Voltage switchable dielectric material having bonded particle constituents

Information

  • Patent Grant
  • 8206614
  • Patent Number
    8,206,614
  • Date Filed
    Tuesday, January 20, 2009
    15 years ago
  • Date Issued
    Tuesday, June 26, 2012
    12 years ago
Abstract
A voltage switchable dielectric material comprising a concentration of multi-component particles that are individually formed by a mechanical or mechanochemical bonding process that bonds a semiconductive or conductive-type host particle with multiple insulative, conductive, or semi-conductive guest particles.
Description
FIELD OF ART

This application relates to compositions of voltage switchable dielectric material. More specifically, this application pertains to voltage switchable dielectric material having bonded particle constituents.


BACKGROUND

Voltage switchable dielectric (VSD) materials are known to be materials that are insulative at low voltages and conductive at higher voltages. These materials are typically composites comprising of conductive, semiconductive, and insulative particles in an insulative polymer matrix. These materials are used for transient protection of electronic devices, most notably electrostatic discharge protection (ESD) and electrical overstress (EOS). Generally, VSD material behaves as a dielectric, unless a characteristic voltage or voltage range is applied, in which case it behaves as a conductor. Various kinds of VSD material exist. Examples of voltage switchable dielectric materials are provided in references such as U.S. Pat. No. 4,977,357, U.S. Pat. No. 5,068,634, U.S. Pat. No. 5,099,380, U.S. Pat. No. 5,142,263, U.S. Pat. No. 5,189,387, U.S. Pat. No. 5,248,517, U.S. Pat. No. 5,807,509, WO 96/02924, and WO 97/26665, all of which are incorporated by reference herein.


VSD materials may be formed using various processes and materials or compositions. One conventional technique provides that a layer of polymer is filled with high levels of metal particles to very near the percolation threshold, typically more than 25% by volume. Semiconductor and/or insulator materials is then added to the mixture.


Another conventional technique provides for forming VSD material by mixing doped metal oxide powders, then sintering the powders to make particles with grain boundaries, and then adding the particles to a polymer matrix to above the percolation threshold.


Other techniques and compositions for forming VSD material are described in U.S. patent application Ser. No. 11/829,946, entitled VOLTAGE SWITCHABLE DIELECTRIC MATERIAL HAVING CONDUCTIVE OR SEMI-CONDUCTIVE ORGANIC MATERIAL; and U.S. patent application Ser. No. 11/829,948, entitled VOLTAGE SWITCHABLE DIELECTRIC MATERIAL HAVING HIGH ASPECT RATIO PARTICLES.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a process for forming VSD material using bonded particles, under an embodiment.



FIG. 2 illustrates a bonded particle 200 that may be formed using MCB techniques or systems, for use in composition of VSD material, according to an embodiment.



FIG. 3 illustrates a composition of VSD material that includes multi-component particles (formed by bonding processes), as described with previous embodiments.



FIG. 4A and FIG. 4B each illustrate different configurations for a substrate device that is configured with VSD material having a composition such as described with any of the embodiments provided herein.



FIG. 5 is a simplified diagram of an electronic device on which VSD material in accordance with embodiments described herein may be provided.





DETAILED DESCRIPTION

Embodiments described herein provide a voltage switchable dielectric material comprising a concentration of multi-component particles that are individually formed by a mechanical or mechanochemical bonding process that bonds a conductive-type host particle with multiple insulative or semi-conductive guest particles.


As used herein, “voltage switchable material” or “VSD material” is any composition, or combination of compositions, that has a characteristic of being dielectric or non-conductive, unless a field or voltage is applied to the material that exceeds a characteristic level of the material, in which case the material becomes conductive. Thus, VSD material is a dielectric unless voltage (or field) exceeding the characteristic level (e.g. such as provided by ESD events) is applied to the material, in which case the VSD material is switched into a conductive state. VSD material can further be characterized as a nonlinear resistance material. In many applications, the characteristic voltage of VSD material ranges in values that exceed the operational voltage levels of the circuit or device several times over. Such voltage levels may be of the order of transient conditions, such as produced by electrostatic discharge, although embodiments may include use of planned electrical events. Furthermore, one or more embodiments provide that in the absence of the voltage exceeding the characteristic voltage, the material behaves similar to the binder (i.e. it is non-conductive or dielectric).


Still further, an embodiment provides that VSD material may be characterized as material comprising a binder mixed in part with conductor or semi-conductor particles. In the absence of voltage exceeding a characteristic voltage level, the material as a whole adapts the dielectric characteristic of the binder. With application of voltage exceeding the characteristic level, the material as a whole adapts conductive characteristics.


According to embodiments described herein, the constituents of VSD material may be uniformly mixed into a binder or polymer matrix. In one embodiment, the mixture is dispersed at nanoscale, meaning the particles that comprise the conductive/semi-conductive material are nano-scale in at least one dimension (e.g. cross-section) and a substantial number of the particles that comprise the overall dispersed quantity in the volume are individually separated (so as to not be agglomerated or compacted together).


Still further, an electronic device may be provided with VSD material in accordance with any of the embodiments described herein. Such electrical devices may include substrate devices, such as printed circuit boards, semiconductor packages, discrete devices, thin-film electronics, Light Emitting Diodes (LEDs), radio-frequency (RF) components, and display devices.


Embodiments described herein provide for use of nano and micro-sized particles as constituents of VSD material. In particular, nano and micro-sized particles may be bonded onto other conductive or semi-conductive particles, and the combined particles are distributed uniformly in a binder to form a VSD composition.


In one embodiment, the combined particles are distributed uniformly in a suitable binder at a concentration level that is at or just below the percolation threshold. In other embodiments, nano or micro-sized particles are selected for bonding with larger particles, so that the concentration of particles (conductor and semiconductor particles bonded with nano or micro sized semi-conductive or insulative particles) in the binder exceeds the percolation threshold. The percolation threshold may coincide with the concentration of particles needed to make the VSD material behave as a conductor at a relatively low voltage (substantially less than the clamp or trigger voltage). In many cases, the percolation threshold may coincide with a conductor or semiconductor particle concentration in range of 20-80% by volume (depending on physical characteristics of the particles, such as size).


As described herein, the bonded particles may individually include a conductor (or semi-conductor) that is bonded or coated with multiple nano/micro-sized particles. The nano/micro-sized particles may be uniformly distributed to coat the larger particles individually. The coated particles may also be uniformly distributed in the binder material. In an embodiment, the coated particles are distributed uniformly at nano-scale in the binder to form VSD material of desired electrical characteristics.


Embodiments recognize that micro and nano sized particles are difficult to uniformly distribute and use in the context described, as such particles usually exhibit strong cohesiveness (and an inherent tendency to aggregate), low flowability, and low stability. In order to facilitate use of nano and micro sized particles, embodiments employ techniques by which such small particles are directly bonded to a host particle, and the resulting combination is then uniformly distributed at nano-scale within a suitable matrix or binder to form VSD material.



FIG. 1 illustrates a process for forming VSD material using bonded particles, under an embodiment. In step 110, bonded particles are formed by combining relatively larger conductive or semi-conductive particles with smaller insulative or semiconductive micro or nano sized particiles. In an embodiment, MechanoChemical Bonding (MCB) techniques and systems are used in order to form bonded particles that have a direct and solid bond between (i) nano and micro-sized particles that are coated onto (ii) larger conductive or semi-conductive host particles. In general, MCB systems use mechanical energy, without binders, to create the direct and solid bonds. Variations to MCB bonding techniques may also be used, including plasma assisted MCB systems. In particular, the application of mechanical energy can be assisted with the use of plasma to clean the surface of the particles and enhance their “solid bonding”. MCB technology is different from ball milling or fluidized bed reactors because no fluid, milling media, or another other additives (other than the particles themselves) are required.


Step 120 provides that the bonded particles are uniformly dispersed at nano-scale in a suitable binder. A sonic agitator may uniformly mix the bonded particles into the binder.


Step 130 provides that the mixed binder composition is cured into a VSD composition. The binder may be applied on a target site in order to cure it into the desired VSD composition.


As described with an embodiment of FIG. 1, MCB systems and machines provide one technique by which conductor, semiconductor, and/or insulative particles to be coated on each other directly to form bonded particle constituents of VSD material. FIG. 2 illustrates a bonded multi-component particle 200 that may be formed using MCB techniques or systems, for use in composition of VSD material, according to an embodiment. In one embodiment, a conductive core (or “host”) particle 210 is identified with suitable electrical properties. Suitable material for use as host particle 210 include, for example, nickel, aluminum, titanium, or stainless steel. The host particle 210 is coated with so-called “guest” particles 220 using MCB systems or techniques. The result is formation of particles that singularly comprise (i) a host particle, and (ii) one or more guest particles (i.e. multi-component particle). Reference is made to Table 1, which lists combinations of suitable host material and guest material to form non-linear conductive particles. Such non-linear conductive particles may be distributed in a binder to form the VSD material that has desired electrical properties (such as clamping/trigger voltage).


In one implementation, guest particles 220 are insulative or semiconductive materials, as well as organic materials. As illustrated by Table 1, examples of insulative type material for guest particles 220 include silicon dioxide and aluminum oxide. Suitable conductive and/or semiconductive material for guest particles 220 may also include organic or inorganic materials, such as single or double-walled carbon nanotubes, graphenes, or carbon black. Various other combinations may also be provided.


Table 1 lists examples of conductive type host particles 210, coated with either semiconductive or insulative type guest particles 220 at varying thicknesses.














Host Material
Guest Material
Thickness







Novamet Nickel INP400 or 4SP-10
Degussa P25 TiO2
10 wt % Guest


Novamet Nickel INP400 or 4SP-10
Degussa P25 TiO2
20 wt % Guest


Novamet Nickel INP400 or 4SP-10
Degussa R300 SiO2
10 wt % Guest


Novamet Nickel INP400 or 4SP-10
Degussa R300 SiO2
20 wt % Guest


Novamet Nickel INP400 or 4SP-10
PV Fast Red B
10 wt % Guest


Novamet Nickel INP400 or 4SP-10
PV Fast Red B
20 wt % Guest


HC Starck TiB2 Grade D
Degussa P25 TiO2
10 wt % Guest


HC Starck TiB2 Grade D
Degussa P25 TiO2
20 wt % Guest


HC Starck TiB2 Grade D
Degussa R300 SiO2
10 wt % Guest


HC Starck TiB2 Grade D
Degussa R300 SiO2
20 wt % Guest


HC Starck TiB2 Grade D
PV Fast Red B
10 wt % Guest


HC Starck TiB2 Grade D
PV Fast Red B
20 wt % Guest









With specific reference to FIG. 2, a suitable conductive type host particle 210 is titanium diboride, and a suitable guest particle 220 may correspond to perylene (such as provided by PV FAST RED B from Clariant).


The singular particles formed from the combination of the host particles 210 and the guest particles 220 (as shown in FIG. 2) are collectively used to form VSD or non-linear resistive material, as described by a technique of FIG. 1 (and further illustrated by FIG. 3). The use of bonding techniques such as described above enable the formation of bonded particles as VSD constituents, without use of sintering. The ability to form such bonded particles without sintering enables better distribution of guest particles 220 about individual host particles 210. Additionally, in contrast to some conventional approaches for forming non-linear resistive materials using sintering processes, the use of MCB or similar techniques or processes does not damage heat-sensitive particles. For example, organic guest particles 220 may be used without concern that such particles would be damaged by heat.


While Table 1 lists several examples, numerous other combinations of materials may be used for both host particles 210 and guest particles 220. In one embodiment, the host particle 210 is conductive and of the order of 10-100 times larger in dimension than the guest particle 220. As another example, the host particle 210 corresponds to Nickel or Titanium Diboride, which are conductors that can have a diameter that ranges from 6 to 12 microns. In these examples, the host particle 210 may be coated with a 20-30 nanometer semiconductor (e.g. 26 nm perylene, which is organic, or nano-dimensioned titanium dioxide).


In another implementation, small or thin insulators (or semi-conductors) may be used for conductive purposes. Specifically, a conductive host particle 210 may be coated with small dimensioned insulators as the guest particles 220. Such small dimensional insulators may correspond to fumed Silica (7 nm dimensioned). As a thin insulator, conduction can occur using the thin insulator through quantum tunneling.


Table 2 lists examples of both host particles (first three rows) and guest particles (last three rows).














TABLE 2








Bulk
“Apparent”
d50


Vendor
Material
Grade
Density
Density
(micron)




















HC Starck
Titanium
D
4.52
1
6



Diboride


Accumet
Titanium

4.52
1
12



Diboride


Novamet
Nickel
4SP-10
8.9
5.2
6.6


Degussa
Titanium
P25
3.93
0.13
0.021



Dioxide


Degussa
Fumed Silica
R300
2.2
0.05
0.007


Clariant
Perylene
PV Fast
1.4
1
0.026




Red










In the examples of Table 2, the first 3 rows illustrate suitable Host particles, while the last 3 rows provide additional examples of Guest particles.


Thus numerous specific examples and embodiments are provided for herein, embodiments include coated particles for use in a composition of VSD material, where (i) the host particle 210 is a conductor or semiconductor (having micron(s) sized dimension); and (ii) the guest particle 220 is either conductor, semiconductor, or insulator that is nano or sub-micron sized.


More conductive host particles 210 can receive more guest particles 220, particularly organic material, which can ‘stick’ better or form better bonds with the host particle 210. However, in other embodiments, the host particle 210 is a semi-conductor, and the dimension of the Host particle as compared to the guest particle 220 may vary beyond the 10-100 ratio recited.


In one embodiment, the type of guest particle 220 used may also be conductive. Still further, the type of guest particle 220 may be both conductive and organic, thus providing enhanced bonding and additional conductivity.


Still further, an embodiment provides for additional coats or guest particles 220. Specifically, one or more embodiments provide for individual host particles 210 in the composition to be bonded with two or more types of guest particles 220. As an alternative or addition, the host particle 210 may be combined with an organic semiconductor particle.


With any of the embodiments described, the specific composition used may be varied depending on the electrical properties that are desired from the formed VSD or non-linear resistive material. FIG. 3 illustrates a composition of VSD material that includes multi-component particles (formed by bonding processes), as described with previous embodiments. In an embodiment, a sample of VSD material 300 includes conductive particles (or host) 310, having guest material 320 formed through MCB bonding, and semiconductive particles 330. Some embodiments of VSD material include high aspect ratio (HAR) conductive or semiconductive fillers (“HAR particles 340”). Suitable HAR particles 340 include, for example, carbon nanotubes, nanorods, or nanowires.


As depicted in FIG. 3, the concentration of the particle constituents in the binder exceeds the percolation threshold. This means the particles, including the bonded multi-component particles 310, are loaded into the binder 320 so that a particle path 350 is formed that extends across a thickness of the VSD material. The particle path 350 is signified by the particles being in contact with one another. Thus, when the particle concentration exceeds the percolation threshold, the formation of complete particle paths that extend the thickness of the VSD material is likely. In absence of guest material 330, the presence of the particle path 350 would likely render the composition conductive, so as to not have a dielectric state (i.e. VSD characteristics). The use of guest material 330, however, enables the semi- or non-conductive electrical properties of the guest material to provide a buffer that requires presence of field before the particle path is conductive. In this way, the guest material 330 can be selected to significantly influence the clamp or trigger voltage of the VSD material. Optionally semiconductive host materials may be coated with conductive guest materials and loaded to just below percolation.


As an addition or alternative to an embodiment such as depicted by FIG. 3, the composition of the VSD material may further comprise single-component conductor (or semi-conductor) particles. Thus, separate concentrations of conductor elements and multi-component conductor elements (with guest material that may be insulative or semiconductive) may be used in some compositions of VSD material. Likewise, as depicted, separate concentrations of high aspect ratio nanoparticles may be dispersed in the VSD material (e.g. graphenes, carbon nanotubes, nanowires, nanorods, antimony tin oxide (ATO) nanorods).


VSD Material Applications


Numerous applications exist for compositions of VSD material in accordance with any of the embodiments described herein. In particular, embodiments provide for VSD material to be provided on substrate devices, such as printed circuit boards, semiconductor packages, discrete devices, thin film electronics, as well as more specific applications such as LEDs and radio-frequency devices (e.g. RFID tags). Still further, other applications may provide for use of VSD material such as described herein with a liquid crystal display, organic light emissive display, electrochromic display, electrophoretic display, or back plane driver for such devices. The purpose for including the VSD material may be to enhance handling of transient and overvoltage conditions, such as may arise with ESD events. Another application for VSD material includes metal deposition, as described in U.S. Pat. No. 6,797,145 to L. Kosowsky (which is hereby incorporated by reference in its entirety).



FIG. 4A and FIG. 4B each illustrate different configurations for a substrate device that is configured with VSD material having a composition such as described with any of the embodiments provided herein. In FIG. 4A, the substrate device 400 corresponds to, for example, a printed circuit board. In such a configuration, VSD material 410 (having a composition such as described with any of the embodiments described herein) may be provided on a surface 402 to ground a connected element. As an alternative or variation, FIG. 4B illustrates a configuration in which the VSD material forms a grounding path that is embedded within a thickness 410 of the substrate.


Electroplating


In addition to inclusion of the VSD material on devices for handling, for example, ESD events, one or more embodiments contemplate use of VSD material (using compositions such as described with any of the embodiments herein) to form substrate devices, including trace elements on substrates, and interconnect elements such as vias. U.S. patent application Ser. No. 11/881,896, filed on September Jul. 29, 2007, and which claims benefit of priority to U.S. Pat. No. 6,797,145 (both of which are incorporated herein by reference in their respective entirety) recites numerous techniques for electroplating substrates, vias and other devices using VSD material. Embodiments described herein enable use of VSD material, as described with any of the embodiments in this application.


Other Applications



FIG. 5 is a simplified diagram of an electronic device on which VSD material in accordance with embodiments described herein may be provided. FIG. 5 illustrates a device 500 including substrate 510, component 520, and optionally casing or housing 530. VSD material 505 (in accordance with any of the embodiments described) may be incorporated into any one or more of many locations, including at a location on a surface 502, underneath the surface 502 (such as under its trace elements or under component 520), or within a thickness of substrate 510. Alternatively, the VSD material may be incorporated into the casing 530. In each case, the VSD material 505 may be incorporated so as to couple with conductive elements, such as trace leads, when voltage exceeding the characteristic voltage is present. Thus, the VSD material 505 is a conductive element in the presence of a specific voltage condition.


With respect to any of the applications described herein, device 500 may be a display device. For example, component 520 may correspond to an LED that illuminates from the substrate 510. The positioning and configuration of the VSD material 505 on substrate 510 may be selective to accommodate the electrical leads, terminals (i.e. input or outputs) and other conductive elements that are provided with, used by or incorporated into the light-emitting device. As an alternative, the VSD material may be incorporated between the positive and negative leads of the LED device, apart from a substrate. Still further, one or more embodiments provide for use of organic LEDs, in which case VSD material may be provided, for example, underneath the OLED.


With regard to LEDs and other light emitting devices, any of the embodiments described in U.S. patent application Ser. No. 11/562,289 (which is incorporated by reference herein) may be implemented with VSD material such as described with other embodiments of this application.


Alternatively, the device 500 may correspond to a wireless communication device, such as a radio-frequency identification device. With regard to wireless communication devices such as radio-frequency identification devices (RFID) and wireless communication components, VSD material may protect the component 520 from, for example, overcharge or ESD events. In such cases, component 520 may correspond to a chip or wireless communication component of the device. Alternatively, the use of VSD material 505 may protect other components from charge that may be caused by the component 520. For example, component 520 may correspond to a battery, and the VSD material 505 may be provided as a trace element on a surface of the substrate 510 to protect against voltage conditions that arise from a battery event. Any composition of VSD material in accordance with embodiments described herein may be implemented for use as VSD material for device and device configurations described in U.S. patent application Ser. No. 11/562,222 (incorporated by reference herein), which describes numerous implementations of wireless communication devices which incorporate VSD material.


As an alternative or variation, the component 520 may correspond to, for example, a discrete semiconductor device. The VSD material 505 may be integrated with the component, or positioned to electrically couple to the component in the presence of a voltage that switches the material on.


Still further, device 500 may correspond to a packaged device, or alternatively, a semiconductor package for receiving a substrate component. VSD material 505 may be combined with the casing 530 prior to substrate 510 or component 520 being included in the device.


Embodiments described with reference to the drawings are considered illustrative, and Applicant's claims should not be limited to details of such illustrative embodiments. Various modifications and variations will may be included with embodiments described, including the combination of features described separately with different illustrative embodiments. Accordingly, it is intended that the scope of the invention be defined by the following claims. Furthermore, it is contemplated that a particular feature described either individually or as part of an embodiment can be combined with other individually described features, or parts of other embodiments, even if the other features and embodiments make no mentioned of the particular feature.

Claims
  • 1. A composition comprising: a binder;particles dispersed uniformly within the binder, wherein at least some of the particles are multi-component particles that singularly comprise: a conductive host particle that is micron sized, and multiple insulative or semi-conductive guest particles that are nano or sub-micron sized;wherein at least some of the particles comprise the conductive host particle being bonded with the multiple insulative or semi-conductive guest particles through mechanical or mechano-chemical bonding; andwherein said composition is (i) dielectric in absence of any voltage that exceeds a characteristic voltage level, and (ii) conductive with application of a voltage that exceeds the characteristic voltage level.
  • 2. The composition of claim 1, wherein the particles are dispersed into the binder beyond a percolation threshold.
  • 3. The composition of claim 2, wherein the percolation threshold coincides with a conductor or semiconductor particle concentration in range of 20-80% by volume.
  • 4. The composition of claim 1, wherein the guest particles include organic material.
  • 5. The composition of claim 4, wherein the organic material corresponds to carbon nanotubes, perylene, or graphene.
  • 6. The composition of claim 1, wherein the multiple insulative or semi-conductive guest particles includes titanium dioxide or fumed silica.
  • 7. The composition of claim 1, wherein at least some of the particles are (i) selected from a group consisting of graphenes, carbon nanotubes, nanowires, nanorods, antimony in oxide (ATO) nanorods, and (ii) uniformly dispersed in the binder.
  • 8. The composition of claim 1, wherein the particles are dispersed into the binder beyond a percolation threshold, and wherein the characteristic voltage is dependent in part on a resistive characteristic of the multiple insulative or semi-conductive guest particles of the multi-component particles.
  • 9. A composition comprising: a binder;particles dispersed uniformly within the binder, wherein at least some of the particles are multi-component particles that singularly comprise: a conductive host particle, and multiple insulative or semi-conductive guest particles that include organic material;wherein at least some of the particles comprise the conductive host particle being bonded with the multiple insulative or semi-conductive guest particles through mechanical or mechano-chemical bonding; andwherein said composition is (i) dielectric in absence of any voltage that exceeds a characteristic voltage level, and (ii) conductive with application of a voltage that exceeds the characteristic voltage level.
  • 10. The composition of claim 9, wherein the particles are dispersed into the binder beyond a percolation threshold.
  • 11. The composition of claim 10, wherein the percolation threshold coincides with a conductor or semiconductor particle concentration in range of 20-80% by volume.
  • 12. The composition of claim 9, wherein, for the at least some of the multi-component particles, the conductive host particle are micron sized, and multiple insulative or semi-conductive guest particles are nano or sub-micron sized.
  • 13. The composition of claim 9, wherein the organic material corresponds to carbon nanotubes, perylene, or graphene.
  • 14. The composition of claim 9, wherein the multiple insulative or semi-conductive guest particles includes titanium dioxide or fumed silica.
  • 15. The composition of claim 9, wherein at least some of the particles are (i) selected from a group consisting of graphenes, carbon nanotubes, nanowires, nanorods, antimony in oxide (ATO) nanorods, and (ii) uniformly dispersed in the binder.
  • 16. The composition of claim 9, wherein the particles are dispersed into the binder beyond a percolation threshold, and wherein the characteristic voltage is dependent in part on a resistive characteristic of the multiple insulative or semi-conductive guest particles of the multi-component particles.
RELATED APPLICATIONS

This application claims benefit of priority to Provisional U.S. Patent Application No. 61/022,090, entitled PROCESS FOR MAKING VOLTAGE SWITCHABLE POLYMER COMPOSITE MATERIALS, filed Jan. 18, 2008; the aforementioned priority application being incorporated by reference herein in its entirety.

US Referenced Citations (270)
Number Name Date Kind
3239465 Rheinfrank Mar 1966 A
3347724 Schneble, Jr. et al. Oct 1967 A
3685026 Wakabayashi et al. Aug 1972 A
3685028 Wakabayashi et al. Aug 1972 A
3723635 Smith Mar 1973 A
3808576 Castonguay et al. Apr 1974 A
3926916 Mastrangelo Dec 1975 A
3977957 Kosowsky et al. Aug 1976 A
4113899 Henry et al. Sep 1978 A
4133735 Afromowitz et al. Jan 1979 A
4252692 Taylor et al. Feb 1981 A
4331948 Malinaric et al. May 1982 A
4359414 Mastrangelo Nov 1982 A
4405432 Kosowsky Sep 1983 A
4439809 Weight et al. Mar 1984 A
4506285 Einzinger Mar 1985 A
4591411 Reimann May 1986 A
4642160 Burgess Feb 1987 A
4702860 Kinderov et al. Oct 1987 A
4726877 Fryd et al. Feb 1988 A
4726991 Hyatt et al. Feb 1988 A
4799128 Chen Jan 1989 A
4888574 Rice et al. Dec 1989 A
4892776 Rice Jan 1990 A
4918033 Bartha et al. Apr 1990 A
4928199 Diaz et al. May 1990 A
4935584 Boggs Jun 1990 A
4977357 Shrier Dec 1990 A
4992333 Hyatt Feb 1991 A
4996945 Dix, Jr. Mar 1991 A
5039452 Thompson et al. Aug 1991 A
5068634 Shrier Nov 1991 A
5092032 Murakami Mar 1992 A
5095626 Kitamura et al. Mar 1992 A
5099380 Childers et al. Mar 1992 A
5126915 Pepin et al. Jun 1992 A
5142263 Childers et al. Aug 1992 A
5148355 Lowe et al. Sep 1992 A
5183698 Stephenson et al. Feb 1993 A
5189387 Childers et al. Feb 1993 A
5220316 Kazan Jun 1993 A
5246388 Collins et al. Sep 1993 A
5248517 Shrier et al. Sep 1993 A
5252195 Kobayashi et al. Oct 1993 A
5260108 Braren et al. Nov 1993 A
5260848 Childers Nov 1993 A
5262754 Collins Nov 1993 A
5278535 Xu et al. Jan 1994 A
5282312 DiStefano et al. Feb 1994 A
5294374 Martinez et al. Mar 1994 A
5295297 Kitamura et al. Mar 1994 A
5300208 Angelopoulos et al. Apr 1994 A
5317801 Tanaka et al. Jun 1994 A
5340641 Xu Aug 1994 A
5347258 Howard et al. Sep 1994 A
5354712 Ho et al. Oct 1994 A
5367764 DiStefano et al. Nov 1994 A
5378858 Bruckner et al. Jan 1995 A
5380679 Kano Jan 1995 A
5393597 Childers et al. Feb 1995 A
5403208 Felcman et al. Apr 1995 A
5404637 Kawakami Apr 1995 A
5413694 Dixon et al. May 1995 A
5416662 Kurasawa et al. May 1995 A
5440075 Kawakita et al. Aug 1995 A
5444593 Allina Aug 1995 A
5476471 Shifrin et al. Dec 1995 A
5481795 Hatakeyama et al. Jan 1996 A
5483407 Anastasio et al. Jan 1996 A
5487218 Bhatt et al. Jan 1996 A
5493146 Pramanik et al. Feb 1996 A
5501350 Yoshida et al. Mar 1996 A
5502889 Casson et al. Apr 1996 A
5510629 Karpovich et al. Apr 1996 A
5550400 Takagi et al. Aug 1996 A
5557136 Gordon et al. Sep 1996 A
5654564 Mohsen Aug 1997 A
5669381 Hyatt Sep 1997 A
5685070 Alpaugh et al. Nov 1997 A
5708298 Masayuki et al. Jan 1998 A
5714794 Tsuyama et al. Feb 1998 A
5734188 Murata et al. Mar 1998 A
5744759 Ameen et al. Apr 1998 A
5781395 Hyatt Jul 1998 A
5802714 Kobayashi et al. Sep 1998 A
5807509 Shrier et al. Sep 1998 A
5808351 Nathan et al. Sep 1998 A
5834160 Ferry et al. Nov 1998 A
5834824 Shepherd et al. Nov 1998 A
5834893 Bulovic et al. Nov 1998 A
5848467 Khandros et al. Dec 1998 A
5856910 Yurchenco et al. Jan 1999 A
5865934 Yamamoto et al. Feb 1999 A
5869869 Hively Feb 1999 A
5874902 Heinrich et al. Feb 1999 A
5906042 Lan et al. May 1999 A
5910685 Watanabe et al. Jun 1999 A
5926951 Khandros et al. Jul 1999 A
5940683 Holm et al. Aug 1999 A
5946555 Crumly et al. Aug 1999 A
5955762 Hively Sep 1999 A
5956612 Elliott et al. Sep 1999 A
5962815 Lan et al. Oct 1999 A
5970321 Hively Oct 1999 A
5972192 Dubin et al. Oct 1999 A
5977489 Crotzer et al. Nov 1999 A
5986315 Bost et al. Nov 1999 A
6013358 Winnett et al. Jan 2000 A
6023028 Neuhalfen Feb 2000 A
6064094 Intrater et al. May 2000 A
6108184 Minervini et al. Aug 2000 A
6114672 Iwasaki et al. Sep 2000 A
6130459 Intrater Oct 2000 A
6146552 Iga et al. Nov 2000 A
6160695 Winnett et al. Dec 2000 A
6172590 Shrier et al. Jan 2001 B1
6184280 Shibuta Feb 2001 B1
6191928 Rector et al. Feb 2001 B1
6198392 Hahn et al. Mar 2001 B1
6211554 Whitney et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6239687 Shrier et al. May 2001 B1
6250984 Jin et al. Jun 2001 B1
6251513 Rector et al. Jun 2001 B1
6310752 Shrier et al. Oct 2001 B1
6316734 Yang Nov 2001 B1
6340789 Petritsch et al. Jan 2002 B1
6351011 Whitney et al. Feb 2002 B1
6373719 Behling et al. Apr 2002 B1
6407411 Wojnarowski et al. Jun 2002 B1
6433394 Intrater Aug 2002 B1
6448900 Chen Sep 2002 B1
6455916 Robinson Sep 2002 B1
6468593 Iizawa et al. Oct 2002 B1
6512458 Kobayashi et al. Jan 2003 B1
6522237 Ito et al. Feb 2003 B1
6534422 Ichikawa et al. Mar 2003 B1
6542065 Shrier et al. Apr 2003 B2
6549114 Whitney et al. Apr 2003 B2
6570765 Behling et al. May 2003 B2
6593597 Sheu Jul 2003 B2
6628498 Whitney et al. Sep 2003 B2
6642297 Hyatt et al. Nov 2003 B1
6657532 Shrier et al. Dec 2003 B1
6693508 Whitney et al. Feb 2004 B2
6741217 Toncich et al. May 2004 B2
6762237 Glatkowski et al. Jul 2004 B2
6781506 Schemenaur et al. Aug 2004 B2
6797145 Kosowsky Sep 2004 B2
6882051 Majumdar et al. Apr 2005 B2
6911676 Yoo Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6981319 Shrier Jan 2006 B2
7031132 Mitchell Apr 2006 B1
7034652 Whitney et al. Apr 2006 B2
7049926 Shrier et al. May 2006 B2
7053468 Lee May 2006 B2
7064353 Bhat Jun 2006 B2
7132697 Weimer et al. Nov 2006 B2
7132922 Harris et al. Nov 2006 B2
7141184 Chacko et al. Nov 2006 B2
7173288 Lee et al. Feb 2007 B2
7183891 Harris et al. Feb 2007 B2
7202770 Harris et al. Apr 2007 B2
7205613 Fjelstad et al. Apr 2007 B2
7218492 Shrier May 2007 B2
7274910 Gilbert et al. Sep 2007 B2
7320762 Greuter et al. Jan 2008 B2
7408203 Kim et al. Aug 2008 B2
7417194 Shrier Aug 2008 B2
7446030 Kosowsky Nov 2008 B2
7505239 Kanazawa et al. Mar 2009 B2
7528467 Lee May 2009 B2
7593203 Dudnikov et al. Sep 2009 B2
7609141 Harris et al. Oct 2009 B2
7626198 Hirakata et al. Dec 2009 B2
7688598 Dudnikov et al. Mar 2010 B2
7793326 Kosowsky et al. Sep 2010 B2
7998370 Hama et al. Aug 2011 B2
20010043141 Tuttle Nov 2001 A1
20020004258 Nakayama et al. Jan 2002 A1
20020050912 Shrier et al. May 2002 A1
20020061363 Halas et al. May 2002 A1
20030008123 Glatkowski et al. Jan 2003 A1
20030008989 Gore et al. Jan 2003 A1
20030010960 Greuter et al. Jan 2003 A1
20030078332 Dardi Apr 2003 A1
20030079910 Kosowsky May 2003 A1
20030151029 Hsu et al. Aug 2003 A1
20030160570 Sasaki et al. Aug 2003 A1
20030207978 Yadav et al. Nov 2003 A1
20030218851 Harris et al. Nov 2003 A1
20030221966 Bonkass et al. Dec 2003 A1
20040062041 Cross et al. Apr 2004 A1
20040063294 Durocher et al. Apr 2004 A1
20040063839 Kawate et al. Apr 2004 A1
20040095658 Buretea et al. May 2004 A1
20040154828 Moller et al. Aug 2004 A1
20040160300 Shrier Aug 2004 A1
20040178713 Na et al. Sep 2004 A1
20040201941 Harris et al. Oct 2004 A1
20040211942 Clark et al. Oct 2004 A1
20040241894 Nagai et al. Dec 2004 A1
20040262583 Lee Dec 2004 A1
20050026334 Knall Feb 2005 A1
20050039949 Kosowsky Feb 2005 A1
20050057867 Harris et al. Mar 2005 A1
20050083163 Shrier Apr 2005 A1
20050106098 Tsang et al. May 2005 A1
20050121653 Chacko Jun 2005 A1
20050184387 Collins et al. Aug 2005 A1
20050208304 Collier et al. Sep 2005 A1
20050218380 Gramespacher et al. Oct 2005 A1
20050231091 Bouchard et al. Oct 2005 A1
20050274455 Extrand Dec 2005 A1
20050274956 Bhat Dec 2005 A1
20050275070 Hollingsworth Dec 2005 A1
20060035081 Morita et al. Feb 2006 A1
20060060880 Lee et al. Mar 2006 A1
20060142455 Agarwal et al. Jun 2006 A1
20060152334 Maercklein et al. Jul 2006 A1
20060154070 Wakiya et al. Jul 2006 A1
20060166474 Vereecken et al. Jul 2006 A1
20060167139 Nelson et al. Jul 2006 A1
20060181826 Dudnikov, Jr. et al. Aug 2006 A1
20060181827 Dudnikov, Jr. et al. Aug 2006 A1
20060193093 Bertin et al. Aug 2006 A1
20060199390 Dudnikov, Jr. et al. Sep 2006 A1
20060211837 Ko et al. Sep 2006 A1
20060214156 Pan et al. Sep 2006 A1
20060234127 Kim et al. Oct 2006 A1
20060291127 Kim et al. Dec 2006 A1
20060293434 Yodh et al. Dec 2006 A1
20070114640 Kosowsky May 2007 A1
20070116976 Tan et al. May 2007 A1
20070123625 Dorade et al. May 2007 A1
20070126018 Kosowsky Jun 2007 A1
20070139848 Harris et al. Jun 2007 A1
20070146941 Harris et al. Jun 2007 A1
20070208243 Gabriel et al. Sep 2007 A1
20080023675 Kosowsky Jan 2008 A1
20080029405 Kosowsky Feb 2008 A1
20080032049 Kosowsky Feb 2008 A1
20080035370 Kosowsky Feb 2008 A1
20080045770 Sigmund et al. Feb 2008 A1
20080050856 Chu et al. Feb 2008 A1
20080073114 Kosowsky Mar 2008 A1
20080186053 Malekkhosravi Aug 2008 A1
20080299298 Kim et al. Dec 2008 A1
20080313576 Kosowsky Dec 2008 A1
20090044970 Kosowsky Feb 2009 A1
20090050856 Kosowsky Feb 2009 A1
20090071368 Steingrover et al. Mar 2009 A1
20090114425 Lee et al. May 2009 A1
20090117021 Smith et al. May 2009 A1
20090220771 Kosowsky Sep 2009 A1
20090242855 Kosowsky Oct 2009 A1
20090256669 Kosowsky Oct 2009 A1
20100047535 Kosowsky et al. Feb 2010 A1
20100222462 Yamauchi et al. Sep 2010 A1
20100243302 Kosowsky et al. Sep 2010 A1
20100263200 Kosowsky Oct 2010 A1
20100264224 Kosowsky Oct 2010 A1
20100264225 Kosowsky Oct 2010 A1
20100270545 Kosowsky Oct 2010 A1
20100270546 Kosowsky Oct 2010 A1
20100271831 Kosowsky et al. Oct 2010 A1
20100281453 Kosowsky et al. Nov 2010 A1
20100281454 Kosowsky et al. Nov 2010 A1
20110234363 Kosowsky et al. Sep 2011 A1
Foreign Referenced Citations (52)
Number Date Country
663491 Dec 1987 CH
101261892 Sep 2008 CN
3040784 May 1982 DE
10115333 Jan 2002 DE
102004049053 May 2005 DE
102006047377 Apr 2008 DE
790 758 Aug 1997 EP
1 003 229 May 2000 EP
1003229 May 2000 EP
1 245 586 Oct 2002 EP
1 580 809 Sep 2005 EP
1 542 240 Jun 2006 EP
1 857 871 Apr 2007 EP
1 990 834 Nov 2008 EP
56091464 Jul 1981 JP
60-091489 May 1985 JP
62-137807 Jun 1987 JP
63 195275 Aug 1988 JP
63-196672 Aug 1988 JP
11-067966 Mar 1999 JP
11-345292 Dec 1999 JP
2000 062076 Feb 2000 JP
2000-067646 Mar 2000 JP
2002-353003 Dec 2002 JP
2003-163104 Jun 2003 JP
2003-288567 Oct 2003 JP
2003-346108 Dec 2003 JP
2004-014466 Jan 2004 JP
2005-224953 Aug 2005 JP
WO 8800526 Jan 1988 WO
WO 8906859 Jul 1989 WO
WO 9602922 Feb 1996 WO
WO 9602924 Feb 1996 WO
WO 9602944 Feb 1996 WO
WO 9726665 Jul 1997 WO
WO 9823018 May 1998 WO
WO 9924992 May 1999 WO
WO 9949525 Sep 1999 WO
WO 02103085 Dec 2002 WO
WO 03032335 Apr 2003 WO
WO 03057359 Jul 2003 WO
WO 2005100426 Oct 2005 WO
WO 2006130366 Dec 2006 WO
WO 2007062170 May 2007 WO
WO 20070062171 May 2007 WO
WO 2008016858 Feb 2008 WO
WO 2008016859 Feb 2008 WO
WO 2008024207 Feb 2008 WO
WO 2008036984 Mar 2008 WO
WO 2008153584 Dec 2008 WO
WO 2009026299 Feb 2009 WO
WO 2010039902 Apr 2010 WO
Related Publications (1)
Number Date Country
20090212266 A1 Aug 2009 US
Provisional Applications (1)
Number Date Country
61022090 Jan 2008 US