This application claims priority under 35 USC §119 to Korean Patent Application No. 10-2014-0062767, filed on May 26, 2014 in the Korean Intellectual Property Office (KIPO), the contents of which are hereby incorporated by reference in their entirety.
1. Field
The inventive concepts relate to variable resistance memory devices and methods of manufacturing the same. More In particular, the inventive concepts relate to variable resistance memory devices having cross point array structures and methods of manufacturing the same.
2. Description of the Related Art
Recently, memory devices having a variable resistance property have been developed. Examples of the memory devices include a resistive random access memory (ReRAM) device, a phase change random access memory (PRAM) device, and a magnetic random access memory (MRAM) device.
In the memory devices, a memory cell including a variable resistance layer may be disposed between upper and lower electrodes or between upper and lower conductive lines. As an integration degree of a memory device increases, a distance or a pitch between neighboring memory cells may decrease so that a thermal interference and/or an electrical interference between the memory cells may occur, and thus an operational reliability of the memory device may be deteriorated.
There is provided a variable resistance memory device, according to an aspect of the inventive concepts, which includes a plurality of first conductive lines extending in a first direction, a plurality of second conductive lines disposed over the first conductive lines and extending in a second direction that is not parallel to the first direction, a plurality of memory cells each including a variable resistance element and disposed at locations at which the first and second conductive lines overlap each other, respectively, a plurality of first insulation layer patterns extending in the first direction between the memory cells; a plurality of second insulation layer patterns extending in the second direction between the memory cells a plurality of first thermal barrier layer patterns extending in the first direction between the first insulation layer patterns and which are separated from the memory cells in the second direction by the first insulation layer patterns, and a plurality of second thermal barrier layer patterns extending in the second direction between the second insulation layer patterns and which are separated from the memory cells in the first direction by the second insulation layer patterns.
There is also provided, according to another aspect of the inventive concepts, a cross point memory cell array which includes a base, memory cells disposed on the base and arrayed in first and second directions, first conductive lines extending parallel to each other in the first direction and interposed between the memory cells and the base second conductive lines disposed on the array of memory cells, the second conductive lines extending parallel to each other in the second direction, and a barrier separating the memory cells from one another, and in which the barrier comprises an insulation layer pattern structure extending along sidewall surfaces of the memory cells, and a thermal barrier layer pattern structure interposed between adjacent ones of the memory cells in the first and second directions, the thermal conductivity of the thermal barrier layer pattern structure being lower than that of the insulation layer pattern structure.
There is also provided, according to another aspect of the inventive concepts, a method of manufacturing a variable resistance memory device, which includes forming a first conductive layer and a first variable resistance material layer on a base insulation layer, etching the first variable resistance material layer and the first conductive layer to form a plurality of first trenches extending in a first direction, forming a first insulation layer pattern along sides of each of the first trenches and then forming a first thermal barrier layer pattern over the first insulation layer pattern in the first trenches, forming a second conductive layer on the first variable resistance material layer, the first insulation layer pattern and the first thermal barrier layer pattern, etching the first conductive layer, the first variable resistance material layer and the second conductive layer to form a plurality of second trenches extending in a second direction not parallel to the first direction, and forming a second insulation layer pattern along sides of each of the second trenches and thereafter forming a second thermal barrier layer pattern over the second insulation layer pattern in the second trenches.
The inventive concepts will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings.
Various the inventive concepts will be described more fully hereinafter with reference to the accompanying drawings, in which some the inventive concepts are shown. The present inventive concept may, however, be embodied in many different forms and should not be construed as limited to the inventive concepts set forth herein. Rather, these the inventive concepts are provided so that this description will be thorough and complete, and will fully convey the scope of the present inventive concept to those skilled in the art. In the drawings, the sizes and relative sizes of layers and regions may be exaggerated for clarity. Like reference numerals designate like elements throughout the drawings.
It will be understood that when an element or layer is referred to as being “on,” “connected to” or “coupled to” another element or layer, it can be directly on, connected or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. The term “extending” will generally refer to the longest dimension of an element or feature in a Cartesian system as illustrated in the drawings, e.g., the lengthwise direction of line element, even when not explicitly stated as the context of the description and figures will make clear.
It will be understood that, although the terms first, second, third, fourth, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section and not, for example, any particular order in which they are formed.
Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
The terminology used herein is for the purpose of describing particular the inventive concepts only and is not intended to be limiting of the present inventive concept. For example, it will be understood that the terms “comprises” and “comprising” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The inventive concepts are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized the inventive concepts (and intermediate structures). As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, the inventive concepts should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the present inventive concept.
Embodiments of memory devices and methods of manufacturing the same will now be described with reference to the figures.
Referring to
In this embodiment according to the inventive concepts, a plurality of first conductive lines 110 and a plurality of second conductive lines 180 may be formed. The memory cell 150 may be formed at an intersection 160 at which the first and second conductive lines 110 and 180 cross each other.
The base insulation layer 100 may include an insulating material, e.g., silicon oxide, silicon nitride, silicon oxynitride or the like. The base insulation layer 100 may cover lower structures (not shown), e.g., transistors, formed on a substrate (not shown).
The first conductive line 110 may extend in a first direction that is parallel to a top surface of the base insulation layer 100. In an embodiment according to the inventive concepts, a plurality of first conductive lines 110 may be arranged in a second direction that is parallel to the top surface of the base insulation layer 100 and is not parallel to the first direction.
In an embodiment according to the inventive concepts, the first and second directions may be substantially perpendicular to each other. Alternatively, the first and second directions may form an acute angle with each other. The definition of the first and second directions may be the same throughout all specifications.
The first conductive line 110 may include a metal, e.g., tungsten (W), copper (Cu), aluminum (Al), titanium (Ti), tantalum (Ta) or the like. In an embodiment according to the inventive concepts, the first conductive line 110 may serve as a bit line or a word line.
The second conductive line 180 may extend in the second direction. In an embodiment according to the inventive concepts, a plurality of the second conductive lines 180 may be arranged in the first direction.
The second conductive line 180 may include a metal, e.g., tungsten (W), copper (Cu), aluminum (Al), titanium (Ti), tantalum (Ta) or the like. In an embodiment according to the inventive concepts, the second conductive line 180 may serve as a word line when the first conductive line 110 serves as a bit line. Alternatively, the second conductive line 180 may serve as a bit line when the first conductive line 110 serves as a word line.
As the plurality of first conductive lines 110 and the plurality of second conductive lines 180 are formed, a plurality of memory cells may be formed at the intersection 160 at which the first and second conductive lines 110 and 180 overlap or cross each other. The plurality of memory cells 150 may be arranged in the first direction to form a memory cell column. The plurality of memory cells 150 may be arranged in the second direction to form a memory cell row.
The memory cell 150 may include a variable resistance layer 130.
In an embodiment according to the inventive concepts, the variable resistance layer 130 may include a material of which a resistance may be changed by an oxygen vacancy or an oxygen migration. In this case, the variable resistance memory device may be a ReRAM device.
For example, the variable resistance layer 130 may include a perovskite-based material or a transition metal oxide. The perovskite-based material may include, e.g., STO (SrTiO3), BTO (BaTiO3), PCMO (Pr1-XCaXMnO3) or the like. The transition metal oxide may include titanium oxide (TiOx), zirconium oxide (ZrOx), aluminum oxide (AlOx), hafnium oxide (HfOx), tantalum oxide (TaOx), niobium oxide (NbOx), cobalt oxide (CoOx), tungsten oxide (WOx), lanthanum oxide (LaOx) or zinc oxide (ZnOx). These may be used alone or in combination.
The variable resistance layer 130 may have a multi-layered structure including the above-mentioned materials. For example, the variable resistance layer 130 may include a first hafnium oxide (HfO2) layer, a second hafnium oxide (HfOx) layer and a zirconium oxide layer sequentially stacked. Alternatively, the variable resistance layer 130 may include a titanium aluminum oxide (TiAlOx) layer, a tantalum oxide layer and an aluminum oxide layer sequentially stacked.
In an example of the present embodiment, the variable resistance memory device may be a PRAM device, and thus the variable resistance layer 130 may include a material whose resistance may be changed by a phase change or a phase transition. In this case, the variable resistance layer 130 may include a chalcogenide-based material in which germanium (Ge), antimony (Sb) and/or tellurium (Te) are combined in a given ratio.
In another example of the present embodiment, the variable resistance memory device may be an MRAM device, and thus the variable resistance layer 130 may include a material whose resistance may be changed by a magnetic field or a spin transfer torque (STT). In this case, the variable resistance layer 130 may include a ferromagnetic material, e.g., iron (Fe), nickel (Ni), cobalt (Co), dysprosium (Dy), gadolinium (Gd) or the like.
In an embodiment according to the inventive concepts, the memory cell 150 may Furthermore include a lower electrode 120 interposed between the first conductive line 110 and the variable resistance layer 130, and an upper electrode 140 interposed between the second conductive line 180 and the variable resistance layer 130.
The lower electrode 120 and the upper electrode 140 may include a metal nitride or a metal silicon nitride, e.g., titanium nitride (TiNx), titanium silicon nitride (TiSiNx), tungsten nitride (WNx), tungsten silicon nitride (WSiNx), tantalum nitride (TaNx), tantalum silicon nitride (TaSiNx), zirconium nitride (ZrNx), zirconium silicon nitride (ZrSiNx) or the like.
The thermal barrier layer pattern structure may be formed between the memory cells 150. In an embodiment according to the inventive concepts, the thermal barrier layer pattern structure may include a first thermal barrier layer pattern 175a and a second thermal barrier layer pattern 175b.
The first thermal barrier layer pattern 175a may be formed between neighboring memory cell columns, and may extend in the first direction. As shown in
The second thermal barrier layer pattern 175b may be formed between neighboring memory cell rows, and may extend in the second direction. As shown in
As shown in
The first and second insulation layer patterns 165a and 165b may cover sidewalls and bottom surfaces of the first and second thermal barrier layer patterns 175a and 175b, respectively. Thus, the first insulation layer pattern 165a may be formed on the sidewall of the memory cell 150 and a sidewall of the first conductive line 110. The second insulation layer pattern 165b may be formed on the sidewall of the memory cell 150 and a sidewall of the second conductive line 180. The first and second thermal barrier layer patterns 175a and 175b may be separated by the first and second insulation layer patterns 165a and 165b, respectively, from the memory cells 150 adjacent thereto.
In an embodiment according to the inventive concepts, each of the first and second thermal barrier layer patterns 175a and 175b includes a material having a thermal conductivity lower than those of the first and second insulation layer patterns 165a and 165b. In an example of the present embodiment, the first and second insulation layer patterns 165a and 165b are layers of silicon oxide and thus, each of the first and second thermal barrier layer patterns 175a and 175b are of material having a thermal conductivity lower than silicon oxide. Each of the first and second thermal barrier layer patterns 175a and 175b may be of material having a thermal conductivity lower than 1 W/m·K, e.g., GST, porous silicon oxide, polyimide, tungsten selenium (WSe2) or the like. These may be used alone or in combination.
In an embodiment according to the inventive concepts, the variable resistance memory device may include the first and second insulation layer patterns 165a and 165b crossing each other between the memory cells 150, and the first and second thermal barrier layer patterns 175a and 175b being covered by the first and second insulation layer patterns 165a and 165b, respectively. Thus, each memory cell 150 may be surrounded by the first insulation layer pattern 165a and the first thermal barrier layer pattern 175a sequentially stacked, and by the second insulation layer pattern 165b and the second thermal barrier layer pattern 175b sequentially stacked. Accordingly, a cross-talk, a parasitic capacitance or an interference generated between neighboring memory cells 150 may be minimized
When a voltage is applied to the variable resistance memory device, heat may be generated from the memory cell 150, which may be transferred to neighboring memory cells 150, and thus the variable resistance memory device may be deteriorated. In an embodiment according to the inventive concepts, however, the memory cells 150 of the variable resistance memory device are surrounded by the first and second thermal barrier layer patterns 175a and 175b including materials having thermal conductivities lower than those of the first and second insulation layer patterns 165a and 165b, respectively, and heat transfer between the memory cells 150 may be decreased so that an operational reliability of the variable resistance memory device may be improved.
Referring to
The base insulation layer 100 may include an insulating material, e.g., silicon oxide, silicon nitride or silicon oxynitride. The base insulation layer 100 may cover lower structures (not shown), e.g., transistors, formed on a substrate (not shown).
The first conductive layer 112 may be formed of metal, e.g., tungsten (W), copper (Cu), aluminum (Al), titanium (Ti), tantalum (Ta) or the like. These may be used alone or in combination.
The lower electrode layer 113 and the upper electrode layer 133 may be formed of at least one material selected from the group consisting of metal nitrides and metal silicon nitrides. For example, the lower and upper electrode layers 113 and 133 may be formed of titanium nitride, titanium silicon nitride, tungsten nitride, tungsten silicon nitride, tantalum nitride, tantalum silicon nitride, zirconium nitride, zirconium silicon nitride or the like. These may be used alone or in combination.
The material for forming the variable resistance material layer 123 may be selected in consideration of the type of the variable resistance memory device to be manufactured. In an embodiment according to the inventive concepts, the variable resistance memory device is a ReRAM device. Therefore, the variable resistance material layer 123 may be formed using a perovskite-based material or a transition metal oxide. For example, the variable resistance material layer 123 may be formed of STO, BTO, PCMO, titanium oxide, zirconium oxide, aluminum oxide, hafnium oxide, tantalum oxide, niobium oxide, cobalt oxide, tungsten oxide, lanthanum oxide, zinc oxide or the like. These may be used alone or in combination. The variable resistance material layer 123 may be formed to have a multi-layered structure including several of the above materials.
In another example of the present embodiment according to the inventive concepts, the variable resistance memory device is a PRAM device. Therefore, the variable resistance material layer 123 may be formed using a chalcogenide-based material. In still another example of the present embodiment, the variable resistance memory device is an MRAM device. Therefore, the variable resistance material layer 123 may be formed of ferromagnetic material, e.g., iron (Fe), nickel (Ni), cobalt (Co), dysprosium (Dy), gadolinium (Gd) or the like.
The first conductive layer 112, the lower electrode layer 113, the variable resistance material layer 123 and the upper electrode layer 133 may be formed by a physical vapor deposition (PVD) process, a sputtering process, an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process.
Referring to
In an embodiment according to the inventive concepts, a first mask 139 extending in the first direction may be formed on the upper electrode layer 133 so that the first mask 139 may partially expose a top surface of the upper electrode layer 133. The first trench 145 may be formed through the upper electrode layer 133, the variable resistance material layer 123, the lower electrode layer 113 and the first conductive layer 112 by a dry etching process using the first mask 139 as an etching mask. The first mask 139 may be formed of a photoresist material or polysilicon.
An upper portion of the base insulation layer 100 may be also etched when the first trench 145 is formed by the etching process.
In an embodiment according to the inventive concepts, the first trench 145 may extend in the first direction, and a plurality of first trenches 145 may be formed in the second direction. By the formation of the first trench 145, a first conductive line 110, a lower electrode layer pattern 117, a variable resistance material layer pattern 127 and an upper electrode layer pattern 137, which may be sequentially stacked on the base insulation layer 100 and extend in the first direction, may be formed.
As described above, the first trench 145 may be formed through the base insulation layer 100. Thus, a plurality of first conductive lines 110 separated from each other may be formed. For example, when the first conductive layer 112 is etched, an etching residue may remain on a top surface of the base insulation layer 100 to cause interference between neighboring first conductive lines 110. In an embodiment according to the inventive concepts, however, the base insulation layer 100 may be over-etched during the formation of the first trench 145 so that the etching residue may be also removed. Therefore, a reliability of a signal transfer through the first conductive line 110 may be improved.
In an embodiment according to the inventive concepts, the first conductive line 110 may serve as a word line or a bit line of the variable resistance memory device.
Referring to
The first insulation layer 162a may be formed of insulating material, e.g., silicon nitride, silicon oxide or the like, by a CVD process or an ALD process.
Referring to
The first thermal barrier layer 172 may be formed to sufficiently fill the first trench 145 by a CVD process or an ALD process.
In an embodiment according to the inventive concepts, the first thermal barrier layer 172 is formed of material having a thermal conductivity lower than that of the first insulation layer 162a. In an example of the present embodiment, the first thermal barrier layer 172 is formed of material having a thermal conductivity lower than silicon oxide, e.g., at least one of GST, porous silicon oxide, polyimide, and tungsten selenium (WSe2), and the first insulation layer 162 is formed of silicon oxide.
Referring to
In particular, the first thermal barrier layer 172, the first insulation layer 162a and the first mask 139 may be planarized by a CMP process and/or an etch-back process, using the first mask 139 as a stop layer, until a top surface of the upper electrode layer pattern 137 is exposed. The first thermal barrier layer 172 and the first insulation layer 162a may be planarized to form the first thermal barrier layer pattern 175a and the first insulation layer pattern 165a, respectively, and the first mask 139 may be removed. The first thermal barrier layer pattern 175a and the first insulation layer 165a may extend in the first trench 145 in the first direction.
Referring to
In particular, the second conductive layer 177 may be formed of metal, e.g., at least one metal selected from the group consisting of tungsten (W), copper (Cu), aluminum (Al), titanium (Ti), and tantalum (Ta). The second conductive layer 177 may be formed by a PVD process, a sputtering process, an ALD process, a CVD process or the like.
Referring to
In particular, a second mask 189 extending in the second direction may be formed to partially expose a top surface of the second conductive layer 177 on the second conductive layer 177. The second trench 14 may be formed through the second conductive layer 177, the upper electrode layer pattern 137, the variable resistance material layer pattern 127 and the lower electrode layer pattern 117 by a dry etching process using the second mask 189 as an etching mask. The second mask 189 may be formed of silicon nitride, for example. An upper portion of the first conductive line 110 may be also etched when the second trench 147 is formed by the etching process. The exposed first insulation layer pattern 165a and the first thermal barrier layer pattern 175a may be also partially removed by the etching process. Accordingly, a plurality of first insulation layer patterns 165a separated from each other by the second trench 147 and a plurality of first thermal barrier layer patterns 175a separated from each other by the second trench 147 may be formed.
In an embodiment according to the inventive concepts, the second trench 147 may extend in the second direction, and a plurality of second trenches 147 may be formed in the first direction. By the formation of the second trench 147, the lower electrode layer pattern 117, the variable resistance material layer pattern 127 and the upper electrode layer pattern 137 extending in the first direction may be transformed into a lower electrode 120, a variable resistance layer 130 and an upper electrode 140, respectively, each having an island-like shape.
The second conductive layer 177 may be transformed into a plurality of second conductive lines 180 by the formation of the second trench 147. The second conductive line 180 may extend in the second direction, and the plurality of second conductive lines 180 may be arranged in the first direction. Accordingly, the second conductive line 180 may be disposed over the first conductive line 110, and the first and second conductive lines 110 and 180 may cross or overlap each other. As illustrated in
In an embodiment according to the inventive concepts, the second conductive line 180 may serve as a bit line of the variable resistance memory device when the first conductive line 110 serves as a word line of the variable resistance memory device. Alternatively, the second conductive line 180 may serve as a word line of the variable resistance memory device when the first conductive line 110 serves as a bit line of the variable resistance memory device.
When the lower electrode layer pattern 117 is etched, an etching residue may remain on a top surface of the first conductive line 110 to cause interference between neighboring memory cells 150. In an embodiment according to the inventive concepts, however, the upper portion of the first conductive line 110 may be partially removed during the etching process for forming the second trench 147 so that the etching residue may be also removed. Therefore, a reliability of an operation of each memory cell 150 may be improved.
Referring to
The second insulation layer 162b may be formed of silicon nitride or silicon oxide, for example, by a CVD process or an ALD process.
Referring to
The second thermal barrier layer 174 may be formed on the second insulation layer 162b by a CVD process or an ALD process so that the second thermal barrier layer 174 may sufficiently fill the second trench 147.
In an embodiment according to the inventive concepts, the second thermal barrier layer 174 is formed of material having a thermal conductivity lower than that of the second insulation layer 162b. In an example of the present embodiment, the second thermal barrier layer 174 is formed of material having a thermal conductivity lower than silicon oxide, and the second insulation layer 162b is formed of silicon oxide. In an example of the present embodiment, the second thermal barrier layer 174 may be formed of substantially the same material as the first thermal barrier layer 172.
Referring to
In particular, the second thermal barrier layer 174, the second insulation layer 162b and the second mask 189 may be planarized by a CMP process and/or an etch-back process, using the second mask 189 as a stop layer, until a top surface of the second conductive line 180 is exposed. The second thermal barrier layer 174 and the second insulation layer 162b may be planarized to form the second thermal barrier layer pattern 175b and the second insulation layer pattern 165b, respectively. In this case, the second mask 139 may be removed. The second thermal barrier layer pattern 175b and the second insulation layer 165b may extend in the second trench 147 in the second direction. In an embodiment according to the inventive concepts, the first and second thermal barrier layer patterns 175a and 175b may define a thermal barrier layer pattern structure, and the first and second insulation layer patterns 165a and 165b may define an insulation layer pattern structure.
In an embodiment according to the inventive concepts, the first insulation layer pattern 165a and the first thermal barrier layer pattern 175a may extend in the first direction, and the second insulation layer pattern 165b and the second thermal barrier layer pattern 175b may extend in the second direction. A first structure including the first insulation layer pattern 165a and the first thermal barrier layer pattern 175a and a second structure including the second insulation layer pattern 165b and the second thermal barrier layer pattern 175b may cross each other.
According to the inventive concepts, the variable resistance memory device may be formed to include the thermal barrier layer pattern structure surrounded by the insulation layer pattern structure. The thermal barrier layer pattern structure may include a material having a thermal conductivity lower than that of the insulation layer pattern structure. Accordingly, heat transfer between the memory cells 150 may be decreased because of the thermal barrier layer pattern structure so that an operational reliability of the variable resistance memory device may be improved.
Referring to
The thermal barrier layer pattern structure may be disposed between the memory cells 150. In an embodiment according to the inventive concepts, the thermal barrier layer pattern structure may include a first thermal barrier layer pattern 175a and a second thermal barrier layer pattern 175b.
The first thermal barrier layer pattern 175a may be formed between neighboring memory cell columns, and may extend in a first direction. The second thermal barrier layer pattern 175b may be formed between neighboring memory cell lows, and may extend in a second direction
As shown in
Accordingly, the first insulation layer pattern 165a, the first thermal barrier layer pattern 175a and the third insulation layer pattern 167a sequentially stacked between neighboring memory cells 150 may define a first insulation structure. The second insulation layer pattern 165b, the second thermal barrier layer pattern 175b and the fourth insulation layer pattern 167b sequentially stacked between neighboring memory cells 150 may define a second insulation structure.
The third and fourth insulation layer patterns 167a and 167b may include an insulating material, e.g., silicon oxide, silicon nitride or the like. These may be used alone or in a combination thereof. In an embodiment according to the inventive concepts, each of the third and fourth insulation layer patterns 167a and 167b may include substantially the same material as the first and second insulation layer patterns 165a and 165b.
According to the inventive concepts, the memory cells 150 of the variable resistance memory device may be surrounded by the thermal barrier layer pattern structure so that a heat transfer between the memory cells 150 may be decreased. Thus, an operational reliability of the variable resistance memory device may be improved.
Referring to
Referring to
In particular, the first thermal barrier layer 172 may be formed along the first insulation layer 162a so that a first opening 145b may be defined by the first thermal barrier layer 172.
Referring to
In particular, the third insulation layer may be formed on the first thermal barrier layer 172 to sufficiently fill the first opening 145b, and the third insulation layer, the first thermal barrier layer 172 and the first insulation layer 162a may be planarized by a CMP process and/or an etch-back process until a top surface of the upper electrode layer pattern 137 is exposed. In this case, the first mask 139 may be removed, and the third insulation layer, the first thermal barrier layer 172 and the first insulation layer 162a may be planarized to form the third insulation layer pattern 167a, the first thermal barrier layer pattern 175a and the first insulation layer pattern 165a, respectively.
The third insulation layer, the first thermal barrier layer 172 and the first insulation layer 162a may extend in the first trench 145b in the first direction. The third insulation layer may be formed of insulating material, e.g., silicon oxide, silicon nitride or the like. The third insulation layer may be formed of material similar to that of the first insulation layer 162a.
Then, a process similar to that illustrated with reference to
Referring to
In particular, the second trench 147a may be formed through the second conductive layer 177, the upper electrode layer pattern 137, a variable resistance material layer pattern 127 and a lower electrode layer pattern 117 by a dry etching process using the second mask 189 as an etching mask. By the formation of the second trench 147, a second conductive line 180, and an upper electrode 140, a variable resistance layer 130, and a lower electrode 120 sequentially stacked on the first conductive line 110 may be formed to extend in the second direction. Then, the second insulation layer 162b may be formed on the second mask 189 and on the sidewall and the bottom surface of the second trench 147a.
Referring to
In particular, a second thermal barrier layer 174 may be formed on the second insulation layer 162b so that a second opening 147b may be defined by the second thermal barrier layer 174.
Referring to
In particular, a fourth insulation layer may be formed on the second thermal barrier layer 174 to sufficiently fill the second opening 147b, and the fourth insulation layer, the second thermal barrier layer 174 and the second insulation layer 162b may be planarized by a CMP process and/or an etch-back process until a top surface of the second conductive line 180 is exposed. In this case, the second mask 180 may be removed, and the fourth insulation layer, the second thermal barrier layer 174 and second insulation layer 162b may be planarized to form a fourth insulation layer pattern 167a, the second thermal barrier layer pattern 175b and the second insulation layer pattern 165b, respectively. The fourth insulation layer pattern 167b, the second thermal barrier layer pattern 175b and the second insulation layer pattern 165b may extend in the second direction. The fourth insulation layer may be formed of insulating material, e.g., silicon oxide, silicon nitride or the like. The fourth insulation layer may be formed of material similar to that of the second insulation layer.
According to the inventive concepts, each of the first and second thermal barrier layer patterns 175a and 175b are formed of material having a thermal conductivity lower than those of the first to fourth insulation layer patterns 165a, 165b, 167a and 167b. Accordingly, heat transfer between the memory cells 150 may be decreased because of the first and second thermal barrier layer patterns 175a and 175b so that an operational reliability of the variable resistance memory device may be improved.
For example,
Referring to
In an embodiment according to the inventive concepts, the variable resistance memory device may include a memory cell 150a at each intersection at which the first conductive line 110 and the second conductive line 180 cross each other. The memory cell 150a may have a structure in which a selection element S and a variable resistance element R are sequentially stacked.
The variable resistance element R may include a lower electrode 120, a variable resistance layer 130 and an upper electrode 140.
In an embodiment according to the inventive concepts, the selection element S may include a P-N diode. In this case, the selection element S may include a lower semiconductor layer pattern 105 and an upper semiconductor layer pattern 107 sequentially stacked on the first conductive line 110. For example, the lower semiconductor layer pattern 105 and the upper semiconductor layer pattern 107 may include polysilicon doped with n-type impurities and p-type impurities, respectively. In an example of the present embodiment, the selection element S may also include an insulation pattern (not shown) between the lower semiconductor layer pattern 105 and the upper semiconductor layer pattern 107, and in this case, the selection element S may be a P-I-N diode.
Alternatively, the lower semiconductor layer pattern 105 and the upper semiconductor layer pattern 107 may include an n-type oxide semiconductor and a p-type oxide semiconductor, respectively. The n-type oxide semiconductor may be a zinc oxide (ZnOx) or indium zinc oxide (InZnOx). The p-type oxide semiconductor may be a copper oxide (CuOx).
In an example of the present embodiment, a first buffer layer (not shown) may be interposed between the first conductive line 110 and the selection element S. A second buffer layer (not shown) may be interposed between the selection element S and the variable resistance element R. The first and second buffer layers may comprise a metal nitride, e.g., titanium nitride, tantalum nitride, tungsten nitride, or zirconium nitride.
The thermal barrier layer pattern structure may include a first thermal barrier layer pattern 175a and a second thermal barrier layer pattern 175b. The first and second thermal barrier layer patterns 175a and 175b may be disposed between neighboring memory cells 150, and may extend in the first and second directions, respectively.
An insulation layer pattern structure may be formed on a sidewall of the memory cell 150. In an embodiment according to the inventive concepts, the insulation layer pattern structure may include a first insulation layer pattern 165a covering the first thermal barrier layer pattern 175a, and a second insulation layer pattern 165b covering the second thermal barrier layer pattern 175b.
Each of the first insulation layer pattern 165a and the first thermal barrier layer pattern 175a may extend through an upper portion of the base insulation layer 100 so that lower portions of the first insulation layer pattern 165a and the first thermal barrier layer pattern 175a may be surrounded by the base insulation layer 100. Each of the second insulation layer pattern 165b and the second thermal barrier layer pattern 175b may extend through an upper portion of the first conductive line 110 so that lower portions of the second insulation layer pattern 165b and the second thermal barrier layer pattern 175b may be surrounded by the first conductive line 110.
Referring to
The lower semiconductor layer 102 may be formed of polysilicon doped with n-type impurities, e.g., phosphorous (P) or arsenic (As). In an example of the present embodiment, an amorphous silicon layer may be deposited, and n-type impurities may be implanted therein. A crystallization process, e.g., a laser annealing process, may be performed on the amorphous silicon layer to form the lower semiconductor layer 102. Alternatively, the lower semiconductor layer 102 may be formed of n-type oxide semiconductor, e.g., zinc oxide, indium zinc oxide or the like.
The upper semiconductor layer 104 may be formed of polysilicon doped with p-type impurities, e.g., boron (B), gallium (Ga) or the like. In an example of the present embodiment, an amorphous silicon layer may be deposited, and p-type impurities may be implanted therein. A crystallization process, e.g., a laser annealing process, may be performed on the amorphous silicon layer to form the upper semiconductor layer 104. Alternatively, the upper semiconductor layer 104 may be formed of a p-type oxide semiconductor, e.g., copper oxide.
Each of the lower and upper semiconductor layers 102 and 104 may be formed by a PVD process, a sputtering process, an ALD process or the like.
In an example of the present embodiment, a first buffer layer (not shown) may be Furthermore formed between the first conductive layer 112 and the lower semiconductor layer 102. Additionally, a second buffer layer (not shown) may be formed between the upper semiconductor layer 104 and the lower electrode layer 115. The first and second buffer layers may be formed of a metal nitride, e.g., titanium nitride, tantalum nitride, tungsten nitride, or zirconium nitride, by a PVD process, a sputtering process or an ALD process.
Referring to
In an embodiment according to the inventive concepts, the first trench 145 may extend in the first direction, and a plurality of first trenches 145 may be formed in the second direction. The upper portion of the base insulation layer 100 may be over-etched when the first trench 145 is formed.
By the formation of the first trench 145, a first conductive line 110, a lower semiconductor layer line 106, an upper semiconductor layer line 108, a lower electrode layer pattern 117, a variable resistance material layer pattern 127 and an upper electrode layer pattern 137, each of which may extend in the first direction, may be sequentially formed on the base insulation layer 100.
Referring to
Accordingly, a first insulation layer pattern 165a and a first thermal barrier layer pattern 175a filling the first trench 145 may be formed on a sidewall and a bottom surface of the first trench 145. After forming the first insulation layer pattern 165a and the first thermal barrier layer pattern 175a, a first mask 139 may be removed. A second conductive layer 177 may be formed on the upper electrode layer pattern 137, the first insulation layer pattern 165a and the first thermal barrier layer pattern 175a.
Referring to
Accordingly, a second trench 147 extending in the second direction may be formed through the second conductive layer 177, the upper electrode layer pattern 137, the variable resistance material layer pattern 127, the lower electrode layer pattern 117, the upper semiconductor layer line 108 and the lower semiconductor layer line 106. In an embodiment according to the inventive concepts, a plurality of second trenches 147 may be formed in the first direction. An upper portion of the first conductive line 110 may be over-etched during the process for forming the second trench 147.
By the formation of the second trench, a second conductive line 180 extending in the second direction may be formed. Furthermore, the upper electrode layer pattern 137, the variable resistance material layer pattern 127, the lower electrode layer pattern 117, the upper semiconductor layer line 108 and the lower semiconductor layer line 106 may be transformed into an upper electrode 140, a variable resistance layer 130, a lower electrode 120, an upper semiconductor layer pattern 107 and a lower semiconductor layer pattern 105, respectively.
A variable resistance element R may be defined by the lower electrode 120, the variable resistance layer 130 and the upper electrode 140. A selection element S may be defined by the lower semiconductor layer pattern 105 and the upper semiconductor layer pattern 107. Accordingly, a memory cell 150a including the selection element S and the variable resistance element R may be formed at an intersection of the first and second conductive lines 110 and 180.
Referring to
Accordingly, a second insulation layer pattern 165b and a second thermal barrier layer pattern 175b filling the second trench 147 may be formed on a sidewall and a bottom surface of the second trench 147. The second mask 199 may be removed.
Referring to
In an embodiment according to the inventive concepts, each of the first and second variable resistance memory devices may be similar to that illustrated with reference to
An insulating interlayer 195 may be formed between the first and second variable resistance memory devices. A first insulation layer pattern 165a and a first thermal barrier layer pattern 175a may extend through an upper portion of the insulating interlayer 195 so that lower portions of the first insulation layer pattern 165a and the first thermal barrier layer pattern 175a may be surrounded by the insulating interlayer 195.
Referring to
The stacked variable resistance memory devices of
Referring to
The first memory cell 250 may be formed at an intersection of the first and second conductive lines 210 and 280
In an embodiment according to the inventive concepts, a plurality of first conductive lines 210, a plurality of second conductive lines 280, and a plurality of third conductive lines 380 may be formed. The first memory cell 250 may be formed at an intersection of the first and second conductive lines 210 and 280, and the second memory cell 350 may be formed at an intersection of the first and second conductive lines 280 and 380.
The first conductive line 210 may extend in the first direction, and the plurality of first conductive lines 210 may be arranged in the second direction. The second conductive line 280 may be disposed over the first conductive line 210. The second conductive line 280 may extend in the second direction, and the plurality of second conductive lines 280 may be arranged in the first direction. The third conductive line 380 may be disposed over the second conductive line 280. The third conductive line 380 may extend in the first direction, and the plurality of third conductive lines 380 may be arranged in the second direction. Accordingly, the first and third conductive lines 210 and 380 may extend in substantially the same direction, and the second conductive line 280 may cross or overlap the first and third conductive lines 210 and 380 therebetween.
In an embodiment according to the inventive concepts, the first and third conductive lines 210 and 380 may serve as bit lines or word lines of the stacked variable resistance memory device. The second conductive line 280 may serve as a common word line of the stacked variable resistance memory device when the first and third conductive lines 210 and 380 serve as the bit lines. Alternatively, the second conductive line 280 may serve as a common bit line of the stacked variable resistance memory device when the first and third conductive lines 210 and 380 serve as word lines.
As the plurality of first conductive lines 210, the plurality of second conductive lines 280, and the plurality of third conductive lines 380 are formed, a plurality of first memory cells 250 may be formed at an intersection at which the first and third conductive lines 210 and 380 overlap or cross each other. A plurality of second memory cells 350 may be formed at an intersection at which the second and third conductive lines 280 and 380 overlap or cross each other. The plurality of first memory cells 250 and the plurality of second memory cells 350 may be arranged in the first direction to form a first memory cell column and a second memory cell column, respectively. The plurality of first memory cells 250 and the plurality of second memory cells 350 may be arranged in the second direction to form a first memory cell row and a second memory cell row, respectively.
In an embodiment according to the inventive concepts, the first memory cell 250 may include a first variable resistance layer 230. In an embodiment according to the inventive concepts, a first lower electrode 220 may be formed between the first variable resistance layer 230 and the first conductive line 210, and a first upper electrode 240 may be formed between the first variable resistance layer 230 and the second conductive line 280. The first variable memory device may be defined by the first conductive line 210, the first memory cell 250 and the second conductive line 280.
In an embodiment according to the inventive concepts, the second memory cell 350 may include a second variable resistance layer 330. In an embodiment according to the inventive concepts, a second lower electrode 320 may be formed between the second variable resistance layer 330 and the second conductive line 280, and a second upper electrode 340 may be formed between the second variable resistance layer 330 and the third conductive line 380. The second variable memory device may be defined by the second conductive line 280, the second memory cell 350 and the third conductive line 380.
The thermal barrier layer pattern structure may be formed between the first and second memory cells 250 and 350. In an embodiment according to the inventive concepts, the thermal barrier layer pattern structure may include a first thermal barrier layer pattern 275, a second thermal barrier layer pattern 375a and a common thermal barrier layer pattern 375b.
The first thermal barrier layer pattern 275 may be formed between neighboring first memory cell columns, and may extend in the first direction. The first thermal barrier layer pattern 275 may extend through the first memory cells 250 and the first conductive lines 210 adjacent in the second direction. In an embodiment according to the inventive concepts, the first thermal barrier layer pattern 275 may extend through an upper portion of the base insulation layer 200 so that a lower portion of the first thermal barrier layer pattern 275 may be surrounded by the base insulation layer 200.
The second thermal barrier layer pattern 375a may be formed between neighboring second memory cell columns, and may extend in the first direction. The second thermal barrier layer pattern 375a may extend through the second memory cells 350 and the second conductive lines 280 adjacent in the second direction. In an embodiment according to the inventive concepts, the second thermal barrier layer pattern 375a may extend through an upper portion of the second conductive line 280 so that a lower portion of the second thermal barrier layer pattern 375a may be surrounded by the second conductive line 280.
The common thermal barrier layer pattern 375b may be formed between neighboring first and second memory cell rows, and may extend in the second direction. The common thermal barrier layer pattern 375b may extend through the second memory cells 350, the second conductive lines 280, the first memory cells 250 adjacent in the first direction. In an embodiment according to the inventive concepts, the common thermal barrier layer pattern 375b may extend through an upper portion of the first conductive line 210 so that a lower portion of the common thermal barrier layer pattern 375b may be surrounded by the first conductive line 210.
In an embodiment according to the inventive concepts, the first thermal barrier layer pattern 275 and the common thermal barrier layer pattern 375b may cross each other, and may be in communication with each other. The second thermal barrier layer pattern 375a and the common thermal barrier layer pattern 375b may also cross each other, and may be in communication with each other. Thus, the first and second thermal barrier layer patterns 275 and 375a may be in communication with each other via the common thermal barrier layer pattern 375b.
Accordingly, sidewalls of the first and second memory cells 250 and 350 may be surrounded by an insulation layer pattern structure. In an embodiment according to the inventive concepts, the insulation layer pattern structure may include a first insulation layer pattern 265 covering the first thermal barrier layer pattern 275, a second insulation layer pattern 365a covering the second thermal barrier layer pattern 375a and a common insulation layer pattern 365b covering the common thermal barrier layer pattern 375b. The insulation layer pattern structure comprises insulating material, e.g., silicon oxide, silicon nitride or the like.
The first and second insulation layer patterns 265 and 365a may cover sidewalls and bottom surfaces of the first and second thermal barrier layer patterns 275 and 375a, respectively, and may extend in the first direction. The common insulation layer pattern 365b may cover a sidewall and a bottom surface of the common thermal barrier layer pattern 375b, and may extend in the second direction.
The first thermal barrier layer pattern 275 and the common thermal barrier layer pattern 375b may be separated by the first insulation layer pattern 265 and the common insulation layer patterns 365b, respectively, from the first memory cells 250 adjacent thereto. The second thermal barrier layer pattern 375a and the common thermal barrier layer pattern 375b may be separated by the second insulation layer pattern 365a and the common insulation layer patterns 365b, respectively, from the second memory cells 350 adjacent thereto.
A sidewall of the first memory cell 250 may be surrounded by the first insulation layer pattern 265 and the common insulation layer pattern 365b, and the plurality of first memory cells 250 may have an island-like shape delimited by the first thermal barrier layer pattern 275 and the common thermal barrier layer pattern 375b. A sidewall of the second memory cell 350 may be surrounded by the second insulation layer pattern 365a and the common insulation layer pattern 365b, and the plurality of second memory cells 350 may have an island-like shape delimited by the second thermal barrier layer pattern 375a and the common thermal barrier layer pattern 375b.
According to the inventive concepts, the first and second memory cells 250 and 350 may be surrounded by the first and second thermal barrier layer patterns 275 and 375a and the common thermal barrier layer pattern 375b, and heat transfer between the first and second memory cells 250 and 350 may be decreased so that an operational reliability of the stacked variable resistance memory device may be improved. The common thermal barrier layer pattern 375b extending in the second direction may be formed commonly through the first and second variable resistance memory devices. Thus, the structure of the stacked variable resistance memory device and the method of manufacturing the stacked variable resistance memory device may be simplified.
Referring to
Referring to
By the formation of the first trench 245, the first conductive layer 212, the first lower electrode layer 213, the first variable resistance material layer 223 and the first upper electrode layer 233 may be transformed into a first conductive line 210, a first lower electrode layer pattern 217, a first variable resistance material layer pattern 227 and a first upper electrode layer pattern 237, respectively.
Referring to
Referring to
For example, a second mask 339 extending in the second direction may be formed on the second upper electrode layer 333 to partially expose a top surface of the second upper electrode layer 333. The common trench 345 may be formed through the second upper electrode layer 333, the second variable resistance material layer 323, the second lower electrode layer 313, the second conductive layer 273, the first upper electrode layer pattern 237, the first variable resistance material layer pattern 227 and the first lower electrode layer pattern 217 by a dry etching process using the second mask 339 as an etching mask. Furthermore, portions of the first insulation layer pattern 265 and the first thermal barrier layer pattern 275 may be also removed during the etching process.
In an embodiment according to the inventive concepts, an upper portion of the first conductive line 120 may be also etched when the common trench 345 is formed.
By the formation of the common trench 345, the first lower electrode layer pattern 217, the first variable resistance material layer pattern 227, the first upper electrode layer pattern 237 and the second conductive layer 273 may be transformed into a first lower electrode 220, a first variable resistance layer 230, a first upper electrode 240 and a second conductive line 280, respectively. Accordingly, a first memory cell 250 may be defined by the first lower electrode 220, the first variable resistance layer 230 and the first upper electrode 240. A first variable resistance memory device may be defined by the first conductive lines 210, the first memory cells 250 and the second conductive lines 280.
By the formation of the common trench 345, the second lower electrode layer 313, the second variable resistance material layer 323 and the second upper electrode layer 333 may be transformed into a second lower electrode layer pattern 317, a second variable resistance material layer pattern 327 and the second upper electrode layer pattern 337, respectively.
Referring to
In an embodiment according to the inventive concepts, processes similar to those illustrated with reference to
In an embodiment according to the inventive concepts, the common thermal barrier layer is formed to include material having a thermal conductivity lower than that of the common insulation layer. In an example of the present embodiment, the common thermal barrier layer may be formed of material having a thermal conductivity lower than silicon oxide and the common insulation layer may be formed of silicon oxide. The common thermal barrier layer may be formed of material similar to that of the first thermal barrier layer pattern 275.
The common insulation layer and the common thermal barrier layer may be planarized until the top surface of the second upper electrode layer pattern 337 is exposed to form the common insulation layer pattern 365b and the common thermal barrier layer pattern 375b, respectively. The second mask 339 may be removed.
In an embodiment according to the inventive concepts, the common thermal barrier layer pattern 375b and the first thermal barrier layer pattern 275 may cross each other, and may be connected to each other.
Referring to
Referring to
For example, a third mask 389 extending in the first direction may be formed on the third conductive layer 373 to partially expose a top surface of the third conductive layer 373. The second trench 347 may be formed through the third conductive layer 373, the second upper electrode layer pattern 337, the second variable resistance material layer pattern 327 and the second lower electrode layer pattern 317 by a dry etching process using the third mask 389 as an etching mask. Furthermore, portions of the common insulation layer pattern 365b and the common thermal bather layer pattern 375b may be also removed during the etching process.
In an embodiment according to the inventive concepts, an upper portion of the second conductive line 280 may be also etched when the second trench 346 is formed.
By the formation of the second trench 347, the second lower electrode layer pattern 317, the second variable resistance material layer pattern 327, the second upper electrode layer pattern 337 and the third conductive layer 373 may be transformed into a second lower electrode 320, a second variable resistance layer 330, a second upper electrode 340 and a third conductive line 380, respectively. Accordingly, a second memory cell 350 may be defined by the second lower electrode 320, the second variable resistance layer 330 and the second upper electrode 340. A second variable resistance memory device may be defined by the second conductive line 280, the second memory cell 350 and the third conductive line 380.
Referring to
In particular, a second insulation layer may be formed on a sidewall and a bottom surface of the second trench 374, and a thermal barrier layer filling a remaining portion of the second trench 374 may be formed on the second insulation layer of, for example, GST, or porous silicon oxide. Upper portions of the second thermal barrier layer and the second insulation layer may be etched by a CMP process and/or an etch-back process until a top surface of the third conductive layer 375 is exposed to form a second thermal barrier layer pattern 375a and a second insulation layer pattern 365a, respectively. The third mask 389 may be removed.
In an embodiment according to the inventive concepts, the second thermal barrier layer pattern 375a and the common thermal barrier layer pattern 375b may cross each other, and may be connected to each other. The common thermal barrier layer pattern 375b and the first thermal barrier layer pattern 275 may also cross each other and may be connected to each other. Thus, the second thermal barrier layer pattern 375a and the first thermal barrier layer pattern 275 may be connected to each other via the common thermal barrier layer pattern 375b.
In an embodiment according to the inventive concepts, the first and second thermal barrier layer patterns 275 and 375a may extend in the first direction, and cross the common thermal barrier layer pattern 375b extending in the second direction to be in communication therewith.
In an embodiment according to the inventive concepts, each first memory cell 250 may be surrounded by the first insulation layer pattern 265, the first thermal barrier layer pattern 275, the common insulation layer pattern 365b and the common thermal barrier layer pattern 375b. Each second memory cell 350 may be surrounded by the second insulation layer pattern 365a, the second thermal barrier layer pattern 375a, the common insulation layer pattern 365b and the common thermal barrier layer pattern 375b.
According to the inventive concepts, each of the first and second thermal barrier layer patterns 275a and 375a and the common thermal barrier layer pattern 375b may be formed to include a material having a thermal conductivity lower than those of the first and second insulation layer patterns 265 and 365a and the common insulation layer pattern 365b. Accordingly, heat transfer between the first and second memory cells 250 and 350 may be decreased because of the first and second thermal barrier layer patterns 275a and 375a and the common thermal barrier layer pattern 375b surrounding the first and second memory cells 250 and 350, and thus an operational reliability of the stacked variable resistance memory device may be improved.
In an example of the present embodiment, an additional variable resistance memory device may be stacked on the second variable memory device. For example, processes illustrated with reference to
For example,
Referring to
The first variable resistance memory device may include a first conductive line 210, a lower portion of a second conductive line 280, a first memory cell 250a, a first thermal barrier layer pattern 275 and a lower portion of a common thermal barrier layer pattern 375b. The second variable resistance memory device may include an upper portion of a second conductive line 280, a second memory cell 350a, a third conductive line 300, a second thermal barrier layer pattern 375a and an upper portion of a common thermal barrier layer pattern 375b.
The first memory cell 250a may include a first selection element 51 and a first variable resistance element R1, which may be formed at an intersection of the first and second conductive lines 210 and 280. The second memory cell 350a may include a selection element S2 and a second variable resistance element R2, which may be formed at an intersection of the second and third conductive lines 280 and 380.
Each of the first and second selection elements S1 and S2 may have a P-N diode structure. In this case, the first selection element S1 may include a first lower semiconductor layer pattern 205 and a first upper semiconductor layer pattern 207 sequentially stacked. The second selection element S2 may include a second upper semiconductor layer pattern 355 and a second lower semiconductor layer pattern 357 sequentially stacked on the second variable resistance element R2. Each of the first and second lower semiconductor layer patterns 205 and 357 may include n-type impurities. Each of the first and second upper semiconductor layer patterns 207 and 355 may include p-type impurities. In an example of the present embodiment, the first selection element S1 may also include a first insulation pattern (not shown) between the first lower semiconductor layer pattern 205 and the first upper semiconductor layer pattern 207, and the second selection element S2 may also include a second insulation pattern (not shown) between the second lower semiconductor layer pattern 357 and the second upper semiconductor layer pattern 355. In this case, each of the first and second selection elements S1 and S2 may have a P-I-N diode structure.
The first variable resistance element R1 may include a first lower electrode 220, a first variable resistance layer 230 and a first upper electrode 240 sequentially stacked on the first selection element S1. The second variable resistance element R2 may include a second upper electrode 320, a second variable resistance layer 330 and a second lower electrode 340 sequentially stacked on the second selection element S2.
The thermal barrier layer pattern structure is formed between the first and second memory cells 250 and 350. In an embodiment according to the inventive concepts, the thermal barrier layer pattern structure may include a first thermal barrier layer pattern 275, a second thermal barrier layer pattern 375a and a common thermal barrier layer pattern 375b.
The first thermal barrier layer pattern 275 may extend through the first variable resistance element R1, the first selection element S1 and the first conductive line 210 adjacent in the second direction. The first thermal barrier layer pattern 275 may Furthermore extend through an upper portion of a base insulation layer 200 so that a lower portion of the first thermal barrier layer pattern 275 may be surrounded by the base insulation layer 200. The second thermal barrier layer pattern 375a may extend between the third conductive line 380, the second variable resistance element R2 and the second selection element S2 adjacent in the second direction. The second thermal barrier layer pattern 375a may further extend through the upper portion of the second conductive line 280 so that a lower portion of the second thermal barrier layer pattern 375a may be surrounded by the second conductive line 280.
The common thermal barrier layer pattern 375b may extend between the first memory cells 250a in the first direction and between the second memory cells 350a adjacent in the first direction. The thermal barrier layer pattern 375b may further extend through an upper portion of the first conductive line 210 so that a lower portion of the thermal barrier layer pattern 375b may be surrounded by the first conductive line 210. Thus, the first and second thermal barrier layer patterns 275 and 375a may be in communication with each other via the common thermal barrier layer pattern 375b.
An insulation layer pattern structure may be formed on sidewalls of the first and second memory cells 250 and 350. In an embodiment according to the inventive concepts, the insulation layer pattern structure may include a first insulation layer pattern 265, a second insulation layer pattern 365a and a common insulation layer pattern 365b.
A sidewall of the first memory cell 250 of the first variable resistance memory device may be surrounded by the first insulation layer pattern 265 extending in the first direction and the lower portion of the common insulation layer pattern 365b extending in the second direction. The first insulation layer pattern 265 and the common insulation layer pattern 365b may be surrounded by the first thermal barrier layer pattern 275 extending in the first direction and the lower portion of the common thermal barrier layer pattern 375b extending in the second direction, respectively. A sidewall of the second memory cell 350a of the second variable resistance memory device may be surrounded by the second insulation layer pattern 365a extending in the first direction and the upper portion of the common insulation layer pattern 365b extending in the second direction. The second insulation layer pattern 365a may be surrounded by the second thermal barrier layer pattern 375a extending in the first direction.
The figures may illustrate stages of a method of manufacturing the stacked variable resistance memory device shown in
Referring to
Accordingly, a first conductive layer 212, a first lower semiconductor layer 202, a first upper semiconductor layer 204, a first lower electrode layer 213, a first variable resistance material layer 223 and a first upper electrode layer 233 may be sequentially formed on a base insulation layer 200.
Referring to
Accordingly, a first trench 245 may be formed through the first upper electrode layer 233, the first variable resistance material layer 223, the first lower electrode layer 213, the first upper semiconductor layer 204, the first lower semiconductor layer 202 and the first conductive layer 212. A first insulation layer pattern 265 and a first thermal barrier layer pattern 275 extending in the first direction may be formed in the first trench 245.
By the formation of the first trench 245, the first upper electrode layer 233, the first variable resistance material layer 223, the first lower electrode layer 213, the first upper semiconductor layer 204, the first lower semiconductor layer 202 and the first conductive layer 212 may be transformed into a first upper electrode layer pattern 237, a first variable resistance material layer pattern 227, a first lower electrode layer pattern 217, a first upper semiconductor layer line 208, a first lower semiconductor layer line 206 and a first conductive line 210, respectively.
Referring to
Accordingly, a second conductive layer 273, a second upper electrode layer 313, a second variable resistance material layer 323, a second lower electrode layer 333, a second upper semiconductor layer 352 and a second lower electrode layer 354 may be sequentially formed on the first upper electrode layer pattern 237, the first insulation layer pattern 265 and the first thermal barrier layer pattern 275.
Referring to
Accordingly, a common trench 345 extending in the second direction may be formed through the second lower electrode layer 354, the second upper semiconductor layer 352, the second lower electrode layer 333, the second variable resistance material layer 323, the second upper electrode layer 313, the second conductive layer 273, the first upper electrode layer pattern 237, the first variable resistance material layer pattern 227, the first lower electrode layer pattern 217, the first upper semiconductor layer line 208, the first lower semiconductor layer line 206 and an upper portion of the first conductive line 210 in the first direction. A common insulation layer pattern 365b and a common thermal bather layer pattern 375b may be formed in the common trench 345.
By the formation of the common trench 345, the second lower semiconductor layer 354 and the second upper semiconductor layer 352 may be transformed into a second lower semiconductor layer line 358 and a second upper semiconductor layer line 356, respectively. The second lower electrode layer 333, the second variable resistance material layer 323, the second upper electrode layer 313 and the second conductive layer 273 may be transformed into a second lower electrode layer pattern 337, a second variable resistance material layer pattern 327, a second upper electrode layer pattern 317 and a second conductive line 280, respectively.
The first upper electrode layer pattern 237, the first variable resistance material layer pattern 227, the first lower electrode layer pattern 217, the first upper semiconductor layer line 208 and the first lower semiconductor layer line 206 may be transformed into a first upper electrode 240, a first variable resistance layer 230, a first lower electrode 220, a first upper semiconductor layer pattern 207 and a first lower semiconductor layer pattern 205, respectively. Accordingly, a first selection element S1 may be defined by the first lower semiconductor layer pattern 205 and the first upper semiconductor layer pattern 207. A first variable resistance element R1 may be defined by the first lower electrode 220, the first variable resistance layer 230 and the first upper electrode 240. A first memory cell 250a including the first selection element S1 and the first variable resistance element R1 may be formed at each intersection of the first conductive line 210 and the second conductive line 280.
Referring to
Accordingly, a third conductive layer may be formed on the second lower semiconductor layer line 358, the common insulation layer pattern 365b and the common thermal barrier layer pattern 375b. A second trench 347 extending in the first direction may be formed through the third conductive layer, the second lower semiconductor layer line 358, the second upper semiconductor layer line 356, the second lower electrode layer pattern 337, the second variable resistance material layer pattern 327, the second upper electrode layer pattern 317 and the second conductive line 280. The upper portion of the second conductive line 280 may be also etched when the second trench 347 is formed. A second insulation layer pattern 365a may be formed on a sidewall and a bottom surface of the second trench 347, and a second thermal barrier layer pattern 375a filling a remaining portion of the second trench 347 may be formed on the second insulation layer pattern 365a.
By the formation of the second trench 347, the third conductive layer, the second lower electrode layer pattern 337, the second variable resistance material layer pattern 327 and the second upper electrode layer pattern 320 may be transformed into a third conductive line 380, a second lower electrode 370, a second variable resistance layer 330 and a second upper electrode 320, respectively. Thus, a second variable resistance element R2 may be defined by the second upper electrode 320, the second variable resistance layer 330 and the second lower electrode 370 sequentially stacked.
Additionally, the second lower semiconductor layer line 358 and the second upper semiconductor layer line 356 may be transformed into a second lower semiconductor layer pattern 357 and a second upper semiconductor layer pattern 355, respectively. Thus, a second selection element S2 may be defined by the second upper semiconductor layer pattern 355 and the second lower semiconductor layer pattern 357.
Accordingly, a second memory cell 350a including the second selection element S2 and the second variable resistance element R2 may be formed at each intersection of the second conductive line 280 and the third conductive line 380.
In an example of the present embodiment, processes illustrated with reference to
Referring to
The substrate 400 may be a semiconductor substrate of, for example, single crystalline silicon or single crystalline germanium. An isolation layer 402 may be formed at an upper portion of the substrate 400 so that the substrate 400 may be divided into an active region and a field region.
The gate structure 430 may include a gate insulation layer pattern 410, a gate electrode 415 and a gate mask 420 sequentially stacked on the substrate 400.
The gate insulation layer pattern 410 may comprise silicon oxide or a metal oxide. The gate electrode 415 may comprise polysilicon doped with impurities, a metal or a metal nitride. The gate mask 420 may comprise silicon nitride. In an example of the present embodiment, a gate spacer 435 may be formed on a sidewall of the gate structure.
An impurity region 405 may be formed at an upper portion of the substrate 400 adjacent to the gate structure 430. For example, the impurity region 405 may include n-type impurities, e.g., phosphorous, arsenic or the like. In this case, a negative metal oxide semiconductor (NMOS) transistor may be defined by the gate structure 430 and the impurity region 405, and a portion of the substrate 400 illustrated in
In an example of the present embodiment, the substrate 400 may also include a positive metal oxide semiconductor (PMOS) region, and a PMOS transistor including an additional gate structure and a p-type impurity region may be formed on the PMOS region of the substrate 400. Accordingly, a complementary metal oxide semiconductor (CMOS) transistor may be formed on the substrate 400.
In an example of the present embodiment, the gate structure 430 may be at least partially buried or embedded in the substrate 400. In this case, an upper portion of the substrate 400 may be etched to form a recess, and then a gate insulation layer pattern and a gate electrode may be formed in the recess.
A first insulating interlayer 440 covering the gate structure 430, the gate spacer 435 and the impurity region 405 may be formed on the substrate 400. A first contact 445 may extend through the first insulating interlayer 440 to contact the impurity region 405. A first wiring 450 may be disposed on the first insulating interlayer 440 to be electrically connected to the first contact 445.
A second insulating interlayer 460 covering the first wiring 450 may be formed on the first insulating interlayer 440. A second contact 465 may extend through the second insulating interlayer 460 to contact the first wiring 450. A second wiring 470 may be disposed on the second insulating interlayer 460 to be electrically connected to the second contact 465. In an example of the present embodiment, a portion of the second wiring 470 may extend to the PMOS region to be electrically connected to the impurity region of the PMOS transistor.
A third insulating interlayer 480 covering the second wiring 470 may be formed on the second insulating interlayer 460. A third contact 485 may extend through the third insulating interlayer 480 to contact the second wiring 470.
The first to third insulating interlayers 440, 460 and 480 may each comprise silicon oxide, and may serve as the base insulation layer described above. The first to third contacts 445, 465 and 485, the first wiring 450 and the second wiring 470 may comprise a metal, e.g., tungsten (W), aluminum (Al), copper (Cu), titanium (Ti) or the like, and/or a nitride thereof.
A variable resistance memory device in accordance with the inventive concepts may be disposed on the third insulating interlayer 480. A first conductive line 210 of the variable resistance memory device illustrated with reference to
The variable resistance memory device may have a structure in which one selection element and one variable resistance element are formed at each intersection of conductive lines. For example, the variable resistance memory device may be similar to that shown in
Alternatively, the variable resistance memory device may have a structure in which one variable resistance element is formed at each intersection of conductive lines as illustrated in
Referring to
The substrate 400 may include an NMOS region and a PMOS region, and a CMOS transistor may be formed on the substrate 400. An isolation layer 402 may be formed at an upper portion of the substrate 400 by, for example, a shallow trench isolation (STI) process. An active region and a field region of the substrate 400 may be defined by the isolation layer 402.
In an embodiment according to the inventive concepts, a gate insulation layer, a gate electrode layer and a gate mask layer may be sequentially formed on the substrate 400, and may be patterned by, for example, a photolithography process to form the gate structure 430 including a gate insulation layer pattern 410, a gate electrode 415 and a gate mask 420.
The gate insulation layer may be formed using silicon oxide by, for example, a CVD process or a thermal oxidation process. The gate electrode layer may be formed using doped polysilicon, a metal or a metal nitride by a sputtering process, an ALD process or the like. The gate mask layer may be formed using silicon nitride by a CVD process, a spin coating process or the like.
An ion implantation process may be performed using the gate structure 430 as an ion implantation mask to form the impurity region 405. In an embodiment according to the inventive concepts, the impurity region 405 may include n-type impurities, e.g., phosphorous, arsenic or the like. In this case, a portion of the substrate 400 illustrated in
In an example of the present embodiment, a gate spacer 435 may be formed on a sidewall of the gate structure 430. For example, a spacer layer covering the gate structure 430 may be formed on the substrate 400. The spacer layer may be anisotropically etched to form the gate spacer 435. The gate spacer layer may be formed using silicon nitride by, for example, a CVD process.
Referring to
For example, the first insulating interlayer 440 may be formed of silicon oxide, e.g., TEOS by, for example, a CVD process or a spin coating process. The first insulating interlayer 440 may be partially removed to form a first contact hole through which the impurity region 405 may be exposed. A first conductive layer sufficiently filling the first contact hole may be formed on the first insulating interlayer 440. An upper portion of the first conductive layer may be planarized until a top surface of the first insulating interlayer 440 may be exposed to form the first contact 445.
In an example of the present embodiment, the first contact 445 may be self-aligned with the gate spacer 435. In this case, the first contact 445 may contact a sidewall of the gate spacer 435.
A first wiring 450 electrically connected to the first contact 445 may be formed on the first insulating interlayer 440. For example, a second conductive layer may be formed on the first insulating interlayer 440 and the first contact 445, and may be patterned to form the first wiring 450. The first and second conductive layers may each be formed of a metal or a metal nitride by an ALD process or a sputtering process.
Referring to
A fourth conductive layer may be formed on the second insulating interlayer 460 and the second contact 465, and may be patterned to form a second 470 wiring electrically connected to the second contact 465. In an embodiment according to the inventive concepts, a plurality of second wirings 470 may be formed, and at least one of the second wirings 470 may extend to the PMOS region to be electrically connected to the PMOS transistor.
A third insulating interlayer 480 covering the second wiring 470 may be formed on the second insulating interlayer 460. A third contact hole may be formed through the third insulating interlayer 480, such that the second wiring 470 may be exposed. A fifth conductive layer filling the third contact hole may be formed on the third insulating interlayer 480, and an upper portion of the fifth conductive layer may be planarized to form a third contact 485 electrically connected to the second wiring 470.
The second and third insulating interlayers 460 and 480 may be formed of insulating material similar to that of the first insulating interlayer 440, e.g., silicon oxide, by a CVD process, a spin coating process or the like. The third to fifth conductive layers may be formed f a metal, e.g., tungsten (W), aluminum (Al), copper (Cu), titanium (Ti) or the like, or a nitride thereof by an ALD process, a sputtering process, a PVD process or the like.
A lower structure including the substrate 400, the transistor, and a wiring structure may be formed by processes illustrated with reference to
Referring to
In embodiments according to the inventive concepts, processes similar to those illustrated with reference to
Referring to
According to the inventive concepts, a variable resistance memory device includes thermal barrier layer patterns on insulation layer patterns surrounding memory cells. The thermal barrier layer patterns are of material having a low thermal conductivity, and heat transfer between the memory cells may be decreased so that an operational reliability of the variable resistance memory device may be improved. The inventive concepts may be applied to various types of non-volatile semiconductor devices, e.g., a ReRAM device, an MRAM device or a PRAM device.
Finally, embodiments of the inventive concept and examples thereof have been described above in detail. The inventive concept may, however, be embodied in many different forms and should not be construed as being limited to the embodiments described above. Rather, these embodiments were described so that this disclosure is thorough and complete, and fully conveys the inventive concept to those skilled in the art. Thus, the true spirit and scope of the inventive concept is not limited by the embodiment and examples described above but by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0062767 | May 2014 | KR | national |