGGGGGAC
1880.
DMSO
0
2
3




GAGAAGAATGG




GGAGGCCA

AATGGAAA














AGCAATGA










OT4-34

ATGACACAGCAG

1881.
5

CTTGCTCCCAGCC
1882.
AGCCCTTG
1883.
DMSO
3
1
1



AAGAAGAAGGG



TGACCCC

CCATGCAG














GACC










OT4-35

ATGACAGAGAAG

1884.
5

GGGATTTTTATCT
1885.
AACCACAG
1886.
DMSO
2
2
1



AAGAAGAAAGG



GTTGGGTGCGAA

ATGTACCC














TCAAAGCT










OT4-36

CCGCCCCTGCAG

1887.
5

ACCCATCAGGACC
1888.
TCTGGAAC
1889.
72° C.
3
1
1



AAGAAGAACGG



GCAGCAC

CTGGGAGG

Anneal,












CGGA

3%














DMSO








OT4-37
GCAGGAGAGCAG
1890.
5

CGTCCCTCACAGC
1891.
CCTCCTTG
1892.
DMSO
1
3
1



AAGAAGAAAGG



CAGCCTC

GGCCTGGG














GTTC










OT4-38
GTTCAAGAGCAG
1893.
5

CCCTCTGCAAGGT
1894.
AGATGTTC
1895.
DMSO
1
3
1



AAGAAGAATGG



GGAGTCTCC

TGTCCCCA














GGCCT










OT4-39
GTTTTGAAGCAG
1896.
5

GGCTTCCACTGCT
1897.
TGCCGCTC
1898.
DMSO
2
1
2



AAGAAGAAAGG



GAAGGCCT

CACATACC














CTCC










OT4-40

TATGGCAAGCAG

1899.
5

AGCATTGCCTGTC
1900.
AGCACCTA
1901.
DMSO
1
3
1



AAGAAGAAAGG



GGGTGATGT

TTGGACAC














TGGTTCTC














T










OT4-41

TGGTGGGATCAG

1902.
5

TCTAGAGCAGGGG
1903.
TGGAGATG
1904.
DMSO
2
2
1



AAGAAGAAAGG



CACAATGC

GAGCCTGG














TGGGA










OT4-42

ACCCACGGGCAG

1905.
6

GGTCTCAGAAAAT
1906.
CCCACAGA
1907.
DMSO
1
2
3



AAGAAGAAGGG



GGAGAGAAAGCAC

AACCTGGG












G

CCCT










OT4-43

ACTCCTGATCAG

1908.
6

GGTTGCTGATACC
1909.
TGGGTCCT
1910.
DMSO
0
3
3



AAGAAGAAGGG



AAAACGTTTGCCT

CTCCACCT














CTGCA










OT4-44

ACTGATGAGCAG

1911.
6

ACTCTCCTTAAGT
1912.
CAGAATCT
1913.
DMSO
0
4
2



AAGAAGAAAGG



ACTGATATGGCTG

TGCTCTGT












T

TGCCCA










OT4-45

ATTTTAGTGCAG

1914.
6

Not optimized




2
2
2



AAGAAGAAAGG
















OT4-46

ATTTTAGTGCAG

1915.
6

Not optimized




2
2
2



AAGAAGAAAGG
















OT4-47

CCATGGCAGCAG

1916.
6

CAATGCCTGCAGT
1917.
TCCCAAGA
1918.
DMSO
4
1
1



AAGAAGAAGGG



CCTCAGGA

GAAAACTC














TGTCCTGA














CA










OT4-48

CCATTACAGCAG

1919.
6

GCATTGGCTGCCC
1920.
TGGCTGTG
1921.
DMSO
2
2
2



AAGAAGAAGGG



AGGGAAA

CTGGGCTG














TGTT










OT4-49

CGAGGCGGGCAG

1922.
6

CCACAAGCCTCAG
1923.
ACAGGTGC
1924.
DMSO
2
1
3



AAGAAGAAAGG



CCTACCCG

CAAAACAC














TGCCT










OT4-50

TCATTGCAGCAG

1925.
6

TCATTGCAGCAGAA

GCCTCTTGCAAAT
1926.
CGATCAGT
1927.
DMSO
2/1
2/3
2



AAGAAGAAAGG


GAAGAAAGG
GAGACTCCTTTT

CCCCTGGC












TCATTGTAGCAGAA



GTCC











GAAGAAAGG (SEQ














ID NO: 2230)













OT4-51

TCTCCAGGGCAG

1928.
6

TCCCAGAATCTGC
1929.
AGGGGTTT
1930.
DMSO
0
4
2



AAGAAGAAAGG



CTCCGCA

CCAGGCAC














ATGGG












1931.



1932.

1933.









Target 5
GTCATCTTAGTC
1934.
0

TCCTAAAAATCAG
1935.
AAAGTGTT
1936.
DMSO






ATTACCTGAGG



TTTTGAGATTTAC

AGCCAACA












TTCC

TACAGAAG














TCAGGA










OT5-1
GGTATCTAAGTC
1937.
3
GGTATCTAAGTCAT
ACATCTGGGGAAA
1938.
TGTCTGAG
1939.
DMSO
1/2
1
1



ATTACCTGTGG


TACCTGTGG (SEQ
GCAAAAGTCAACA

TATCTAGG











ID NO: 2231)


CTAAAAGT











GGTATCTAAGTCAA


GGT











TACCTGTGG (SEQ














ID NO: 2232)













OT5-2
GTAATATTAGTC
1940.
3

ACGATCTTGCTTC
1941.
AGTGCTTT
1942.
DMSO
0
3
0



ATTACCGGTGG



ATTTCCCTGTACA

GTGAACTG














AAAAGCAA














ACA










OT5-3
GTAATCTGAGTC
1943.
3

GCACCTTGGTGCT
1944.
GGGCAACT
1945.
DMSO
1
2
0



ATTTCCTGGGG



GCTAAATGCC

GAACAGGC














ATGAATGG










OT5-4
GTCATCCTAGTC
1946.
3

AACTGTCCTGCAT
1947.
GGTGCACC
1948.
DMSO
1
1
1



ATTTACTGGGG



CCCCGCC

TGGATCCA














CCCA










OT5-5
GTCATCCTAGTG
1949.
3

Not optimized
1950.

1951.

1
1
1




CTTACCTGAGG

















OT5-6
GTCATCTGAGGC
1952.
3

CATCACCCTCCAC
1953.
ACCACTGC
1954.
72° C.
0
3
0



ATTAACTGGGG



CAGGCCC

TGCAGGCT

Anneal,












CCAG

3%














DMSO








OT5-7

AATATGTTAGTC

1955.
4

Not optimized




2
0
2



ATTACCTGAGG
















OT5-8

ATAAACGTAGTC

1956.
4

CCTGACCCGTGGT
1957.
TGGTGCGT
1958.
72° C.
1
2
1



ATTACCTGGGG



TCCCGAC

GGTGTGTG

Anneal,












TGGT

3%














DMSO








OT5-9

ATCATCATCGTC

1959.
4

TGGGAACATTGGA
1960.
CCATGTGA
1961.
DMSO
1
1
2



ATTATCTGGGG



GAAGTTTCCTGA

CTACTGGG














CTGCCC










OT5-10

ATCATTTTACTC

1962.
4

AGCCTTGGCAAGC
1963.
GGTTCTCT
1964.
DMSO
1
0
3



ATTACTTGTGG



AACTCCCT

CTCTCAGA














AAAGAAAG














AGG










OT5-11

ATCATTTTAGTC

1965.
4

GGCAGCGGACTTC
1966.
GCCAGAGG
1967.
DMSO
1
0
3



ATCTCCTGTGG



AGAGCCA

CTCTCAGC














AGTGC










OT5-12

CACAGCTTAGTC

1968.
4

CCAGCCTGGTCAA
1969.
ACTGTGCC
1970.
DMSO
2
1
1



ATCACCTGGGG



TATGGCA

CAGCCCCA














TATT










OT5-13

CCCAGCTTAGTC

1971.
4

ATGCCAACACTCG
1972.
CGGGTTGT
1973.
DMSO
2
1
1



ATTAGCTGTGG



AGGGGCC

GGCACCGG














GTTA










OT5-14

CTCACCTTTGTC

1974.
4

TTGCTCTAGTGGG
1975.
AGAGTTCA
1976.
DMSO
3
0
1



ATTTCCTGAGG



GAGGGGG

GGCATGAA














AAGAAGCA














ACA










OT5-15

CTCATTTTATTC

1977.
4

AGCTGAAGATAGC
1978.
TGCAATTT
1979.
DMSO
1
1
2



ATTGCCTGGGG



AGTGTTTAAGCCT

GAGGGGCT














CTCTTCA










OT5-16

CTCTCCTTAGTC

1980.
4

AGTCACTGGAGTA
1981.
TGCCAGCC
1982.
DMSO
2
0
2



ACTACCTGAGG



AGCCTGCCT

AAAAGTTG














TTAGTGTG














T










OT5-17

CTTATCTCTGTC

1983.
4

GGGTCTCCCTCAG
1984.
TGTGTGGT
1985.
DMSO
2
0
2



ATTACCTGGGG



TGCCCTG

AGGGAGCA














AAACGACA










OT5-18
GACAGCTCCGTC
1986.
4

TGGGGGCTGTTAA
1987.
TGACCACA
1988.
DMSO
1
2
1



ATTACCTGGGG



GAGGCACA

CACACCCC














CACG










OT5-19
GCCACCTCAGTC
1989.
4

TCAAAACAGATTG
1990.
TGTGTTTT
1991.
DMSO
1
0
3



ATTAGCTGGGG



ACCAAGGCCAAAT

TAAGCTGC














ACCCCAGG










OT5-20
GGAATCTTACTC
1992.
4

TCTGGCACCAGGA
1993.
GCACGCAG
1994.
DMSO
1
2
1



ATTACTTGGGG



CTGATTGTACA

CTGACTCC














CAGA










OT5-21
GTGGCCTCAGTC
1995.
4

Not optimized




1
0
3



ATTACCTGCGG
















OT5-22
GTTGTTTTAGTG
1996.
4

AGCATCTGTGATA
1997.
ACCAGGGC
1998.
DMSO
1
0
3



ATTACCTGAGG



CCCTACCTGTCT

TGCCACAG














AGTC










OT5-23

TACATCTTAGTC

1999.
4

TAGTCTTGTTGCC
2000.
CTCGGCCC
2001.
DMSO
1
2
1




CTCACCTGTGG




CAGGCTG

CTGAGAGT














TCAT










OT5-24

TCCATCTCACTC

2002.
4

TCCATCTCACTCAT

CTGCAACCAGGGC
2003.
GAGCAGCA
2004.
DMSO
1
1
2



ATTACCTGAGG


TACCTGAGG (SEQ
CCTTACC

GCAAAGCC











ID NO: 2233)


ACCG












TCCATCTCACTCAT















TACCTGATG (SEQ














ID NO: 2234)













OT5-25

TTCATCCTAGTC

2005.
4

GCCTGGAGAGCAA
2006.
AGCCGAGA
2007.
DMSO
1
1
2



AACACCTGGGG



GCCTGGG

CAATCTGC














CCCG










OT5-26

TTTATATTAGTG

2008.
4

TTTATATTAGTGAT

AGTGAAACAAACA
2009.
GGCAGGTC
2010.
No
1
2
1



ATTACCTGTGG


TACCTGCGG (SEQ
AGCAGCAGTCTGA

TGACCAGT

DMSO









ID NO: 2235)


GGGG

TD








OT5-27

AACGTGTAAGTC

2011.
5

AGGCTCAGAGAGG
2012.
TGAGTAGA
2013.
DMSO
3
0
2



ATTACCTGAGG



TAAGCAATGGA

CAGAAATG














TTACCGGT














GTT










OT5-28

AAGATCACAGTC

2014.
5

TCAGAGATGTTAA
2015.
AGTGAACC
2016.
DMSO
3
0
2



ATTACCTGGGG



AGCCTTGGTGGG

AAGGGAAT














GGGGGA










OT5-29

AGAATATTAGTC

2017.
5

TGTGCTTTCTGGG
2018.
CACCTCAG
2019.
DMSO
0
4
1



CTTACCTGGGG



GTAGTGGCA

CCCTGTAG














TCCTGG










OT5-30

AGCAGATTAGTG

2020.
5

CCATTGGGTGACT
2021.
GCCACTGT
2022.
1M
1
3
1



ATTACCTGGGG



GAATGCACA

CCCCAGCC

betaine,












TATT

TD








OT5-31

AGTAGCTTAGTG

2023.
5

ACCAAGAAAGTGA
2024.
TGAGATGG
2025.
DMSO
1
2
2



ATTACCTGGGG



AAAGGAAACCC

CATACGAT














TTACCCA










OT5-32

CACGGCTTACTC

2026.
5

AGGGTGGGGACTG
2027.
TGGCATCA
2028.
DMSO
3
1
1



ATTACCTGGGG



AAAGGAGCT

CTCAGAGA














TTGGAACA














CA










OT5-33

CATATGTTAGGC

2029.
5

ACCAGTGCTGTGT
2030.
TCCTATGG
2031.
DMSO
3
1
1



ATTACCTGGGG



GACCTTGGA

GAGGGGAG














GCTTCT










OT5-34

CATTTCTTAGTC

2032.
5

CCAGGTGTGGTGG
2033.
GCATACGG
2034.
68° C.,
4
0
1



ATTTCCTGAGG



TTCATGAC

CAGTAGAA

3%












TGAGCC

DMSO








OT5-35

TGCAGCTAACTC

2035.
5

CAGGCGCTGGGTT
2036.
CCTTCCTG
2037.
DMSO
2
3
0



ATTACCTGCGG



CTTAGCCT

GGCCCCAT














GGTG










OT5-36

TTGCTTTTAGTT

2038.
5

TGGGGTCCAAGAT
2039.
TGAAACTG
2040.
DMSO
1
2
2



ATTACCTGGGG



GTCCCCT

CTTGATGA














GGTGTGGA










OT5-37

AACTTGAAAGTC

2041.
6

GCTGGGCTTGGTG
2042.
ACTTGCAA
2043.
DMSO
5
0
1



ATTACCTGTGG



GTATATGC

AGCTGATA














ACTGACTG














A










OT5-38

AAGGTCACAGTC

2044.
6

AGTTGGTGTCACT
2045.
CGCAGCGC
2046.
DMSO
3
0
3



ATTACCTGGGG



GACAATGGGA

ACGAGTTC














ATCA










OT5-39

AATGTCTTCATC

2047.
6

AGAGGAGGCACAA
2048.
GGCTGGGG
2049.
DMSO
1
1
4



ATTACCTGAGG



TTCAACCCCT

AGGCCTCA














CAAT










OT5-40

AGATGCTTGGTC

2050.
6

GGGAAAGTTTGGG
2051.
AGGACAAG
2052.
DMSO
1
3
2



ATTACCTGTGG



AAAGTCAGCA

CTACCCCA














CACC










OT5-41

AGTAGATTAGTT

2053.
6

TGGTGCATCAAAG
2054.
TCATTCCA
2055.
DMSO
0
3
3



ATTACCTGGGG



GGTTGCTTCT

GCACGCCG














GGAG










OT5-42

AGTAGGTTAGTA

2056.
6

CCCAGGCTGCCCA
2057.
TGGAGTAA
2058.
DMSO
1
3
2



ATTACCTGGGG



TCACACT

GTATACCT














TGGGGACC














T










OT5-43

CAAATGAGAGTC

2059.
6

TCAGTGCCCCTGG
2060.
TGTGCAAA
2061.
DMSO
4
2
0



ATTACCTGAGG



GTCCTCA

TACCTAGC














ACGGTGC










OT5-44

CATGTCTGAATC

2062.
6

AGCACTCCCTTTT
2063.
ACTGAAGT
2064.
DMSO
2
1
3



ATTACCTGAGG



GAATTTTGGTGCT

CCAGCCTC














TTCCATTT














CA










OT5-45

CCTGACTTGGTC

2065.
6

GAAACCGGTCCCT
2066.
GGGGAGTA
2067.
DMSO
2
0
4



ATTACCTGTGG



GGTGCCA

GAGGGTAG














TGTTGCC










OT5-46

CGTGCATTAGTC

2068.
6

TTGCGGGTCCCTG
2069.
AGGTGCCG
2070.
DMSO
1
2
3



ATTACCTGAGG



TGGAGTC

TGTTGTGC














CCAA










Target 6
GGAATCCCTTCT
2071.
0

GCCCTACATCTGC
2072.
GGGCCGGG
2073.
DMSO






GCAGCACCTGG



TCTCCCTCCA

AAAGAGTT














GCTG










OT6-1
GGAACCCCGTCT
2074.
2

TTGGAGTGTGGCC
2075.
ACCTCTCT
2076.
DMSO
0
1
1



GCAGCACCAGG



CGGGTTG

TTCTCTGC














CTCACTGT










OT6-2
GGAACACCTTCT
2077.
3

CACACCATGCTGA
2078.
GCAGTACG
2079.
DMSO
1
1
1



GCAGCTCCAGG



TCCAGGC

GAAGCACG














AAGC










OT6-3
GGAAGCTCTGCT
2080.
3

CTCCAGGGCTCGC
2081.
CTGGGCTC
2082.
DMSO
0
2
1



GCAGCACCTGG



TGTCCAC

TGCTGGTT














CCCC










OT6-4
GGAATATCTTCT
2083.
3

CTGTGGTAGCCGT
2084.
CCCCATAC
2085.
DMSO
0
2
1



GCAGCCCCAGG



GGCCAGG

CACCTCTC














CGGGA










OT6-5
GGAATCACTTTT
2086.
3

GGTGGCGGGACTT
2087.
CCAGCGTG
2088.
1M
0
1
2




ACAGCACCAGG




GAATGAG

TTTCCAAG

betaine,












GGAT

TD








OT6-6
GGAATCCCCTCT
2089.
3
GGAATCCCCTCTCC
CCAGAGGTGGGGC
2090.
TTTCCACA
2091.
DMSO
1
1
1/2




CCAGCCCCTGG



AGCCCCTGG (SEQ
CCTGTGA

CTCAGTTC











ID NO:2236)


TGCAGGA











GGAATCCCCTCTCC














AGCCTCTGG (SEQ














ID NO: 2237)













OT6-7
GGAATCTCTTCT
2092.
3
GGAATCTCTTCCTT
TGTGACTGGTTGT
2093.
GCAGTGTT
2094.
1M
0
1
5




TCAGCATCTGG



GGCATCTGG (SEQ
CCTGCTTTCCT

TTGTGGTG

betaine,









ID NO: 2238)


ATGGGCA

TD








OT6-8
GGAATTGCTTCT
2095.
3

CTGGCCAAGGGGT
2096.
TGGGACCC
2097.
DMSO
1
0
2



GCAGCGCCAGG



GAGTGGG

CAGCAGCC














AATG










OT6-9
GGACTCCCCTCT
2098.
3

ACGGTGTGCTGGC
2099.
ACAGTGCT
2100.
DMSO
1
1
1



GCAGCAGCTGG



TGCTCTT

GACCGTGC














TGGG










OT6-10
GGAGTCCCTCCT
2101.
3

TGGTTTGGGCCTC
2102.
TGCCTCCC
2103.
DMSO
0
0
3




ACAGCACCAGG




AGGGATGG

ACAAAAAT














GTCTACCT










OT6-11
GGAGTCCCTCCT
2104.
3

TGGTTTGGGCCTC
2105.
ACCCCTTA
2106.
DMSO
0
0
3




ACAGCACCAGG




AGGGATGG

TCCCAGAA














CCCATGA










OT6-12
GGCATCCATTCT
2107.
3

TCCAAGTCAGCGA
2108.
TGGGAGCT
2109.
DMSO
0
3
0



GCAGCCCCTGG



TGAGGGCT

GTTCCTTT














TTGGCCA










OT6-13
GGCTTCCCTTCT
2110.
3

CACCCCTCTCAGC
2111.
GCTAGAGG
2112.
DMSO
1
2
0



GCAGCCCCAGG



TTCCCAA

GTCTGCTG














CCTT










OT6-14

TGAATCCCATCT

2113.
3

AGACCCCTTGGCC
2114.
CTTGCTCT
2115.
DMSO
2
1
0




CCAGCACCAGG




AAGCACA

CACCCCGC














CTCC










OT6-15

AAAATACCTTCT

2116.
4

ACATGTGGGAGGC
2117.
TCTCACTT
2118.
DMSO
0
1
3



GCAGTACCAGG



GGACAGA

TGCTGTTA














CCGATGTC














G










OT6-16

AAAATCCCTTCT

2119.
4

GGACGACTGTGCC
2120.
AGTGCCCA
2121.
72° C.
0
1
3




TCAACACCTGG




TGGGACA

GAGTGTTG

Anneal,












TAACTGCT

3%














DMSO








OT6-17

ACACTCCCTCCT

2122.
4

GGAGAGCTCAGCG
2123.
CAGCGTGG
2124.
DMSO
1
1
2



GCAGCACCTGG



CCAGGTC

CCCGTGGG














AATA










OT6-18

ACCATCCCTCCT

2125.
4

GCTGAAGTGCTCT
2126.
ACCCCACT
2127.
DMSO
1
1
2



GCAGCACCAGG



GGGGTGCT

GTGGATGA














ATTGGTAC














C










OT6-19

AGAGGCCCCTCT

2128.
4

TCGGGGTGCACAT
2129.
TTGCCTCG
2130.
DMSO
0
1
3



GCAGCACCAGG



GGCCATC

CAGGGGAA














GCAG










OT6-20

AGGATCCCTTGT

2131.
4

CTCGTGGGAGGCC
2132.
AGCCACCA
2133.
DMSO
2
0
2



GCAGCTCCTGG



AACACCT

ACACATAC














CAGGCT










OT6-21

CCACTCCTTTCT

2134.
4

GCATGCCTTTAAT
2135.
AGGATTTC
2136.
DMSO
2
1
1



GCAGCACCCGG



CCCGGCT

AGAGTGAT














GGGGCT










OT6-22
GAAGGCCCTTCA
2137.
4

CGCCCAGCCACAA
2138.
GCAAATTT
2139.
DMSO
1
1
2



GCAGCACCTGG



AGTGCAT

CTGCACCT














ACTCTAGG














CCT










OT6-23
GATATCCCTTCT
2140.
4

AGCTCACAAGAAT
2141.
GCAGTCAC
2142.
DMSO
1
1
2



GTATCACCTGG



TGGAGGTAACAGT

CCTTCACT














GCCTGT










OT6-24
GGGTCCGCTTCT
2143.
4

AAACTGGGCTGGG
2144.
GGGGCTAA
2145.
DMSO
2
0
2



GCAGCACCTGG



CTTCCGG

GGCATTGT














CAGACCC










OT6-25
GTCTCCCCTTCT
2146.
4

GCAGGTAGGCAGT
2147.
TCTCCTGC
2148.
1M
1
2
1



GCAGCACCAGG



CTGGGGC

CTCAGCCT

betaine,












CCCA

TD








OT6-26
GTCTCCCCTTCT
2149.
4

GCAGGTAGGCAGT
2150.
TCTCCTGC
2151.
1M
1
2
1



GCAGCACCAGG



CTGGGGC

CTCAGCCT

betaine,












CCCA

TD








OT6-27
GTCTCCCCTTCT
2152.
4

GCAGGTAGGCAGT
2153.
TCTCCTGC
2154.
1M
1
2
1



GCAGCACCAGG



CTGGGGC

CTCAGCCT

betaine,






CCCA







TD








OT6-28

TCATTCCCGTCT

2155.
4

GCTCTGGGGTAGA
2156.
GGCCTGTC
2157.
DMSO
2
2
0



GCAGCACCCGG



AGGAGGC

AACCAACC














AACC










OT6-29

TGCACCCCTCCT

2158.
4

TGACATGTTGTGT
2159.
AAATCCTG
2160.
DMSO
0
2
2



GCAGCACCAGG



GCTGGGC

CAGCCTCC














CCTT










OT6-30

TGCATACCCTCT

2161.
4

TCCTGGTGAGATC
2162.
TCCTCCCC
2163.
DMSO
0
3
1



GCAGCACCAGG



GTCCACAGGA

ACTCAGCC














TCCC










OT6-31

TGCATGGCTTCT

2164.
4

TCCTAATCCAAGT
2165.
AGGGACCA
2166.
DMSO
2
2
0



GCAGCACCAGG



CCTTTGTTCAGAC

GCCACTAC












A

CCTTCA










OT6-32

AATATTCCCTCT

2167.
5

GGGACACCAGTTC
2168.
GGGGGAGA
2169.
DMSO
1
0
4



GCAGCACCAGG



CTTCCAT

TTGGAGTT














CCCC










OT6-33

ACCATTTCTTCT

2170.
5

ACACCACTATCAA
2171.
TCTGCCTG
2172.
DMSO
1
1
3



GCAGCACCTGG



GGCAGAGTAGGT

GGGTGCTT














TCCC










OT6-34

AGCTCCCATTCT

2173.
5

CTGGGAGCGGAGG
2174.
GCCCCGAC
2175.
DMSO
1
2
2



GCAGCACCCGG



GAAGTGC

AGATGAGG














CCTC










OT6-35

CAGATTCCTGCT

2176.
5

CAGATTACTGCTGC

CGGGTCTCGGAAT
2177.
ACCCAGGA
2178.
DMSO
1
2
3



GCAGCACCGGG


AGCACCGGG (SEQ
GCCTCCA

ATTGCCAC











ID NO: 2239)


CCCC










OT6-36

CCAAGAGCTTCT

2179.
5

TTGCTGTGGTCCC
2180.
GCAGACAC
2181.
DMSO
3
2
0



GCAGCACCTGG



GGTGGTG

TAGAGCCC














GCCC










OT6-37

CCCAGCCCTGCT

2182.
5

GGTGTGGTGACAG
2183.
ACCTGCGT
2184.
DMSO
2
3
0



GCAGCACCCGG



GTCGGGT

CTCTGTGC














TGCA










OT6-38

CCCCTCCCTCCT

2185.
5

CTCCCAGGACAGT
2186.
CCTGGCCC
2187.
DMSO
2
2
1



GCAGCACCGGG



GCTCGGC

CATGCTGC














CTG










OT6-39

CTACTGACTTCT

2188.
5

TGCGTAGGTTTTG
2189.
AGGGAATG
2190.
DMSO
2
3
0



GCAGCACCTGG



CCTCTGTGA

ATGTTTTC














CACCCCCT










OT6-40

CTCCTCCCTCCT

2191.
5

CTCCGCAGCCACC
2192.
TGCATTGA
2193.
DMSO
1
3
1



GCAGCACCTGG



GTTGGTA

CGTACGAT














GGCTCA










OT6-41

TCTGTCCCTCCT

2194.
5

ACCTGCAGCATGA
2195.
ACCTGAGC
2196.
DMSO
2
1
2



GCAGCACCTGG



ACTCTCGCA

AACATGAC














TCACCTGG










OT6-42

ACACAAACTTCT

2197.
6

ACACAAACTTCTGC

TCTCCAGTTTCTT
2198.
ACCATTGG
2199.
1M
3/2
3
1



GCAGCACCTGG


AGCACCTGG
GCTCTCATGG

TGAACCCA

betaine,










ACACAAACTTCTGC



GTCA

TD









AGCACGTGG (SEQ














ID NO: 2240)













OT6-43

ACTGTCATTTCT

2200.
6

TGGGGTGGTGGTC
2201.
TCAGCTAT
2202.
DMSO
2
1
3



GCAGCACCTGG



TTGAATCCA

AACCTGGG














ACTTGTGC














T










OT6-44

ACTTTATCTTCT

2203.
6

AGCAGCCAGTCCA
2204.
CCCTTTCA
2205.
DMSO
3
1
2



GCAGCACCTGG



GTGTCCTG

TCGAGAAC














CCCAGGG










OT6-45

ATCCTTTCTTCT

2206.
6

TGGACGCTGCTGG
2207.
GAGGTCTC
2208.
DMSO
0
3
3



GCAGCACCTGG



GAGGAGA

GGGCTGCT














CGTG










OT6-46

CACCACCGTTCT

2209.
6

AGGTTTGCACTCT
2210.
TGGGGTGA
2211.
DMSO
3
2
1



GCAGCACCAGG



GTTGCCTGG

TTGGTTGC














CAGGT










OT6-47

CATGTGGCTTCT

2212.
6

TCTTCCTTTGCCA
2213.
TGCAGGAA
2214.
DMSO
4
0
2



GCAGCACCTGG



GGCAGCACA

TAGCAGGT














ATGAGGAG














T










OT6-48

CATTTTCTTTCT

2215.
6

GGACGCCTACTGC
2216.
GCCCTGGC
2217.
DMSO
3
0
3



GCAGCACCTGG



CTGGACC

AGCCCATG














GTAC










OT6-49

CTCTGTCCTTCT

2218.
6

AGGCAGTCATCGC
2219.
GGTCCCAC
2220.
DMSO
2
3
1



GCAGCACCTGG



CTTGCTA

CTTCCCCT














ACAA










OT6-50

CTGTACCCTCCT

2221.
6

Not optimized




3
1
2



GCAGCACCAGG
















OT6-51

TTGAGGCCGTCT

2222.
6

CCCCAGCCCCCAC
2223.
CAGCCCAG
2224.
DMSO
1
4
1



GCAGCACCGGG



CAGTTTC

GCCACAGC














TTCA









Sanger Sequencing for Quantifying Frequencies of Indel Mutations


Purified PCR products used for T7EI assay were ligated into a Zero Blunt TOPO vector (Life Technologies) and transformed into chemically competent Top 10 bacterial cells. Plasmid DNAs were isolated and sequenced by the Massachusetts General Hospital (MGH) DNA Automation Core, using an M13 forward primer (5′-GTAAAACGACGGCCAG-3′) (SEQ ID NO:1059).


Restriction Digest Assay for Quantifying Specific Alterations Induced by HDR with ssODNs


PCR reactions of specific on-target sites were performed using Phusion high-fidelity DNA polymerase (New England Biolabs). The VEGF and EMX1 loci were amplified using a touchdown PCR program ((98° C., 10 s; 72-62° C., —1° C./cycle, 15 s; 72° C., 30 s)×10 cycles, (98° C., 10 s; 62° C., 15 s; 72° C., 30 s)×25 cycles), with 3% DMSO. The primers used for these PCR reactions are listed in Table E. PCR products were purified by Ampure XP beads (Agencourt) according to the manufacturer's instructions. For detection of the BamHI restriction site encoded by the ssODN donor template, 200 ng of purified PCR products were digested with BamHI at 37° C. for 45 minutes. The digested products were purified by Ampure XP beads (Agencourt), eluted in 20ul 0.1×EB buffer and analyzed and quantified using a QIAXCEL capillary electrophoresis system.


TruSeq Library Generation and Sequencing Data Analysis


Locus-specific primers were designed to flank on-target and potential and verified off-target sites to produce PCR products ˜300 bp to 400 bps in length. Genomic DNAs from the pooled duplicate samples described above were used as templates for PCR. All PCR products were purified by Ampure XP beads (Agencourt) per the manufacturer's instructions. Purified PCR products were quantified on a QIAXCEL capillary electrophoresis system. PCR products for each locus were amplified from each of the pooled duplicate samples (described above), purified, quantified, and then pooled together in equal quantities for deep sequencing. Pooled amplicons were ligated with dual-indexed Illumina TruSeq adaptors as previously described (Fisher et al., 2011). The libraries were purified and run on a QIAXCEL capillary electrophoresis system to verify change in size following adaptor ligation. The adapter-ligated libraries were quantified by qPCR and then sequenced using Illumina MiSeq 250 bp paired-end reads performed by the Dana-Farber Cancer Institute Molecular Biology Core Facilities. We analyzed between 75,000 and 1,270,000 (average ˜422,000) reads for each sample. The TruSeq reads were analyzed for rates of indel mutagenesis as previously described (Sander et al., 2013). Specificity ratios were calculated as the ratio of observed mutagenesis at an on-target locus to that of a particular off-target locus as determined by deep sequencing. Fold-improvements in specificity with tru-RGNs for individual off-target sites were calculated as the specificity ratio observed with tru-gRNAs to the specificity ratio for that same target with the matched full-length gRNA. As mentioned in the text, for some of the off-target sites, no indel mutations were detected with tru-gRNAs. In these cases, we used a Poisson calculator to determine with a 95% confidence that the upper limit of the actual number of mutated sequences would be three in number. We then used this upper bound to estimate the minimum fold-improvement in specificity for these off-target sites.


Example 2a. Truncated gRNAs can Efficiently Direct Cas9-Mediated Genome Editing in Human Cells

To test the hypothesis that gRNAs truncated at their 5′ end might function as efficiently as their full-length counterparts, a series of progressively shorter gRNAs were initially constructed as described above for a single target site in the EGFP reporter gene, with the following sequence: 5′-











(SEQ ID NO: 2241)



5′-GGCGAGGGCGATGCCACCTAcGG-3′.







This particular EGFP site was chosen because it was possible to make gRNAs to it with 15, 17, 19, and 20 nts of complementarity that each have a G at their 5′ end (required for efficient expression from the U6 promoter used in these experiments). Using a human cell-based reporter assay in which the frequency of RGN-induced indels could be quantified by assessing disruption of a single integrated and constitutively expressed enhanced green fluorescent protein (EGFP) gene (Example 1 and Fu et al., 2013; Reyon et al., 2012) (FIG. 2B), the abilities of these variable-length gRNAs to direct Cas9-induced indels at the target site were measured.


As noted above, gRNAs bearing longer lengths of complementarity (21, 23, and 25 nts) exhibit decreased activities relative to the standard full-length gRNA containing 20 nts of complementary sequence (FIG. 2H), a result that matches those recently reported by others (Ran et al., Cell 2013). However, gRNAs bearing 17 or 19 nts of target complementarity showed activities comparable to or higher than the full-length gRNA, while a shorter gRNA bearing only 15 nts of complementary failed to show significant activity (FIG. 2H).


To test the generality of these initial findings, full-length gRNAs and matched gRNAs bearing 18, 17 and/or 16 nts of complementarity to four additional EGFP reporter gene sites (EGFP sites #1, #2, #3, and #4; FIG. 3A) were assayed. At all four target sites, gRNAs bearing 17 and/or 18 nts of complementarity functioned as efficiently as (or, in one case, more efficiently than) their matched full-length gRNAs to induce Cas9-mediated disruption of EGFP expression (FIG. 3A). However, gRNAs with only 16 nts of complementarity showed significantly decreased or undetectable activities on the two sites for which they could be made (FIG. 3A). For each of the different sites tested, we transfected the same amounts of the full-length or shortened gRNA expression plasmid and Cas9 expression plasmid. Control experiments in which we varied the amounts of Cas9 and truncated gRN A expression plasmids transfected for EGFP sites #1, #2, and #3 suggested that shortened gRNAs function equivalently to their full-length counterparts (FIG. 3E (bottom) and 3F (bottom)) and that therefore we could use the same amounts of plasmids when making comparisons at any given target site. Taken together, these results provide evidence that shortened gRNAs bearing 17 or 18 nts of complementarity can generally function as efficiently as full-length gRNAs and hereafter the truncated gRNAs with these complementarity lengths are referred to as “tru-gRNAs” and RGNs using these tru-gRNAs as “tru-RGNs”.


Whether tru-RGNs could efficiently induce indels on chromatinized endogenous gene targets was tested next. Tru-gRNAs were constructed for seven sites in three endogenous human genes (VEGFA, EMX1, and CLTA), including four sites that had previously been targeted with standard full-length gRNAs in three endogenous human genes: VEGFA site 1, VEGFA site 3, EMX1, and CTLA (Example 1 and Fu et al., 2013; Hsu et al., 2013; Pattanayak et al., 2013) (FIG. 3B). (It was not possible to test a tru-gRNA for VEGFA site 2 from Example 1, because this target sequence does not have the G at either position 17 or 18 of the complementarity region required for gRNA expression from a U6 promoter.) Using a well-established T7 Endonuclease I (T7EI) genotyping assay (Reyon et al., 2012) as described above, the Cas9-mediated indel mutation frequencies induced by each of these various gRNAs at their respective target sites was quantified in human U2OS.EGFP cells. For all five of the seven four sites, tru-RGNs robustly induced indel mutations with efficiencies comparable to those mediated by matched standard RGNs (FIG. 3B). For the two sites on which tru-RGNs showed lower activities than their full-length counterparts, we note that the absolute rates of mutagenesis were still high (means of 13.3% and 16.6%) at levels that would be useful for most applications. Sanger sequencing for three of these target sites (VEGFA sites 1 and 3 and EMX1) confirmed that indels induced by tru-RGNs originate at the expected site of cleavage and that these mutations are essentially indistinguishable from those induced with standard RGNs (FIG. 3C and FIGS. 7A-D).


We also found that tru-gRNAs bearing a mismatched 5′ G and an 18 nt complementarity region could efficiently direct Cas9-induced indels whereas those bearing a mismatched 5′ G and a 17 nt complementarity region showed lower or undetectable activities compared with matched full-length gRNAs (FIG. 7E), consistent with our findings that a minimum of 17 nts of complementarity is required for efficient RGN activity.


To further assess the genome-editing capabilities of tru-RGNs, their abilities to induce precise sequence alterations via HDR with ssODN donor templates were tested. Previous studies have shown that Cas9-induced breaks can stimulate the introduction of sequence from a homologous ssODN donor into an endogenous locus in human cells (Cong et al., 2013; Mali et al., 2013c; Ran et al., 2013; Yang et al., 2013). Therefore, the abilities were compared of matched full-length and tru-gRNAs targeted to VEGFA site 1 and to the EMX1 site to introduce a BamHI restriction site encoded on homologous ssODNs into these endogenous genes. At both sites, tru-RGNs mediated introduction of the BamHI site with efficiencies comparable to those seen with standard RGNs harboring their full-length gRNA counterparts (FIG. 3D). Taken together, this data demonstrate that tru-RGNs can function as efficiently as standard RGNs to direct both indels and precise HDR-mediated genome editing events in human cells.


Example 2b. Tru-RGNs Exhibit Enhanced Sensitivities to gRNA/DNA Interface Mismatches

Having established that tru-RGNs can function efficiently to induce on-target genome editing alterations, whether these nucleases would show greater sensitivity to mismatches at the gRNA/DNA interface was tested. To assess this, a systematic series of variants was constructed for the tru-gRNAs that were previously tested on EGFP sites #1, #2, and #3 (FIG. 3A above). The variant gRNAs harbor single Watson-Crick substitutions at each position within the complementarity region (with the exception of the 5′ G required for expression from the U6 promoter) (FIG. 5A). The human cell-based EGFP disruption assay was used to assess the relative abilities of these variant tru-gRNAs and an analogous set of matched variant full-length gRNAs made to the same three sites as described in Example 1 to direct Cas9-mediated indels. The results show that for all three EGFP target sites, tru-RGNs generally showed greater sensitivities to single mismatches than standard RGNs harboring matched full-length gRNAs (compare bottom and top panels of FIG. 5A). The magnitude of sensitivity varied by site, with the greatest differences observed for sites #2 and #3, whose tru-gRNAs harbored 17 nts of complementarity.


Encouraged by the increased sensitivity of tru-RGNs to single nucleotide mismatches, we next sought to examine the effects of systematically mismatching two adjacent positions at the gRNA-DNA interface. We therefore made variants of the tru-gRNAs targeted to EGFP target sites #1, #2, and #3, each bearing Watson-Crick transversion substitutions at two adjacent nucleotide positions (FIG. 5B). As judged by the EGFP disruption assay, the effects of adjacent double mismatches on RGN activity were again substantially greater for tru-gRNAs than for the analogous variants made in Example 1 for matched full-length gRNAs targeted to all three EGFP target sites (compare bottom to top panels in FIG. 5B). These effects appeared to be site-dependent with nearly all of the double-mismatched tru-gRNAs for EGFP sites #2 and #3 failing to show an increase in EGFP disruption activities relative to a control gRNA lacking a complementarity region and with only three of the mismatched tru-gRNA variants for EGFP site #1 showing any residual activities (FIG. 5B). In addition, although double mutations generally showed greater effects on the 5′ end with full-length gRNAs, this effect was not observed with tru-gRNAs. Taken together, our data suggest that tru-gRNAs exhibit greater sensitivities than full-length gRNAs to single and double Watson-Crick transversion mismatches at the gRNA-DNA interface.


Example 2c. Tru-RGNs Targeted to Endogenous Genes Show Improved Specificities in Human Cells

The next experiments were performed to determine whether tru-RGNs might show reduced genomic off-target effects in human cells relative to standard RGNs harboring full-length gRNA counterparts. We examined matched full-length and tru-gRNAs targeted to VEGFA site 1, VEGFA site 3, and EMX1 site 1 (described in FIG. 3B above) because previous studies (see Example 1 and Fu et al., 2013; Hsu et al., 2013) had defined 13 bona fide off-target sites for the full-length gRNAs targeted to these sites. (We were unable to test a tru-gRNA for VEGFA site 2 from our original study 6 because this target sequence does not have the G at either position 17 or 18 of the complementarity region required for efficient gRNA expression from a U6 promoter.) Strikingly, we found that tru-RGNs showed substantially reduced mutagenesis activity in human U2OS.EGFP cells relative to matched standard RGNs at all 13 of these bona fide off-target sites as judged by T7EI assay (Table 3A); for 11 of the 13 off-target sites, the mutation frequency with tru-RGNs dropped below the reliable detection limit of the T7EI assay (2-5%) (Table 3A). We observed similar results when these matched pairs of standard and tru-RGNs were tested at the same 13 off-target sites in another human cell line (FT-HEK293 cells) (Table 3A).


To quantify the magnitude of specificity improvement observed with tru-RGNs, we measured off-target mutation frequencies using high-throughput sequencing, which provides a more sensitive method for detecting and quantifying low frequency mutations than the T7EI assay. We assessed a subset of 12 of the 13 bona fide off-target sites for which we had seen decreased mutation rates with tru-gRNAs by T7EI assay (for technical reasons, we were unable to amplify the required shorter amplicon for one of the sites) and also examined an additional off-target site for EMX1 site 1 that had been identified by another group? (FIG. 6A). For all 13 off-target sites we tested, tru-RGNs showed substantially decreased absolute frequencies of mutagenesis relative to matched standard RGNs (FIG. 6A and Table 3B) and yielded improvements in specificity of as much as ˜5000-fold or more relative to their standard RGN counterparts (FIG. 6B). For two off-target sites (OT1-4 and OT1-11), it was difficult to quantify the on-target to off-target ratios for tru-RGNs because the absolute number and frequency of indel mutations induced by tru-RGNs fell to background or near-background levels. Thus, the ratio of on-target to off-target rates would calculate to be infinite in these cases. To address this, we instead identified the maximum likely indel frequency with a 95% confidence level for these sites and then used this conservative estimate to calculate the minimum likely magnitude of specificity improvement for tru-RGNs relative to standard RGNs for these off-targets. These calculations suggest tru-RGNs yield improvements of ˜10,000-fold or more at these sites (FIG. 6B).


To further explore the specificity of tru-RGNs, we examined their abilities to induce off-target mutations at additional closely related sites in the human genome. For the tru-gRNAs to VEGFA site 1 and EMX1, which each possess 18 nts of target site complementarity, we computationally identified all additional sites in the human genome mismatched at one or two positions within the complementarity region (not already examined above in Table 3A) and a subset of all sites mismatched at three positions among which we favored mismatches in the 5′ end of the site as described in Example 1. For the tru-gRNA to VEGFA site 3, which possesses 17 nts of target site complementarity, we identified all sites mismatched at one position and a subset of all sites mismatched at two positions among which mismatches in the 5′ end were favored (again not already examined in Table 3A). This computational analysis yielded a total of 30, 30, and 34 additional potential off-target sites for the tru-RGNs targeted to VEGFA site 1, VEFGA site 3, and the EMX1 site, respectively, which we then assessed for mutations using T7EI assay in human U2OS.EGFP and HEK293 cells in which the RGNs had been expressed.


Strikingly, the three tru-RGNs to VEGFA site 1, VEFGA site 3, and EMX1 did not induce detectable Cas9-mediated indel mutations at 93 of the 94 potential off-target sites examined in human U2OS.EGFP cells or at any of the 94 potential off-target sites in human HEK293 cells (Table 3C). For the one site at which off-target mutations were seen, whether the standard RGN with a full-length gRNA targeted to VEGFA site 1 could also mutagenize this same off-target site was examined; it induced detectable mutations albeit at a slightly lower frequency (FIG. 6C). The lack of improvement observed with shortening of the gRNA at this off-target site can be understood by comparing the 20 and 18 nt sequences for the full-length and tru-gRNAs, which shows that the two additional bases in the full-length 20 nt target are both mismatched (FIG. 6C). In summary, based on this survey of 94 additional potential off-target sites, shortening of the gRNA does not appear to induce new high-frequency off-target mutations.


Deep sequencing of a subset of the 30 most closely matched potential off-target sites from this set of 94 site (i.e.—those with one or two mismatches) showed either undetectable or very low rates of indel mutations (Table 3D) comparable to what we observed at other previously identified off-target sites (Table 3B). We conclude that tru-RGNs generally appear to induce either very low or undetectable levels of mutations at sites that differ by one or two mismatches from the on-target site. This contrasts with standard RGNs for which it was relatively easy to find high-frequency off-target mutations at sites that differed by as many as five mismatches (see Example 1).









TABLE 3A







On- and off-target mutation frequencies of matched tru-RGNs and standard RGNs


targeted to endogenous genes in human U2OS.EGFP and HEK293 cells
















SEQ
Indel mutation frequency

SEQ
Indel mutation frequency



Target

ID
(%) ± s.e.m.

ID
(%) ± s.e.m.

















ID
20mer Target
NO:
u2OS.EGFP
HEK293
NO:
NO:
u2OS.EGFP
HEK293
Gene





T1
GGGTGGGGGGAGTTTGCTCCtGG
2242.
23.69 ± 1.99
 6.98 ± 1.33
GTGGGGGGAGTTTGCTCCtGG
2243.
23.93 ± 4.37
 8.34 ± 0.01
VEGFA


OT1-3
GGATGGAGGGAGTTTGCTCCtGG
2244.
17.25 ± 2.97
 7.26 ± 0.62


A
TGGAGGGAGTTTGCTCCtGG

2245.
N.D.
N.D.
IGDCC3


OT1-4
GGGAGGGTGGAGTTTGCTCCtGG
2246.
 6.23 ± 0.20
 2.66 ± 0.30
GAGGGTGGAGTTTGCTCCtGG
2247.
N.D.
N.D.
LOC116437


OT1-6


C
GGGGGAGGGAGTTTGCTCCtGG

2248.
 3.73 ± 0.23
 1.41 ± 0.07
GGGGAGGGAGTTTGCTCCtGG
2249.
N.D.
N.D.
CACNA2D


OT1-11
GGGGAGGGGAAGTTTGCTCCtGG
2250.
 10.4 ± 0.7
 3.61 ± 0.02
GGAGGGGAAGTTTGCTCCtGG
2251.
N.D.
N.D.






T3
GGTGAGTGAGTGTGTGCGTGtGG
2252.
54.08 ± 1.02
22.97 ± 0.17
GAGTGAGTGTGTGCGTGtGG
2253.
50.49 ± 1.25
20.05 ± 0.01
VEGFA


OT3-1
GGTGAGTGAGTGTGTGTGTGaGG
2254.
 6.16 ± 0.98
 6.02 ± 0.11
GAGTGAGTGTGTGTGTGaGG
2255.
N.D.
N.D.
(abParts)


OT3-2


A
GTGAGTGAGTGTGTGTGTGgGG

2256.
19.64 ± 1.06
11.29 ± 0.27
GAGTGAGTGTGTGTGTGgGG
2257.
 5.52 ± 0.25
 3.41 ± 0.07
MAX


OT3-4
GCTGAGTGAGTGTATGCGTGtGG
2258.
 7.95 ± 0.11
 4.50 ± 0.02
GAGTGAGTGTATGCGTGtGG
2259.
 1.69 ± 0.26
 1.27 ± 0.10



OT3-9
GGTGAGTGAGTGCGTGCGGGtGG
2260.
N.D.
 1.09 ± 0.17
GAGTGAGTGCGTGCGGGtGG
2261.
N.D.
N.D.
TPCN2


OT3-17
GTTGAGTGAATGTGTGCGTGaGG
2262.
 1.85 ± 0.08
N.D.
GAGTGAATGTGTGCGTGaGG
2263.
N.D.
N.D.
SLIT1


OT3-18


T
GTGGGTGAGTGTGTGCGTGaGG

2264.
 6.16 ± 0.56
 6.27 ± 0.09
GGGTGAGTGTGTGCGTGaGG
2265.
N.D.
N.D.
COMDA


OT3-20


A
GAGAGTGAGTGTGTGCATGaGG

2266.
10.47 ± 1.08
 4.38 ± 0.58
GAGTGAGTGTGTGCATGaGG
2267.
N.D.
N.D.






T4
GAGTCCGAGCAGAAGAAGAAgGG
2268.
41.56 ± 0.20
12.65 ± 0.31
GTCCGAGCAGAAGAAGAAgGG
2269.
43.01 ± 0.87
17.25 ± 0.64
EMX1


OT4-1
GAGTTAGAGCAGAAGAAGAAaGG
2270.
19.26 ± 0.73
 4.14 ± 0.66
GTTAGAGCAGAAGAAGAAaGG
2271.
N.D.
N.D.
HCN1


OT-
GAGTCTAAGCAGAAGAAGAAgAG
2272.
 4.37 ± 0.58
N.D.
GTCTAAGCAGAAGAAGAAgAG
2273.
N.D.
N.D.
MFAP1


4_Hsu31





Mutation frequencies were measured by T7EI assay. Means of duplicate measurements are shown with error bars representing standard errors of the mean. *Off-target site OT4 53 is the same as EMX1 target 3 OT31 from Hsu et al., 2013.













TABLE 3B







Numbers of wild-type (WT) and indel mutation sequencing reads


from deep sequencing experiments











Control
tru-RGN
Standard RGN
















Site
Indel
WT
Freq.
Indel
WT
Freq.
Indel
WT
Freq.



















VEGFA site 1
45
140169
0.03%
122858
242127
33.66%
150652
410479
26.85%


OT1-3
0
132152
0.00%
1595
205878
0.77%
50973
144895
26.02%


OT1-4
0
133508
0.00%
0
223881
0.00%
22385
240873
8.50%


OT1-6
3
213642
0.00%
339
393124
0.09%
24332
424458
5.21%


OT1-11
1
930894
0.00%
0
274779
0.00%
43738
212212
17.09%


VEGFA site 3
5
212571
0.00%
303913
292413
50.96%
183626
174740
51.24%


OT3-2
1169
162545
0.71%
9415
277616
3.28%
26545
222482
10.66%


OT3-4
7
383006
0.00%
15551
1135673
1.35%
42699
546203
7.25%


OT3-9
73
145367
0.05%
113
227874
0.05%
1923
168293
1.13%


OT3-17
8
460498
0.00%
31
1271276
0.00%
16760
675708
2.42%


OT3-18
7
373571
0.00%
284
1275982
0.02%
72354
599030
10.78%


OT3-20
5
140848
0.00%
593
325162
0.18%
30486
202733
13.07%


EMX1 site 1
1
158838
0.00%
49104
102805
32.32%
128307
307584
29.44%


OT4-1
10
169476
0.01%
13
234039
0.01%
47426
125683
27.40%


OT4-52
2
75156
0.00%
10
231090
0.00%
429
340201
0.13%


OT4-53
0
234069
0.00%
6
367811
0.00%
17421
351667
4.72%









Freq.=frequency of indel mutations=number of indel sequences/number of wild-type sequences. Control gRNA=gRNA lacking a complementarity region









TABLE 3C







Indel mutation frequencies at potential off-target sites of tru-RGNs


targeted to endogenous genes in human cells















Indel mutation frequency




SEQ

(%) ± s.e.m.












Target

ID
Number of
U2OS.EGFP
HEK293 


ID
Target Site + PAM
NO:
mismatches
cells
cells





VEGFA
GTGGGGGGAGTTTGCTCCtGG
2274.
0 (on-target)
23.93 ± 4.37
 8.34 ± 0.01


Site 1
GTGGGGGGAGTTTGCCCCaGG
2275.
1
Not detected
Not detected



GTGGGGGGTGTTTGCTCCcGG
2276.
1
Not detected
Not detected



GTGGGTGGAGTTTGCTACtGG
2277.
2
Not detected
Not detected



GTGGGGGGAGCTTTCTCCtGG
2278.
2
Not detected
Not detected



GTGGGTGGCGTTTGCTCCaGG
2279.
2
Not detected
Not detected



GTGGAGGGAGCTTGCTCCtGG
2280.
2
 6.88 ± 0.19
Not detected



GTGGGTGGAGTTTGCTACaGG
2281.
2
Not detected
Not detected



GGGGGGGCAGTTTGCTCCtGG
2282.
2
Not detected
Not detected



GTGTGGGGAATTTGCTCCaGG
2283.
2
Not detected
Not detected




CTGCTGGGAGTTTGCTCCtGG

2284.
3
Not detected
Not detected




TTTGGGAGAGTTTGCTCCaGG

2285.
3
Not detected
Not detected




CTGAGGGCAGTTTGCTCCaGG

2286.
3
Not detected
Not detected



GTAAGGGAAGTTTGCTCCtGG
2287.
3
Not detected
Not detected



GGGGGTAGAGTTTGCTCCaGG
2288.
3
Not detected
Not detected



GGGTGGGGACTTTGCTCCaGG
2289.
3
Not detected
Not detected



GGGGGAGCAGTTTGCTCCaGG
2290.
3
Not detected
Not detected




TTGGGGTTAGTTTGCTCCtGG

2291.
3
Not detected
Not detected




TTGAGGGGAGTCTGCTCCaGG

2292.
3
Not detected
Not detected




CTGGGGTGATTTTGCTCCtGG

2293.
3
Not detected
Not detected



GAGAGGGGAGTTGGCTCCtGG
2294.
3
Not detected
Not detected




TTTGGGGGAGTTTGCCCCaGG

2295.
3
Not detected
Not detected




TTCGGGGGAGTTTGCGCCgGG

2296.
3
Not detected
Not detected




CTCGGGGGAGTTTGCACCaGG

2297.
3
Not detected
Not detected



GTGTTGGGAGTCTGCTCCaGG
2298.
3
Not detected
Not detected



GAGGGGGCAGGTTGCTCCaGG
2299.
3
Not detected
Not detected



GAGGGGAGAGTTTGTTCCaGG
2300.
3
Not detected
Not detected



GTGGCTGGAGTTTGCTGCtGG
2301.
3
Not detected
Not detected



GTCGGGGGAGTGGGCTCCaGG
2302.
3
Not detected
Not detected



GAGGGGGGAGTGTGTTCCgGG
2303.
3
Not detected
Not detected



GTGGTGGGAGCTTGTTCCtGG
2304.
3
Not detected
Not detected



GTGGGGGGTGCCTGCTCCaGG
2305.
3
Not detected
Not detected





VEGFA
GAGTGAGTGTGTGCGTGtGG
2306.0
(on-target)
50.49 ± 1.25
20.05 ± 0.01


Site 3
CAGTGAGTGTGTGCGTGtGG
2307.
1
Not detected
Not detected



GTGTGAGTGTGTGCGTGgGG
2308.
1
Not detected
Not detected



GTGTGAGTGTGTGCGTGaGG
2309.
1
Not detected
Not detected



GTGTGAGTGTGTGCGTGtGG
2310.
1
Not detected
Not detected



GAGTGTGTGTGTGCGTGtGG
2311.
1
Not detected
Not detected



GAGTGGGTGTGTGCGTGgGG
2312.
1
Not detected
Not detected



GAGTGACTGTGTGCGTGtGG
2313.
1
Not detected
Not detected



GAGTGAGTGTGTGGGTGgGG
2314.
1
Not detected
Not detected



GAGTGAGTGTGTGTGTGtGG
2315.
1
Not detected
Not detected



GAGTGAGTGTGTGTGTGtGG
2316.
1
Not detected
Not detected



GAGTGAGTGTGTGTGTGgGG
2317.
1
Not detected
Not detected



GAGTGAGTGTGTGTGTGtGG
2318.
1
Not detected
Not detected



GAGTGAGTGTGTGCGCGgGG
2319.
1
Not detected
Not detected




CTGTGAGTGTGTGCGTGaGG

2320.
2
Not detected
Not detected




ATGTGAGTGTGTGCGTGtGG

2321.
2
Not detected
Not detected



GCCTGAGTGTGTGCGTGtGG
2322.
2
Not detected
Not detected



GTGTGTGTGTGTGCGTGtGG
2323.
2
Not detected
Not detected



GTGTGGGTGTGTGCGTGtGG
2324.
2
Not detected
Not detected



GCGTGTGTGTGTGCGTGtGG
2325.
2
Not detected
Not detected



GTGTGTGTGTGTGCGTGgGG
2326.
2
Not detected
Not detected



GTGTGCGTGTGTGCGTGtGG
2327.
2
Not detected
Not detected



GTGTGTGTGTGTGCGTGcGG
2328.
2
Not detected
Not detected



GAGAGAGAGTGTGCGTGtGG
2329.
2
Not detected
Not detected



GAGTGTGTGAGTGCGTGgGG
2330.
2
Not detected
Not detected



GTGTGAGTGTGTGTGTGtGG
2331.
2
Not detected
Not detected



GAGTGTGTGTATGCGTGtGG
2332.
2
Not detected
Not detected



GAGTCAGTGTGTGAGTGaGG
2333.
2
Not detected
Not detected



GAGTGTGTGTGTGAGTGtGG
2334.
2
Not detected
Not detected



GAGTGTGTGTGTGCATGtGG
2335.
2
Not detected
Not detected



GAGTGAGAGTGTGTGTGtGG
2336.
2
Not detected
Not detected



GAGTGAGTGAGTGAGTGaGG
2337.
2
Not detected
Not detected





EMX1
GTCCGAGCAGAAGAAGAAgGG
2338.
0 (on-target)
43.01 ± 0.87
17.25 ± 0.64


site
GTCTGAGCAGAAGAAGAAtGG
2339.
1
Not detected
Not detected



GTCCCAGCAGTAGAAGAAtGG
2340.
2
Not detected
Not detected



GTCCGAGGAGAGGAAGAAaGG
2341.
2
Not detected
Not detected



GTCAGAGGAGAAGAAGAAgGG
2342.
2
Not detected
Not detected



GACAGAGCAGAAGAAGAAgGG
2343.
2
Not detected
Not detected



GTGGGAGCAGAAGAAGAAgGG
2344.
2
Not detected
Not detected



GTACTAGCAGAAGAAGAAaGG
2345.
2
Not detected
Not detected



GTCTGAGCACAAGAAGAAtGG
2346.
2
Not detected
Not detected



GTGCTAGCAGAAGAAGAAgGG
2347.
2
Not detected
Not detected




TACAGAGCAGAAGAAGAAtGG

2348.
3
Not detected
Not detected




TACGGAGCAGAAGAAGAAtGG

2349.
3
Not detected
Not detected




AACGGAGCAGAAGAAGAAaGG

2350.
3
Not detected
Not detected



GACACAGCAGAAGAAGAAgGG
2351.
3
Not detected
Not detected




CTGCGATCAGAAGAAGAAaGG

2352.
3
Not detected
Not detected



GACTGGGCAGAAGAAGAAgGG
2353.
3
Not detected
Not detected




TTCCCTGCAGAAGAAGAAaGG

2354.
3
Not detected
Not detected




TTCCTACCAGAAGAAGAAtGG

2355.
3
Not detected
Not detected




CTCTGAGGAGAAGAAGAAaGG

2356.
3
Not detected
Not detected




ATCCAATCAGAAGAAGAAgGG

2357.
3
Not detected
Not detected



GCCCCTGCAGAAGAAGAAcGG
2358.
3
Not detected
Not detected




ATCCAACCAGAAGAAGAAaGG

2359.
3
Not detected
Not detected



GACTGAGAAGAAGAAGAAaGG
2360.
3
Not detected
Not detected



GTGGGATCAGAAGAAGAAaGG
2361.
3
Not detected
Not detected



GACAGAGAAGAAGAAGAAaGG
2362.
3
Not detected
Not detected



GTCATGGCAGAAGAAGAAaGG
2363.
3
Not detected
Not detected



GTTGGAGAAGAAGAAGAAgGG
2364.
3
Not detected
Not detected



GTAAGAGAAGAAGAAGAAgGG
2365.
3
Not detected
Not detected




CTCCTAGCAAAAGAAGAAtGG

2366.
3
Not detected
Not detected




TTCAGAGCAGGAGAAGAAtGG

2367.
3
Not detected
Not detected



GTTGGAGCAGGAGAAGAAgGG
2368.
3
Not detected
Not detected



GCCTGAGCAGAAGGAGAAgGG
2369.
3
Not detected
Not detected



GTCTGAGGACAAGAAGAAtGG
2370.
3
Not detected
Not detected



GTCCGGGAAGGAGAAGAAaGG
2371.
3
Not detected
Not detected



GGCCGAGCAGAAGAAAGAcGG
2372.
3
Not detected
Not detected



GTCCTAGCAGGAGAAGAAgAG
2373.
3
Not detected
Not detected
















TABLE 3D







Frequencies of tru-RGN-induced indel mutations at potential off-


target sites in human U2OS.EGFP as determined by deep sequencing















On-



















target
Off-

tru-RGN
Control















site
target site sequence
S#
Indel
WT
Freq.
Indel
WT
Freq





VEGFA
GTGGGGGGAGTTTGCCCCaGG
2374.
1500
225640
0.66%
  3
135451
0.00%


site 1
GTGGGGGGTGTTTGCTCCcGG
2375.
1552
152386
1.01%
  0
 86206
0.00%



GTGGGTGGAGTTTGCTACtGG
2376.
   1
471818
0.00%
  0
199581
0.00%



GTGGGTGGAGTTTGCTACaGG
2377.
   0
337298
0.00%
  1
211547
0.00%



GTGGGTGGCGTTTGCTCCaGG
2378.
   2
210174
0.00%
  1
105531
0.00%



GTGTGGGGAATTTGCTCCaGG
2379.
 673
715547
0.09%
  1
387097
0.00%



GTGGGGGGAGCTTTCTCCtGG
2380.
   5
107757
0.00%
  1
 58735
0.00%



GGGGGGGCAGTTTGCTCCtGG
2381.
1914
566548
0.34%
  3
297083
0.00%





VEGFA
GTGTGAGTGTGTGCGTGtGG
2382.
  58
324881
0.02%
  9
122216
0.01%


site 3
GTGTGAGTGTGTGCGTGaGG
2383.
 532
194914
0.27%
 11
 73644
0.01%



GAGTGGGTGTGTGCGTGgGG
2384.
  70
237029
0.03%
 10
178258
0.01%



GAGTGACTGTGTGCGTGtGG
2385.
   6
391894
0.00%
  0
239460
0.00%



GAGTGAGTGTGTGGGTGgGG
2386.
  15
160140
0.01%
 10
123324
0.01%



GTGTGAGTGTGTGCGTGgGG
2387.
  19
138687
0.01%
  1
196271
0.00%





C
AGTGAGTGTGTGCGTGtGG

2388.
  78
546865
0.01%
 41
355953
0.01%



GTGTGAGTGTGTGCGTGtGG
2389.
 128
377451
0.03%
 56
133978
0.04%



GAGTGTGTGTGTGCGTGtGG
2390.
 913
263028
0.35%
 78
178979
0.04%



GAGTGAGTGTGTGTGTGtGG
2391.
  40
106933
0.04%
 36
 58812
0.06%



GAGTGAGTGTGTGTGTGtGG
2392.
 681
762999
0.09%
 63
222451
0.03%



GAGTGAGTGTGTGTGTGgGG
2393.
 331
220289
0.15%
100
113911
0.09%



GAGTGAGTGTGTGTGTGtGG
2394.
   0
 35725
0.00%
  8
186495
0.00%



GAGTGAGTGTGTGCGCGgGG
2395.
  94
246893
0.04%
 16
107623
0.01%








EMX1
GTCAGAGGAGAAGAAGAAgGG
2396.
   0
201483
0.00%
  4
148416
0.00%


site 1
GTCAGAGGAGAAGAAGAAgGG
2397.
  10
545662
0.00%
  5
390884
0.00%



GTCTGAGCACAAGAAGAAtGG
2398.
   2
274212
0.00%
  0
193837
0.00%



GTCTGAGCAGAAGAAGAAtGG
2399.
 440
375646
0.12%
 10
256181
0.00%



GACAGAGCAGAAGAAGAAgGG
2400.
   2
212472
0.00%
  1
158860
0.00%



GTACTAGCAGAAGAAGAAaGG
2401.
 152
229209
0.07%
103
157717
0.07%



GTGGGAGCAGAAGAAGAAgGG
2402.
  50
207401
0.02%
 36
111183
0.03%



GTCCCAGCAGTAGAAGAAtGG
2403.
   0
226477
0.00%
  1
278948
0.00%









Example 2d. Tru-gRNAs can be Used with Dual Cas9 Nickases to Efficiently Induce Genome Editing in Human Cells

tru-gRNAs were tested with the recently described dual Cas9 nickase approach to induce indel mutations. To do this, the Cas9-D10A nickase together with two full-length gRNAs targeted to sites in the human VEGFA gene (VEGFA site 1 and an additional sequence we refer to as VEGFA site 4) were co-expressed in U2OS.EGFP cells (FIG. 4A). As described previously (Ran et al., 2013), this pair of nickases functioned cooperatively to induce high rates of indel mutations at the VEGFA target locus (FIG. 4B). Interestingly, Cas9-D10A nickase co-expressed with only the gRNA targeted to VEGFA site 4 also induced indel mutations at a high frequency, albeit at a rate somewhat lower than that observed with the paired full-length gRNAs (FIG. 4B). Importantly, use of a tru-gRNA for VEGFA site 1 in place of a full-length gRNA did not affect the efficacy of the dual nickase approach to induce indel mutations (FIG. 4B).


The dual nickase strategy has also been used to stimulate the introduction of specific sequence changes using ssODNs (Mali et al., 2013a; Ran et al., 2013) and so whether tru-gRNAs might be used for this type of alteration was also tested. Paired full-length gRNAs for VEGFA sites 1 and 4 together with Cas9-D10A nickase cooperatively enhanced efficient introduction of a short insertion from a ssODN donor (FIG. 3A) into the VEGFA locus in human U2OS.EGFP cells as expected (FIG. 3C). Again, the efficiency of ssODN-mediated sequence alteration by dual nicking remained equally high with the use of a tru-gRNA in place of the full-length gRNA targeted to VEGFA site 1 (FIG. 3C). Taken together, these results demonstrate that tru-gRNAs can be utilized as part of a dual Cas9 nickase strategy to induce both indel mutations and ssODN-mediated sequence changes, without compromising the efficiency of genome editing by this approach.


Having established that use of a tru-gRNA does not diminish the on-target genome editing activities of paired nickases, we next used deep sequencing to examine mutation frequencies at four previously identified bona fide off-target sites of the VEGFA site 1 gRNA. This analysis revealed that mutation rates dropped to essentially undetectable levels at all four of these off-target sites when using paired nickases with a tru-gRNA (Table 4). By contrast, neither a tru-RGN (Table 3B) nor the paired nickases with full-length gRNAs (Table 4) was able to completely eliminate off-target mutations at one of these four off-target sites (OT1-3). These results demonstrate that the use of tru-gRNAs can further reduce the off-target effects of paired Cas9 nickases (and vice versa) without compromising the efficiency of on-target genome editing.









TABLE 4







Frequencies of paired nickase-induced indel mutations at on- and


off-target sites of VEGFA site 1 using full-length and tru-gRNAs











Paired full-length gRNAs
tru-gRNA/full-length gRNA
Control
















Site
Indel
WT
Freq.
Indel
WT
Freq.
Indel
WT
Freq.



















VEGFA











site 1
78905
345696
18.583%
65754
280720
18.978%
170
308478
0.055%


OT1-3
184
85151
0.216%
0
78658
0.000%
2
107850
0.002%


OT1-4
0
89209
0.000%
1
97010
0.001%
0
102135
0.000%


OT1-6
2
226575
0.001%
0
208218
0.000%
0
254580
0.000%


OT1-11
0
124729
0.000%
0
121581
0.000%
0
155173
0.000%









REFERENCES



  • Cheng, A. W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T. W., Rangarajan, S., Shivalila, C. S., Dadon, D. B., and Jaenisch, R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23, 1163-1171. (2013).

  • Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232 (2013). Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).

  • Cradick, T. J., Fine, E. J., Antico, C. J., and Bao, G. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. (2013).

  • Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res (2013).

  • Ding, Q., Regan, S. N., Xia, Y., Oostrom, L. A., Cowan, C. A., and Musunuru, K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12, 393-394. (2013).

  • Fisher, S., Barry, A., Abreu, J., Minie, B., Nolan, J., Delorey, T. M., Young, G., Fennell, T. J., Allen, A., Ambrogio, L., et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol 12, R1. (2011).

  • Friedland, A. E., Tzur, Y. B., Esvelt, K. M., Colaiacovo, M. P., Church, G. M., and Calarco, J. A. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10, 741-743. (2013).

  • Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., and Sander, J. D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826. (2013).

  • Gabriel, R. et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29, 816-823 (2011).

  • Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., et al. (2013). CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell 154,

  • Gratz, S. J. et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics (2013).

  • Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29, 731-734 (2011).

  • Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167-170 (2010).

  • Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E J., Wu, X., Shalem, O., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832. (2013).

  • Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227-229 (2013).

  • Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Kaini, P., Sander, J. D., Joung, J. K., Peterson, R. T., and Yeh, J. R. Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System. PLoS One 8, e68708. (2013a).

  • Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233-239 (2013).

  • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).

  • Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

  • Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., Li, Y., Gao, N., Wang, L., Lu, X., et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31, 681-683. (2013a).

  • Li, W., Teng, F., Li, T., and Zhou, Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31, 684-686. (2013b).

  • Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y., Ho, Q. H., and Joung, J. K. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10, 977-979. (2013).

  • Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L., and Church, G. M. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838. (2013a).

  • Mali, P., Esvelt, K. M., and Church, G. M. Cas9 as a versatile tool for engineering biology. Nat Methods 10, 957-963. (2013b).

  • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013c).

  • Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., and Liu, D. R. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31, 839-843. (2013).

  • Pattanayak, V., Ramirez, C. L., Joung, J. K. & Liu, D. R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8, 765-770 (2011).

  • Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26, 808-816 (2008).

  • Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10, 973-976. (2013).

  • Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., and Lim, W. A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183. (2013).

  • Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389. (2013).

  • Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotech 30, 460-465 (2012).

  • Sander, J. D., Maeder, M. L., Reyon, D., Voytas, D. F., Joung, J. K., and Dobbs, D. ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38, W462-468. (2010).

  • Sander, J. D., Ramirez, C. L., Linder, S. J., Pattanayak, V., Shoresh, N., Ku, M., Foden, J. A., Reyon, D., Bernstein, B. E., Liu, D. R., et al. In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. (2013).

  • Sander, J. D., Zaback, P., Joung, J. K., Voytas, D. F., and Dobbs, D. Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 35, W599-605. (2007).

  • Shen, B. et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res (2013).

  • Sugimoto, N. et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34, 11211-11216 (1995).

  • Tems, M. P. & Terns, R. M. CRISPR-based adaptive immune systems. Curr Opin Microbiol 14, 321-327 (2011).

  • Wang, H. et al. One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell 153, 910-918 (2013).

  • Wiedenheft, B., Stemberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331-338 (2012).

  • Yang, L., Guell, M., Byrne, S., Yang, J. L., De Los Angeles, A., Mali, P., Aach, J., Kim-Kiselak, C., Briggs, A. W., Rios, X., et al. (2013). Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41, 9049-9061.



OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims
  • 1. A method of modifying a target region of a double-stranded DNA molecule in a cell, the method comprising expressing in or introducing into the cell: (a) a S. pyogenes CRISPR dCas9-heterologous functional domain fusion protein (dCas9-HFD) and(b) a guide RNA that includes a complementarity region at the 5′ end of the guide RNA consisting of 17-18 nucleotides that are complementary to 17-18 consecutive nucleotides of the complementary strand of a selected target sequence present on a double-stranded DNA molecule;wherein the target sequence is immediately 5′ of a protospacer adjacent motif (PAM); wherein the guide RNA is: (i) a single guide RNA that includes a complementarity region at the 5′ end of the single guide RNA consisting of 17-18 nucleotides that are complementary to 17-18 consecutive nucleotides of the complementary strand of a selected target genomic sequence on a double stranded DNA molecule, or(ii) a crRNA that includes at the 5′ end of the crRNA a complementarity region consisting of 17-18 nucleotides that are complementary to 17-18 consecutive nucleotides of the complementary strand of a selected target genomic sequence, and a tracrRNA;wherein the guide RNA complementarity region binds and directs the dCas9-HFD to the target region of the double-stranded DNA molecule, thereby modifying the target region of a double-stranded DNA molecule in a cell; andwherein the dCas9-HFD comprises a heterologous functional domain (HFD) that modifies gene expression, histones, or DNA.
  • 2. The method of claim 1, wherein the HFD is a transcriptional activation domain, an enzyme that catalyzes DNA demethylation, an enzyme that catalyzes histone modification, or a transcription silencing domain.
  • 3. The method of claim 2, wherein the HFD is a transcriptional activation domain.
  • 4. The method of claim 3, wherein the transcriptional activation domain is from activator domain VP64.
  • 5. The method of claim 3, wherein the transcriptional activation domain is from NF-kappa B subunit p65 (NF-κB p65).
  • 6. The method of claim 2, wherein the HFD is an enzyme that catalyzes histone modification.
  • 7. The method of claim 6, wherein the enzyme that catalyzes histone modification is lysine-specific histone demethylase 1 (LSD1).
  • 8. The method of claim 6, wherein the enzyme that catalyzes histone modification is a histone methyltransferase (HNMT).
  • 9. The method of claim 6, wherein the enzyme that catalyzes histone modification is histone acetyltransferase (HAT).
  • 10. The method of claim 6, wherein the enzyme that catalyzes histone modification is histone deacetylase (HDAC).
  • 11. The method of claim 6, wherein the enzyme that catalyzes histone modification is histone demethylase.
  • 12. The method of claim 2, wherein the HFD is a transcription silencing domain.
  • 13. The method of claim 12, wherein the transcription silencing domain is Heterochromatin Protein 1 alpha (HP1α).
  • 14. The method of claim 12, wherein the transcription silencing domain is Heterochromatin Protein 1 beta (HP1β).
  • 15. The method of claim 1, wherein the target region is in a target genomic sequence.
  • 16. The method of claim 1, wherein the cell is a eukaryotic cell.
  • 17. The method of claim 16, wherein the cell is a mammalian cell.
  • 18. The method of claim 1, wherein the guide RNA is a single guide RNA that includes a complementarity region at the 5′ end of the single guide RNA consisting of 17-18 nucleotides that are complementary to 17-18 consecutive nucleotides of the complementary strand of a selected target genomic sequence on a double stranded DNA molecule.
  • 19. The method of claim 1, wherein the guide RNA is a crRNA that includes at the 5′ end of the crRNA a complementarity region consisting of 17-18 nucleotides that are complementary to 17-18 consecutive nucleotides of the complementary strand of a selected target genomic sequence, and a tracrRNA.
CLAIM OF PRIORITY

This application is a continuation of U.S. patent application Ser. No. 14/430,218, filed Feb. 10, 2017, now U.S. Pat. No. 10,415,059, which is a continuation of U.S. patent application Ser. No. 14/213,723, filed on Mar. 14, 2014, now U.S. Pat. No. 9,567,604, which claims the benefit of U.S. Patent Application Ser. Nos. 61/799,647, filed on Mar. 15, 2013; 61/838,178, filed on Jun. 21, 2013; 61/838,148, filed on Jun. 21, 2013, and 61/921,007, filed on Dec. 26, 2013. The entire contents of the foregoing are hereby incorporated by reference.

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under Grant Nos. DP1 GM105378 awarded by the National Institutes of Health. The Government has certain rights in the invention.

US Referenced Citations (189)
Number Name Date Kind
4603044 Geho et al. Jul 1986 A
4957773 Spencer et al. Sep 1990 A
5436150 Candrasegaran Jul 1995 A
6007988 Choo et al. Dec 1999 A
6013453 Choo et al. Jan 2000 A
6503717 Case et al. Jan 2003 B2
6511808 Wolffe et al. Jan 2003 B2
7021555 Bagnall Apr 2006 B2
7220719 Case May 2007 B2
7914796 Miller Mar 2011 B2
7919277 Russell et al. Apr 2011 B2
8034598 Miller Oct 2011 B2
8071370 Wolffe Dec 2011 B2
8252535 Biekle et al. Aug 2012 B2
8282920 Heo et al. Oct 2012 B2
8361725 Russell et al. Jan 2013 B2
8697359 Zhang Apr 2014 B1
8771986 Miller Jul 2014 B2
8865406 Zhang et al. Oct 2014 B2
8962281 Doyon Feb 2015 B2
8993233 Zhang et al. Mar 2015 B2
9023649 Mali et al. May 2015 B2
9074199 Chavez et al. Jul 2015 B1
9322037 Liu et al. Apr 2016 B2
9512446 Joung et al. Dec 2016 B1
9567603 Joung et al. Feb 2017 B2
9771601 May et al. Sep 2017 B2
9885033 Joung Feb 2018 B2
9926546 Joung et al. Mar 2018 B2
10011850 Joung et al. Jul 2018 B2
10093910 Joung et al. Oct 2018 B2
10138476 Joung et al. Nov 2018 B2
10378027 Joung et al. Aug 2019 B2
10526589 Tsai et al. Jan 2020 B2
10526591 Joung et al. Jan 2020 B2
10544433 Joung et al. Jan 2020 B2
10633642 Joung et al. Apr 2020 B2
10760064 Joung et al. Sep 2020 B2
10844403 Joung et al. Nov 2020 B2
20020160940 Case et al. Oct 2002 A1
20020164575 Case et al. Nov 2002 A1
20050214851 Arts et al. Sep 2005 A1
20060199190 Russell et al. Sep 2006 A1
20070020627 Barbas, III Jan 2007 A1
20080124725 Barrangou et al. May 2008 A1
20080193470 Masignani et al. Aug 2008 A1
20100034924 Fremaux et al. Feb 2010 A1
20100055793 Chandrasegaran Mar 2010 A1
20100076057 Sontheimer et al. Mar 2010 A1
20100093617 Barrangou et al. Apr 2010 A1
20100104690 Barrangou et al. Apr 2010 A1
20100120043 Sood et al. May 2010 A1
20100183559 Van Sinderen et al. Jul 2010 A1
20100184624 Samuel et al. Jul 2010 A1
20100209998 Attwood et al. Aug 2010 A1
20100209999 Altermann et al. Aug 2010 A1
20100221185 Altermann et al. Sep 2010 A1
20100311061 Korlach et al. Dec 2010 A1
20100317116 Flusberg et al. Dec 2010 A1
20110002889 Barrangou et al. Jan 2011 A1
20110092381 Sood et al. Apr 2011 A1
20110143348 Tomigahara et al. Jun 2011 A1
20110150852 Chambaud et al. Jun 2011 A1
20110171647 Tomigahara et al. Jul 2011 A1
20110189674 Tomigahara et al. Aug 2011 A1
20110189776 Terns et al. Aug 2011 A1
20110201007 Waller et al. Aug 2011 A1
20110201118 Yang et al. Aug 2011 A1
20110217739 Terns et al. Sep 2011 A1
20110217791 Tomigahara et al. Sep 2011 A1
20110223638 Wiedenheft et al. Sep 2011 A1
20110236530 Manoury et al. Sep 2011 A1
20110236894 Rao et al. Sep 2011 A1
20110269119 Hutchison et al. Nov 2011 A1
20110300528 Jassim et al. Dec 2011 A1
20110300538 Barrangou et al. Dec 2011 A1
20120027786 Gupta et al. Feb 2012 A1
20120088676 Weill et al. Apr 2012 A1
20120151635 Coruzzi et al. Jun 2012 A1
20120214160 Deng et al. Aug 2012 A1
20130011516 Griffin et al. Jan 2013 A1
20130011828 Barrangou et al. Jan 2013 A1
20130130248 Haurwitz et al. May 2013 A1
20130145497 Choi et al. Jun 2013 A1
20130150240 Newman et al. Jun 2013 A1
20130158245 Russell et al. Jun 2013 A1
20130253040 Miller et al. Sep 2013 A1
20130288251 Horvath et al. Oct 2013 A1
20130326645 Cost et al. Dec 2013 A1
20130326725 Shukla et al. Dec 2013 A1
20130330778 Zeiner et al. Dec 2013 A1
20130337454 Duchateau Dec 2013 A1
20140068797 Doudna et al. Mar 2014 A1
20140093941 Terns et al. Apr 2014 A1
20140113376 Sorek et al. Apr 2014 A1
20140170753 Zhang Jun 2014 A1
20140179006 Zhang Jun 2014 A1
20140179770 Zhang et al. Jun 2014 A1
20140186843 Zhang et al. Jul 2014 A1
20140186919 Zhang et al. Jul 2014 A1
20140186958 Zhang et al. Jul 2014 A1
20140189896 Zhang et al. Jul 2014 A1
20140199767 Barrangou et al. Jul 2014 A1
20140201857 Fahrenkrug et al. Jul 2014 A1
20140212869 Sampas et al. Jul 2014 A1
20140227787 Zhang Aug 2014 A1
20140234972 Zhang Aug 2014 A1
20140242664 Zhang et al. Aug 2014 A1
20140242699 Zhang Aug 2014 A1
20140242700 Zhang et al. Aug 2014 A1
20140242702 Chen et al. Aug 2014 A1
20140248702 Zhang et al. Sep 2014 A1
20140256046 Zhang et al. Sep 2014 A1
20140271987 Manoury et al. Sep 2014 A1
20140273037 Wu Sep 2014 A1
20140273226 Wu Sep 2014 A1
20140273230 Chen et al. Sep 2014 A1
20140273231 Zhang et al. Sep 2014 A1
20140273232 Zhang et al. Sep 2014 A1
20140273234 Zhang et al. Sep 2014 A1
20140273235 Voytas et al. Sep 2014 A1
20140287938 Zhang et al. Sep 2014 A1
20140294773 Brouns et al. Oct 2014 A1
20140295556 Joung et al. Oct 2014 A1
20140295557 Joung et al. Oct 2014 A1
20140298547 Sastry-Dent et al. Oct 2014 A1
20140304853 Ainley et al. Oct 2014 A1
20140309487 Lee et al. Oct 2014 A1
20140310828 Lee et al. Oct 2014 A1
20140310830 Zhang et al. Oct 2014 A1
20140315985 May et al. Oct 2014 A1
20140335063 Cannon et al. Nov 2014 A1
20140335620 Zhang et al. Nov 2014 A1
20140349400 Jakimo et al. Nov 2014 A1
20140356867 Peter et al. Dec 2014 A1
20140356958 Mali et al. Dec 2014 A1
20140357530 Zhang et al. Dec 2014 A1
20140377868 Joung et al. Dec 2014 A1
20150020223 Zhang et al. Jan 2015 A1
20150024499 Brouns et al. Jan 2015 A1
20150024500 Yu et al. Jan 2015 A1
20150031134 Zhang et al. Jan 2015 A1
20150044772 Zhao Feb 2015 A1
20150045546 Siksnys et al. Feb 2015 A1
20150050699 Siksnys et al. Feb 2015 A1
20150056629 Guthrie-Honea Feb 2015 A1
20150067922 Yang et al. Mar 2015 A1
20150071899 Liu et al. Mar 2015 A1
20150079681 Zhang Mar 2015 A1
20150093473 Barrangou et al. Apr 2015 A1
20150159174 Frendeway et al. Jun 2015 A1
20150159175 Frendeway et al. Jun 2015 A1
20150166969 Takeuchi et al. Jun 2015 A1
20150167000 Voytas et al. Jun 2015 A1
20150176064 Fach et al. Jun 2015 A1
20150184139 Zhang et al. Jul 2015 A1
20150191744 Wolfe et al. Jul 2015 A1
20150203872 Zhang Jul 2015 A1
20150232882 Zhang et al. Aug 2015 A1
20150232883 Dahlman et al. Aug 2015 A1
20150247150 Zhang et al. Sep 2015 A1
20150252358 Maeder et al. Sep 2015 A1
20150291965 Zhang et al. Oct 2015 A1
20150315576 Caliando et al. Nov 2015 A1
20150356239 Zhang et al. Dec 2015 A1
20150376652 Kuhn et al. Dec 2015 A1
20160010076 Joung et al. Jan 2016 A1
20160010147 Heron Jan 2016 A1
20160017301 Khalili et al. Jan 2016 A1
20160017366 Chen et al. Jan 2016 A1
20160024510 Bikard et al. Jan 2016 A1
20160024523 Joung et al. Jan 2016 A1
20160024524 Joung et al. Jan 2016 A1
20160024529 Carstens et al. Jan 2016 A1
20160153003 Joung et al. Jun 2016 A1
20160312198 Joung et al. Oct 2016 A1
20160319281 Tsai et al. Nov 2016 A1
20160362688 May et al. Dec 2016 A1
20170058271 Joung et al. Mar 2017 A1
20170081650 Joung et al. Mar 2017 A1
20170327805 Joung et al. Nov 2017 A1
20180208921 Joung et al. Jul 2018 A1
20180216088 Joung et al. Aug 2018 A1
20180340189 Joung et al. Nov 2018 A1
20190071657 Joung et al. Mar 2019 A1
20190376090 Joung et al. Dec 2019 A1
20200149024 Joung et al. May 2020 A1
20200165587 Tsai et al. May 2020 A1
20200224222 Joung et al. Jul 2020 A1
Foreign Referenced Citations (40)
Number Date Country
103224947 Jul 2013 CN
103233028 Aug 2013 CN
103343120 Oct 2013 CN
104854241 Aug 2015 CN
2325332 May 2011 EP
WO 2003072788 Sep 2003 WO
WO 2004099366 Nov 2004 WO
WO 2007014275 Feb 2007 WO
WO 2007025097 Mar 2007 WO
WO 2008108989 Sep 2008 WO
WO 2010054108 May 2010 WO
WO 2011017293 Feb 2011 WO
WO 2011143124 Nov 2011 WO
WO 2012093833 Jul 2012 WO
WO 2012164565 Dec 2012 WO
WO 2013012674 Jan 2013 WO
WO 2013098244 Jul 2013 WO
WO 2013141680 Sep 2013 WO
WO 2013142578 Sep 2013 WO
WO 2013169398 Nov 2013 WO
WO 2013176772 Nov 2013 WO
WO 2014059255 Apr 2014 WO
WO 2014089290 Jun 2014 WO
WO 2014093622 Jun 2014 WO
WO 2014093655 Jun 2014 WO
WO 2014093712 Jun 2014 WO
WO 2014099744 Jun 2014 WO
WO 2014124284 Aug 2014 WO
WO 2014127287 Aug 2014 WO
WO 2014144288 Sep 2014 WO
WO 2014144592 Sep 2014 WO
WO 2014144761 Sep 2014 WO
WO 2014152432 Sep 2014 WO
WO 2014204578 Dec 2014 WO
WO 2014204724 Dec 2014 WO
WO 2015035162 Mar 2015 WO
WO 2015089364 Jun 2015 WO
WO 2015099850 Jul 2015 WO
WO 2015153940 Oct 2015 WO
WO 2016115355 Jun 2016 WO
Non-Patent Literature Citations (456)
Entry
U.S. Appl. No. 61/799,647, Joung et al., filed Mar. 15, 2013.
U.S. Appl. No. 61/838,148, Joung et al., filed Jun. 21, 2013.
Addgene.org [Online]. CRISPR/Cas9 Guide on the web, Jan. 2016, [retrieved on Sep. 13, 2016]. Retrieved from the internet: URL<http://www.addgene.org/CRISPR/guide>/. 146 pages.
Al-Attar et al., “Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes,” Biol Chem., Apr. 2011, 392:277-289.
Alexopoulou et al., “The CMV early enhancer/chicken β actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors,” BMC Cell Biology, 2008, 9:2.
Anders et al., “Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease,” Nature, 2014, 513:569-573.
Anonymous, “2013 Runners-Up. Genetic microsurgery for the masses,” Science. Dec. 20, 2013;342(6165):1434-5.
Appela., “Non-natural nucleic acids for synthetic biology”, Current Opinion in Chemical Biology, Dec. 2009,13(5-6): 687-696.
Arimondo et al., “Exploring the Cellular Activity of Camptothecin-Triple-Helix-Forming Oligonucleotide Conjugates,” Mol. Cell. Biol., 26(1):324-33 (2006).
Arnould et al., “Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets,” J Mol Biol., 355(3):443-458, Epub Nov. 15, 2005.
Arnould et al., “The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy,” Protein Eng Des Sel., 24(1-2):27-31, Epub Nov, 3, 2010.
Arora et al., “Residues 1-254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides,” J. Biol. Chem., Feb. 1993, 268:3334-41.
AU Office Action in Australian Appln. No. 2014239665, dated Sep. 5, 2019, 4 pages.
Auer et al., “Highly efficient CRISPR/Case9-mediated known-in in zebrafish by homology-independent DNA repair,” Genome Res., 2014, 24:142-153.
Bae et al., “Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases,” Bioinformatics, 2014, 30:1473-1475.
Bae et al., “Human zinc fingers as building blocks in the construction of artificial transcription factors,” Nat Biotechnol., 21(3):275-280, Epub Feb. 18, 2003.
Barker et al., “Increased DNA microarray hybridization specificity using sscDNA targets,” BMC Genomics, Apr. 2005, 6:57, 8 pages.
Baron-Benhamou et al., “Using the AN Peptide to Tether Proteins to RNAs,” Methods Mole Biol., Jan. 2004, 257:135-153.
Barrangou & May, “Unraveling the potential of CRISPR-Cas9 for gene therapy,” Expert Opin. Biol. Ther., 2015, 15:311-314.
Barrangou et al., “CRISPR Provides Acquired Resistance Against Vireses in Prokaryotes,” Sci., 2007, 315:1709-1712.
Barrangou, “RNA-mediated programmable DNA cleavage,” Nature Biotechnol., 2012, 30(9):836-838.
Bassett et al., “Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system,” Cell Reports, 2013, 4:220-228.
Beerli and Barbas, “Engineering poly dactyl zinc-finger transcription factors,” Nat Biotechnol., 20(2):135-141, Feb. 2002.
Beerli et al., “Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks,” PNAS USA, 1998, 95:14628-14633.
Belhaj et al., “Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system,” Plant Methods, 2013, 9:39, 10 pages.
Bello et al., “Hypermethylation of the DNA repair gene MGMT: association with TP53 G:C to A:T transitions in a series of 469 nervous system tumors,” Mutat. Res., Oct. 2004, 554:23-32.
Berg, “Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins,” Proc Natl Acad Sci U S A., 85(1):99-102, Jan. 1988.
Bikard et al., “Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system,” Nucleic Acid Res., Jun. 2013 41(15):7429-7437.
Bitinaite et al., “FoκI dimerization is required for DNA cleavage,” Proc. Natl. Acad. Sci. USA, 1998, 95:10570-10575.
Blackburn et al., “The CRISPR System-Keeping Zebrafish Gene Targeting Fresh,” Zebrafish, 2013, 10(1):116-118.
Blaese et al., “T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years,” Science, Oct. 1995, 270:475-480.
BLAST sequence alignment: Query = Applicants SEQ ID No. 26 and Sbjct = Jinek et al.'s SEQ ID No. 8 from W02013176772 (Retrieved from the Internet <https://blast.nchi.nlm.nih.gov/Blast.cgi>, retrieved on Feb. 1, 2018, 3 pages.
Boch et al., “Breaking the code of DNA binding specificity of TAL-type III effectors,” Science, Dec. 11, 2009;326(5959):1509-12.
Bogdanove & Voytas, “TAL Effectors: Customizable Proteins for DNA Targeting,” Science, 333:1843-1846 (2011).
Bogdanove et al., “TAL effectors: finding plant genes for disease and defense,” Curr. Opin. Plant Biol., 13:394-401 (2010).
BR Office Action in Brazilian Appln. No. BR112015023489-5, dated Oct. 3, 2019, 6 pages (with English abstract).
Burgess, “A Crispr genome-editing tool,” Nature Reviews Genetics 14, 80-81 (Feb. 2013).
Burnett et al., “Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene,” J. Leukoc. Biol., Apr. 2004, 75(4):612-623.
Butler and Kadonaga, “The RNA polymerase II core promoter: a key component in the regulation of gene expression,” Genes & Dev., 2002, 16:2583-2592.
Canadian Office Action in Canadian Application No. 2907198, dated Jul. 8, 2016, 4 pages.
Carbonetti et al., “Use of pertussis toxin vaccine molecule PT19K/129G to deliver peptide epitopes for stimulation of a cytotoxic T lymphocyte response,” Abstr. Annu. Meet. Am. Soc. Microbiol., 1995, 95:295.
Carroll et al., “Design, construction and in vitro testing of zinc finger nucleases,” Nat Protoc., 1(3):1329-1341, 2006.
Carroll, “A CRISPR Approach to Gene Targeting,” Molecular Therapy, 2012, 20(9):1658-1660.
Carroll, “Progress and prospects: zinc-finger nucleases as gene therapy agents,” Gene Ther., 15(22):1463-1468, Epub Sep. 11, 2008.
Carroll, “Staying on target with CRISPR-Case,” Nat Biotechnol., 2013, 31(9):807-809.
Castellano et al., “Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation,” Curr. Biol., 1999, 9(7): 351-360.
Cathomen and Joung, “Zinc-finger nucleases: the next generation emerges,” Mol. Ther., 2008, 16:1200-1207.
Cermak et al., “Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting,” Nucleic Acids Res., 39:e82, p. 1-11 (2011).
Chaikind et al., “Targeted DNA Methylation Using an Artificially Bisected M.Hhal Fused to Zinc Fingers,” PLoS One, 7(9):E44852 pp. 1-11 (2012).
Chang et al., “Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos,” Cell Res., 2013, 23:465-472.
Chen & Zhao, “A highly sensitive selection method for directed evolution of homing endonucleases,” Nucleic Acids Res., 2005, 33(18):e154.
Chen et al., “Cut Site Selection by the Two Nuclease Domains of the Cas9 RNA-guided Endonuclease,” J Biol Chem. May 9, 2014; 289(19):13284-94.
Chen et al., “Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system,” Cell, 2013, 155(7):1479-1491.
Chen et al., “Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination,” Nucleic Acids Res., 2013, 41(20):e193, 6 pages.
Chen et al., “Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter,” Nucleic Acids Res., 42(3):4563-1574, Epub Nov, 4, 2013.
Cheng et al., “Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system,” Cell Res., Oct. 2013, 23(10):1163-71.
Chim et al., “Methylation profiling in multiple myeloma,” Leuk. Res., Apr. 2004, 28:379-85.
Chiu et al., “Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas,” Genetics, Nov. 2013, 195(3):1167-71.
Cho et al., “Analysis of off-target effects of CRISPR/Case-derived RNA-guided endonucleases and nickases,” Genome Res., 2014, 24:132-141.
Cho et al., “Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease,” Nat Biotechnol., 2013, 31:230-232.
Choo and Klug, “Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage,” Proc Natl Acad Sci U S A., 91(23):11163-11167, Nov. 8, 1994.
Christian et al., “Targeting DNA Double-Strand Breaks with TAL Effector Nucleases,” Genetics, 2010, 186:757-761 (2010).
Chylinski et al., “Classification and evolution of type II CRISPR-Cas systems,” Nucleic Acids Res. 2014;42(10):6091-105.
Chylinski et al., “The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems,” RNA Biol., 2013, 10(5):726-737.
Clark-Curtiss and Curtiss, “[23] Analysis of recombinant DNA using Escherichia coli minicells,” Methods in Enzymology, 1983, 101:347-362.
CN Action in Chinese Appln. No. 201480026276.5, dated Nov. 1, 2019, 19 pages (with English translation).
CN Action in Chinese Appln. No. 201480027950.1, dated Sep. 20, 2019, 9 pages (with English translation).
Colley et al., “Conversion of a Golgi Apparatus Sialyltransferase to a Secretory Protein by Replacement of the NH2-terminall Signal Anchor with a Signal Peptide,” J. Biol. Chem., 1989, 264:17619-22.
Cong et al., “Multiplex genome engineering using CRISPR/Cas systems,” Science, 2013, 339:819-823 (Author Manuscript).
Conklin, “Sculpting genomes with a hammer and chisel,” Nature Methods, 2013, 10(9):839-840.
Costa et al., “REELIN and schizophrenia: a disease at the interface of the genome and the epigenome,” Mol. Interv., Feb. 2002, 2:47-57.
Crabtree and Schreiber, “Three-part inventions: intracellular signaling and induced proximity,” Trends Biochem. Sci., Nov. 1996, 21(11):418-422.
Cradick et al., “CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity,” Nucleic Acids Res., 2013, 41(20):9584-92.
D'Avignon et al., “Site-specific experiments on folding/unfolding of Jun coiled coils: thermodynamic and kinetic parameters from spin inversion transfer nuclear magnetic resonance at leucine-18,” Biopolymers, 83(3):255-267, Oct. 15, 2006.
De Souza, “RNA-guided gene editing,” Nat Methods, Mar. 2013, 10(3):189.
De Zhu, “The altered DNA methylation pattern and its implications in liver cancer,” Cell. Res., 2005, 15:272-80.
Deltcheva et al., “CRISPR RNA maturation by trans-encoded small RNA and host factor Rnase III,” Nature, 2011, 471(7340):602-607 (Author Manuscript).
Deveau et al., “Phage response to CRISPR-encoded resistance in Streptococcus thermophilus,” J Bacteriol., Feb. 2008, 190(4):1390-400.
Dicarlo et al., “Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems,” Nucleic Acids Res., 2013, 41(7)4336-43.
Dickinson et al., “Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination,” Nat Methods., Oct. 2013, 10(10):1028-34.
Ding et al., “Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs,” Cell Stem Cell., Apr. 4, 2013, 12(4):393-4 (Author Manuscript).
Donnelly et al., “Targeted delivery of peptide epitopes to class I major histocompatibility molecules by a modified Pseudomonas exotoxin,” PNAS, Apr. 1993, 90:3530-34.
Doudna and Charpentier, “Genome editing. The new frontier of genome engineering with CRISPR-Cas9,” Science, Nov. 2014, 346:1258096, 11 pages.
Doyon et al., “Directed Evolution and Substrate Specificity Profile of Homing Endonuclease I-Scel,” J. Am. Chem. Soc., 2006, 128:2477-2484.
Doyon et al., “Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases,” Nat Biotechnol., Jun. 2008, 26:702-708.
Dranoff et al., “A phase I study of vaccination with autologous, irradiated melanoma cells engineered to secrete human granulocyte-macrophage colony stimulating factor,” Hum. Gene Ther., Jan. 1997, 8(1):111-23.
Dunbar et al., “Retrovirally Marked CD34-Enriched Peripheral Blood and Bone Marrow Cells Contribute to Long-Term Engraftment After Autologous Transplantation,” Blood, Jun. 1995, 85:3048-3057.
Eisenschmidt et al., “Developing a programmed restriction endonuclease for highly specific DNA cleavage,” Nucleic Acids Res., 33(22):7039-47 (2005).
Ellem et al., “A case report: immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma cells for immunotherapy,” Immunol Immunother., Mar. 1997, 44:10-20.
Elrod-Erickson et al., “High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition,” Structure, 6(4):451-464, Apr. 15, 1998.
EP Extended European Search Report in European Appln. No. 16842722.7, dated Jun. 7, 2019, 13 pages.
EP Office Action in Emopean Appln. No. 14764117.9, dated Nov. 7, 2019, 6 pages.
EP Office Action in Emopean Appln. No. 14875819.6 dated Dec. 2, 2019, 4 pages.
EP Office Action in Emopean Appln. No. 18208105.9, dated Nov. 14, 2019, 3 pages.
Esteller et al., “A Gene Hypermethylation Profile of Human Cancer,” Cancer Res., Apr. 2001, 61:3225-9.
Esteller et al., “Promoter Hypermethylation and BRCA1 Inactivation in Sporadic Breast and Ovarian Tumors,” J. Natl. Cancer Inst., Apr. 2000, 92:564-9.
Esvelt et al., “Orthogonal Cas9 proteins for RNA-guided gene regulation and editing,” Nat Methods, Nov. 2013, 10(11):1116-21.
European Partial Supplementary Search Report in European Application No. 14764117.9, dated Aug. 11, 2016, 7 pages.
European Search Report in European Application No. 14763916,5, dated Jul. 27, 2016, 10 pages.
Extended European Search Report in Application No. 14875819.6, dated Jun. 8, 2017.
Extended European Search Report in Application No. 18208105.9, dated Jan. 15, 2019, 5 pages.
Extended European Search Report in European Application No. 14764159.1, dated Aug. 10, 2016, 7 pages.
Extended European Search Report in European Application No. 14768877.4, dated Aug. 10, 2016.
Farboud and Meyer, “Dramatic Enhancement of Genome Editing by CRISPR/Cas9 Through Improved Guide RNA Design,” Genetics, 2015, 199:959-971.
Fisher et al., “A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries,” Genome Biol., 2011, 12-R1.
Fonfara et al., “Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems.” Nucleic Acids Res., Feb. 2014, 42(4):2577-90.
Freeman et al., “Inducible Prostate Intraepithelial Neoplasia with Reversible Hyperplasia in Conditional FGFR1-Expressing Mice,” Cancer Res., Dec. 2003, 63(23):8256-8563.
Friedland et al., “Heritable genome editing in C. elegans via a CRISPR-Cas9 system,” Nature Methods 10(8): 741-743, 2013 (Author Manuscript).
Fu et al., Targeted genome editing in human cells using CRISPR/Cas nucleases and tmncated guide RNAs, Methods in Enzymology, Nov. 2014, 546: 21-45.
Fu et al., “High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells,” Nat Biotechnol., 2013, 31:822-826 (Author Manuscript).
Fu et al., “Improving CRISPR-Cas nuclease specificity using truncated guide RNAs,” Nat. Biotechnol. Mar. 2014, 32:279-284.
Gabriel et al., “An unbiased genome-wide analysis of zinc-finger nuclease specificity,” Nat Biotechnol., 2011, 29:816-823.
Gagnon et al., “Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs,” PLoS One, May 2014, 9, e98186.
Gaj et al., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends in Biotechnology, Jul. 2013, 31(7): 397-405.
Gao et al., “Hypermethylation of the RASSF1A gene in gliomas,” Clin. Chim. Acta., Nov. 2004, 349:173-9.
Garcia-Bustos et al., “Nuclear protein localization,” Biochim. Biophys. Acta, Mar. 1991, 1071:83-101.
Garneau et al., “The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA,” Nature, Nov. 4, 2010, 468(7320):67-71.
Gasiunas and Siksnys,“ RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?” Trends Microbiol., 2013, 21(11):562-567.
Gasiunas,“Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria,” Proc Natl Acad Sci U S A, Sep. 25, 2012, 109(39):E2579-86.
Geibler et al., “Transcriptional Activators of Human Genes with Programmable DNA-Specificity ,” PLoS ONE, 6:e19509 (2011).
Gilbert et al., “CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes,” Cell, 2013, 154(2):442-51.
Gossen and Bujard, “Tight control of gene expression in mammalian cells by tetracycline-responsive promoters,” Proc. Natl. Acad. Sci., Jun. 1992, 89:5547-5551.
Graef et al., “Proximity and orientation underlie signaling by the non-receptor tyrosine kinase ZAP70,” Embo. J., 1997, 16(18):5618-5628.
Gratz et al., “CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand,” Fly (Austin), Oct.-Dec. 2013, 7(4):249-55.
Gratz et al., “Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease,” Genetics, 2013, 194(4):1029-35.
Grizot et al., “Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds,” Nucleic Acids Res., 38(6):2006-2018, Epub Dec. 21, 2009.
Gross and Garrard, “Nuclease Hypersensitive Sites in Chromatin,” Annu. Rev. Biochem., Jul. 1988, 57:159-97.
Guilinger et al., “Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity,” Nat. Methods, Apr. 2014, 11:429-435.
Guilinger et al., “Fusion of catalytically inactive Cas9 to Fokl nuclease improves the specificity of genome modification,” Nat Biotechnol., Apr. 2014, 32(6):577-583.
Guo et el., “Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain,” Cell, 145:423-434 (2011).
Haft et al., “A Guild of 45 CRISPR-Associated (Cas) Protein Families and multiple CRISPER/cas Subtypes Exist in Prokaryotic Genomes,” PLOS, 2005, 1(6):0474-0483.
Hale et al., “Essential features and rational design of CRISPR RNAs that function with the Case RAMP modlule complex to cleave RNAs,” Mol Cell., 2012, 45(3):292-302 (Author Manuscript).
Han et al., “CTCF Is the Master Organizer of Domain-Wide Allele-Specific Chromatin at the H19/Igf2 Imprinted Region,” Mol Cell Biol., Feb. 2008, 28(3):1124-35.
Han et al., “Ligand-directed retroviral targeting of human breast cancer cells,” PNAS, Oct. 1995, 92:9747-51.
Harikrishna et al., “Construction and function of fusion enzymes of the human cytochrome P450scc system,” DNA Cell Biol., 12(5):371-379, Jun. 1993.
Harrison, “A structural taxonomy of DNA-binding domains,” Nature, 353(6346): 715-719, Oct. 24, 1991.
Haurwitz et al., “Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease,” Science, Sep. 2010, 329(5997):1355-8.
Haurwitz, R. “The CRISPR endoribonuclease Csy4 utilizes unusual sequence and structures specific mechanisms to recognize and process crRNAs,” Thesis. May 8, 2012 (May 8, 2012), University of California, Berkeley, pp. 1-120. Retrieved from the Internet: <http://escholarship.org/uc/item/0rh5940p> on Dec. 26, 2014 (Dec. 26, 2014), entire document.
He et al., “Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA,” Science, 333:1303-1307 (2011).
Hockemeyer et al., “Genetic engineering of human ES and iPS cells using TALE nucleases,” Nat Biotechnol., 2011, 29:731-734 (Author Manuscript).
Horii et al., “Generation of an ICF Syndrome Model by Efficient Genome Editing of Human Induced Pluripotent Stem Cells using the CRISPR System,” Int J Mol Sci., 2013, 14:19774-19781.
Horvath and Barrangou, “CRISPR/Cas, the immune system of bacteria and archaea,” Science, 2010, 327:167-170.
Horvath et al., “Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus,” J. Bacteriol., Feb. 2008, 190:1401-1412.
Hou et al., “Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis,” Proc Natl Acad Sci U S A, Sep. 24, 2013, 110(39):15644-9.
Hsu et al., “Development and Applications of CRISPR-Cas9 for Genome Engineering,” Cell, 2014, 157(6):1262-1278.
Hsu et al., “DNA targeting specificity of RNA-guided Cas9 nucleases,” Nat Biotechnol., 2013, 31:827-832.
Huang et al., “Heritable gene targeting in zebrafish using customized TALENs,” Nat. Biotechnol., 29:699-700 (2011).
Hwang et al., “Efficient In Vivo Genome Editing Using RNA-Guided Nucleases,” Nat Biotechnol., 2013, 31:227-229 (Author Manuscript).
Hwang et al., “Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System,” PLoS One, 2013, 8(7):e68708, 9 pages.
IL Office Action in Israeli Appln. No. 241671, dated Aug. 1, 2019, 5 pages (with English translation).
IN Office Action in Indian Appln. No. 8445/DELNP/2015, dated Nov. 18, 2019, 7 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2013/043075, dated Dec. 2, 2014, 7 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2014/027335, dated Sep. 15, 2015, 10 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2014/028630, dated Sep. 15, 2015, 8 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2014/029068, dated Sep. 15, 2015, 10 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2014/029304, dated Sep. 22, 2015, 12 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2014/056416, dated Jun. 28, 2016, 7 pages.
International Preliminary Report on Patentability in International Application No. PCT/US2016/49147, dated Mar. 6, 2018, 8 pages.
International Search Report and Written Opinion in International Application No. PCT/US2013/043075, dated Sep. 26, 2013, 10 pages.
International Search Report and Written Opinion in International Application No. PCT/US2014/027335, dated Jul. 16, 2014, 13 pages.
International Search Report and Written Opinion in International Application No. PCT/US2014/028630, dated Jul. 24, 2014, 9 pages.
International Search Report and Written Opinion in International Application No. PCT/US2014/029068, dated Nov. 5, 2014, 15 pages.
International Search Report and Written Opinion in International Application No. PCT/US2014/029304, dated Nov. 14, 2014, 17 pages.
International Search Report and Written Opinion in International Application No. PCT/US2014/035162, dated Oct. 14, 2014, 10 pages.
International Search Report and Written Opinion in International Application No. PCT/US2014/056416, dated Apr. 3, 2015, 11 pages.
International Search Report and Written Opinion in International Application No. PCT/US16/49147, dated Dec. 23, 2016, 12 pages.
International Search Report and Written Opinion in International Application No. PCT/US2013/074736, dated Sep. 17, 2014, 4 pages.
International Search Report in International Application No. PCT/US2014/054291, dated Mar. 27, 2015, 6 pages.
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee in International Application No. PCT/US2014/029068, dated Aug. 20, 2014, 3 pages.
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee in International Application No. PCT/US2014/029304, dated Jul. 30, 2014, 3 pages.
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee in International application No. PCT/US2016/49147, dated Oct. 31, 2016, 2 pages.
Isalan et al., “A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter,” Nat. Biotechnol., 19(7):656-660, Jul. 2001.
Ishino et al., “Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product,” J Bacteriol., Dec. 1987, 169(12):5429-33.
Ito et al., “Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine,” Science, 333(6047):1300-1303, Sep. 2, 2011.
Iyer et al., “Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids,” Cell Cycle, Jun. 1, 2009, 8(11):1698-710.
Iyer et al., Supplementary Material for “Prediction of novel families of enzymes involved in oxidative and other complex modifications ofbases in nucleic acids,” Cell Cycle, Jun. 1, 2009, 8(11):1698-710, [retrieved on Dec. 22, 2015], Retrieved from the Internet: URL <ftp://ftp.ncbi.nih.gov/pub/aravind/DONS/supplementary_material_DONS.html>.
Jamieson et al., “In vitro selection of zinc fingers with altered DNA-binding specificity,” Biochemistiy, 33(19):5689-5695, May 17, 1994.
Jansen et al., “Identification of genes that are associated with DNA repeats in prokaryotes,” Mol Microbiol., Mar. 2002, 43(6):1565-75.
Jiang et al., “CRISPR-assisted editing of bacterial genomes,” Nat Biotechnol., 2013, 31:233-239 (Author Manuscript).
Jiang et al., “RNA-guided editing of bacterial genomes using CRISPR-Cas systems,” Nature Biotechnology, Mar. 2013, 31: 233-239.
Jiang et al., “Structural Biology. A Cas9-guide RNA complex preorganized for target DNA recognition,” Science, Jun. 2015, 348:1477-1481.
Jinek et al., “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity,” Science, 2012, 337:816-821.
Jinek et al., “RNA-programmed genome editing in human cells,” Elife, 2013, 2:e00471, 9 pages.
Jinek et al., “Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation,” Science. Mar. 14, 2014; 343(6176):1247997.
Jinek et al., “Supplementary Materials for A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity,” Science Express, pp. 1-37 (2012).
Josephs et al., “Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage,” Nucleic Acids Res., Sep. 2015, 43:8924-8941.
Joung and Sander, “TALENs: a widely applicable technology for targeted genome editing,” Nat Rev Mol Cell Biol., 14(1):49-55, Epub Nov. 21, 2012.
Joung et al., “Reply to “Successful genome editing with modularly assembled zinc finger nucleases”,” Nat. Methods, Jan. 2010, 7:91-92.
JP Office Action in Japanese Appln. No. 2016-502406, dated May 31, 2019, 24 pages (with English translation).
JP Office Action in Japanese Appln. No. 2016-502853, dated May 29, 2019, 7 pages (with English translation).
JP Office Action in Japanese Appln. No. 2016-502976, dated Nov. 26, 2019, 9 pages (with English translation).
JP Office Action in Japanese Appln. No. 2016-542968, dated Jul. 30, 2019, 8 pages (with English translation).
Karkare and Bhatnagar, “Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino”, Applied Microbiology and Biotechnology, May 2006, 71(5): 575-586.
Karmirantzou and Harnodrakas, “A Web-based classification system of DNA-binding protein families,” Protein Eng, 14(7):465-472, Jul. 2001.
Karvelis et al., “crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus,” RNA Biol., 2013, 10(5):841-851.
Katic and Großhans, “Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans,” Genetics, Nov. 2013, 195(3):1173-6.
Kearns et al., “Recombinant adeno-associated vims (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line,” Gene Ther., Sep. 1996, 9:748-55.
Keryer-Bibens et al., “Tethering of proteins to RNAs by bacteriophage proteins,” Biol Cell, 2008, 100:125-138.
Kiani et al., “Cas9 gRNA engineering for genome editing, activation and repression,” Nat. Methods, 2015, 12:1051-1054.
Kim and Kim, “A guide to genome engineering with programmable nucleases,” Nature Rev Genetics 15, 321-334 (2014).
Kim et al., “Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins,” Genome Res. Jun. 2014; 24(6):1012-9.
Kim et al., Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain, PNAS, Feb. 1996, 93: 1156-1160.
Kim et al., “Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly,” Genome Res., 19(7):1279-1288, Epub May 21, 2009.
Kim et al., “Genome editing with modularly assembled zinc-finger nucleases,” Nat. Methods, 7(2):91-92, Feb. 2010.
Kleinstiver et al., “A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI,” Nucleic Acids Res., 2010, 38:2411-2427.
Kleinstiver et al., “Engineered CRISPR-Cas9 nucleases with altered PAM specificities,” Nature, Jul. 2015, 523(7561):481-5.
Kleinstiver et al., “High-fidelity CR1SPR-Cas9 nucleases with No. detectable genome-wide offtarget effects,” Nature, Jan. 2016, 529: 490-495.
Klimpel et al., “Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin,” PNAS, Nov. 1992, 89:10277-81.
Klug, “Co-chairman's remarks: protein designs for the specific recognition of DNA,” Gene, 135(1-2):83-92, Dec. 15, 1993.
Koike-Yusa et al., “Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA libraiy,” Nat Biotechnol., Mar. 2014, 32(3):267-73.
Kondo and Ueda, “Highly improved gene targeting by germline-specific Cas9 expression in Drosophila,” Genetics, Nov. 2013, 195(3):715-21.
Konermann et al., “Optical control of mammalian endogenous transcription and epigenetic states,” Nature. Aug. 22, 2013; 500(7463):472-6. (Author Manuscript).
Kumar et al., “DNA-Prot: identification of DNA binding proteins from protein sequence information using random forest,” J Biomol Stmct Dyn., 26(6):679-686, Jun. 2009.
Kumar et al., “Identification of DNA-binding proteins using support vector machines and evolutionaiy profiles,” BMC Bioinformatics, 8:463, Nov. 27, 2007.
Kummerfeld and Teichmann, “DBD: a transcription factor prediction database,” Nucleic Acids Res., 34 (Database issue): D74-D81, Jan. 1, 2006.
Kurmasheva et al., “Upstream CpG island methylation of the PAX3 gene in human rhabdomyosarcomas,” Pediatr, Blood Cancer, Apr. 2005, 44:328-37.
Lea et al., “Aberrant p16 methylation is a biomarker for tobacco exposure in cervical squamous cell carcinogenesis,” Am. J. Obstet. Gynecol., 2004, 190:674-9.
Lee et al., “Three-dimensional solution structure of a single zinc finger DNA-binding domain,” Science., 245(4918):635-637, Aug. 11, 1989.
Li et al., “DNA methylation in prostate cancer,” Biochim Biophys. Acta., Sep. 2004, 1704:87-102.
Li et al., “Heritable gene targeting in the mouse and rat using a CRISPR-Cas system,” Nat Biotechnol, Aug. 2013, 31(8):681-3.
Li et al., “Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes,” Nucleic Acids Res., 39(14):6315-6325, Epub Mar. 31, 2011.
Li et al., “Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy,” Hum Gene Ther., 19(9):958-964, Sep. 2008.
Li et al., “Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems,” Nat Biotechnol., Aug. 2013, 31(8):684-6.
Li et al., “TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain,” Nucleic Acids Res., 2011, 39(1): 359-372.
Lin et al., “CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences,” Nucleic Acids Res., 2014, 42:7473-7485.
Lin et al., “iDNA-Prot: identification of DNA binding proteins using random forest with grey model,” PLoS One., 6(9):e24756, Epub Sep. 15, 2011.
Lino et al., “Delivering CRISPR: a review of the challenges and approaches,” Drug Delivery 2018, 25: 1234-1257.
Liu et al., “Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications,” Journal of Controlled Release, 2017, 266: 17-26.
Liu et al., “Regulation of an Endogenous Locus Using a Panel of Designed Zinc Finger Proteins Targeted to Accessible Chromatin Regions,” J. Biol, Chem., Apr. 2001, 276(14):11323-34.
Liu et al., “Validated zinc finger protein designs for all 16 GNN DNA triplet targets,” J. Biol. Chem., 277(6):3850-3856, Epub Nov. 28, 2001.
Lo et al., “Precise and Heritable Genome Editing in Evolutionarily Diverse Nematodes Using TALENs and CRISPR/Cas9 to Engineer Insertions and Delections,” Genetics, 2013, 195:331-348.
Lund et al., “DNA Methylation Polymorphisms Precede Any Histological Sign of Atherosclerosis in Mice Lacking Apolipoprotein E,” J. Biol. Chem., Jul. 2004, 279:29147-54.
Ma et al., “A Guide RNA Sequence Design Platform for the CRISPR/Cas9 System for Model Organism Genomes,” BioMed Research International, 2013, 2013: 270805, 4 pages.
Mabaera et al., “Developmental- and differentiation-specific patterns of human γ- and βglobin promoter DNA methylation,” Blood, 110(4):1343-52 (2007).
Maeder et al., “CRISPR RNA-guided activation of endogenous human genes,” Nat Methods, 2013, 10:977-979 (Author Manuscript).
Maeder et al., “Rapid ‘open-source’ engineering of customized zinc-finger nucleases for highly efficient gene modification,” Mol Cell, 2008, 31(2):294-301.
Maeder et al., “Robust, synergistic regulation of human gene expression using TALE activators,” Nat. Methods, 2013, 10:243-245.
Maeder et al., “Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins,” Nat Biotechnol., 31(12):1137-1142, [author manuscript] Epub Oct. 9, 2013.
Mahfouz et al., “De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks,” Proc Natl Acad Sci U S A, 108:2623-2628 (2011).
Maiti and Drohat, “Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites,” J Biol Chem., 286(41):35334-35338, Epub Aug. 23, 2011.
Majumdar et al., “Targeted Gene Knock In and Sequence Modulation Mediated by a Psoralen-linked Triplex-forming Oligonucleotide,” J Biol Chem., 283(17):11244-52 (2008).
Makarova et al., “A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action,” Biol. Direct, 2006, 1:7, 26 pages.
Makarova et al., “Evolution and classification of the CRISPR-Cas systems,” Nat. Rev. Microbiol., 2011, 9(6):467-77 (Author Manuscript).
Makarova et al., “Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems,” Biol. Direct, 2011, 6:38, 27 pages.
Malech et al., “Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease,” PNAS, Oct. 1997, 94:12133-38.
Mali et al., “Cas9 as a versatile tool for engineering biology,” Nature Methods, 2013, 10(10):957-963.
Mali et al., “CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering,” Nat Biotechnol., 2013, 31:833-838.
Mali et al., “RNA-guided human genome engineering via Cas9,” Science, Febmary 2013, 339:823-826 (Author Manuscript).
Mancini et al. “CpG methylation within the 5′ regulatory region of the BRCA1 gene is tumor specific and includes a putative CREB binding site,” Oncogene, 1998, 16:1161-9.
Mandell and Barbas et al., “Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases,” Nucleic Acids Res., 34(Web Server issue):W516-W523, Jul. 1, 2006.
Marraffini and Sontheimer, “CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA,” Sci., 2008, 322(5909):1843-1845.
Marraffini and Sontheimer, “Self vs. non-self discrimination during CRISPR RNA-directed immunity,” Nature, 2010, 463(7280):568-571 (Author Manuscript).
Mashiko et al., “Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA,” Sci Reports, 2013, 3(3355):1-6.
McGarty, “CRISPRs and Cancer,” White Paper No. 111, Apr. 2014, 22 pages.
Melo et al., “eRNAs Are Required for p53-Dependent Enhancer Activity and Gene Transcription,” Mol Cell, Feb. 2013, 49: 524-535.
Mendenhall et al., “Locus-specific editing of histone modifications at endogenous enhancers,” Nat Biotechnol., 31(12):1133-1136, Epub Sep. 8, 2013.
Miller et al., “A TALE nuclease architecture for efficient genome editing,” Nature Biotechnology, Feb. 2011, 29:143-148.
Miller et al., “An improved zinc-finger nuclease architecture for highly specific genome editing,” Nat Biotechnol., 2007, 25:778-785.
Miller et al., “Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes,” EMBO J., 4(6):1609-1614, Jun. 1985.
Mino et al., “Efficient double-strand DNA cleavage by artificial zinc-finger nucleases composed of one zinc-finger protein and a single-chain Fokl dimer,” Journal of biotechnology, 2009, 140: 156-161.
Miyazaki et al., “Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5,” Gene, Jul. 1989, 79(2):269-77.
Mojica et al., “Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria,” Mol Microbiol., Apr. 2000, 36(1):244-6.
Mojica et al., “Short motif sequences determine the targets of the prokaiyotic CRISPR defense system,” Microbiology, 2009, 155:733-740.
Moore et al., “Design of polyzinc finger peptides with structured linkers,” Proc Natl Acad Sci USA, Feb. 2001, 98:1432-1436.
Morbitzer et al., “Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors,” Proc Natl Acad Sci U S A., 107(50):21617-21622, Epub Nov. 24, 2010.
Morbitzer et al., “Assembly of custom TALE-type DNA binding domains by modular cloning,” Nucl Acids Res., 39:5790-5799 (2011).
Morrison, “Transformation in Escherichia coli: Cryogenic Preservation of Competent Cells,” J. Bacteriol., Oct. 1977, 132:349-351.
Moscou and Bogdanove, “A simple cipher governs DNA recognition by TAL effectors,” Science, 326(5959):1501, Dec. 11, 2009.
Mussolino and Cathomen, “RNA guides genome engineering,” Nat Biotechnol., 2013, 31(3):208-209.
Mussolino et al., “A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity,” Nucleic Acids Res., 2011, 39:9283-93.
Muthuswamy et al., “Controlled Dimerization of ErbB Receptors Provides Evidence for Differential Signaling by Homo- and Heterodimers,” Mol. Cell. Biol., Oct. 1999, 19(10):6845-6857.
Needleman and Wunsch, “A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins,” J. Mol. Biol., 1970, 48:444-453.
Neering et al., “Transduction of Primitive Human Hematopoietic Cells With Recombinant Adenovirus Vectors,” Blood, Aug. 1996, 88:1147-55.
Nielsen et al., “Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family,” EMBO J., 1999, 18: 6385-6395.
Nishimasu et al., “Crystal structure of Cas9 in complex with guide RNA and target DNA,” Cell, 2014, 156:935-949.
Nissim et al., “Multiplexed and Programmable Regulation of Gene Networks with an Integrated RNA and CRISPR/Cas Toolkit in Human Cells,” Molecular Cell, May 2014, 54:698-710.
Niu et al., “Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos,” Cell, 2014, 156:836-843.
Niwa et al., “Efficient selection for high-expression transfectants with a novel eukaryotic vector,” Gene, 1991, 108(2):193-9.
Novak et al., “Functional Characterization of Protease-treated Bacillus anthracis Protective Antigen,” J. Biol. Chem., Aug. 1992, 267:17186-93.
Office Action in Canadian Application No. 2907198, dated May 14, 2018, 3 pages.
Office Action in Australian Application No. 2014227653, dated Nov. 18, 2016, 3 pages.
Office Action in Australian Application No. 2017204909, dated Aug. 8, 2018, 8 pages.
Office Action in Canadian Application No. 2907198, dated Aug. 24, 2017, 10 pages.
Office Action in Chinese Application No. 2014800261133.4, dated May 31, 2017.
Office Action in Chinese Application No. 201480026133.4, dated Feb. 12, 2018, 22 pages (with English translation).
Office Action in Chinese Application No. 201480026276.5, dated Apr. 17, 2018, 12 pages (with English translation).
Office Action in Chinese Application No. 201480027950.1, dated Mar. 23, 2018, 13 pages (with English translation).
Office Action in Chinese Application No. 201480027950.1, dated Oct. 18, 2018, 6 pages.
Office Action in Chinese Application No. 201480076396.6, dated Feb. 19, 2019, 16 pages (with English translation).
Office Action in European Application No. 14763916.5, dated Mar. 27, 2017 (no new art).
Office Action in European Application No. 14763916.5, dated Oct. 26, 2017, 5 pages.
Office Action in European Application No. 14764117,9, dated Jan. 4, 2018, 4 pages.
Office Action in European Application No. 14764117.9, dated Jul. 6, 2017, 4 pages.
Office Action in European Application No. 14764117.9, dated Oct. 5, 2018, 6 pages.
Office Action in European Application No. 14764159.1, dated Jun. 16, 2017, 4 pages.
Office Action In European Application No. 14764159.1, dated Nov. 21, 2017.
Office Action in European Application No. 14768877,4, dated Jan. 8, 2018, 4 pages.
Office Action in European Application No. 14768877.4, dated Jul. 14, 2017, 4 pages.
Office Action in European Application No. 14875819.6, dated Jun. 19, 2018.
Office Action in Israeli Application No. 241671, dated Sep. 13, 2018, 8 pages (with English translation).
Office Action in Japanese Application No. 2016-502406, dated Jun. 12, 2018, 23 pages (with English translation).
Office Action In Japanese Application No. 2016-502853, dated Jun. 12, 2018, 15 pages (with English translation).
Office Action in Japanese Application No. 2016-502976, dated Apr. 2, 2019, 16 pages (with English translation).
Office Action In Japanese Application No. 2016-502976, dated May 8, 2018, 16 pages (with English translation).
Office Action in Japanese Application No. 2016-542968, dated Sep. 18, 2018 (with English translation).
Oligino et al., “Drug inducible transgene expression in brain using a herpes simplex virus vector,” Gene Ther., 1998, 5:491-496.
Palva et al., “Secretion of interferon by Bacillus subtilis,” Gene, 1983, 22:229-235.
Partial Supplementary Search Report in European Application No. 16842722.7, dated Mar. 7, 2019, 13 pages.
Pattanayak et al., “High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity,” Nat Biotechnol., 2013, 31:839-843 (Author Manuscript).
Pattanayak et al., “Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection,” Nat Methods, 2011, 8:765-770 (Author Manuscript).
Pavletich and Pabo, “Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A,” Science, 252(5007):809-817, May 10, 1991.
Perelle et al., “Characterization of Clostridium perfringens Iota-Toxin Genes and Expression in Eschenichia coli,” Infect. Immun., Dec. 1993, 61:5147-56.
Perez et al., “Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases,” Nat Biotechnol., 2008, 26:808-816 (Author Manuscript).
Perez-Pinera et al., “RNA-guided gene activation by CRISPR-Case9-based transcription factors,” Nat Methods, 2013, 10(10):973-976 (Author Manuscript).
Pingoud and Silva, “Precision genome surgery,” Nat Biotechnol., 25(7):743-744, Jul. 2007.
Puchta and Fauser et al., “Synthetic nucleases for genome engineering in plants: prospects for a bright future,” Plant J. Jun. 2014; 78(5):727-41.
Qi et al., “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression,” Cell, Feb. 2013, 152:1173-1183.
Ramakrishna et al., “Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA,” Genome Res. Jun. 2014; 24(6): 1020-1027,.
Ramakrishna et al., “Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations,” Nat Commun. Feb. 26, 2014; 5:3378.
Ramalingam et al., “A CRISPR way to engineer the human genome,” Genome Biol., 2013, 14:107, 4 pages.
Ramirez et al., “Unexpected failure rates for modular assembly of engineered zinc fingers,” Nat Methods., 5(5):374-375, May 2008.
Ran et al., “Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity,” Cell, 2013, 154:1380-1389.
Ran et al., “Genome engineering using the CRISPR-Cas9 system,” Nature Protocols, 2013, 8(11):2281-2308.
Ran et al., “In vivo genome editing using Staphylococcus aureus Cas9,” Nature, 2015, 520:186-191.
Rebar and Pabo, “Zinc finger phage: affinity selection of fingers with new DNA-binding specificities,” Science, 263(5147):671-673, Feb. 4, 1994.
Ren et al., “Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9,” Proc Natl Acad Sci U S A, Nov. 19, 2013, 110(47):19012-7.
Rendahl et al., “Regulation of gene expression in vivo following transduction by two separate rAAV vectors,” Nat. Biotechnol., Aug. 1998, 16:757-761.
Reyon et al., “FLASH assembly of TALENs for high-throughput genome editing,” Nat Biotech, 2012, 30:460-465 (Author Manuscript).
Ro et al., “Adenovirus-based short hairpin RNA vectors containing an EGFP marker and mouse U6, human H1, or human U6 promoter,” BioTechniques, 2005, 38(4):625-627.
Rodenhiser and Mann, “Epigenetics and human disease: translating basic biology into clinical applications,” CMAJ, 174(3):341-348 (2006).
Rohde et al., “BISMA—Fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences,” BMC Bioinformatics, 11:230 12 pages (2010).
Rothman, “Mechanisms of intracellular protein transport,” Nature, 372(6501):55-63, Nov. 3, 1994.
Rusk, “CRISPRs and epigenome editing,” Nature Methods, 2014, 11(1):28.
Sander and Joung et al., “CRISPR-Cas systems for editing, regulating and targeting genomes,” Nat Biotechnol., Apr. 2014, 32(4):347-55.
Sander et al., “In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites,” Nucleic Acids Res., 2013, 41:e181.
Sander et al., “ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool,” Nucleic Acids Res., 2010, 38:W462-468.
Sander et al., “Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool,” Nucleic Acids Res., 2007, 35:W599-605.
Sander et al., “Targeted gene disruption in somatic zebrafish cells using engineered TALENs,” Nat. Biotechnol., 29:697-698 (2011).
Sanjana et al., A transcription activator-like effector toolbox for genome engineering, Nature Protocols, 2012, 7:171-192.
Sapranauskas et al., “The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli,” Nucleic Acids Res., 2011, 39(21):9275-9282.
Schleifman et al., “Triplex-mediated gene modification,” Methods Mol. Biol., 435:175-190, 2008.
Scholze & Boch, “TAL effectors are remote controls for gene activation,” J. Curr. Opin. Microbiol, 14:47-53 (2011).
Schwank et al., “Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients,” Cell Stem Cell, Dec. 5, 2013, 13(6):653-8.
Sebo et al., “Cell-invasive activity of epitope-tagged adenylate cyclase of Bordetella pertussis allows in vitro presentation of a foreign epitope to CD8+ cytotoxic T cells,” Infect. Immun., Oct. 1995, 63:3851-57.
Segal et al., “Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins,” Biochemistiy, 42(7):2137-2148, Feb. 25, 2003.
Sequence Alignment of SEQ ID No. 1 of U.S. Appl. No. 15/107,550 with SEQ ID No. 103 of US2013/0130248A1. Search conducted on Feb. 15, 2018, 1 page as part of Office Action in U.S. Appl. No. 15/107,550.
Shah et al., “Protospacer recognition motifs,” RNA Biol., 2013, 10:891-899.
Sharma, “Schizophrenia, epigenetics and ligand-activated nuclear receptors: a framework for chromatin therapeutics,” Schizophr. Res., Jan. 2005, 72:79-90.
Shen et al., “Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects,” Nat Methods, 2014, 11(4):399-402.
Shen et al., “Generation of gene-modified mice via Cas9/RNA-mediated gene targeting,” Cell Res., 2013, 23(5):720-3.
Shmakov et al., “Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems,” Molecular Cell, 2015 60:385-397.
Silva et al., “Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy,” Curr Gene Ther., 11(1):11-27, Feb. 2011.
Silver, “How Proteins Enter the Nucleus,” Cell, 64(3):489-497, Feb. 8, 1991.
Simon et al., “Sequence-specific DNA cleavage mediated by bipyridine polyamide conjugates,” Nucl. Acids Res., 36(11):3531-8 (2008).
Slaymaker et al. 2016; Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268): 84-88.
Stenmark et al., “Peptides fused to the amino-terminal end of diphtheria toxin are translocated to the cytosol,” J. Cell Biol., Jun. 1991, 113:1025-32.
Sterman et al., “Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma,” Hum. Gene Ther., May 1998, 7:1083-89.
Sternberg et al., “Conformational control of DNA target cleavage by CRISPR-Cas9” Nature, 2015, 527:110-113.
Sternberg et al., “DNA interrogation by the CRISPR RNA-guided endonuclease Cas9,” Nature, 2014, 507:62-67.
Sternberg et al., “Mechanism of substrate selection by a highly specific CRISPR endoribonuclease,” RNA, 2012, 18:661-672.
Stoddard, “Homing endonuclease structure and function,” Q. Rev. Biophys., 38(1): 49-95, Epub Dec. 9, 2005.
Storrs, “A CRISPR Fore-Cas-t: A newcomer's guide to the hottest gene-editing tool on the block,” Scientist Magazine, Mar. 2014, 4 pages.
Sugimoto et al., “Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes,” Biochemistiy, 1995, 34:11211-11216.
Sugimoto et al., “Thermodynamics-structure relationship of single mismatches in RNA/DNA duplexes,” Biochemistry, Sep. 19, 2000, 39(37):11270-81.
Swarts el al., “CRISPR Interference Directed Strand Specific Spacer Acquisition,” PLOS, 2012, 7(4):1-7.
Szczepek et al., “Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases,” Nat Biotechnol., 2007, 25:786-793.
Szyf et al., “DNA methylation and breast cancer,” Biochem. Pharmacol., Sep. 2004, 68:1187-97.
Tahiliani et al., “Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1,” Science, 324:930-935 (2009).
Tan et al., “Efficient nonmeiotic allele introgression in livestock using custom endonucleases,” Proc Natl Acad Sci U S A, Oct. 8, 2013, 110(41):16526-31.
Tan et al., “Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity,” Proc Natl Acad Sci U S A., 100(21):11997-2002, Epub Sep. 26, 2003.
Terns and Terns, “CRISPR-based adaptive immune systems,” Curr Opin Microbiol., 2011, 14:321-327.
Tesson et al., “Knockout rats generated by embryo microinjection of TALENs,” Nat. Biotechnol., 29:695-696 (2011).
Tjong and Zhou, “DISPLAR: an accurate method for predicting DNA-binding sites on protein surfaces,” Nucleic Acids Res., 35(5):1465-1477, Epub Feb. 6, 2007.
Tsai et al., “Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing,” Nat Biotechnol., Apr. 2014, 32(6):569-576.
Tsai et al., “GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases,” Nat Biotechnol, Feb. 2015, 33:187-197.
Tzur et al., “Heritable Custom Genomic Modifications in Caenorhabditis elegans via a CRISPR-Cas9 System,” Genetics, 2013, 195:1181-1185.
Uhlmann et al., “Distinct methylation profiles of glioma subtypes,” Int. J. Cancer, Aug. 2003, 106:52-9.
Ui-Tei et al., “Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect,” Nucleic Acids Research, 2008, 36: 2136-2151.
Van der Oost et al., “Unravelling the Structural and Mechanistic Basis of CRISPR-Cas Systems,” Nature Reviews Microbiology, 2014, 12:479-492.
Ventura et al., “Cre-lox-regulated conditional RNA interference from transgenes,” PNAS, Jul. 2004, 101:10380-10385.
Waaijers et al., “CRISPR/Cas9-Targeted Mutagenesis in Caenorhabditis elegans,” Genetics, 2013, 195:1187-1191.
Wagner et al., “Efficient and persistent gene transfer of AAV-CFTR in maxillary sinus,” Lancet, Jun. 1998, 351:1702-1703.
Wang et al., “One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering,” Cell, 2013, 153:910-918.
Wang et al., “Positive and negative regulation of gene expression in eukaryotic cells with an inducible transcriptional regulator,” Gene Ther., May 1997, 4:432-441.
Wang et al., “The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori,” Cell Res., Dec. 2013, 23(12):1414-6.
Weber et al., “Assembly of Designer TAL Effectors by Golden Gate Cloning,” PLoS ONE, 6:e19722 (2011).
Widschwendter and Jones, “DNA methylation and breast carcinogenesis,” Oncogene, Aug. 2002, 21:5462-82.
Wiedenheft, “RNA-guided genetic silencing systems in bacteria and archaea,” Nature, 2012, 482:331-338.
Williams et al., Tet1 and hydroxymethylcytosine in transcription and DNA methylation fidelity, Nature, May 2011, 473: 343-349.
Wolfe et al., “DNA recognition by Cys2His2 zinc finger proteins,” Annu Rev Biophys Biomol Struct. 29:183-212 (2000).
Wong et al., “Detection of aberrant p16 methylation in the plasma and semm of liver cancer patients,” Cancer Res., 59(1):71-73 Jan. 1, 1999.
Wood et al., “Targeted Genome Editing Across Species Using ZFNs and TALENs,” Science, 333:307 (2011).
Wright et al., “Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly,” Nat Protoc., 2006, 1(3):1637-1652.
Wu et al., “Building zinc fingers by selection: toward a therapeutic application,” Proc Natl Acad Sci U S A., 92(2):344-348, Jan. 17, 1995.
Wu et al., “Correction of a genetic disease in mouse via use of CRISPR-Cas9,” Cell Stem Cell., Dec. 5, 2013, 13(6):659-62.
Wu et al., “Custom-designed zinc finger nucleases: what is next?” Cell Mol Life Sci., 64(22):2933-2944, Nov. 2007.
Wu et al., “Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells,” Nat Biotechnol. Jul. 2014; 32(7):670-6.
Xu et al., “Optimization of transcriptional regulatory elements for constructing plasmid vectors,” Gene. Jul. 2001, 272(1-2):149-56.
Xu et al., “Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells,” Mol Cell., 42(4):451-464, Epub Apr. 21, 2011.
Yang et al., “One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering,” Cell, Sep. 12, 2013; 154(6):1370-9.
Yang et al., “Optimization of scarless human stem cell genome editing,” Nucleic Acids Res., 2013, 41:9049-9061.
Yin et al., “Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype,” Nature Biotechnology 32, 551-553 (2014).
Yin et al., “Partial DNA-guided Cas9 enables genome editing with reduced off-target activity,” Nature Chemical Biology, Mar. 2018, 14(3)311-316.
Zetsche et al., “Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System,” Cell, 2015, 163:759-771.
Zhang et al., “Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription,” Nat Biotechnol., 29(2):149-153, Epub Jan. 19, 2011.
Zhang et al., “TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine,” Cell Res., 20(12):1390-1393, Epub Nov. 16, 2010.
Zhou et al., “High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells,” Nature. May 22, 2014; 509(7501):487-91.
Zitzewitz et al., “Probing the folding mechanism of a leucine zipper peptide by stopped-flA4:A48ism spectroscopy,” Biochemistiy, 34(39):12812-12819, Oct. 3, 1995.
CA Office Action in Canadian Appln. No. 2,906,553, dated Jan. 27, 2020, 4 pages.
CA Office Action in Canadian Appln. No. 2,906,724, dated Feb. 5, 2020, 4 pages.
JP Office Action In Japanese Appln. No. 2018-510914, dated Jan. 21, 2020, 11 pages (with English translation).
JP Office Action In Japanese Appln. No. 2019-153881, dated Jan. 21, 2020, 8 pages (with English translation).
KR Office Action in Korean Appln. No. 10-2015-7029170, dated Jan. 14, 2020, 12 pages (with English translation).
KR Office Action in KR Appln. No. 10-2015-7029171, dated Jan. 14, 2020, 16 pages (with English translation).
KR Office Action in KR Appln. No. 10-2015-7029177, dated Jan. 14, 2020, 6 pages (with English translation).
Extended European Search Report in European Appln. No. 21197664.2, dated Mar. 25, 2022, 11 pages.
AU Office Action in Australian Appln. No. 2019204675, dated Aug. 17, 2020, 4 pages.
JP Pretrial Reexamination Report in Japanese Appln. No. 2016-502976, dated Jun. 23, 2020, 11 pages (with English translation).
AU Office Action in Australian Appln. No. 2014370416, dated Apr. 6, 2020, 3 pages.
CN Office Action in Chinese Appln. No. 201480026276.5, dated Mar. 26, 2020, 8 pages (with English translation).
CN Office Action in Chinese Appln. No. 201480076396.6, dated May 21, 2020, 14 pages (with English translation).
EP Office Action in European Appln. No. 14764117.9, dated Jul. 9, 2020, 4 pages.
EP Office Action in European Appln. No. 16842722.7, dated Mar. 5, 2020, 5 pages.
EP Office Action in European Appln. No. 18208105.9, dated Jul. 16, 2020.
IL Office Action in Israeli Appln. No. 241671, dated May 21, 2020, 6 pages (with English translation).
JP Office Action in Japanese Appln. No. 2018-510914, dated Jul. 14, 2020, 7 pages (with English translation).
Notice of Allowance in Japanese Appln. No. 2020-055863, dated Mar. 1, 2022, 5 pages (with English translation).
Notice of Allowance in Korean Appln. No. 10-2021-7002428, dated Mar. 2, 2022, 5 pages (with English translation).
AU Office Action in Australian Appln. No. 2020201465, dated Jun. 16, 2021, 3 pages.
CA Office Action in Canadian Appln. No. 2,906,553, dated May 28, 2021, 3 pages.
EP Office Action in European Appln. No. 18208105.9, dated May 25, 2021, 5 pages.
JP Office Action in Japanese Appln. No. 2020-055863, dated Jun. 1, 2021, 5 pages (with English translation).
CN Office Action in Chinese Appln. No. 201480026276.5, dated Mar. 1, 2021, 9 pages (with English translation).
CN Office Action in Chinese Appln. No. 201480076396.6, dated Jan. 5, 2021, 7 pages (with English translation).
CN Office Action in Chinese Appln. No. 201680063266.8, dated Dec. 11, 2020, 15 pages (with English translation).
Demidov et al., “Two sides of the coin: affinity and specificity of nucleic acid interactions,” Trends Biochem. Sci., Feb. 2004, 29(2):62-71.
EP Brief Communcation in European Appln. No. 14763916.5, dated Feb. 9, 2021, 68 pages.
GenBank Accession No. AKS40380.1, “Cas9 [Synthetic plasmid pFC330],” Aug. 2, 2015, 1 page.
JP Decision to Grant a Patent in Japanese Appln. No. 2019-210428, dated Mar. 30, 2021, 5 pages (with English translation).
JP Office Action in Japanese Application No. 2019-210428, dated Dec. 8, 2020, 12 pages (with English translation).
JP Office Action in Japanese Appln. No. 2019-218086, dated Feb. 2, 2021, 4 pages (with English translation).
KR Office Action in Korean Appln. No. 10-2021-7002428, dated Mar. 30, 2021, 8 pages (with English translation).
Lehninger's Principles of Biochemistiy, 5th edition, Ahr (ed.), 2008, Chapter 8.3, pp. 287 and 288.
Mali et al., “RNA-guided human genome engineering via Cas9,” Science, 2013, 339(6121):823-826, Supplemental Material, 38 pages.
CA Office Action in Canadian Appln. No. 2,935,032, dated Sep. 10, 2020, 5 pages.
CN Office Action in Chinese Appln. No. 201480026276.5, dated Nov. 13, 2020, 8 pages (with English translation).
EP Extended European Search Report in European Appln. No. 20172393.9, dated Oct. 8, 2020, 12 pages.
EP Office Action in European Appln. No. 16842722, dated Sep. 30, 2020, 4 pages.
JP Office Action in Japanese Appln. No. 2019-176599, dated Sep. 8, 2020, 4 pages (with English translation).
Applicant's Response to Notice of Opposition in European Appln. No. 14763916.5, dated Jul. 9, 2021, 57 pages.
Notice of Acceptance in Australian Appln. No. 2020201465, dated Apr. 29, 2022, 4 pages.
Notice of Allowance in Canadian Appln. No. 2,906,724, dated Apr. 27, 2022, 1 page.
Notice of Opposition in European Appln. No. 14763916.5, dated May 2, 2022, 7 pages.
Office Action in Chinese Appln. No. 201910766412.9, dated Aug. 24, 2022, 17 pages (with English translation).
Supporting References Accompanying the Applicant's Response to Notice of Opposition in European Appln. No. 14763916.5, dated Jul. 9, 2021, 65 pages.
Supporting References Accompanying the Notice of Opposition in European Appln. No. 14763916.5, dated May 2, 2022, 17 pages.
Related Publications (1)
Number Date Country
20200071730 A1 Mar 2020 US
Provisional Applications (4)
Number Date Country
61921007 Dec 2013 US
61838148 Jun 2013 US
61838178 Jun 2013 US
61799647 Mar 2013 US
Continuations (2)
Number Date Country
Parent 15430218 Feb 2017 US
Child 16572248 US
Parent 14213723 Mar 2014 US
Child 15430218 US