The present application claims priority under 35 U.S.C § 119 based upon and incorporates by reference Swiss Patent Application No. 2003 1007/03 filed on Jun. 6, 2003.
The invention concerns a Wire Bonder.
A Wire Bonder is a machine with which semiconductor chips are wired after mounting on a substrate. The Wire Bonder has a capillary that is clamped to the tip of a horn. The capillary serves to secure the wire to a connection point on the semiconductor chip and to a connection point on the substrate as well as to guide the wire between the two connection points. On producing the wire connection between the connection point on the semiconductor chip and the connection point on the substrate, the end of the wire protruding out of the capillary is first melted into a ball. Afterwards, the wire ball is secured to the connection point on the semiconductor chip by means of pressure and ultrasonics. In doing so, ultrasonics is applied to the horn from an ultrasonic transducer. This process is called ball bonding. The wire is then pulled through to the required length, formed into a wire loop and welded to the connection point on the substrate. This last part of the process is called wedge bonding. After securing the wire to the connection point on the substrate, the wire is torn off and the next bonding cycle can begin.
Most of the Wire Bonders available on the market today move the bondhead in the horizontal xy plane by means of two orthogonally arranged drives. An example of such a drive system is disclosed for example in the patent specification U.S. Pat. No. 5,114,302. In addition, this drive system uses vacuum pre-charged air bearings. A significant disadvantage of this known Wire Bonder exists in that on moving the bondhead to a new position, relatively large masses have to be accelerated. This requires powerful drive systems and robust bearings. A further disadvantage exists in that, depending on the position of the bondhead, on accelerating the bondhead relatively large torques occur that place great demands on the bearing of the bondhead. This puts limitations on the maximum possible acceleration values and therefore on the throughput of the Wire Bonder.
A Wire Bonder with which the movement of the bondhead takes place with a polar drive system is known from the patent specification U.S. Pat. No. 5,330,089. With this drive system relatively large masses also have to be accelerated. In addition, the load to be accelerated by the turning motion of the motor is dependent on the position of the load in relation to the linear axis which, on the one hand impedes the regulation of the movement of the bondhead and, on the other hand puts limitations on the maximum possible acceleration values.
A Wire Bonder with which the movement of the bondhead takes place with a rotary drive system is known from the patent specification U.S. Pat. No. 6,460,751. This drive system has a linear axis that has to accelerate a relatively large mass and a rotary axis that has to accelerate a relatively small mass.
The object of the invention is to develop a Wire Bonder that enables the fastest possible movement of the capillary.
In accordance with the invention, it is suggested to form the bondhead of the Wire Bonder that serves to produce a wire connection between two connection points by means of a capillary guiding a wire, as a pantograph mechanism. The pantograph mechanism comprises a first swivel arm driven by a first motor, a second swivel arm driven by a second motor and two connecting arms. The first swivel arm and the second swivel arm can be turned on a first, stationary axis. The first connecting arm can be turned on a second axis that bears on an end of the second swivel arm away from the first axis. The second connecting arm can be turned on a third axis that bears on an end of the first swivel arm away from the first axis. The two connecting arms are rotatably connected on a fourth axis. With this pantograph mechanism, the movement of the capillary takes place by means of rotary movements. The advantage exists in that the largely symmetrical structure brings about similar loads for both motors, ie, there are two almost equally heavy axes and not one heavy and one light axis as with the rotary bondhead.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present invention and, together with the detailed description, serve to explain the principles and implementations of the invention. The figures are not to scale.
In the drawings:
A rocker 18 that can be turned on a horizontal axis 16 that carries a horn 19 to which ultrasonics from an ultrasonic transducer can be applied at the tip of which a capillary 2 is clamped is mounted on the second connecting arm 8. A motor 20 is arranged on the connecting arm 8 for the turning movement of the rocker 18. Also arranged on the second connecting arm 8 is a camera 21 or an optical system connected to a camera that serves to determine the position of the bond pad of the semiconductor chip or the substrate. An optical system that can determine the position of the tip of the capillary 2 in relation to a bond pad immediately before the capillary impacts on the bond pad, is known from the European patent application EP 1 174 906.
With both embodiments, the position of the tip of the capillary within the working range of the bondhead 1 is defined by two angles, namely the angle α, that encompasses the first swivel arm 4 in relation to a first predetermined axis, and the angle β, that encompasses the second swivel arm 6 in relation to a second predetermined axis. The movement of the capillary 2 from a first point A=(α1, β1) defined by the angles α1 and β1 to a second point B=(α2, β2) defined by the angles α2 and β2 must be converted into co-ordinates α(t), β(t) corresponding to the desired path, whereby the value t represents a parameter. The value t is for example the time, whereby the pair of co-ordinates α(t), β(t) designate the position of the capillary 2 at time t.
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art having the benefit of this disclosure that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
1007/03 | Jun 2003 | CH | national |
Number | Name | Date | Kind |
---|---|---|---|
2900830 | Kuno et al. | Aug 1959 | A |
3256007 | Hunsaker | Jun 1966 | A |
3363474 | Hans et al. | Jan 1968 | A |
3653268 | Diepeveen | Apr 1972 | A |
4040885 | Hight et al. | Aug 1977 | A |
4538047 | Nakano et al. | Aug 1985 | A |
5114302 | Meisser et al. | May 1992 | A |
5154022 | Chalco et al. | Oct 1992 | A |
5182967 | Yoshizawa et al. | Feb 1993 | A |
5246513 | Yoshida et al. | Sep 1993 | A |
5330089 | Orcutt et al. | Jul 1994 | A |
5667130 | Morita et al. | Sep 1997 | A |
5732599 | Iriyama | Mar 1998 | A |
5797666 | Park | Aug 1998 | A |
5893509 | Pasquier | Apr 1999 | A |
5971254 | Naud et al. | Oct 1999 | A |
6398098 | Kada | Jun 2002 | B1 |
6460751 | Thürlemann | Oct 2002 | B1 |
6516990 | Hess et al. | Feb 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20040245314 A1 | Dec 2004 | US |