This application relates to compositions of voltage switchable dielectric material. More specifically, this application pertains to voltage switchable dielectric material having bonded particle constituents.
Voltage switchable dielectric (VSD) materials are known to be materials that are insulative at low voltages and conductive at higher voltages. These materials are typically composites comprising of conductive, semiconductive, and insulative particles in an insulative polymer matrix. These materials are used for transient protection of electronic devices, most notably electrostatic discharge protection (ESD) and electrical overstress (EOS). Generally, VSD material behaves as a dielectric, unless a characteristic voltage or voltage range is applied, in which case it behaves as a conductor. Various kinds of VSD material exist. Examples of voltage switchable dielectric materials are provided in references such as U.S. Pat. No. 4,977,357, U.S. Pat. No. 5,068,634, U.S. Pat. No. 5,099,380, U.S. Pat. No. 5,142,263, U.S. Pat. No. 5,189,387, U.S. Pat. No. 5,248,517, U.S. Pat. No. 5,807,509, WO 96/02924, and WO 97/26665, all of which are incorporated by reference herein.
VSD materials may be formed using various processes and materials or compositions. One conventional technique provides that a layer of polymer is filled with high levels of metal particles to very near the percolation threshold, typically more than 25% by volume. Semiconductor and/or insulator materials is then added to the mixture.
Another conventional technique provides for forming VSD material by mixing doped metal oxide powders, then sintering the powders to make particles with grain boundaries, and then adding the particles to a polymer matrix to above the percolation threshold.
Other techniques and compositions for forming VSD material are described in U.S. patent application Ser. No. 11/829,946, entitled VOLTAGE SWITCHABLE DIELECTRIC MATERIAL HAVING CONDUCTIVE OR SEMI-CONDUCTIVE ORGANIC MATERIAL; and U.S. patent application Ser. No. 11/829,948, entitled VOLTAGE SWITCHABLE DIELECTRIC MATERIAL HAVING HIGH ASPECT RATIO PARTICLES.
Embodiments described herein provide a voltage switchable dielectric material comprising a concentration of multi-component particles that are individually formed by a mechanical or mechanochemical bonding process that bonds a conductive-type host particle with multiple insulative or semi-conductive guest particles.
As used herein, “voltage switchable material” or “VSD material” is any composition, or combination of compositions, that has a characteristic of being dielectric or non-conductive, unless a field or voltage is applied to the material that exceeds a characteristic level of the material, in which case the material becomes conductive. Thus, VSD material is a dielectric unless voltage (or field) exceeding the characteristic level (e.g. such as provided by ESD events) is applied to the material, in which case the VSD material is switched into a conductive state. VSD material can further be characterized as a nonlinear resistance material. In many applications, the characteristic voltage of VSD material ranges in values that exceed the operational voltage levels of the circuit or device several times over. Such voltage levels may be of the order of transient conditions, such as produced by electrostatic discharge, although embodiments may include use of planned electrical events. Furthermore, one or more embodiments provide that in the absence of the voltage exceeding the characteristic voltage, the material behaves similar to the binder (i.e. it is non-conductive or dielectric).
Still further, an embodiment provides that VSD material may be characterized as material comprising a binder mixed in part with conductor or semi-conductor particles. In the absence of voltage exceeding a characteristic voltage level, the material as a whole adapts the dielectric characteristic of the binder. With application of voltage exceeding the characteristic level, the material as a whole adapts conductive characteristics.
According to embodiments described herein, the constituents of VSD material may be uniformly mixed into a binder or polymer matrix. In one embodiment, the mixture is dispersed at nanoscale, meaning the particles that comprise the conductive/semi-conductive material are nano-scale in at least one dimension (e.g. cross-section) and a substantial number of the particles that comprise the overall dispersed quantity in the volume are individually separated (so as to not be agglomerated or compacted together).
Still further, an electronic device may be provided with VSD material in accordance with any of the embodiments described herein. Such electrical devices may include substrate devices, such as printed circuit boards, semiconductor packages, discrete devices, thin-film electronics, Light Emitting Diodes (LEDs), radio-frequency (RF) components, and display devices.
Embodiments described herein provide for use of nano and micro-sized particles as constituents of VSD material. In particular, nano and micro-sized particles may be bonded onto other conductive or semi-conductive particles, and the combined particles are distributed uniformly in a binder to form a VSD composition.
In one embodiment, the combined particles are distributed uniformly in a suitable binder at a concentration level that is at or just below the percolation threshold. In other embodiments, nano or micro-sized particles are selected for bonding with larger particles, so that the concentration of particles (conductor and semiconductor particles bonded with nano or micro sized semi-conductive or insulative particles) in the binder exceeds the percolation threshold. The percolation threshold may coincide with the concentration of particles needed to make the VSD material behave as a conductor at a relatively low voltage (substantially less than the clamp or trigger voltage). In many cases, the percolation threshold may coincide with a conductor or semiconductor particle concentration in range of 20-80% by volume (depending on physical characteristics of the particles, such as size).
As described herein, the bonded particles may individually include a conductor (or semi-conductor) that is bonded or coated with multiple nano/micro-sized particles. The nano/micro-sized particles may be uniformly distributed to coat the larger particles individually. The coated particles may also be uniformly distributed in the binder material. In an embodiment, the coated particles are distributed uniformly at nano-scale in the binder to form VSD material of desired electrical characteristics.
Embodiments recognize that micro and nano sized particles are difficult to uniformly distribute and use in the context described, as such particles usually exhibit strong cohesiveness (and an inherent tendency to aggregate), low flowability, and low stability. In order to facilitate use of nano and micro sized particles, embodiments employ techniques by which such small particles are directly bonded to a host particle, and the resulting combination is then uniformly distributed at nano-scale within a suitable matrix or binder to form VSD material.
Step 120 provides that the bonded particles are uniformly dispersed at nano-scale in a suitable binder. A sonic agitator may uniformly mix the bonded particles into the binder.
Step 130 provides that the mixed binder composition is cured into a VSD composition. The binder may be applied on a target site in order to cure it into the desired VSD composition.
As described with an embodiment of
In one implementation, guest particles 220 are insulative or semiconductive materials, as well as organic materials. As illustrated by Table 1, examples of insulative type material for guest particles 220 include silicon dioxide and aluminum oxide. Suitable conductive and/or semiconductive material for guest particles 220 may also include organic or inorganic materials, such as single or double-walled carbon nanotubes, graphenes, or carbon black. Various other combinations may also be provided.
Table 1 lists examples of conductive type host particles 210, coated with either semiconductive or insulative type guest particles 220 at varying thicknesses.
With specific reference to
The singular particles formed from the combination of the host particles 210 and the guest particles 220 (as shown in
While Table 1 lists several examples, numerous other combinations of materials may be used for both host particles 210 and guest particles 220. In one embodiment, the host particle 210 is conductive and of the order of 10-100 times larger in dimension than the guest particle 220. As another example, the host particle 210 corresponds to Nickel or Titanium Diboride, which are conductors that can have a diameter that ranges from 6 to 12 microns. In these examples, the host particle 210 may be coated with a 20-30 nanometer semiconductor (e.g. 26 nm perylene, which is organic, or nano-dimensioned titanium dioxide).
In another implementation, small or thin insulators (or semi-conductors) may be used for conductive purposes. Specifically, a conductive host particle 210 may be coated with small dimensioned insulators as the guest particles 220. Such small dimensional insulators may correspond to fumed Silica (7 nm dimensioned). As a thin insulator, conduction can occur using the thin insulator through quantum tunneling.
Table 2 lists examples of both host particles (first three rows) and guest particles (last three rows).
In the examples of Table 2, the first 3 rows illustrate suitable Host particles, while the last 3 rows provide additional examples of Guest particles.
Thus numerous specific examples and embodiments are provided for herein, embodiments include coated particles for use in a composition of VSD material, where (i) the host particle 210 is a conductor or semiconductor (having micron(s) sized dimension); and (ii) the guest particle 220 is either conductor, semiconductor, or insulator that is nano or sub-micron sized.
More conductive host particles 210 can receive more guest particles 220, particularly organic material, which can ‘stick’ better or form better bonds with the host particle 210. However, in other embodiments, the host particle 210 is a semi-conductor, and the dimension of the Host particle as compared to the guest particle 220 may vary beyond the 10-100 ratio recited.
In one embodiment, the type of guest particle 220 used may also be conductive. Still further, the type of guest particle 220 may be both conductive and organic, thus providing enhanced bonding and additional conductivity.
Still further, an embodiment provides for additional coats or guest particles 220. Specifically, one or more embodiments provide for individual host particles 210 in the composition to be bonded with two or more types of guest particles 220. As an alternative or addition, the host particle 210 may be combined with an organic semiconductor particle.
With any of the embodiments described, the specific composition used may be varied depending on the electrical properties that are desired from the formed VSD or non-linear resistive material.
As depicted in
As an addition or alternative to an embodiment such as depicted by
VSD Material Applications
Numerous applications exist for compositions of VSD material in accordance with any of the embodiments described herein. In particular, embodiments provide for VSD material to be provided on substrate devices, such as printed circuit boards, semiconductor packages, discrete devices, thin film electronics, as well as more specific applications such as LEDs and radio-frequency devices (e.g. RFID tags). Still further, other applications may provide for use of VSD material such as described herein with a liquid crystal display, organic light emissive display, electrochromic display, electrophoretic display, or back plane driver for such devices. The purpose for including the VSD material may be to enhance handling of transient and overvoltage conditions, such as may arise with ESD events. Another application for VSD material includes metal deposition, as described in U.S. Pat. No. 6,797,145 to L. Kosowsky (which is hereby incorporated by reference in its entirety).
Electroplating
In addition to inclusion of the VSD material on devices for handling, for example, ESD events, one or more embodiments contemplate use of VSD material (using compositions such as described with any of the embodiments herein) to form substrate devices, including trace elements on substrates, and interconnect elements such as vias. U.S. patent application Ser. No. 11/881,896, filed on September Jul. 29, 2007, and which claims benefit of priority to U.S. Pat. No. 6,797,145 (both of which are incorporated herein by reference in their respective entirety) recites numerous techniques for electroplating substrates, vias and other devices using VSD material. Embodiments described herein enable use of VSD material, as described with any of the embodiments in this application.
Other Applications
With respect to any of the applications described herein, device 500 may be a display device. For example, component 520 may correspond to an LED that illuminates from the substrate 510. The positioning and configuration of the VSD material 505 on substrate 510 may be selective to accommodate the electrical leads, terminals (i.e. input or outputs) and other conductive elements that are provided with, used by or incorporated into the light-emitting device. As an alternative, the VSD material may be incorporated between the positive and negative leads of the LED device, apart from a substrate. Still further, one or more embodiments provide for use of organic LEDs, in which case VSD material may be provided, for example, underneath the OLED.
With regard to LEDs and other light emitting devices, any of the embodiments described in U.S. patent application Ser. No. 11/562,289 (which is incorporated by reference herein) may be implemented with VSD material such as described with other embodiments of this application.
Alternatively, the device 500 may correspond to a wireless communication device, such as a radio-frequency identification device. With regard to wireless communication devices such as radio-frequency identification devices (RFID) and wireless communication components, VSD material may protect the component 520 from, for example, overcharge or ESD events. In such cases, component 520 may correspond to a chip or wireless communication component of the device. Alternatively, the use of VSD material 505 may protect other components from charge that may be caused by the component 520. For example, component 520 may correspond to a battery, and the VSD material 505 may be provided as a trace element on a surface of the substrate 510 to protect against voltage conditions that arise from a battery event. Any composition of VSD material in accordance with embodiments described herein may be implemented for use as VSD material for device and device configurations described in U.S. patent application Ser. No. 11/562,222 (incorporated by reference herein), which describes numerous implementations of wireless communication devices which incorporate VSD material.
As an alternative or variation, the component 520 may correspond to, for example, a discrete semiconductor device. The VSD material 505 may be integrated with the component, or positioned to electrically couple to the component in the presence of a voltage that switches the material on.
Still further, device 500 may correspond to a packaged device, or alternatively, a semiconductor package for receiving a substrate component. VSD material 505 may be combined with the casing 530 prior to substrate 510 or component 520 being included in the device.
Embodiments described with reference to the drawings are considered illustrative, and Applicant's claims should not be limited to details of such illustrative embodiments. Various modifications and variations will may be included with embodiments described, including the combination of features described separately with different illustrative embodiments. Accordingly, it is intended that the scope of the invention be defined by the following claims. Furthermore, it is contemplated that a particular feature described either individually or as part of an embodiment can be combined with other individually described features, or parts of other embodiments, even if the other features and embodiments make no mentioned of the particular feature.
This application claims benefit of priority to Provisional U.S. Patent Application No. 61/022,090, entitled PROCESS FOR MAKING VOLTAGE SWITCHABLE POLYMER COMPOSITE MATERIALS, filed Jan. 18, 2008; the aforementioned priority application being incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3239465 | Rheinfrank | Mar 1966 | A |
3347724 | Schneble, Jr. et al. | Oct 1967 | A |
3685026 | Wakabayashi et al. | Aug 1972 | A |
3685028 | Wakabayashi et al. | Aug 1972 | A |
3723635 | Smith | Mar 1973 | A |
3808576 | Castonguay et al. | Apr 1974 | A |
3926916 | Mastrangelo | Dec 1975 | A |
3977957 | Kosowsky et al. | Aug 1976 | A |
4113899 | Henry et al. | Sep 1978 | A |
4133735 | Afromowitz et al. | Jan 1979 | A |
4252692 | Taylor et al. | Feb 1981 | A |
4331948 | Malinaric et al. | May 1982 | A |
4359414 | Mastrangelo | Nov 1982 | A |
4405432 | Kosowsky | Sep 1983 | A |
4439809 | Weight et al. | Mar 1984 | A |
4506285 | Einzinger | Mar 1985 | A |
4591411 | Reimann | May 1986 | A |
4642160 | Burgess | Feb 1987 | A |
4702860 | Kinderov et al. | Oct 1987 | A |
4726877 | Fryd et al. | Feb 1988 | A |
4726991 | Hyatt et al. | Feb 1988 | A |
4799128 | Chen | Jan 1989 | A |
4888574 | Rice et al. | Dec 1989 | A |
4892776 | Rice | Jan 1990 | A |
4918033 | Bartha et al. | Apr 1990 | A |
4928199 | Diaz et al. | May 1990 | A |
4935584 | Boggs | Jun 1990 | A |
4977357 | Shrier | Dec 1990 | A |
4992333 | Hyatt | Feb 1991 | A |
4996945 | Dix, Jr. | Mar 1991 | A |
5039452 | Thompson et al. | Aug 1991 | A |
5068634 | Shrier | Nov 1991 | A |
5092032 | Murakami | Mar 1992 | A |
5095626 | Kitamura et al. | Mar 1992 | A |
5099380 | Childers et al. | Mar 1992 | A |
5126915 | Pepin et al. | Jun 1992 | A |
5142263 | Childers et al. | Aug 1992 | A |
5148355 | Lowe et al. | Sep 1992 | A |
5183698 | Stephenson et al. | Feb 1993 | A |
5189387 | Childers et al. | Feb 1993 | A |
5220316 | Kazan | Jun 1993 | A |
5246388 | Collins et al. | Sep 1993 | A |
5248517 | Shrier et al. | Sep 1993 | A |
5252195 | Kobayashi et al. | Oct 1993 | A |
5260108 | Braren et al. | Nov 1993 | A |
5260848 | Childers | Nov 1993 | A |
5262754 | Collins | Nov 1993 | A |
5278535 | Xu et al. | Jan 1994 | A |
5282312 | DiStefano et al. | Feb 1994 | A |
5294374 | Martinez et al. | Mar 1994 | A |
5295297 | Kitamura et al. | Mar 1994 | A |
5300208 | Angelopoulos et al. | Apr 1994 | A |
5317801 | Tanaka et al. | Jun 1994 | A |
5340641 | Xu | Aug 1994 | A |
5347258 | Howard et al. | Sep 1994 | A |
5354712 | Ho et al. | Oct 1994 | A |
5367764 | DiStefano et al. | Nov 1994 | A |
5378858 | Bruckner et al. | Jan 1995 | A |
5380679 | Kano | Jan 1995 | A |
5393597 | Childers et al. | Feb 1995 | A |
5403208 | Felcman et al. | Apr 1995 | A |
5404637 | Kawakami | Apr 1995 | A |
5413694 | Dixon et al. | May 1995 | A |
5416662 | Kurasawa et al. | May 1995 | A |
5440075 | Kawakita et al. | Aug 1995 | A |
5444593 | Allina | Aug 1995 | A |
5476471 | Shifrin et al. | Dec 1995 | A |
5481795 | Hatakeyama et al. | Jan 1996 | A |
5483407 | Anastasio et al. | Jan 1996 | A |
5487218 | Bhatt et al. | Jan 1996 | A |
5493146 | Pramanik et al. | Feb 1996 | A |
5501350 | Yoshida et al. | Mar 1996 | A |
5502889 | Casson et al. | Apr 1996 | A |
5510629 | Karpovich et al. | Apr 1996 | A |
5550400 | Takagi et al. | Aug 1996 | A |
5557136 | Gordon et al. | Sep 1996 | A |
5654564 | Mohsen | Aug 1997 | A |
5669381 | Hyatt | Sep 1997 | A |
5685070 | Alpaugh et al. | Nov 1997 | A |
5708298 | Masayuki et al. | Jan 1998 | A |
5714794 | Tsuyama et al. | Feb 1998 | A |
5734188 | Murata et al. | Mar 1998 | A |
5744759 | Ameen et al. | Apr 1998 | A |
5781395 | Hyatt | Jul 1998 | A |
5802714 | Kobayashi et al. | Sep 1998 | A |
5807509 | Shrier et al. | Sep 1998 | A |
5808351 | Nathan et al. | Sep 1998 | A |
5834160 | Ferry et al. | Nov 1998 | A |
5834824 | Shepherd et al. | Nov 1998 | A |
5834893 | Bulovic et al. | Nov 1998 | A |
5848467 | Khandros et al. | Dec 1998 | A |
5856910 | Yurchenco et al. | Jan 1999 | A |
5865934 | Yamamoto et al. | Feb 1999 | A |
5869869 | Hively | Feb 1999 | A |
5874902 | Heinrich et al. | Feb 1999 | A |
5906042 | Lan et al. | May 1999 | A |
5910685 | Watanabe et al. | Jun 1999 | A |
5926951 | Khandros et al. | Jul 1999 | A |
5940683 | Holm et al. | Aug 1999 | A |
5946555 | Crumly et al. | Aug 1999 | A |
5955762 | Hively | Sep 1999 | A |
5956612 | Elliott et al. | Sep 1999 | A |
5962815 | Lan et al. | Oct 1999 | A |
5970321 | Hively | Oct 1999 | A |
5972192 | Dubin et al. | Oct 1999 | A |
5977489 | Crotzer et al. | Nov 1999 | A |
5986315 | Bost et al. | Nov 1999 | A |
6013358 | Winnett et al. | Jan 2000 | A |
6023028 | Neuhalfen | Feb 2000 | A |
6064094 | Intrater et al. | May 2000 | A |
6108184 | Minervini et al. | Aug 2000 | A |
6114672 | Iwasaki et al. | Sep 2000 | A |
6130459 | Intrater | Oct 2000 | A |
6146552 | Iga et al. | Nov 2000 | A |
6160695 | Winnett et al. | Dec 2000 | A |
6172590 | Shrier et al. | Jan 2001 | B1 |
6184280 | Shibuta | Feb 2001 | B1 |
6191928 | Rector et al. | Feb 2001 | B1 |
6198392 | Hahn et al. | Mar 2001 | B1 |
6211554 | Whitney et al. | Apr 2001 | B1 |
6228904 | Yadav et al. | May 2001 | B1 |
6239687 | Shrier et al. | May 2001 | B1 |
6250984 | Jin et al. | Jun 2001 | B1 |
6251513 | Rector et al. | Jun 2001 | B1 |
6310752 | Shrier et al. | Oct 2001 | B1 |
6316734 | Yang | Nov 2001 | B1 |
6340789 | Petritsch et al. | Jan 2002 | B1 |
6351011 | Whitney et al. | Feb 2002 | B1 |
6373719 | Behling et al. | Apr 2002 | B1 |
6407411 | Wojnarowski et al. | Jun 2002 | B1 |
6433394 | Intrater | Aug 2002 | B1 |
6448900 | Chen | Sep 2002 | B1 |
6455916 | Robinson | Sep 2002 | B1 |
6468593 | Iizawa et al. | Oct 2002 | B1 |
6512458 | Kobayashi et al. | Jan 2003 | B1 |
6522237 | Ito et al. | Feb 2003 | B1 |
6534422 | Ichikawa et al. | Mar 2003 | B1 |
6542065 | Shrier et al. | Apr 2003 | B2 |
6549114 | Whitney et al. | Apr 2003 | B2 |
6570765 | Behling et al. | May 2003 | B2 |
6593597 | Sheu | Jul 2003 | B2 |
6628498 | Whitney et al. | Sep 2003 | B2 |
6642297 | Hyatt et al. | Nov 2003 | B1 |
6657532 | Shrier et al. | Dec 2003 | B1 |
6693508 | Whitney et al. | Feb 2004 | B2 |
6741217 | Toncich et al. | May 2004 | B2 |
6762237 | Glatkowski et al. | Jul 2004 | B2 |
6781506 | Schemenaur et al. | Aug 2004 | B2 |
6797145 | Kosowsky | Sep 2004 | B2 |
6882051 | Majumdar et al. | Apr 2005 | B2 |
6911676 | Yoo | Jun 2005 | B2 |
6916872 | Yadav et al. | Jul 2005 | B2 |
6981319 | Shrier | Jan 2006 | B2 |
7031132 | Mitchell | Apr 2006 | B1 |
7034652 | Whitney et al. | Apr 2006 | B2 |
7049926 | Shrier et al. | May 2006 | B2 |
7053468 | Lee | May 2006 | B2 |
7064353 | Bhat | Jun 2006 | B2 |
7132697 | Weimer et al. | Nov 2006 | B2 |
7132922 | Harris et al. | Nov 2006 | B2 |
7141184 | Chacko et al. | Nov 2006 | B2 |
7173288 | Lee et al. | Feb 2007 | B2 |
7183891 | Harris et al. | Feb 2007 | B2 |
7202770 | Harris et al. | Apr 2007 | B2 |
7205613 | Fjelstad et al. | Apr 2007 | B2 |
7218492 | Shrier | May 2007 | B2 |
7274910 | Gilbert et al. | Sep 2007 | B2 |
7320762 | Greuter et al. | Jan 2008 | B2 |
7408203 | Kim et al. | Aug 2008 | B2 |
7417194 | Shrier | Aug 2008 | B2 |
7446030 | Kosowsky | Nov 2008 | B2 |
7505239 | Kanazawa et al. | Mar 2009 | B2 |
7528467 | Lee | May 2009 | B2 |
7593203 | Dudnikov et al. | Sep 2009 | B2 |
7609141 | Harris et al. | Oct 2009 | B2 |
7626198 | Hirakata et al. | Dec 2009 | B2 |
7688598 | Dudnikov et al. | Mar 2010 | B2 |
7793326 | Kosowsky et al. | Sep 2010 | B2 |
7998370 | Hama et al. | Aug 2011 | B2 |
20010043141 | Tuttle | Nov 2001 | A1 |
20020004258 | Nakayama et al. | Jan 2002 | A1 |
20020050912 | Shrier et al. | May 2002 | A1 |
20020061363 | Halas et al. | May 2002 | A1 |
20030008123 | Glatkowski et al. | Jan 2003 | A1 |
20030008989 | Gore et al. | Jan 2003 | A1 |
20030010960 | Greuter et al. | Jan 2003 | A1 |
20030078332 | Dardi | Apr 2003 | A1 |
20030079910 | Kosowsky | May 2003 | A1 |
20030151029 | Hsu et al. | Aug 2003 | A1 |
20030160570 | Sasaki et al. | Aug 2003 | A1 |
20030207978 | Yadav et al. | Nov 2003 | A1 |
20030218851 | Harris et al. | Nov 2003 | A1 |
20030221966 | Bonkass et al. | Dec 2003 | A1 |
20040062041 | Cross et al. | Apr 2004 | A1 |
20040063294 | Durocher et al. | Apr 2004 | A1 |
20040063839 | Kawate et al. | Apr 2004 | A1 |
20040095658 | Buretea et al. | May 2004 | A1 |
20040154828 | Moller et al. | Aug 2004 | A1 |
20040160300 | Shrier | Aug 2004 | A1 |
20040178713 | Na et al. | Sep 2004 | A1 |
20040201941 | Harris et al. | Oct 2004 | A1 |
20040211942 | Clark et al. | Oct 2004 | A1 |
20040241894 | Nagai et al. | Dec 2004 | A1 |
20040262583 | Lee | Dec 2004 | A1 |
20050026334 | Knall | Feb 2005 | A1 |
20050039949 | Kosowsky | Feb 2005 | A1 |
20050057867 | Harris et al. | Mar 2005 | A1 |
20050083163 | Shrier | Apr 2005 | A1 |
20050106098 | Tsang et al. | May 2005 | A1 |
20050121653 | Chacko | Jun 2005 | A1 |
20050184387 | Collins et al. | Aug 2005 | A1 |
20050208304 | Collier et al. | Sep 2005 | A1 |
20050218380 | Gramespacher et al. | Oct 2005 | A1 |
20050231091 | Bouchard et al. | Oct 2005 | A1 |
20050274455 | Extrand | Dec 2005 | A1 |
20050274956 | Bhat | Dec 2005 | A1 |
20050275070 | Hollingsworth | Dec 2005 | A1 |
20060035081 | Morita et al. | Feb 2006 | A1 |
20060060880 | Lee et al. | Mar 2006 | A1 |
20060142455 | Agarwal et al. | Jun 2006 | A1 |
20060152334 | Maercklein et al. | Jul 2006 | A1 |
20060154070 | Wakiya et al. | Jul 2006 | A1 |
20060166474 | Vereecken et al. | Jul 2006 | A1 |
20060167139 | Nelson et al. | Jul 2006 | A1 |
20060181826 | Dudnikov, Jr. et al. | Aug 2006 | A1 |
20060181827 | Dudnikov, Jr. et al. | Aug 2006 | A1 |
20060193093 | Bertin et al. | Aug 2006 | A1 |
20060199390 | Dudnikov, Jr. et al. | Sep 2006 | A1 |
20060211837 | Ko et al. | Sep 2006 | A1 |
20060214156 | Pan et al. | Sep 2006 | A1 |
20060234127 | Kim et al. | Oct 2006 | A1 |
20060291127 | Kim et al. | Dec 2006 | A1 |
20060293434 | Yodh et al. | Dec 2006 | A1 |
20070114640 | Kosowsky | May 2007 | A1 |
20070116976 | Tan et al. | May 2007 | A1 |
20070123625 | Dorade et al. | May 2007 | A1 |
20070126018 | Kosowsky | Jun 2007 | A1 |
20070139848 | Harris et al. | Jun 2007 | A1 |
20070146941 | Harris et al. | Jun 2007 | A1 |
20070208243 | Gabriel et al. | Sep 2007 | A1 |
20080023675 | Kosowsky | Jan 2008 | A1 |
20080029405 | Kosowsky | Feb 2008 | A1 |
20080032049 | Kosowsky | Feb 2008 | A1 |
20080035370 | Kosowsky | Feb 2008 | A1 |
20080045770 | Sigmund et al. | Feb 2008 | A1 |
20080050856 | Chu et al. | Feb 2008 | A1 |
20080073114 | Kosowsky | Mar 2008 | A1 |
20080186053 | Malekkhosravi | Aug 2008 | A1 |
20080299298 | Kim et al. | Dec 2008 | A1 |
20080313576 | Kosowsky | Dec 2008 | A1 |
20090044970 | Kosowsky | Feb 2009 | A1 |
20090050856 | Kosowsky | Feb 2009 | A1 |
20090071368 | Steingrover et al. | Mar 2009 | A1 |
20090114425 | Lee et al. | May 2009 | A1 |
20090117021 | Smith et al. | May 2009 | A1 |
20090220771 | Kosowsky | Sep 2009 | A1 |
20090242855 | Kosowsky | Oct 2009 | A1 |
20090256669 | Kosowsky | Oct 2009 | A1 |
20100047535 | Kosowsky et al. | Feb 2010 | A1 |
20100222462 | Yamauchi et al. | Sep 2010 | A1 |
20100243302 | Kosowsky et al. | Sep 2010 | A1 |
20100263200 | Kosowsky | Oct 2010 | A1 |
20100264224 | Kosowsky | Oct 2010 | A1 |
20100264225 | Kosowsky | Oct 2010 | A1 |
20100270545 | Kosowsky | Oct 2010 | A1 |
20100270546 | Kosowsky | Oct 2010 | A1 |
20100271831 | Kosowsky et al. | Oct 2010 | A1 |
20100281453 | Kosowsky et al. | Nov 2010 | A1 |
20100281454 | Kosowsky et al. | Nov 2010 | A1 |
20110234363 | Kosowsky et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
663491 | Dec 1987 | CH |
101261892 | Sep 2008 | CN |
3040784 | May 1982 | DE |
10115333 | Jan 2002 | DE |
102004049053 | May 2005 | DE |
102006047377 | Apr 2008 | DE |
790 758 | Aug 1997 | EP |
1 003 229 | May 2000 | EP |
1003229 | May 2000 | EP |
1 245 586 | Oct 2002 | EP |
1 580 809 | Sep 2005 | EP |
1 542 240 | Jun 2006 | EP |
1 857 871 | Apr 2007 | EP |
1 990 834 | Nov 2008 | EP |
56091464 | Jul 1981 | JP |
60-091489 | May 1985 | JP |
62-137807 | Jun 1987 | JP |
63 195275 | Aug 1988 | JP |
63-196672 | Aug 1988 | JP |
11-067966 | Mar 1999 | JP |
11-345292 | Dec 1999 | JP |
2000 062076 | Feb 2000 | JP |
2000-067646 | Mar 2000 | JP |
2002-353003 | Dec 2002 | JP |
2003-163104 | Jun 2003 | JP |
2003-288567 | Oct 2003 | JP |
2003-346108 | Dec 2003 | JP |
2004-014466 | Jan 2004 | JP |
2005-224953 | Aug 2005 | JP |
WO 8800526 | Jan 1988 | WO |
WO 8906859 | Jul 1989 | WO |
WO 9602922 | Feb 1996 | WO |
WO 9602924 | Feb 1996 | WO |
WO 9602944 | Feb 1996 | WO |
WO 9726665 | Jul 1997 | WO |
WO 9823018 | May 1998 | WO |
WO 9924992 | May 1999 | WO |
WO 9949525 | Sep 1999 | WO |
WO 02103085 | Dec 2002 | WO |
WO 03032335 | Apr 2003 | WO |
WO 03057359 | Jul 2003 | WO |
WO 2005100426 | Oct 2005 | WO |
WO 2006130366 | Dec 2006 | WO |
WO 2007062170 | May 2007 | WO |
WO 20070062171 | May 2007 | WO |
WO 2008016858 | Feb 2008 | WO |
WO 2008016859 | Feb 2008 | WO |
WO 2008024207 | Feb 2008 | WO |
WO 2008036984 | Mar 2008 | WO |
WO 2008153584 | Dec 2008 | WO |
WO 2009026299 | Feb 2009 | WO |
WO 2010039902 | Apr 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20090212266 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
61022090 | Jan 2008 | US |