Resistive memory elements can be programmed to different resistance states by applying programming energy. After programming, the state of the resistive memory elements can be read and remains stable over a specified time period. Large arrays of resistive memory elements can be used to create a variety of resistive memory devices, including non-volatile solid state memory, programmable logic, signal processing, control systems, pattern recognition devices, and other applications. Examples of resistive memory devices include valence change memory and electrochemical metallization memory, both of which involve ionic motion during electrical switching and belong to the category of memristors.
Memristors are devices that can be programmed to different resistive states by applying a programming energy, for example, a voltage or current pulse. This energy generates a combination of electric field and thermal effects that can modulate the conductivity of both non-volatile switch and non-linear select functions in a memristive element. After programming, the state of the memristor can be read and remains stable over a specified time period.
In the following description, numerous details are set forth to provide an understanding of the examples disclosed herein. However, it will be understood that the examples may be practiced without these details. While a limited number of examples have been disclosed, it should be understood that there are numerous modifications and variations therefrom. Similar or equal elements in the Figures may be indicated using the same numeral.
As used in the specification and claims herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
As used in this specification and the appended claims, “approximately” and “about” mean a ±10% variance caused by, for example, variations in manufacturing processes.
In the following detailed description, reference is made to the drawings accompanying this disclosure, which illustrate specific examples in which this disclosure may be practiced. The components of the examples can be positioned in a number of different orientations and any directional terminology used in relation to the orientation of the components is used for purposes of illustration and is in no way limiting. Directional terminology includes words such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc.
It is to be understood that other examples in which this disclosure may be practiced exist, and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense. Instead, the scope of the present disclosure is defined by the appended claims.
Resistive memory elements can be used in a variety of applications, including non-volatile solid state memory, programmable logic, signal processing, control systems, pattern recognition, and other applications.
As used in the specification and appended claims, the term “resistive memory elements” refers broadly to programmable non-volatile resistors where the switching mechanism involves atomic motion, including valance change memory, electrochemical metallization memory, and others. An example of a resistive memory element may be a memristor.
Memristors, or memristive devices, are nano-scale devices that may be used as a component in a wide range of electronic circuits, such as memories, switches, and logic circuits and systems. In a memory structure, a crossbar of memristors may be used. For example, when used as a basis for memories, the memristor may be used to store a bit of information, 1 or 0, corresponding to whether the memristor is in its high or low resistance state (or vice versa). When used as a logic circuit, the memristor may be employed as configuration bits and switches in a logic circuit that resembles a Field Programmable Gate Array, or may be the basis for a wired-logic Programmable Logic Array. It is also possible to use memristors capable of multi-state or analog behavior for these and other applications.
When used as a switch, the memristor may either be in a low resistance (closed) or high resistance (open) state in a cross-point memory. During the last few years, researchers have made great progress in finding ways to make the switching function of these memristors behave efficiently. For example, tantalum oxide (TaOx)-based memristors have been demonstrated to have superior endurance over other nano-scale devices capable of electronic switching. In lab settings, tantalum oxide-based memristors are capable of over 10 billion switching cycles.
A memristor may comprise a switching material, such as TiOx or TaOx, sandwiched between two electrodes. Memristive behavior is achieved by the movement of ionic species (e.g., oxygen ions or vacancies) within the switching material to create localized changes in conductivity via modulation of a conductive filament between two electrodes, which results in a low resistance “ON” state, a high resistance “OFF” state, or intermediate states. Initially, when the memristor is first fabricated, the entire switching material may be nonconductive. As such, a forming process may be required to form the conductive channel in the switching material between the two electrodes. A known forming process, often called “electroforming”, includes applying a sufficiently high (threshold) voltage across the electrodes for a sufficient length of time to cause a nucleation and formation of a localized conductive channel (or active region) in the switching material. The threshold voltage and the length of time required for the forming process may depend upon the type of material used for the switching material, the first electrode, and the second electrode, and the device geometry. Material composition and stack structure of the multilayers can be engineered to achieve the so-called electroforming-free, forming-free or electroforming-less devices, where the voltages used for electroforming are relatively small and comparable to those used in the subsequent switching. Still, some sort of conduction channel(s) or filament(s) (not shown) may be created by the applied voltage during this first electrical operation.
Metal or semiconductor oxides may be employed in memristive devices; examples include either transition metal oxides, such as tantalum oxide, titanium oxide, yttrium oxide, hafnium oxide, niobium oxide, zirconium oxide, or other like oxides, or non-transition metal oxides, such as aluminum oxide, calcium oxide, magnesium oxide, dysprosium oxide, lanthanum oxide, silicon dioxide, or other like oxides. Further examples include metal nitrides, such as aluminum nitride, gallium nitride, tantalum nitride, and silicon nitride.
Memristive devices may include a continuous oxide film between the electrodes. In the first electrical operation, filaments/ionic diffusion are formed in the oxide film between the electrodes in a random fashion, much like lightning, that may take the path of least resistance. This random path causes variations in the memristor I-V characteristics from switching cycle to cycle and especially from device to device. Older memristive or non-volatile resistive memory devices that are either unipolar or bipolar tend to have this random conductive path between the electrodes; that is, the vacancies have to find their own path to the opposite electrodes. This randomness in the conductive channel formation may cause variability in reproducibility and/or reliability issues, which is one of the biggest challenges in the commercialization of these devices.
For the conventional memristor, the device is flat, being a planar metal-oxide-metal structure based on a bottom electrode (BE; metal), an active region (oxide), and atop electrode (TE; metal). A filament formed in the oxide is the conduction path for the device with oxygen vacancy. The formation of the filament is a random process in the oxide through electrical, chemical, and thermal interaction. Similar considerations may be true for nitride-based memristors.
As a result of the random filament formation process, forming and switching of the memristor is not under full control. Therefore, variation of forming and switching behavior is observed, which is one of the biggest issues with memristive devices. Various efforts have been tried, such as the introduction of planting seeds of switching centers by thermal diffusion to control the formation of switching channels.
In accordance with the teachings herein, a V-shape memristor architecture is provided. The device architecture may be manufactured, using industry established processes.
The resistance memory element, here, a memristor, is depicted in
The memristor 100 is formed in a V-shape groove or pit 110 formed in a major surface 112a of a silicon substrate 112. The (100) planes of the silicon substrate 112 are parallel to the major surface 112a. The memristor 100 is separated from the silicon substrate 112 by a dielectric layer 114.
The device architecture described herein may involve anisotropic wet silicon etching. The Si geometry may be defined by crystal planes of substrate etch rates of the (100) and (110) planes much greater than that of the (111) plane, as shown in
Any chemical solution with a pH value of greater than 12 may be used as an anisotropic etching solution. Due to the requirement of good anisotropic etching characteristics, such as a high etching rate of silicon, high etching rate dependencies on crystallographic orientations, smooth etched surface, low etching rate of mask material, compatibility with CMOS processes, low toxicity, and ease of handling, tetramethyl ammonium hydroxide (TMAH; (CH3)4NOH) and potassium hydroxide (KOH) have been the most commonly used etchants for silicon device fabrication.
The profile of the etch pit 110 may be determined by definition of an etch mask 200. For example, a V-shape pit may be formed if the etch time is long enough to allow the etch to reach the pit bottom. It will be appreciated that the etch pit shown in
The use of an anisotropic etchant, with the (100) planes of silicon parallel to the major surface in conjunction with the etch mask 200 usually leads to underetching of the etch mask, as shown at 200a in
A more detailed process flow is illustrated in
In
In
In
In
In
In
In
In
A method for manufacturing a V-shape resistive memory element, specifically, a memristor, is shown in the process flow chart depicted in
The method 400 continues with etching 410 a V-shape groove in the silicon substrate. As discussed above, the V-shape groove is etched using an anisotropic etchant, such as tetramethyl ammonium hydroxide or potassium hydroxide. The process includes depositing a silicon etch mask on the major surface, patterning the silicon etch mask to expose portions of the silicon substrate, and etching into the silicon substrate with the anisotropic etchant.
The method 400 concludes with forming 415 the V-shape resistive memory element, or memristor, in the V-shape groove. The V-shape memristor is formed by forming a dielectric layer in at least the V-shape grooves; forming a bottom electrode on the dielectric layer; forming an active region on the bottom electrode; and forming a top electrode on the active region. The dielectric layer is formed by either depositing an interlayer dielectric or growing a thermal oxide. The formation of the bottom electrode, the active layer, and the top electrode have all been described above.
The device 100 depicted in
A crossbar is a structure having a set of bottom conductors 102 and a set of top conductors 104 crossing the set of bottom conductors at a non-zero angle. In
By tuning the deposition method and thickness, it is expected that the desired architecture may be achieved. For example, for the bottom electrode and active layer, the thickness and uniformity may be carefully controlled. For the top electrode deposition, a slightly thicker one than the bottom electrode may be desired to ensure that a good acute tip may be formed.
The V-shape architecture is expected to provide several advantages, including reduced variation from device to device since the memristor electroforming and switching are more predictable and repeatable due to the V-shape tip defined channel. Device endurance may be enhanced due to avoiding random hard breakdown leading to irrevocable failure. The architecture is easy to implement in fabrication and is compatible with industry processes (can have both V-shape memristor and conventional memristor in same die). The memristor dimension can be smaller than the technology Critical Dimension, (CD) since the memristor is confined in a space defined by etch mask (using technology CD) then shrunk by ILD (interlayer dielectric) or oxide growth. Smaller device size leads to lower operation current and energy.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/074997 | 12/13/2013 | WO | 00 |