1. Field of the Invention
The present invention relates to robot arm technology and more specifically, to a wireless transmission device that can be used as a joint in a robot arm for transmitting power and data between two sides of the joint in a wireless manner, eliminating the problem of wiring in the joint, having the advantages of simple structure, series connection applicability and free 360-degree robot arm rotation.
2. Description of the Related Art
With fast development of industrialization, human power has been gradually replaced by robot in automated manufacturing. In order to simultaneously transmit power, control signal and other sensed data signal, a robot needs a complicated arrangement of cables therein. However, arranging physical cables in a robot restricts the freedom of the motion of the arm members of the robot, limiting the rotation angle of the arm members to the range of 90 degrees or 120 degrees, and thus, the arm members of a robot cannot be freely rotated through 360 degrees. Further, arranging a large amount of cables in a robot cannot eliminate the occurrence of the poor contact or short circuit problem, lowering the reliability of durability of the robot.
US2007/0276538 discloses a robot or manipulator including a wireless power supply and a wireless communication device respectively adapted for transmitting power and data, so as to achieve non-contact transmission of power and signals. However, this patent is not designed for installation inside the robot arm, in other words, due to the differences of the transmission routes between the power and the control signal, a power transmission line and a signal transmission line are still necessarily arranged inside the robot arm with complicating layout. This design cannot resolve the problems encountered in the current robotics industries. A further improvement in this regard is needed.
The present invention has been accomplished under the circumstances in view. It is the main object of the present invention to provide a wireless transmission device, which is capable of composing a power signal and a control signal directly to a composite signal in a wireless manner by electromagnetic coupling between windings, and further decomposing the composite signal back to the power signal and the control signal in the wireless manner as well. Therefore, the complex problem of wirings is eliminated, and the transmission requirement of demanding energy and data for robot arm is met simultaneously.
To achieve this and other objects of the present invention, a wireless transmission device comprises a rotating unit and two receiver-transmitter units. The rotating unit comprises a first winding and a second winding arranged in a coaxial manner and rotatable relatively to each other. The two receiver-transmitter units are respectively electrically connected to the first winding and the second winding, and adapted for receiving a first composite signal and for further decomposing the first composite signal into a power signal and a control signal. To meet the need, these two receiver-transmitter units established a communication therebetween by using the electromagnetic coupling between the first winding and the second winding.
Thus, the invention needs no individual transmission for the power and the control signals, but instead, simply combines energy and data into a composite signal in advance. The composite signal is then transmitted to the receiver-transmitters for rectification and filtration, and is decomposed to a composite signal into a power signal and a control signal separately. Communication medium between the two receiver-transmitter units is merely the air. The electromagnetic coupling between the first winding and the second winding is used for transmitting energy and data, and therefore, no physical installation of cable or wire is needed for transmitting energy and data, and the problem of wiring is eliminated. More importantly, when the aforesaid wireless transmission device is used as a joint in a robot arm, there will be no restrictions on the free rotation of the robot arm due to the elimination of wiring problem.
Preferably, the two receiver-transmitter units are adapted to modulate the energy and data into a second composite signal, and then to transmit the second composite signal therebetween for mutual communication.
It is another object of the present invention to provide a robot arm using the aforesaid wireless transmission device, which has a simple structure and can be freely rotated through 360 degrees.
To achieve this and other objects of the present invention, a robot arm comprises a controller adapted for combining a power signal and a control signal into a composite signal and transmitting the composite signal, two arm members coupled together and rotatable relatively to each other, a drive unit adapted for driving the two arm members to rotate, and the wireless transmission device above-described. A first axle sleeve and a second axle sleeve of the rotating unit of the wireless transmission device are respectively mounted in the two arm members. Further, one receiver-transmitter unit is electrically connected to the drive unit, and adapted for providing a power signal and a control signal to the drive unit so that the drive unit can rotate the robot arms freely.
Further, the robot arm can be configured to have multiple wireless transmission devices mounted in one arm member thereof, in such a manner that the receiver-transmitter units of the wireless transmission devices are connected in series, so that the wireless transmission devices can transmit power and data sequentially, in order to simplify the data transmission route and efficiency. Further, under the condition that the drive unit has sensor means built therein, the receiver-transmitter units can directly receive sensed data from the sensor means and combine the sensed data into the second composite signal for transmission.
Other advantages and features of the present invention will be fully understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference signs denote like components of structure.
Referring to
Referring to
The first winding 30 comprises a first magnetic core 31 connected to an end face of the first axle sleeve 21, and a first spool 32 mounted in the first magnetic core 31. The first magnetic core 31 is shaped like a rounded cap defining therein an accommodation chamber 33, and an inner tube 34 is formed in a bottom side of the accommodation chamber 33 at the center. The first spool 32 is a double end flanged cylinder on which a lead wire is wound (see
The second winding 40 comprises a second magnetic core 41 fixedly connected to an inside wall of the second axle sleeve 22, and a second spool 42 mounted in the second magnetic core 41. The physical structure of the second magnetic core 41 and second spool 42 is substantially similar to the physical structure of the first magnetic core 31 and first spool 32 with the exception that: the second spool 42 is directly sleeved onto the inner tube 44 of the second magnetic core 41; the inner diameter of the accommodation chamber 43 of the second magnetic core 41 is larger than the outer diameter of the first magnetic core 31 so that the accommodation chamber 43 can accommodate the first magnetic core 31; the outer diameter of the second spool 42 is smaller than the inner diameter of the first spool 32 so that the first magnetic core 31 and the second magnetic core 41 can be coaxially arranged together with the open sides of the accommodation chamber s 33, 43 facing toward each other to let at least a part of the second spool 42 be received inside the first spool 32, minimizing the dimension.
The first receiver-transmitter unit S10 is positioned in the first axle sleeve 21 and electrically coupled with the first winding 30 for receiving the first composite signal from the controller 50 (see
The aforesaid first composite signal is a high frequency signal produced by the controller 50 by means of modulating the power signal and the control signal. After received the first composite signal, the first receiver-transmitter unit S10 runs a filtering process to separate the power signal and the control signal for output, or directly transmits the received first composite signal to the second receiver-transmitter unit S11 using the electromagnetic coupling between the first winding 30 and the second winding 40. Under this condition, the first receiver-transmitter unit S10 and the second receiver-transmitter unit S11 simply provide one-way communication.
When desiring the first receiver-transmitter unit S10 and the second receiver-transmitter unit S11 to provide mutual communication, the first and second receiver-transmitter units S10;S11 can modulate the energy and/or data to be transmitted into a second composite signal, and then send out this second composite signal using the electromagnetic coupling between the first winding 30 and the second winding 40. Thus, the second receiver-transmitter unit S11 can send the energy and data back to the first receiver-transmitter unit S10 using the electromagnetic coupling between the first winding 30 and the second winding 40. Further, the first receiver-transmitter unit S10 can also send data back to the controller 50 by wireless communication.
Because the first receiver-transmitter unit S10 and the second receiver-transmitter unit S11 directly use air as a medium for two-way transmission of power and data through the electromagnetic coupling between the first winding 30 and the second winding 40, no physical circuit is needed. Further, the first magnetic core 31 and the second magnetic core 41 form a closed magnetic circuit structure, preventing magnetic leakage and enhancing the energy transmission efficiency between the first winding 30 and second winding 40.
Referring to
Thus, the first receiver-transmitter unit S10 and the second receiver-transmitter unit S11 can simultaneously or separately receive the first composite signal from the controller 50, and then transmit the first composite signal to the second receiver-transmitter units S11;S21 by electromagnetic coupling, enabling the second receiver-transmitter units S11;S21 to separate the first composite signal into a power signal and a control signal and then provide power to the drive units D1;D2 and control the drive units D1;D2 to drive the second arm member 3 and/or the third arm member 4 according to the instruction of the control signal.
It is to be noted that the first and second receiver-transmitter units S10;S11 can be connected in series for two-way communication. Thus, the data sensed by the sensor means of the drive units D1;D2 can be gathered together and transmitted to the first receiver-transmitter unit S10 or S20, and then sent back to the controller 50, simplifying data transmission route and efficiency. Similarly, when the wireless transmission devices 10;10′ are connected in series for application, the controller 50 simply needs to transmit the composite signal to one of the first receiver-transmitter units S10;S20.
Because the wireless transmission devices 10;10′ can transmit power, control signals and sensed data without through any cable, the second arm member 3 and third arm member 4 of the robot arm 1 can be rotated through 360 degrees without restriction. Further, the wireless transmission devices 10;10′ can flexibly plain the power and data transmission route, therefore, the wireless transmission device can be easily applied in a variety of robot arms.
At last, it is to be noted once again, the composition components disclosed in the aforesaid embodiment are for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention, for example, the drive unit can be electrically connected to the first receiver-transmitter unit according to actual requirements. Accordingly, the invention is not to be limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4223313 | Chabrol | Sep 1980 | A |
4855564 | Hawkins | Aug 1989 | A |
5672044 | Lemelson | Sep 1997 | A |
5850416 | Myer | Dec 1998 | A |
6057765 | Jones | May 2000 | A |
6232735 | Baba | May 2001 | B1 |
6259403 | Nichols | Jul 2001 | B1 |
6278210 | Fatula, Jr. | Aug 2001 | B1 |
6428266 | Solomon | Aug 2002 | B1 |
6650966 | Baba | Nov 2003 | B1 |
6976401 | Okamoto | Dec 2005 | B2 |
7330775 | Orita | Feb 2008 | B2 |
7375490 | Furem | May 2008 | B2 |
7437397 | Koudas | Oct 2008 | B1 |
7463948 | Orita | Dec 2008 | B2 |
7499250 | Zhang | Mar 2009 | B2 |
7555691 | Gilbert | Jun 2009 | B2 |
7622884 | Furem | Nov 2009 | B2 |
7720573 | Yamada | May 2010 | B2 |
7979162 | Niemela | Jul 2011 | B2 |
8010231 | Sumida | Aug 2011 | B2 |
8027750 | Orita | Sep 2011 | B2 |
8090193 | Higaki | Jan 2012 | B2 |
8131792 | Koudas | Mar 2012 | B1 |
8264187 | Laceky | Sep 2012 | B2 |
8265791 | Song | Sep 2012 | B2 |
8274178 | Tucker | Sep 2012 | B2 |
8396611 | Phillips | Mar 2013 | B2 |
8847548 | Kesler | Sep 2014 | B2 |
8849202 | Linde | Sep 2014 | B2 |
8937408 | Ganem | Jan 2015 | B2 |
8958912 | Blumberg | Feb 2015 | B2 |
8965580 | Brooks | Feb 2015 | B2 |
8996175 | Blumberg | Mar 2015 | B2 |
8996244 | Summer | Mar 2015 | B2 |
8998797 | Omori | Apr 2015 | B2 |
9090214 | Bernstein | Jul 2015 | B2 |
9114537 | Wise | Aug 2015 | B2 |
9211920 | Bernstein | Dec 2015 | B1 |
9246749 | Nguyen | Jan 2016 | B1 |
9252584 | Aldrich | Feb 2016 | B2 |
9278454 | Mimura | Mar 2016 | B2 |
9283682 | Takahashi | Mar 2016 | B2 |
20020062178 | Takahashi | May 2002 | A1 |
20020120362 | Lathan | Aug 2002 | A1 |
20020173877 | Zweig | Nov 2002 | A1 |
20030010148 | Okamoto | Jan 2003 | A1 |
20040051499 | Kameda | Mar 2004 | A1 |
20040148058 | Johannessen | Jul 2004 | A1 |
20050052148 | Carlson | Mar 2005 | A1 |
20050187657 | Hashimoto | Aug 2005 | A1 |
20050244260 | Deplano | Nov 2005 | A1 |
20060087278 | Furem | Apr 2006 | A1 |
20060091842 | Nishiyama | May 2006 | A1 |
20060122730 | Niemela | Jun 2006 | A1 |
20070244610 | Ozick | Oct 2007 | A1 |
20070247767 | Zhang | Oct 2007 | A1 |
20070276538 | Kjellsson | Nov 2007 | A1 |
20070293987 | Yamada | Dec 2007 | A1 |
20080212344 | Furem | Sep 2008 | A1 |
20080267112 | Lucidarme | Oct 2008 | A1 |
20090014242 | Tang | Jan 2009 | A1 |
20090204261 | Strand | Aug 2009 | A1 |
20090271038 | Song | Oct 2009 | A1 |
20100017029 | Graf | Jan 2010 | A1 |
20100077810 | De Franceschi | Apr 2010 | A1 |
20100079099 | Katsuki | Apr 2010 | A1 |
20100181783 | Lavrencic | Jul 2010 | A1 |
20100264748 | Tucker | Oct 2010 | A1 |
20110208353 | Kjellsson | Aug 2011 | A1 |
20110218677 | Jinno | Sep 2011 | A1 |
20110313568 | Blackwell | Dec 2011 | A1 |
20120032522 | Schatz | Feb 2012 | A1 |
20120139355 | Ganem | Jun 2012 | A1 |
20120259461 | Yang | Oct 2012 | A1 |
20130013268 | Woolf | Jan 2013 | A1 |
20130046438 | Summer | Feb 2013 | A1 |
20130090764 | Summer | Apr 2013 | A1 |
20130147425 | Chang | Jun 2013 | A1 |
20130211597 | Sommerville | Aug 2013 | A1 |
20130261867 | Burnett | Oct 2013 | A1 |
20130320773 | Schatz | Dec 2013 | A1 |
20140000982 | Barnhill | Jan 2014 | A1 |
20140024498 | Lin | Jan 2014 | A1 |
20140360832 | Aldrich | Dec 2014 | A1 |
20150008761 | Kesler | Jan 2015 | A1 |
20150012137 | Mimura | Jan 2015 | A1 |
20150088129 | Ganem | Mar 2015 | A1 |
20150183114 | Takahashi | Jul 2015 | A1 |
20150217444 | Asada | Aug 2015 | A1 |
20150217450 | Huang | Aug 2015 | A1 |
20150237918 | Liu | Aug 2015 | A1 |
20150273696 | Nam | Oct 2015 | A1 |
20150293877 | Liang | Oct 2015 | A1 |
20160084982 | Donderici | Mar 2016 | A1 |