X-ray fluorescence system and x-ray source with electrically insulative target material

Information

  • Patent Grant
  • 12360067
  • Patent Number
    12,360,067
  • Date Filed
    Monday, February 27, 2023
    2 years ago
  • Date Issued
    Tuesday, July 15, 2025
    11 days ago
Abstract
A system includes a stage for supporting a sample having at least first and second atomic elements. The first atomic element has a first characteristic x-ray line with a first energy and the second atomic element has a second characteristic x-ray line with a second energy, the first and second energies lower than 8 keV and separated from one another by less than 1 keV. The system further includes an x-ray source of x-rays having a third energy between the first and second energies and at least one x-ray optic configured to receive and focus at least some of the x-rays as an x-ray beam to illuminate the sample. The system further includes at least one x-ray detector configured to detect fluorescence x-rays produced by the sample in response to being irradiated by the x-ray beam.
Description
BACKGROUND
Field

This application relates generally to x-ray fluorescence systems.


Description of the Related Art

X-ray fluorescence (XRF) analysis of materials comprising multiple elements can experience problems due to spectral interference, where the difference in energy between characteristic x-ray fluorescence lines of different elements is less than or compatible with the resolution of the spectrometer used. Spectral interference is particularly problematic when an energy dispersive x-ray detector is used for lower energy x-ray fluorescence lines (e.g., <5 keV) because most elements in the periodic table have characteristic x-ray lines of energies less than 5 keV, including K x-ray lines of lower Z elements, and L and M x-ray lines of higher Z elements. In addition, the energy resolution of the energy dispersive detector, such as a silicon drift detector, typically ranges from about 50 eV to about 120 eV in the low x-ray energy range. This problem is exacerbated when quantifying an element of low concentration having spectral interference with an element of high concentration in the same sample.


SUMMARY

Certain implementations described herein provide a system comprising a stage configured to support a sample comprising at least first and second atomic elements. The first atomic element has a first characteristic x-ray line with a first energy and the second atomic element has a second characteristic x-ray line with a second energy, the second energy greater than the first energy. The first energy and the second energy are lower than 8 keV and are separated from one another by less than 1 keV. The system further comprises an x-ray source comprising at least one target material configured to produce x-rays having a third energy between the first and second energies. The system further comprises at least one x-ray optic configured to receive and focus at least some of the x-rays from the x-ray source as an x-ray beam to illuminate the sample. At least 70% of the x-ray beam has x-ray energies that are below the second energy. The system further comprises at least one x-ray detector configured to detect fluorescence x-rays produced by the sample in response to being irradiated by the x-ray beam.


Certain implementations described herein provide an x-ray source comprising an electrically insulating target material having a thickness less than 10 microns. The target material is configured to emit x-rays upon being impinged by electrons accelerated by an accelerating voltage in a range of 5 kVp to 30 kVp. The x-ray source further comprises a diamond substrate material in thermal communication with the target material. The diamond substrate material is configured to transfer heat away from the target material, the heat generated by the target material being impinged by the electrons.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B schematically illustrate two examples of an x-ray fluorescence measurement system in accordance with certain implementations described herein.



FIGS. 2A and 2B are flow diagrams of two examples of a method for analyzing a sample in accordance with certain implementations described herein.



FIG. 3 shows two XRF spectra from about zero to about 20 keV of a silicon (Si) sample irradiated by two different excitation x-ray beams.



FIG. 4 shows three XRF spectra from about zero to about 20 keV of a silver (Ag) sample irradiated by three different excitation x-ray beams.



FIG. 5 shows an XRF spectrum from about 0.5 keV to about 6.5 keV acquired from a sample comprising SnAg solder microbumps in accordance with certain implementations described herein.



FIG. 6 shows an expanded view of the spectral region from about 2 keV to about 4.7 keV of the XRF spectra acquired from samples comprising SnAg solder microbumps with standardized Ag concentrations in accordance with certain implementations described herein.





DETAILED DESCRIPTION

One example of XRF analysis that can experience issues due to spectral interference is the accurate measurement of Ag concentration in lead-free solder bumps in electronic packages that comprises tin (Sn) and silver (Ag), an important metrology/inspection analysis in manufacturing electronic packages using SnAg-based solder bumps. It can be difficult to use an EDS (energy dispersive spectrometer), such as silicon drift detector (SDD), to accurately quantify the concentration of Ag in SnAg solder bumps (e.g., microbumps). First, the concentration of Ag (e.g., in a range of 1% to 3%) is typically much smaller than the concentration of Sn (e.g., in a range greater than 97%). Second, the energy difference between the Sn Lγ x-ray line (e.g., 3.045 keV) and either of the Ag Lα, Lβ x-ray lines (e.g., energies of 2.984 keV and 3.15 keV, respectively) is less than the energy resolution of conventional EDS detectors, and thus there is strong spectral overlap.


Though a wavelength dispersive spectrometer (WDS) can have sufficient energy resolution to reduce the spectral overlap, WDS typically collects fluorescence x-rays with significantly smaller collection solid angles than does EDS, typically ranging from 10× to 500× smaller. Quantification of Ag concentration utilizes a sufficiently large number of Ag characteristic x-ray lines to meet Poisson statistic constraints, and WDS is typically much slower in data acquisition than EDS and can be too slow to meet the desired throughput for accurate measurement of Ag concentration in SnAg microbumps. Additionally, XRF measurement of Ag content in SnAg solder bumps in air with EDS can suffer problems due to the spectral overlap of Ag L x-ray lines and argon (Ar) K x-ray lines (e.g., energy of 3.19 keV) from Ar present in the air. Although data analysis with peak fitting of the overlapping spectral x-ray lines can be used to mitigate some of the spectral overlap problems in Ag concentration measurement, spectral overlap still creates uncertainty in accurate XRF measurement of Ag concentration.


In some applications (e.g., metrology of Ag concentration in SnAg microbumps in semiconductor packages), small spot analysis (e.g., x-ray spot widths in a range of 2 microns to 20 microns) is used. Such small spot sizes can further impose difficulty in accurate XRF measurements of Ag concentration due to small analysis volume and small focus spot sizes with small x-ray flux. Compared with SEM-EDS, which can achieve high spatial resolution, XRF offers an advantage with higher signal to background ratio and also can operate in ambient pressure.


Because of these problems, current spectroscopy (e.g., XRF and SEM-EDS) methods struggle to adequately measure the Ag content in solders.


Although the fluorescence yield of the Sn Lγ x-ray line is about 23×less than that of the Ag Lα x-ray line, the high concentration ratio of Sn/Ag in SnAg solder bumps (e.g., a concentration ratio of about 50×) can lead to Sn Lγ x-ray line intensities higher than that of the Ag Lα x-ray line in x-ray spectra generated by conventional x-ray excitation beams. Certain implementations described herein provide an x-ray excitation beam configured to illuminate (e.g., irradiate) SnAg solder structures of a sample and generate the Ag Lα and Lβ x-ray lines with intensities that are at least comparable with or larger than the intensity of the Sn Lγ x-ray line.


Certain implementations described herein provide microanalytical x-ray applications at these lower energy x-ray lines utilizing x-ray optics with a solid angle of collection that increases as the inverse square of the x-ray energy. For example, the x-ray source can comprise a W-containing target which is impinged by an electrons having an acceleration voltage in a range of 8 kVp to 20 kVp, and the x-ray optic can comprise a capillary focusing (e.g., ellipsoid) x-ray optic with sufficient demagnification to get a sufficiently small spot size and a fluorescence x-ray detector optimized to collect fluorescence x-rays having energies in a range of 3.5 keV to 4 keV. In certain implementations, the x-ray optic contains an internal multilayer coating that substantially monochromatizes the polychromatic x-rays produced by the W-containing target of the x-ray source. In certain other implementations, the internal surface of the x-ray optic is uncoated or is coated with a material having a high atomic number, such as platinum.


Certain implementations described herein generate a focused x-ray excitation beam (e.g., having a spot size in a range of 1 micron to 25 microns) for analyzing small SnAg solder structures (e.g., bumps; microbumps), To avoid spectral interference of Ar with Ag L x-ray lines, the amount of Ar atoms in the excitation x-ray beam path can be reduced (e.g., by performing the XRF measurements in vacuum or by flushing N2 or He along and/or in the excitation x-ray beam path near the analysis area, for example, in front of the x-ray detector).


To achieve an Ag Lα x-ray line intensity that is at least comparable with or larger than the Sn Lγ x-ray line intensity, certain implementations described herein comprise an x-ray source and an x-ray optic configured to produce an x-ray excitation beam having a spectrum with a high percentage of x-rays of energies between the Ag L absorption edge (e.g., at about 3.35 keV) and the Sn L absorption edge (e.g., at about 3.93 keV). For small spot analysis, certain implementations utilize an x-ray focusing optic configured to focus x-rays to a spot size in a range of 1 micron to 25 microns. An energy resolving detector system, such as a silicon drift detector, can be used as the fluorescence x-ray detector.



FIGS. 1A and 1B schematically illustrate two examples of an x-ray fluorescence measurement system 100 in accordance with certain implementations described herein. The system 100 is configured to analyze a sample 10 comprising at least first and second atomic elements. The first atomic element has a first characteristic x-ray line with a first energy, the second atomic element has a second characteristic x-ray line with a second energy, and the second energy greater than the first energy. The first energy and the second energy can be in a range lower than 8 keV (e.g., lower than 6 keV; lower than 5 keV) and are separated from one another by less than 1 keV. The system 100 comprises a stage 110 configured to support the sample 10 comprising the at least first and second atomic elements. The system 100 further comprises an x-ray source 120 comprising at least one target material 122 configured to produce x-rays 124 with a third energy between the first and second energies. The system 100 further comprises at least one x-ray optic 130. In certain implementations, the x-ray optic has a cut-off energy that is 50% to 100% of an absorption edge energy associated with the second characteristic x-ray line. The at least one x-ray optic 130 is configured to receive at least some of the x-rays 124 from the x-ray source 120 and to direct (e.g., focus) at least some of the received x-rays 124 as an x-ray beam 132 (e.g., an x-ray excitation beam) onto the sample 10. For example, at least 70% of the x-rays of the excitation beam can have x-ray energies that are below the second energy. The system 100 further comprises at least one x-ray detector 140 configured to detect fluorescence x-rays 142 produced by the sample 10 in response to being illuminated (e.g., irradiated) by the x-ray beam 132.


Sample Stage


In certain implementations, the stage 110 comprises at least one substage 112 that is motorized and computer-controlled (e.g., comprising an electromechanical system; goniometer; electromechanical motion driver; rotary motor; stepper motor; motor with encoder; linear motion driver with worm drive). The at least one substage 112 can be configured to linearly translate the sample 10 along one, two, or three directions (e.g., x-, y-, and z-direction substages 112 that can move the sample 10 along substantially perpendicular directions, one of which is substantially perpendicular to a surface of the sample 10). The at least one substage 112 can be further configured to rotate the sample 10 about at least one rotation axis. For example, the rotation axis can be substantially perpendicular to a surface of the sample 10 such that rotation of the sample 10 modifies the azimuthal angle along which the x-ray beam 132 propagates to illuminate (e.g., irradiate) the sample 10. For another example, the rotation axis can be substantially parallel to a surface of the sample 10 such that rotation of the sample modifies the tilt angle between the surface of the sample 10 and the propagation direction of the x-ray beam 132. In certain implementations, the at least one substage comprises at least one goiniometer.


In certain implementations, the stage 110 further comprises a sample mount 114 on the at least one substage 112, the sample mount 114 configured to hold the sample 10. For example, the sample mount 114 can be configured to hold a sample 10 comprising a substantially planar integrated circuit wafer such that a normal direction to the wafer is substantially parallel to a linear translation direction and/or a rotation axis of the at least one substage 112.


X-Ray Source


In certain implementations, the x-ray source 120 comprises at least one electron beam source 200 configured to generate an electron beam 202 and at least one x-ray target 210 (e.g., anode) configured to be impinged by the electron beam 202 and comprising the at least one target material 122. The at least one target material 122 is configured to generate the x-rays 124 in response to the electron beam 202. The at least one electron beam source 200 can comprise an electron source (e.g., dispenser cathode; lanthanum hexaboride; tungsten pin; not shown) and electron optics (e.g., three grid stacks; electromagnetic optics; not shown) configured to focus the at least one electron beam 202 onto the at least one x-ray target 210. The spot size of the electron beam 202 at the at least one target material 122 (e.g., the lateral width along a surface of the x-ray target 210) and/or the spot size of the x-ray generating region of the at least one target material 122 (e.g., the lateral width along a surface of the target material 122) can be in a range of less than or equal to 100 microns (e.g., less than or equal to 1 micron; 1 micron to 5 microns; 5 microns to 20 microns; 20 microns to 100 microns). The at least one electron beam source 200 can be operated in the range of 5 kVp to 30 kVp (e.g., 10 kVp to 15 kVp; 15 kVp to 20 kVp; 20 kVp to 30 kVp). The x-ray source 120 can be a reflection-type x-ray source having a power in a range of 10 W to 2 kW (e.g., 10 W to 30 W; 30 W to 50 W; 50 W to 100 W; 100 W to 2 kW). In certain implementations in which the x-ray source 120 comprises a reflection x-ray source, the at least one target material 122 is under vacuum and the x-ray source 120 does not have a window, while in certain other such implementations, the x-ray source 120 comprises an exit window (e.g., comprising beryllium or silicon nitride; 25 microns to 500 microns in thickness; not shown) through which the generated x-rays 124 propagate.


In certain implementations, the at least one target material 122 is has low electrical conductivity or is electrically insulative (e.g., ceramic; glass). For example, the at least one target material 122 can comprise at least one calcium-containing material, examples of which include but are not limited to: Ca, CaB6, CaO, calcium carbide, calcium fluoride (CaF), or other compounds of calcium or ceramic formulations of calcium. Ceramics are generally not used as x-ray target materials because they are insulators and can charge up under electron bombardment. Furthermore, ceramics are alloys of materials, which have lower percentages of the atomic element generating the x-rays of interest as compared to the pure material, so the characteristic x-ray lines are weaker from alloys as compared to the pure material. For these reasons, most x-ray target materials are electrically conductive pure metals, such as Rh, Au, Pd, W, etc. With a thin layer of low electrical conductivity ceramic materials (e.g., thickness less than 5 microns or less than 1 micron), energetic electrons used for generating x-rays can tunnel through and thus these ceramic materials can be used for the target material, provided an electrically conductive path is provided.


The x-rays 124 generated by the Ca-containing material in response to an electron beam 202 in a range of 5 kVp to 30 kVp include Ca K x-ray line x-rays as a large fraction of the x-ray spectrum on top of continuum (e.g., Bremsstrahlung) radiation. The energy of the Ca Kα x-ray lines are above the Ag L absorption edges and are below the Sn L absorption edges, so these x-rays 124 are efficient in generating Ag L-line fluorescence x-rays from SnAg solder structures of the sample 10 while not generating Sn L-line fluorescence x-rays. The x-rays 124 with energies greater than the Sn L absorption edge can be used to generate Sn L fluorescence x-rays and Ag fluorescence x-rays. To achieve measurement of the Sn/Ag ratio, these higher energy x-rays can be only a fraction of the amount of Ca Kα x-ray lines reaching the sample. Because the Ca Kβ x-ray line is strong, a filter can be used to substantially reduce the Ca Kβ x-ray line. The relatively weak continuum x-rays 124 from the Ca target can be used for Sn excitation.


In certain other implementations, the at least one target material 122 comprises at least one material containing a material having a high atomic number (e.g., Z greater than 42), examples of which include but are not limited to: tungsten (W), rhodium (Rh), and molybdenum (Mo). The x-rays 124 can be generated by the target material in response to an electron beam 202 in a range of 6 kVp to 20 kVp (e.g., about 10 kVp). In certain such implementations, as schematically illustrated by FIG. 1B, the system 100 further comprises at least one filter 230 comprising at least one filter material 232 positioned in the path of the x-rays 124 propagating from the x-ray source 120 to the at least one x-ray optic 130 and/or in the path of the x-ray beam 132 propagating from the at least one x-ray optic 130 to the sample 10. The x-rays impinging the at least one filter 230 are spectrally filtered by transmission through the at least one filter material 232 (e.g., a first portion of the x-rays transmitted through the at least one filter material 232 and a second portion of the x-rays absorbed by the at least one filter material 232). The at least one filter material 232 has a thickness (e.g., in a range of 1 micron to 10 microns; about 5 microns) configured to allow the first portion of the impinging x-rays to propagate through the at least one filter material 222 while absorbing the second portion of the impinging x-rays. For example, the at least one filter material 232 can have a high x-ray transmission for x-rays with energies between the L absorption edges of Ag and Sn and a low x-ray transmission for x-rays with energies above the L absorption edge of Sn. Examples of such filter materials 232 include but are not limited to Sn-containing materials (e.g., SnO). Filtering by the at least one filter material 232 can lead to an increased strength (e.g., intensity) of Ag L x-ray lines relative to Sn L x-ray lines in the fluorescence x-rays 142 generated by SnAg solder structures of the sample 10 and received by the at least one detector 140. While FIG. 1B shows the at least one filter 230 between the x-ray source 120 and the x-ray optic 130, the at least one filter 230 can be a component of the x-ray source 120 (e.g., at least a portion of an exit window of the x-ray source 120) and/or of the at least one x-ray optic 130.


In certain implementations, the at least one target 210 comprises a thermally conductive and electrically conductive substrate 220 comprising at least one substrate material 222 (e.g., diamond; copper) and the at least one target material 122 comprises at least one layer on and in thermal communication with the substrate 220. For example, an electrically insulative target material 122 can be in thermal contact with the at least one substrate material 222 having a high thermal conductivity (e.g., sufficiently high to transfer heat away from the target material 122 to substantially reduce or avoid thermal damage to the target material 122). The at least one substrate material 222 of certain implementations comprises a low atomic number material, examples of which include but are not limited to: diamond which comprises carbon; beryllium; sapphire which comprises aluminum and oxygen. Other examples of the at least one substrate material 222 include but are not limited to copper.


In certain implementations in which the at least one target material 122 is electrically insulative (e.g., ceramic; glass), the at least one target material 122 is directly adhered to the substrate material 222. For example, the at least one electrically insulative target material 122 can comprise a thin layer (e.g., having a thickness in a range of 1 micron to 10 microns) in direct contact with the diamond substrate material 222. In certain other implementations in which the at least one electrically insulative target material 122 is on a diamond substrate material 222, the x-ray target 210 further comprises at least one intermediate layer 224 between the at least one target material 122 and the diamond substrate material 222 (e.g., providing adhesion between the at least one target material 122 and the diamond substrate material 222 and/or providing protection against diffusion of the at least one target material 122 into the diamond substrate material 222). For example, the at least one electrically insulative target material 122 can have a thickness in a range of 1 micron to 10 microns (e.g., 1 micron to 3 microns; 3 microns to 5 microns; 5 microns to 10 microns), and the at least one intermediate layer 224 can have a thickness in the range of 1 nanometer to 100 nanometers (e.g., 1 nanometer to 30 nanometers; 30 nanometers to 100 nanometers). In certain implementations, the at least one intermediate layer 224 comprises at least one atomic element that has good wetting properties to the at least one electrically insulative target material 122 and to the diamond substrate material 222 (e.g., titanium (Ti)).


In certain implementations, the at least one electrically insulative target material 122 is configured to not substantially charge up upon being impinged by the electron beam 202 of the x-ray source 120. For example, the at least one electrically insulative target material 122 can have a thickness less than or equal to 10 microns such that substantial charge leakage from the top of the at least one electrically insulative target material 122 to the underlying electrically conductive diamond substrate material 222 can occur. For another example, the at least one electrically insulative target material 122 can have a thickness greater than 10 microns and can be positioned within trenches (e.g., 3 microns wide) on the top surface of the diamond substrate material 222. The top of the at least one electrically insulative target material 122 can be sufficiently close to the surrounding top surface of the diamond substrate material 222 such that substantial charge leakage from the at least one electrically insulative target material 122 to the neighboring electrically conductive diamond substrate material 222 can occur.


In certain implementations, the at least one target 210 further comprises a coating (e.g., top layer; sealant layer; not shown) over the at least one target material 122, the coating comprising a different, low atomic number material (e.g., carbon; boron carbide) than the at least one target material 122. In certain implementations, the at least one target material 122 is deposited onto the underlying structure (e.g., the substrate material 222; the intermediate layer 224) by sputtering or any other thin film deposition approaches known to those versed in the art.


In certain implementations, the at least one target material 122 comprises at least one atomic element having at least one third characteristic x-ray line with an energy between the first and second energies of the first and second atomic elements of the sample 10. The x-rays 124 generated by the at least one target material 122 and received by the at least one x-ray optic 130 can comprise x-rays of the at least one third characteristic x-ray line.


In certain implementations, the takeoff angle for the x-rays 124 generated by the at least one target material 122 of the x-ray source 120 and received by the x-ray optic 130 can be in the range of: 1 degree to 30 degrees (e.g., 1 degree to 6 degrees; 6 degrees to 15 degrees; 15 degrees to 30 degrees). For example, the take-off angle for the at least one target material 122 can be higher than that for target materials comprising pure metals (e.g., greater than 6 degrees). For low characteristic energies of interest, self-attenuation can reduce the amount of generated x-rays 124 that propagate from the x-ray source 120 to the x-ray optic 130.


X-Ray Optic


In certain implementations, the at least one x-ray optic 130 is configured to focus at least some of the x-rays 124 generated by the x-ray source 120 at the sample 10 (e.g., within the sample 10; on a surface of the sample 10). The optical surface profile of the at least one x-ray optic 130 can be quadric. Examples of such focusing x-ray optics 130 include but are not limited to: pairs of (e.g., double) paraboloidal capillary optics; ellipsoidal demagnifying capillary optics; polycapillary optics. For example, the at least one x-ray optic 130 can comprise a capillary with a glass substrate and can be coated with a high atomic number material (e.g., platinum).


Demagnifying optics can be used for XRF analysis of solder bumps (e.g., microbumps) with sizes in a range of 15 microns to 30 microns (e.g., 20 microns to 25 microns). With an x-ray source 120 having a spot size of 12 microns to 20 microns, a demagnifying x-ray optic 130 can focus the x-ray beam 132 at the sample 10 to have a spot size in the range of 3 microns to 12 microns while maintaining high x-ray flux. In certain implementations, the demagnifying x-ray optic 130 is configured to demagnify by a ratio in a range of 2:1 to 10:1 (e.g., 4:1, 6:1, 7:1).


In certain implementations, the at least one x-ray optic 130 has a curvature such that x-rays 124 received by the x-ray optic 130 having energies below a predetermined cut-off energy undergo total external reflection and are directed (e.g., reflected) to propagate towards the sample 10 as the x-ray beam 132, while x-rays 124 with energies above the predetermined cut-off energy are not directed to propagate towards the sample 10. The critical angle of external reflection can be approximated as:








θ
C

=



3

0

E

*


Z



Z
Si





,





where E is the x-ray energy in keV, Z is the atomic number of the surface coating (e.g., Pt, Jr, Rh, Au, etc.) of the x-ray optic 130, and ZSi is the atomic number of silicon and is equal to 14. The cut-off energy can also be measured as the x-ray energy below which x-rays that are incident upon the surface of the x-ray optic 130 have a reflectivity that is approximately equal to one. In certain other implementations, the reflectivity for x-rays having energies below the cut-off energy is above a predetermined threshold (e.g., above 90%, in a range of 80% to 90%, in a range of 50% to 80%).


The predetermined cut-off energy can be lower than the absorption edge energy associated with the second characteristic x-ray line (e.g., the characteristic x-ray line of the first and second atomic elements of the sample 10 with the higher energy). In certain implementations, the cut-off energy decreases both the background contribution of the XRF spectra received by the at least one x-ray detector 140 and the probability that the second atomic element (e.g., the atomic element with the higher characteristic x-ray line energy) is excited by the x-ray beam 132. Decreasing the background in the XRF spectra can result in a higher signal-to-noise ratio, which can be helpful for quantifying trace elements.


X-Ray Detector


In certain implementations, the at least one x-ray detector 140 comprises an energy dispersive detector (e.g., having an optimal energy resolution less than 180 eV), while in certain other implementations, the at least one x-ray detector 140 comprises a wavelength dispersive spectrometer (e.g., comprising a crystal monochromator and an x-ray detecting element; having an energy resolution lower than 5 eV). In certain implementations, the energy dispersive detector comprises a silicon drift detector (SDD). In certain implementations in which the at least one x-ray detector 140 comprises an energy dispersive detector, XRF signals (e.g., counts) from multiple atomic elements can be acquired concurrently. In certain implementations, the at least one x-ray detector 140 can comprise a first wavelength dispersive detector for detecting XRF signals from the first atomic element (e.g., the first characteristic x-ray line) and a second wavelength dispersive detector for detecting XRF signals from the second atomic element (e.g., the second characteristic x-ray line). Certain such implementations can improve the detection of the minor atomic element (e.g., the atomic element of the first and second atomic elements with the lesser concentration within the sample 10). In certain other implementations, a single wavelength dispersive detector can be used by switching between detection angles (e.g., angles relative to the sample 10 over which XRF signals are detected) to acquire XRF signals from both the first and second characteristic x-ray lines from the first and second atomic elements.


Example Method


FIGS. 2A and 2B are flow diagrams of two examples of a method 300 for analyzing a sample in accordance with certain implementations described herein. While the examples of the method 300 is described herein by referring to the example system 100 of FIGS. 1A-1B, other systems and apparatuses are also compatible with the examples of the method 300 in accordance with certain implementations described herein.


In an operational block 310, the method 300 comprises receiving a sample 10 comprising at least first and second atomic elements (e.g., co-located within 50 microns of one another within the sample 10). The first atomic element has a first characteristic XRF line with a first energy and the second atomic element has a second characteristic XRF line with a second energy. In certain implementations, at least one of the first and second characteristic XRF lines is an L-line or an M-line. The second energy is greater than the first energy by an energy difference. For example, the first energy and the second energy can be in a range of less than or equal to 5 keV (e.g., less than or equal to 4 keV) and/or the energy difference can be in an energy range of less than or equal to 1000 eV (e.g., less than or equal to 100 eV; less than or equal to 200 eV; less than or equal to 500 eV). For example, as shown in FIG. 2B, said receiving can comprise an operational block 312 comprising being given a multi-element material (e.g., a wafer comprising SnAg solder bumps) having XRF lines that are separated by less than 500 eV. The first characteristic XRF line corresponds to a first absorption edge and the second characteristic XRF line corresponds to a second absorption edge. In certain implementations, the first and second atomic elements, the first and second characteristic XRF lines, and the first and second absorption edges are predetermined prior to performing the method 300. In certain implementations, one of the first and second atomic elements comprises at least 90% of the composition of the sample by weight. In certain implementations, a ratio of one of the first and second atomic elements to the other of the first and second atomic elements is in a range of greater than or equal to 5:1.


In an operational block 320, the method 300 further comprises irradiating the sample 10 with an x-ray beam 132 comprising x-rays having a third energy that is between the first and second energies of the first and second characteristic XRF lines (e.g., more than 40% of the x-ray beam 132 consisting of x-rays having the third energy). For example, said irradiating can comprise using at least one x-ray optic 130 to receive x-rays 124 comprising the x-rays having the third energy, to focus or collimate at least some of the received x-rays 124 into the x-ray beam 132, and to direct the x-ray beam 132 towards the sample 10. The at least one x-ray optic 130 can have a cut-off energy that is less than an energy of the second absorption edge.


For example, as shown in FIG. 2B, said irradiating can comprise an operational block 322 comprising selecting an x-ray source 120 having at least one target material 122 configured to generate the x-rays 124 having the third energy in response to electron bombardment of the at least one target material 122. For example, the third energy can be a characteristic line of the at least one target material 122. Said irradiating can further comprise an operational block 324 comprising selecting the at least one x-ray optic 130 to filter out x-rays with energies above the third energy (e.g., x-rays of the characteristic x-ray line of the target material 122).


In an operational block 330, the method 300 further comprises collecting at least some fluorescence x-rays generated by the sample 10 in response to said irradiating and generating an XRF spectrum of the sample 10 in response to said collecting. For example, as shown in FIG. 2B, said collecting comprises an operational block 332 comprising collecting at least some fluorescence x-rays 142 from the sample 10 (e.g., using at least one x-ray detector 140). If an energy dispersive detector is used to collect the fluorescence x-rays 142, said collecting can further comprise an operational block 334 which comprises performing peak fitting to the XRF spectrum. The peak fitting can comprise separating close XRF lines of the XRF spectrum and determining photon counts for each of the first and second atomic elements. If a wavelength dispersive detector is used to collect the fluorescence x-rays 142, said collecting can further comprise an operational block 336 which comprises determining photon counts of each peak of the XRF spectrum.


In an operational block 340, the method 300 further comprises quantifying, using the XRF spectrum, at least one of a first concentration of the first atomic element in the sample 10 and a second concentration of the second atomic element in the sample 10. For example, as shown in FIG. 2B, said quantifying can comprise quantifying relative quantities of the first and/or second atomic elements.


Example Implementation: Ca-Containing Target Material

In certain implementations, the x-ray source 120 comprises a target material 122 comprising at least one Ca-containing material (e.g., CaB6, pure Ca, CaO) in thermal contact with a diamond substrate material 222. The at least one Ca-containing material is configured to produce Ca Kα line x-rays 124 with an energy of 3.69 keV, which is between the Sn absorption edge and most of the Ag L absorption edges. CaB6 has a high melting point (e.g., about 2235° C.).


In certain implementations in which small spot analysis or high resolution mapping of Ag concentration in SnAg solder bumps is to be performed, the at least one x-ray optic 130 comprises an x-ray focusing optic 130 with a wide spectral band and configured to receive the x-rays 124 emitted from the x-ray source 120 and to focus at least some of the x-rays 124 as an x-ray beam 132 onto the sample 10. For example, the x-ray focusing optic 130 can comprise a capillary mirror lens with a quadric (e.g., ellipsoidal) inner surface profile. The x-ray focusing optic 130 can provide a high percentage of Ca K line x-rays for efficient production of Ag L x-ray lines from the sample 10 while providing Sn L x-ray lines with Bremsstrahlung radiation of energies above the Sn L absorption edge. The x-ray reflections from the capillary mirror lens and/or the electron acceleration voltage impacting on the at least one target 210 can be configured to optimize the fluorescence x-ray spectra from the sample 10 so that the Ag Lα and Sn Lα x-ray lines have comparable (e.g., substantially equal) intensities but with substantially larger intensities than does the Sn Lγ x-ray line. For a target material 122 comprising an electrically insulative Ca-containing material (e.g., having a low electrical conductivity), an electrically conductive path can be provided from the target material 122 to the underlying substrate 220 and from the substrate 220 to ground to avoid charging of the target 210.


Once the XRF spectrum is collected, the data can be processed through a peak fitting algorithm which can take into account the relative peak intensities of the other L x-ray lines with respect to the Ag Lα x-ray line. The peak fitting algorithm can also be applied to the K x-ray lines if these x-ray lines are acquired. Relative weight or atomic percentages of elements can then be calculated (e.g., using a fundamental parameters model based on the x-ray source, x-ray optics, and geometries of various components).


Example Implementation: Barium Titanium Analyzer

For certain samples 10 (e.g., multilayer ceramic capacitors), XRF from barium (Ba) and titanium (Ti) can be of interest. Ba has an Lα x-ray line with an energy of 4.466 keV and Ti has a Kα x-ray line with an energy of 4.512 keV. In certain implementations, the Ba L1, L2, and L3 absorption edges are at 5.989 keV, 5.624 keV, and 5.247 keV, respectively, and the Ti K absorption edge is at 4.966 keV. In certain implementations, an x-ray target material 122 can be used to generate x-rays 124 with a characteristic x-ray line energy between the Ti K-edge and one or more of the Ba L edges. For example, an x-ray source target material 122 comprising Cr can be used to produce x-rays 124 with characteristic Kα x-ray energy of 5.4149 keV.


In certain such implementations, a dual energy approach can be used. For example, a first x-ray source target material 122 comprising Cr with a first characteristic x-ray energy (e.g., 5.4149 keV) can be used in conjunction with a first x-ray optic 130 with a first cut-off energy (e.g., 5.5 keV) to excite Ba L3 and Ti K x-ray lines. A second x-ray source target material 122 (e.g., comprising Cu) with a second characteristic x-ray energy (e.g., 8.04 keV) can then be used in conjunction with a second x-ray optic 130 having a second cut-off energy that excites all Ba and Ti x-ray lines. By peak fitting to the higher (e.g., non-excited) Ba absorption edges (e.g., Ba L2 and L3 emission x-ray lines), the intensity of the Ba L3 x-ray line can be determined, and the intensity of the Ti K x-ray line can be determined by subtracting the expected intensity of the Ba L3 x-ray line.


Example X-Ray Spectra


FIG. 3 shows two XRF spectra from about zero to about 20 keV of a silicon (Si) sample 10 irradiated by two different excitation x-ray beams 132. The excitation x-ray beams 132 were generated by an x-ray source 120 having a CaB6 target material 122 paired with (i) an x-ray optic 130 having a high reflectivity (e.g., greater than 50%; greater than 70%) below 10 keV and (ii) an x-ray optic 130 having a high reflectivity below 4 keV. The x-ray source 120 was operated at 20 kVp with an electron beam current of 1500 microamps. X-rays above 4 keV contribute to higher background in the low energy regime due to incomplete charge collection by the silicon drift detector.



FIG. 4 shows three XRF spectra from about zero to about 20 keV of a silver (Ag) sample 10 irradiated by three different excitation x-ray beams 132. The excitation x-ray beams 132 were generated by an x-ray source 120 having (i) a CaB6 target material 122 paired with an x-ray optic 130 having a high reflectivity (e.g., greater than 50%; greater than 70%) below 10 keV, (ii) a CaB6 target material 122 paired with an x-ray optic 130 having a high reflectivity below 4 keV, and (iii) a Cu target material 122 paired with an x-ray optic 130 having a high reflectivity below 10 keV. The inset of FIG. 4 is an expanded view of the spectral region from about 2.5 keV to about 5 keV of the XRF spectra, which includes the Ag Lα and Lβ lines. The insert shows that the Ag Lβ XRF line can most clearly be seen using the CaB6 target material 122 paired with the x-ray optic 130 having a high reflectivity below 4 keV.



FIG. 5 shows an XRF spectrum from about 0.5 keV to about 6.5 keV acquired from a sample 10 comprising SnAg solder microbumps in accordance with certain implementations described herein. The excitation x-ray beam 132 was generated by a system 100 having a CaB6 target material 122 and a He flush. The vertical dashed lines denote the Ag L3 absorption edge energy, the fluorescence Ca Kα line energy, and the Sn L3 absorption edge energy. FIG. 5 demonstrates that the fluorescence Ca Kα line energy is between the Ag L3 absorption edge energy and the Sn L3 absorption edge energy and demonstrates clear Ag Lα and Lβ peaks.



FIG. 6 shows an expanded view of the spectral region from about 2 keV to about 4.7 keV, which includes the Ag Lα and Lβ lines, of the XRF spectra acquired from samples 10 comprising SnAg solder microbumps with standardized Ag concentrations (e.g., standard Ag %) in accordance with certain implementations described herein. The excitation x-ray beam 132 was generated by a system 100 having a CaB6 target material 122 and an 12 kVp, 10 W electron beam 202. The XRF spectra were acquired with an acquisition time of 300 seconds per point.


Using the XRF spectra of FIG. 6, the Ag concentration percentages were calculated using a fundamental parameters (FP) model. Table 1 shows a comparison of the standardized Ag concentrations of the samples 10 to the FP-estimated Ag % from the XRF spectra of FIG. 6.












TABLE 1







Standard Ag %
FP-estimated Ag %



















1.002
0.9719



1.002
0.9386



2.47
2.1374



2.47
2.1061



3.07
2.8889



3.07
2.7833



3.50
3.2249



3.50
3.2927










Although commonly used terms are used to describe the systems and methods of certain implementations for ease of understanding, these terms are used herein to have their broadest reasonable interpretations. Although various aspects of the disclosure are described with regard to illustrative examples and implementations, the disclosed examples and implementations should not be construed as limiting. Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain implementations include, while other implementations do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more implementations. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is to be understood within the context used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain implementations require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree, as used herein, such as the terms “approximately,” “about,” “generally,” and “substantially,” represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” “generally,” and “substantially” may refer to an amount that is within ±10% of, within ±5% of, within ±2% of, within ±1% of, or within ±0.1% of the stated amount. As another example, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by ±10 degrees, by ±5 degrees, by ±2 degrees, by ±1 degree, or by ±0.1 degree, and the terms “generally perpendicular” and “substantially perpendicular” refer to a value, amount, or characteristic that departs from exactly perpendicular by ±10 degrees, by ±5 degrees, by ±2 degrees, by ±1 degree, or by ±0.1 degree. The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” less than,” “between,” and the like includes the number recited. As used herein, the meaning of “a,” “an,” and “said” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein, the meaning of “in” includes “into” and “on,” unless the context clearly dictates otherwise.


While the structures and/or methods are discussed herein in terms of elements labeled by ordinal adjectives (e.g., first, second, etc.), the ordinal adjectives are used merely as labels to distinguish one element from another, and the ordinal adjectives are not used to denote an order of these elements or of their use.


Various configurations have been described above. It is to be appreciated that the implementations disclosed herein are not mutually exclusive and may be combined with one another in various arrangements. Although this invention has been described with reference to these specific configurations, the descriptions are intended to be illustrative of the invention and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention. Thus, for example, in any method or process disclosed herein, the acts or operations making up the method/process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Features or elements from various implementations and examples discussed above may be combined with one another to produce alternative configurations compatible with implementations disclosed herein. In addition, although the disclosed methods and apparatuses have largely been described in the context of various devices, various implementations described herein can be incorporated in a variety of other suitable devices, methods, and contexts.


Various aspects and advantages of the implementations have been described where appropriate. It is to be understood that not necessarily all such aspects or advantages may be achieved in accordance with any particular implementation. Thus, for example, it should be recognized that the various implementations may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may be taught or suggested herein.

Claims
  • 1. A system comprising: a stage configured to support a sample comprising at least first and second atomic elements, the first atomic element having a first characteristic x-ray line with a first energy, the second atomic element having a second characteristic x-ray line with a second energy, the second energy greater than the first energy, the first energy and the second energy lower than 8 keV and separated from one another by less than 1 keV;an x-ray source comprising at least one target material configured to produce x-rays having a third energy between the first and second energies;at least one x-ray optic configured to receive and focus at least some of the x-rays from the x-ray source as an x-ray beam to illuminate the sample, the x-ray beam having a spot size at the sample in a range of 1 micron to 25 microns, at least 70% of the x-ray beam having x-ray energies that are below the second energy; andat least one x-ray detector configured to detect fluorescence x-rays produced by the sample in response to being irradiated by the x-ray beam.
  • 2. The system of claim 1, wherein the at least one x-ray optic has a cut-off energy that is in a range 50% to 100% of an absorption edge energy associated with the second characteristic x-ray line.
  • 3. The system of claim 1, wherein the first and second energies are separated from one another by less than 500 eV.
  • 4. The system of claim 1, wherein the first and second atomic elements are silver and tin, and the sample comprises solder.
  • 5. The system of claim 4, wherein the at least one x-ray detector is configured to measure an amount of silver in the sample.
  • 6. The system of claim 1, wherein the at least one target material is an electrically insulating material.
  • 7. The system of claim 6, wherein the electrically insulating material comprises a ceramic material.
  • 8. The system of claim 1, wherein the at least one target material comprises at least one third atomic element having at least one third characteristic x-ray line with the third energy.
  • 9. The system of claim 1, further comprising a spectral filter configured to be impinged by the x-rays produced by the at least one target material, the spectral filter comprising the second atomic element.
  • 10. The system of claim 9, wherein the spectral filter comprises a compound of Ca.
  • 11. The system of claim 9, wherein the spectral filter is positioned between the at least one target material and the at least one x-ray optic.
  • 12. The system of claim 1, wherein the target material comprises an electrically insulating target material having a thickness less than 10 microns, the target material configured to emit x-rays upon being impinged by electrons accelerated by an accelerating voltage in a range of 5 kVp to 30 kVp, the x-ray source further comprising a diamond substrate material in thermal communication with the target material, the diamond substrate material configured to transfer heat away from the target material, the heat generated by the target material being impinged by the electrons.
  • 13. The system of claim 12, wherein the x-ray source further comprises an intermediate layer between the target material and the diamond substrate material, the intermediate layer comprising a material different from the target material and the diamond substrate material.
  • 14. The system of claim 13, wherein the intermediate layer has a thickness less than 100 nanometers.
  • 15. The system of claim 12, wherein the target material comprises at least one Ca-containing material.
  • 16. The system of claim 12, wherein the target material comprises a ceramic material.
  • 17. The system of claim 12, further comprising a coating over the target material.
  • 18. The system of claim 12, further comprising at least one x-ray optic configured to receive at least some of the x-rays emitted from the target material and to focus or collimate the received x-rays into an excitation x-ray beam directed to impinge a sample.
  • 19. The system of claim 18, wherein the received x-rays have a takeoff angle in a range of 1 degree to 30 degrees.
  • 20. The system of claim 1, wherein the spot size at the sample is in a range of 3 microns to 20 microns.
  • 21. The system of claim 1, wherein the x-ray optic is configured to demagnify the x-ray beam by a ratio in a range of 2:1 to 10:1.
CLAIM OF PRIORITY

This application claims the benefit of priority to U.S. Provisional Appl. No. 63/268,778 filed on Mar. 2, 2022 and incorporated in its entirety by reference herein.

STATEMENT REGARDING FEDERALLY SPONSORED R&D

This invention was made with Government support under Contract Nos. NIH R43GM112287 and NIH R44GM112413, awarded by the National Institute of Health. The Government has certain rights in the invention.

US Referenced Citations (578)
Number Name Date Kind
1203495 Coolidge Oct 1916 A
1211092 Coolidge Jan 1917 A
1215116 Coolidge Feb 1917 A
1328495 Coolidge Jan 1920 A
1355126 Coolidge Oct 1920 A
1790073 Pohl Jan 1931 A
1917099 Coolidge Jul 1933 A
1946312 Coolidge Feb 1934 A
2926270 Zunick Feb 1960 A
3795832 Holland Mar 1974 A
3894239 Braun Jul 1975 A
4165472 Wittry Aug 1979 A
4169228 Briska et al. Sep 1979 A
4192994 Kastner Mar 1980 A
4227112 Waugh et al. Oct 1980 A
4266138 Nelson et al. May 1981 A
4523327 Eversole Jun 1985 A
4573186 Reinhold Feb 1986 A
4642811 Georgopoulos Feb 1987 A
4945552 Ueda Jul 1990 A
4951304 Piestrup et al. Aug 1990 A
4972449 Upadhya et al. Nov 1990 A
5132997 Kojima Jul 1992 A
5148462 Spitsyn et al. Sep 1992 A
5173928 Momose et al. Dec 1992 A
5204887 Hayashida et al. Apr 1993 A
5220591 Ohsugi et al. Jun 1993 A
5249216 Ohsugi et al. Sep 1993 A
5280176 Jach et al. Jan 1994 A
5371774 Cerrina Dec 1994 A
5416820 Weil et al. May 1995 A
5602899 Larson Feb 1997 A
5629969 Koshishiba May 1997 A
5657365 Yamamoto et al. Aug 1997 A
5684857 De Bokx Nov 1997 A
5729583 Tang et al. Mar 1998 A
5737387 Smither Apr 1998 A
5778039 Hossain Jul 1998 A
5790628 Ishida Aug 1998 A
5812629 Clauser Sep 1998 A
5825848 Virshup et al. Oct 1998 A
5832052 Hirose et al. Nov 1998 A
5857008 Reinhold Jan 1999 A
5878110 Yamamoto et al. Mar 1999 A
5912940 O'Hara Jun 1999 A
5978448 Bristol Nov 1999 A
6108398 Mazor et al. Aug 2000 A
6118853 Hansen et al. Sep 2000 A
6125167 Morgan Sep 2000 A
6181773 Lee et al. Jan 2001 B1
6185277 Harding Feb 2001 B1
6195410 Cash, Jr. Feb 2001 B1
6226347 Golenhofen May 2001 B1
6307916 Rogers et al. Oct 2001 B1
6377660 Ukita et al. Apr 2002 B1
6381303 Vu et al. Apr 2002 B1
6430254 Wilkins Aug 2002 B2
6430260 Snyder Aug 2002 B1
6442231 O'Hara Aug 2002 B1
6456688 Taguchi et al. Sep 2002 B1
6463123 Korenev Oct 2002 B1
6487272 Kutsuzawa Nov 2002 B1
6504902 Iwasaki et al. Jan 2003 B2
6512814 Yokhin et al. Jan 2003 B2
6553096 Zhou et al. Apr 2003 B1
6560313 Harding et al. May 2003 B1
6560315 Price et al. May 2003 B1
6577704 Holz Jun 2003 B1
6611577 Yamagami Aug 2003 B1
6639968 Yokhin et al. Oct 2003 B2
6707883 Tiearney et al. Mar 2004 B1
6711234 Loxley Mar 2004 B1
6763086 Platonov Jul 2004 B2
6829327 Chen Dec 2004 B1
6850598 Fryda et al. Feb 2005 B1
6895071 Yokhin et al. May 2005 B2
6914723 Yun et al. Jul 2005 B2
6917472 Yun et al. Jul 2005 B1
6934359 Chen Aug 2005 B2
6947522 Wilson et al. Sep 2005 B2
6975703 Wilson et al. Dec 2005 B2
7003077 Jen et al. Feb 2006 B2
7006596 Janik Feb 2006 B1
7023950 Annis Apr 2006 B1
7023955 Chen et al. Apr 2006 B2
7075073 Janik et al. Jul 2006 B1
7079625 Lenz Jul 2006 B2
7095822 Yun Aug 2006 B1
7119953 Yun et al. Oct 2006 B2
7120228 Yokhin et al. Oct 2006 B2
7180979 Momose Feb 2007 B2
7180981 Wang Feb 2007 B2
7183547 Yun et al. Feb 2007 B2
7187751 Kawahara et al. Mar 2007 B2
7215736 Wang et al. May 2007 B1
7215741 Ukita et al. May 2007 B2
7218700 Huber et al. May 2007 B2
7218703 Yada et al. May 2007 B2
7221731 Yada et al. May 2007 B2
7245696 Yun et al. Jul 2007 B2
7258485 Nakano et al. Aug 2007 B2
7268945 Yun et al. Sep 2007 B2
7330533 Sampayon Feb 2008 B2
7346148 Ukita Mar 2008 B2
7349525 Morton Mar 2008 B2
7359487 Newcome Apr 2008 B1
7382864 Hebert et al. Jun 2008 B2
7388942 Wang et al. Jun 2008 B2
7394890 Wang et al. Jul 2008 B1
7400704 Yun et al. Jul 2008 B1
7406151 Yun Jul 2008 B1
7414787 Yun et al. Aug 2008 B2
7443953 Yun et al. Oct 2008 B1
7443958 Harding Oct 2008 B2
7453560 Miyake Nov 2008 B2
7463712 Zhu et al. Dec 2008 B2
7486770 Baumann Feb 2009 B2
7492871 Popescu Feb 2009 B2
7499521 Wang et al. Mar 2009 B2
7515684 Gibson et al. Apr 2009 B2
7519153 Moore Apr 2009 B1
7522698 Popescu Apr 2009 B2
7522707 Steinlage et al. Apr 2009 B2
7522708 Heismann Apr 2009 B2
7529343 Safai et al. May 2009 B2
7532704 Hempel May 2009 B2
7551719 Yokhin et al. Jun 2009 B2
7551722 Ohshima et al. Jun 2009 B2
7561662 Wang et al. Jul 2009 B2
7564941 Baumann Jul 2009 B2
7601399 Barnola et al. Oct 2009 B2
7639786 Baumann Dec 2009 B2
7646843 Popescu et al. Jan 2010 B2
7653174 Mazor Jan 2010 B2
7653177 Baumann et al. Jan 2010 B2
7672433 Zhong et al. Mar 2010 B2
7680243 Yokhin et al. Mar 2010 B2
7787588 Yun et al. Aug 2010 B1
7796725 Yun et al. Sep 2010 B1
7796726 Gendreau et al. Sep 2010 B1
7809113 Aoki et al. Oct 2010 B2
7813475 Wu et al. Oct 2010 B1
7817777 Baumann et al. Oct 2010 B2
7848483 Platonov Dec 2010 B2
7864922 Kawabe Jan 2011 B2
7873146 Okunuki et al. Jan 2011 B2
7876883 O'Hara Jan 2011 B2
7889838 David et al. Feb 2011 B2
7889844 Okunuki et al. Feb 2011 B2
7899154 Chen et al. Mar 2011 B2
7920676 Yun et al. Apr 2011 B2
7924973 Kottler et al. Apr 2011 B2
7929667 Zhuang et al. Apr 2011 B1
7945018 Heismann May 2011 B2
7949092 Brons May 2011 B2
7949095 Ning May 2011 B2
7974379 Case et al. Jul 2011 B1
7983381 David et al. Jul 2011 B2
7991120 Okunuki et al. Aug 2011 B2
8005185 Popescu Aug 2011 B2
8009796 Popescu Aug 2011 B2
8009797 Ouchi Aug 2011 B2
8041004 David Oct 2011 B2
8036341 Lee Nov 2011 B2
8058621 Kommareddy Nov 2011 B2
8068579 Yun et al. Nov 2011 B1
8073099 Niu et al. Dec 2011 B2
8094784 Morton Jan 2012 B2
8139711 Takahashi Mar 2012 B2
8139716 Okunuki et al. Mar 2012 B2
8165270 David et al. Apr 2012 B2
8184771 Murakoshi May 2012 B2
8208603 Sato Jun 2012 B2
8233587 Sato Jul 2012 B2
8243879 Itoh et al. Aug 2012 B2
8243884 Rödhammer et al. Aug 2012 B2
8306183 Koehler Nov 2012 B2
8306184 Chang et al. Nov 2012 B2
8331534 Silver Dec 2012 B2
8351570 Nakamura Jan 2013 B2
8353628 Yun et al. Jan 2013 B1
8360640 Reinhold Jan 2013 B2
8374309 Donath Feb 2013 B2
8406378 Wang et al. Mar 2013 B2
8416920 Okumura et al. Apr 2013 B2
8451975 Tada May 2013 B2
8422637 Okunuki et al. Jun 2013 B2
8509386 Lee et al. Aug 2013 B2
8513603 Lederman et al. Aug 2013 B1
8520803 Behling Aug 2013 B2
8553843 Drory Oct 2013 B2
8559594 Ouchi Oct 2013 B2
8559597 Chen et al. Oct 2013 B2
8565371 Bredno Oct 2013 B2
8588372 Zou et al. Nov 2013 B2
8591108 Tada Nov 2013 B2
8602648 Jacobsen et al. Dec 2013 B1
8632247 Ishii Jan 2014 B2
8644451 Aoki et al. Feb 2014 B2
8666024 Okunuki et al. Mar 2014 B2
8699667 Steinlage et al. Apr 2014 B2
8755487 Kaneko Jun 2014 B2
8767915 Stutman Jul 2014 B2
8767916 Hashimoto Jul 2014 B2
8781069 Murakoshi Jul 2014 B2
8824629 Ishii Sep 2014 B2
8831179 Adler et al. Sep 2014 B2
8837680 Tsujii Sep 2014 B2
8855265 Engel Oct 2014 B2
8859977 Kondoh Oct 2014 B2
8861682 Okunuki et al. Oct 2014 B2
8908824 Kondoh Dec 2014 B2
8972191 Stampanoni et al. Mar 2015 B2
8989351 Vogtmeier et al. Mar 2015 B2
8989474 Kido et al. Mar 2015 B2
8995622 Adler et al. Mar 2015 B2
9001967 Baturin Apr 2015 B2
9008278 Lee et al. Apr 2015 B2
9016943 Jacobsen et al. Apr 2015 B2
9020101 Omote et al. Apr 2015 B2
9025725 Kiyohara et al. May 2015 B2
9029795 Sando May 2015 B2
9031201 Sato May 2015 B2
9036773 David et al. May 2015 B2
9063055 Ouchi Jun 2015 B2
9086536 Pang et al. Jul 2015 B2
9129715 Adler et al. Sep 2015 B2
9222899 Yamaguchi Dec 2015 B2
9230703 Mohr et al. Jan 2016 B2
9234856 Mukaide Jan 2016 B2
9251995 Ogura Feb 2016 B2
9257254 Ogura et al. Feb 2016 B2
9263225 Morton Feb 2016 B2
9281158 Ogura Mar 2016 B2
9291578 Adler Mar 2016 B2
9329141 Stutman May 2016 B2
9357975 Baturin Jun 2016 B2
9362081 Bleuet Jun 2016 B2
9390881 Yun et al. Jul 2016 B2
9412552 Aoki et al. Aug 2016 B2
9439613 Stutman Sep 2016 B2
9448190 Yun et al. Sep 2016 B2
9449780 Chen Sep 2016 B2
9449781 Yun et al. Sep 2016 B2
9453803 Radicke Sep 2016 B2
9480447 Mohr et al. Nov 2016 B2
9486175 Fredenberg et al. Nov 2016 B2
9494534 Baturin Nov 2016 B2
9502204 Ikarashi Nov 2016 B2
9520260 Hesselink et al. Dec 2016 B2
9524846 Sato et al. Dec 2016 B2
9532760 Anton et al. Jan 2017 B2
9541511 Vigliante Jan 2017 B2
9543109 Yun et al. Jan 2017 B2
9551677 Mazor et al. Jan 2017 B2
9557280 Pfeiffer et al. Jan 2017 B2
9564284 Gerzoskovitz Feb 2017 B2
9570264 Ogura et al. Feb 2017 B2
9570265 Yun et al. Feb 2017 B1
9588066 Pois et al. Mar 2017 B2
9594036 Yun et al. Mar 2017 B2
9595415 Ogura Mar 2017 B2
9632040 Stutman Apr 2017 B2
9700267 Baturin et al. Jul 2017 B2
9715989 Dalakos et al. Jul 2017 B2
9719947 Yun et al. Aug 2017 B2
9748012 Yokoyama Aug 2017 B2
9757081 Proksa Sep 2017 B2
9761021 Koehler Sep 2017 B2
9770215 Souchay et al. Sep 2017 B2
9778213 Bakeman et al. Oct 2017 B2
9823203 Yun et al. Nov 2017 B2
9826949 Ning Nov 2017 B2
9861330 Rossl Jan 2018 B2
9874531 Yun et al. Jan 2018 B2
9881710 Roessl Jan 2018 B2
9916655 Sampanoni Mar 2018 B2
9934930 Parker et al. Apr 2018 B2
10014148 Tang et al. Jul 2018 B2
10020158 Yamada Jul 2018 B2
10028716 Rossl Jul 2018 B2
10045753 Teshima Aug 2018 B2
10068740 Gupta Sep 2018 B2
10074451 Kottler et al. Sep 2018 B2
10076297 Bauer Sep 2018 B2
10085701 Hoshino Oct 2018 B2
10105112 Utsumi Oct 2018 B2
10115557 Ishii Oct 2018 B2
10141081 Preusche Nov 2018 B2
10151713 Wu et al. Dec 2018 B2
10153061 Yokoyama Dec 2018 B2
10153062 Gall et al. Dec 2018 B2
10217596 Liang et al. Feb 2019 B2
10247683 Yun et al. Apr 2019 B2
10264659 Miller et al. Apr 2019 B1
10267752 Zhang et al. Apr 2019 B2
10267753 Zhang et al. Apr 2019 B2
10269528 Yun et al. Apr 2019 B2
10295485 Yun et al. May 2019 B2
10297359 Yun et al. May 2019 B2
10304580 Yun et al. May 2019 B2
10349908 Yun et al. Jul 2019 B2
10352695 Dziura et al. Jul 2019 B2
10352880 Yun et al. Jul 2019 B2
10366860 Parker et al. Jul 2019 B2
10401309 Yun et al. Sep 2019 B2
10416099 Yun et al. Sep 2019 B2
10466185 Yun et al. Nov 2019 B2
10473598 Ogata et al. Nov 2019 B2
10485492 Koehler et al. Nov 2019 B2
10514345 Ogata et al. Dec 2019 B2
10514346 Sako Dec 2019 B2
10568588 Koehler et al. Feb 2020 B2
10578566 Yun et al. Mar 2020 B2
10634628 Kasper et al. Apr 2020 B2
10653376 Yun et al. May 2020 B2
10697902 Sharma et al. Jun 2020 B2
10743396 Kawase Aug 2020 B1
10782252 Gateshki et al. Sep 2020 B2
10794845 Filsinger Oct 2020 B2
10841515 Tsujino Nov 2020 B1
10847336 Durst et al. Nov 2020 B2
10895541 Shchegrov et al. Jan 2021 B2
10962491 Yun et al. Mar 2021 B2
10976270 Wormington Apr 2021 B2
11054375 Seidler et al. Jun 2021 B2
11175243 Yun et al. Nov 2021 B1
11215572 Yun et al. Jan 2022 B2
11549895 Yun et al. Jan 2023 B2
11733185 Ogata Aug 2023 B2
11796490 Seidler Oct 2023 B2
11885755 Yun Jan 2024 B2
12209977 Yun Jan 2025 B2
20010046276 Schneider et al. Nov 2001 A1
20020085676 Snyder Jul 2002 A1
20020150208 Yohkin et al. Oct 2002 A1
20030142790 Zhou et al. Jan 2003 A1
20030072413 Yokhin et al. Apr 2003 A1
20030142781 Kawahara Jul 2003 A1
20030223536 Yun et al. Dec 2003 A1
20040028186 Yokhin et al. Feb 2004 A1
20040047446 Platonov Mar 2004 A1
20040076260 Charles Jr. Apr 2004 A1
20040120463 Wilson et al. Jun 2004 A1
20040140432 Maldonado et al. Jul 2004 A1
20050074094 Jen et al. Apr 2005 A1
20050087699 Miyake Apr 2005 A1
20050123097 Wang Jun 2005 A1
20050201520 Smith et al. Sep 2005 A1
20050282300 Yun et al. Dec 2005 A1
20050286680 Momose Dec 2005 A1
20060062350 Yokhin Mar 2006 A1
20060088139 Nankano et al. Apr 2006 A1
20060182322 Bernhardt et al. Aug 2006 A1
20060233309 Kutzner et al. Oct 2006 A1
20070071174 Hebert et al. Mar 2007 A1
20070108387 Yun et al. May 2007 A1
20070110217 Ukita May 2007 A1
20070183563 Baumann Aug 2007 A1
20070183579 Baumann et al. Aug 2007 A1
20070189449 Baumann Aug 2007 A1
20070248215 Ohshima et al. Oct 2007 A1
20070285643 Wedowski et al. Dec 2007 A1
20080043908 Teramoto et al. Feb 2008 A1
20080084966 Aoki et al. Apr 2008 A1
20080089484 Reinhold Apr 2008 A1
20080137812 Frontera et al. Jun 2008 A1
20080159475 Mazor Jul 2008 A1
20080170662 Reinhold Jul 2008 A1
20080170668 Kruit et al. Jul 2008 A1
20080181363 Fenter et al. Jul 2008 A1
20080273662 Yun Nov 2008 A1
20090052619 Endoh Feb 2009 A1
20090092227 David Apr 2009 A1
20090154640 Baumann et al. Jun 2009 A1
20090316857 David et al. Dec 2009 A1
20090316860 Okunuki et al. Dec 2009 A1
20100027739 Lantz et al. Feb 2010 A1
20100040202 Lee Feb 2010 A1
20100061508 Takahashi Mar 2010 A1
20100091947 Niu Apr 2010 A1
20100141151 Reinhold Jun 2010 A1
20100201240 Heinke et al. Aug 2010 A1
20100246765 Murakoshi Sep 2010 A1
20100260315 Sato et al. Oct 2010 A1
20100284513 Kawabe Nov 2010 A1
20100310041 Adams et al. Dec 2010 A1
20100329532 Masuda et al. Dec 2010 A1
20110026680 Sato Feb 2011 A1
20110038455 Silver et al. Feb 2011 A1
20110058655 Okumura et al. Mar 2011 A1
20110064202 Thran et al. Mar 2011 A1
20110085641 Okunuki et al. Apr 2011 A1
20110135066 Behling Jun 2011 A1
20110142204 Zou et al. Jun 2011 A1
20110235781 Aoki et al. Sep 2011 A1
20110243302 Murakoshi Oct 2011 A1
20110268252 Ozawa et al. Nov 2011 A1
20120041679 Stampanoni Feb 2012 A1
20120057669 Vogtmeier et al. Mar 2012 A1
20120163547 Lee et al. Jun 2012 A1
20120224670 Kiyohara et al. Sep 2012 A1
20120228475 Pang et al. Sep 2012 A1
20120269323 Adler et al. Oct 2012 A1
20120269324 Adler Oct 2012 A1
20120269325 Adler et al. Oct 2012 A1
20120269326 Adler et al. Oct 2012 A1
20130011040 Kido et al. Jan 2013 A1
20130039460 Levy Feb 2013 A1
20130108012 Sato May 2013 A1
20130108022 Kugland et al. May 2013 A1
20130195246 Tamura et al. Aug 2013 A1
20130202084 Piorek et al. Aug 2013 A1
20130223594 Sprong et al. Aug 2013 A1
20130235976 Jeong et al. Sep 2013 A1
20130251100 Sasaki et al. Sep 2013 A1
20130259207 Omote et al. Oct 2013 A1
20130308112 Clube et al. Nov 2013 A1
20130308754 Yamazaki et al. Nov 2013 A1
20140023973 Marconi et al. Jan 2014 A1
20140029729 Kucharczyk Jan 2014 A1
20140037052 Adler Feb 2014 A1
20140064445 Adler Mar 2014 A1
20140072102 Bluet Mar 2014 A1
20140072104 Jacobsen et al. Mar 2014 A1
20140079188 Hesselink et al. Mar 2014 A1
20140105353 Pfeiffer et al. Apr 2014 A1
20140105363 Chen et al. Apr 2014 A1
20140112440 David et al. Apr 2014 A1
20140146945 Fredenberg et al. May 2014 A1
20140153692 Larkin et al. Jun 2014 A1
20140177800 Sato et al. Jun 2014 A1
20140185778 Lee et al. Jul 2014 A1
20140205057 Koehler et al. Jul 2014 A1
20140211919 Ogura et al. Jul 2014 A1
20140226785 Stutman et al. Aug 2014 A1
20140270060 Date et al. Sep 2014 A1
20140369469 Ogura et al. Dec 2014 A1
20140369471 Ogura et al. Dec 2014 A1
20150023472 Schmitt et al. Jan 2015 A1
20150030126 Radicke Jan 2015 A1
20150030127 Aoki et al. Jan 2015 A1
20150043713 Chen Feb 2015 A1
20150049860 Das Feb 2015 A1
20150051877 Bakeman et al. Feb 2015 A1
20150055743 Vedantham et al. Feb 2015 A1
20150055745 Holzner et al. Feb 2015 A1
20150071402 Handa Mar 2015 A1
20150092923 Iida et al. Apr 2015 A1
20150092924 Yun et al. Apr 2015 A1
20150110252 Yun et al. Apr 2015 A1
20150117599 Yun et al. Apr 2015 A1
20150146847 Liu May 2015 A1
20150194287 Yun et al. Jul 2015 A1
20150243397 Yun et al. Aug 2015 A1
20150247811 Yun et al. Sep 2015 A1
20150260663 Yun et al. Sep 2015 A1
20150270023 Adler Sep 2015 A1
20150323478 Stutman Nov 2015 A1
20150357069 Yun et al. Dec 2015 A1
20160064175 Yun et al. Mar 2016 A1
20160066870 Yun et al. Mar 2016 A1
20160091701 Raghunathan Mar 2016 A1
20160106387 Kahn Apr 2016 A1
20160178540 Yun et al. Jun 2016 A1
20160178541 Hwang et al. Jun 2016 A1
20160206259 Auclair et al. Jul 2016 A1
20160268094 Yun et al. Sep 2016 A1
20160320320 Yun et al. Nov 2016 A1
20160336140 Nonoguchi et al. Nov 2016 A1
20160341674 Wu et al. Nov 2016 A1
20160343538 Kawanishi et al. Nov 2016 A1
20160351283 Adler et al. Dec 2016 A1
20160351370 Yun et al. Dec 2016 A1
20170018392 Cheng Jan 2017 A1
20170038481 Cheng et al. Feb 2017 A1
20170047191 Yun et al. Feb 2017 A1
20170162288 Yun et al. Jun 2017 A1
20170162359 Tang et al. Jun 2017 A1
20170176356 Hoffman et al. Jun 2017 A1
20170184520 Mortensen et al. Jun 2017 A1
20170227476 Zhang et al. Aug 2017 A1
20170234811 Zhang et al. Aug 2017 A1
20170261442 Yun et al. Sep 2017 A1
20170336334 Yun et al. Nov 2017 A1
20180144901 Yun et al. May 2018 A1
20180182131 Koehler et al. Jun 2018 A1
20180202951 Yun et al. Jul 2018 A1
20180261352 Matsuyama et al. Sep 2018 A1
20180301312 Haig Oct 2018 A1
20180306734 Morimoto et al. Oct 2018 A1
20180323032 Strelec et al. Nov 2018 A1
20180348151 Kasper et al. Dec 2018 A1
20190011379 Yun et al. Jan 2019 A1
20190017942 Filevich Jan 2019 A1
20190017946 Wack et al. Jan 2019 A1
20190019647 Lee et al. Jan 2019 A1
20190027265 Dey et al. Jan 2019 A1
20190057832 Durst et al. Feb 2019 A1
20190064084 Ullom et al. Feb 2019 A1
20190086342 Pois et al. Mar 2019 A1
20190088439 Honda Mar 2019 A1
20190115184 Zalubovsky Apr 2019 A1
20190131103 Tuohimaa May 2019 A1
20190132936 Steck et al. May 2019 A1
20190145917 Yun et al. May 2019 A1
20190148102 Maltz May 2019 A1
20190172681 Owen et al. Jun 2019 A1
20190189385 Liang et al. Jun 2019 A1
20190204757 Brussard et al. Jul 2019 A1
20190206652 Akinwande et al. Jul 2019 A1
20190212281 Shchgegrov Jul 2019 A1
20190214216 Jeong et al. Jul 2019 A1
20190216416 Koehler et al. Jul 2019 A1
20190219713 Booker et al. Jul 2019 A1
20190257774 Seidler et al. Aug 2019 A1
20190261935 Kitamura Aug 2019 A1
20190302042 Yun et al. Oct 2019 A1
20190304735 Safai et al. Oct 2019 A1
20190311874 Tuohimma et al. Oct 2019 A1
20190317027 Tsuboi et al. Oct 2019 A1
20190331616 Schaff et al. Oct 2019 A1
20190341219 Zhang et al. Nov 2019 A1
20190341220 Parker et al. Nov 2019 A1
20190369271 Yun et al. Dec 2019 A1
20190369272 Yun et al. Dec 2019 A1
20190380193 Matsuhana et al. Dec 2019 A1
20190387602 Woywode et al. Dec 2019 A1
20190391087 Matejka et al. Dec 2019 A1
20200003712 Kataoka et al. Jan 2020 A1
20200041429 Cho et al. Feb 2020 A1
20200058462 Suzuki Feb 2020 A1
20200072770 Yun et al. Mar 2020 A1
20200088656 Pois et al. Mar 2020 A1
20200090826 Adler Mar 2020 A1
20200098537 Yun et al. Mar 2020 A1
20200103358 Wiell et al. Apr 2020 A1
20200105492 Behling et al. Apr 2020 A1
20200154552 Suzuki et al. May 2020 A1
20200155088 Gruener et al. May 2020 A1
20200158662 Horiba et al. May 2020 A1
20200163195 Steck et al. May 2020 A1
20200168427 Krokhmal et al. May 2020 A1
20200182806 Kappler et al. Jun 2020 A1
20200187339 Freudenberger et al. Jun 2020 A1
20200194212 Dalakos et al. Jun 2020 A1
20200203113 Ponard Jun 2020 A1
20200225172 Sato et al. Jul 2020 A1
20200225173 Sato et al. Jul 2020 A1
20200225371 Greenberg et al. Jul 2020 A1
20200232937 Yaroshenko et al. Jul 2020 A1
20200234908 Fishman et al. Jul 2020 A1
20200279351 Ratner et al. Sep 2020 A1
20200292475 Cao et al. Sep 2020 A1
20200300789 Osakabe et al. Sep 2020 A1
20200300790 Gellineau et al. Sep 2020 A1
20200303265 Gellineau et al. Sep 2020 A1
20200305809 Schwoebel et al. Oct 2020 A1
20200319120 Kitamura et al. Oct 2020 A1
20200321184 Parker et al. Oct 2020 A1
20200337659 Sano et al. Oct 2020 A1
20200365361 Yun et al. Nov 2020 A1
20200378905 Safai Dec 2020 A1
20200378908 Fujimura et al. Dec 2020 A1
20200388461 Behling et al. Dec 2020 A1
20210020398 Yun et al. Jan 2021 A1
20210055237 Shchegrov et al. Feb 2021 A1
20210080408 Yun et al. Mar 2021 A1
20210116399 Ogata Apr 2021 A1
20210255123 Koskinen et al. Aug 2021 A1
20210356412 Yun et al. Nov 2021 A1
20220003694 Seidler et al. Jan 2022 A1
20220082515 Yun et al. Mar 2022 A1
20220178851 Yun et al. Jun 2022 A1
20220404297 Nii Dec 2022 A1
20230280291 Yun Sep 2023 A1
20230349842 Yun et al. Nov 2023 A1
20240280515 Yun et al. Aug 2024 A1
Foreign Referenced Citations (125)
Number Date Country
1656373 Aug 2005 CN
1829910 Sep 2006 CN
101257851 Sep 2008 CN
101532969 Sep 2009 CN
101566591 Oct 2009 CN
101576515 Nov 2009 CN
101413905 Mar 2011 CN
102124537 Jul 2011 CN
102325498 Jan 2012 CN
102507623 Jun 2012 CN
102551761 Jul 2012 CN
103604818 Feb 2014 CN
104264228 Jan 2015 CN
104068875 May 2017 CN
206531787 Sep 2017 CN
0432568 Jun 1991 EP
0751533 Jan 1997 EP
1028451 Aug 2000 EP
1169713 Jan 2006 EP
2592626 May 2013 EP
3093867 Nov 2016 EP
3168856 May 2017 EP
2548447 Jan 1985 FR
H01-097844 Apr 1989 JP
H04-285847 Oct 1992 JP
H06-188092 Jul 1994 JP
H06-213833 Aug 1994 JP
H07-056000 Mar 1995 JP
H07-194592 Aug 1995 JP
H07-311165 Nov 1995 JP
H08-128971 May 1996 JP
H08-184572 Jul 1996 JP
H09-166488 Jun 1997 JP
2843529 Jan 1999 JP
H11-304728 Nov 1999 JP
H11-352079 Dec 1999 JP
2000-306533 Nov 2000 JP
2001-021507 Jan 2001 JP
2001-124711 May 2001 JP
2001-235437 Aug 2001 JP
2002-214165 Jul 2002 JP
2003-149392 May 2003 JP
2003-288853 Oct 2003 JP
2004-089445 Mar 2004 JP
2004-518262 Jun 2004 JP
2004-333131 Nov 2004 JP
2006-501444 Jan 2006 JP
2006-164819 Jun 2006 JP
2007-218683 Aug 2007 JP
2007-265981 Oct 2007 JP
2007-311185 Nov 2007 JP
2008039772 Feb 2008 JP
2008-200359 Apr 2008 JP
2008-145111 Jun 2008 JP
2008-197495 Aug 2008 JP
2009-195349 Mar 2009 JP
2009-212058 Sep 2009 JP
2010-032341 Feb 2010 JP
2010-236986 Oct 2010 JP
2011-029072 Feb 2011 JP
2011-033537 Feb 2011 JP
2011-095224 May 2011 JP
2011107005 Jun 2011 JP
2011-218147 Nov 2011 JP
2012-032387 Feb 2012 JP
2012-187341 Oct 2012 JP
H06-102399 Oct 2012 JP
2012-254294 Dec 2012 JP
2013-508683 Mar 2013 JP
2013-096750 May 2013 JP
2013-113782 Jun 2013 JP
2013-529984 Jul 2013 JP
2013-157269 Aug 2013 JP
2013-160637 Aug 2013 JP
2013-181811 Sep 2013 JP
2013-239317 Nov 2013 JP
2014-178130 Sep 2014 JP
2015-002074 Jan 2015 JP
2015-047306 Mar 2015 JP
2015-072263 Apr 2015 JP
2015-077289 Apr 2015 JP
2016-537797 Dec 2016 JP
2017-040618 Feb 2017 JP
6191051 Sep 2017 JP
10-2004-0072780 Aug 2004 KR
10-2006-0088272 Aug 2006 KR
10-2012-0012391 Feb 2012 KR
10-2012-0091591 Aug 2012 KR
10-2014-0059688 May 2014 KR
WO 1995006952 Mar 1995 WO
WO 1998011592 Mar 1998 WO
WO 1998041992 Sep 1998 WO
WO 2002039792 May 2002 WO
WO 2003081631 Oct 2003 WO
WO 2005109969 Nov 2005 WO
WO 2006010091 Jan 2006 WO
WO 2006096052 Sep 2006 WO
WO 2007125833 Nov 2007 WO
WO 2007135811 Nov 2007 WO
WO 2008068044 Jun 2008 WO
WO 2009098027 Aug 2009 WO
WO 2009104560 Aug 2009 WO
WO 2010109909 Sep 2010 WO
WO 2011032572 Mar 2011 WO
WO 2012032950 Mar 2012 WO
WO 2013004574 Jan 2013 WO
WO 2013111050 Aug 2013 WO
WO 2013118593 Aug 2013 WO
WO 2013160153 Oct 2013 WO
WO 2013168468 Nov 2013 WO
WO 2014054497 Apr 2014 WO
WO 2015016019 Feb 2015 WO
WO 2015034791 Mar 2015 WO
WO 2015066333 May 2015 WO
WO 2015084466 Jun 2015 WO
WO 2015152490 Oct 2015 WO
WO 2015168473 Nov 2015 WO
WO 2015176023 Nov 2015 WO
WO 2015187219 Dec 2015 WO
WO 2016187623 Nov 2016 WO
WO 2017031740 Mar 2017 WO
WO 2017204850 Nov 2017 WO
WO 2017213996 Dec 2017 WO
WO 2018122213 Jul 2018 WO
WO 2018175570 Sep 2018 WO
Non-Patent Literature Citations (272)
Entry
“High performance benchtop EDXRF spectrometer with Windows®® software,” published by: Rigaku Corp., Tokyo, Japan; 2017.
Altapova et al., “Phase contrast laminography based on Talbot interferometry,” Opt. Express, vol. 20, No. 6, (2012) pp. 6496-6508.
Anklamm et al., “A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory,” Rev. Sci. Instr. Vol. 85 p. 053110 (2014).
Bachucki et al., “Laboratory-based double X-ray spectrometer for simultaneous X-ray emission and X-ray absorption studies,” J. Anal. Atomic Spectr. DOI:10.1039/C9JA00159J (2019).
Baron et al., “A compact optical design for Bragg reflections near backscattering,” J. Synchrotron Rad., vol. 8 (2001), pp. 1127-1130.
Bauer et al., “Increasing the sensitivity of micro X-ray fluorescence spectroscopy through an optimized adaptation of polycapillary lenses to a liquid metal jet source,” J. Anal. At. Spectrom. DOI:10.1039/d1ja00295c (2021).
Bech, “In-vivo dark-field and phase-contrast x-ray imaging,” Scientific Reports 3, (2013), Article No. 03209.
Bech, “X-ray imaging with a grating interferometer,” University of Copenhagen PhD. Thesis, (May 1, 2009).
Behling, “Medical X-ray sources Now and for the Future,” Nucl. Inst. and Methods in Physics Research A 873, pp. 43-50 (2017).
Bertaux et al., “Sub-pixel high-resolution imaging of high-energy x-rays inspired by sub-wavelength optical imaging, ” Op. Express, vol. 29, No. 22-25, p. 35003 (2021).
Birkholz, “Chapter 4: Grazing Incidence Configurations,” Thin Film Analysis by X-ray Scattering (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006).
Birnbacher et al., “Quantitative X-ray phase contrast computed tomography with grating interferometry,” European J. of Nucl. Med. and Mol. Imaging, https://doi.org/10.1007/s00259-021-05259-6 (2021).
Bjeoumikhov et al., “A modular system for XRF and XRD applications consisting of a microfocus X-ray source and different capillary optics,” X-ray Spectrometry, vol. 33 (2004), pp. 312-316.
Bogdanowicz et al., “Model-free measurement of lateral recess in gate-all-around transistors with micro hard-X-ray fluorescence,” J. Micro/Nanopattern, Mater. Metrol., vol. 22(3), pp. 034001-1-8 (2023).
Brombal et al., “PEPI Lab: a flexible compact multi-modal setup for X-ray phase-contrast and spectral imaging,” Sci. Rep. 13, p. 4206, https://doi.org/10.1038/s41598-023-30316-5 (2023).
Buchanan et al., “Effective modelling of high-energy laboratory-based x-ray phase contrast imaging utilising absorption masks or gratings,” J. Appl. Physics (accepted) (2020).
Chen et al., “Advance in detection of low sulfur content by wavelength dispersive XRF,” Proceedings of the Annual ISA Analysis Division Symposium (2002).
Chervenak et al., “Experimental thick-target bremsstrahlung spectra from electrons in the range 10 to 30 keV”, Phys. Rev. A vol. 12 (1975), pp. 26-33.
Coan et al., “In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs,” Phys. Med. Biol. vol. 55(24) (2010), pp. 7649-7662.
Cohen et al., “Tunable laboratory extended x-ray absorption fine structure system,” Rev. Sci. Instr. vol. 51, No. 3, Mar. 1980, pp. 273-277.
David et al., “Hard X-ray phase imaging and tomography using a grating interferometer,” Spectrochimica Acta Part B vol. 62 (2007) pp. 626-630.
Davis et al., “Bridging the Micro-to-Macro Gap: A New Application for Micro X-Ray Fluorescence,” Microsc Microanal., vol. 17(3) (Jun. 2011), pp. 410-417.
Detlefs et al., “Fast Chemical Contrast by X-ray Fluorescence Intensity Ratio Detection,” Anal. Chem., https://doi.org/10.1021/acs.analchem.3c00623 (2023).
Dewulf et al., “Advances in the metrological traceability and performance of X-ray computed tomography,” CIRP Annals—Manuf. Tech. vol. 00, 1-24 (2022).
Diaz et al., “Monte Carlo Simulation of Scatter Field for Calculation of Contrast of Discs in Synthetic CDMAM Images,” In: Digital Mammography, Proceedings 10th International Workshop IWDM 2010 (Springer Verlag, Berlin Heidelberg), (2010), pp. 628-635 (9 pages).
Dibernardo, “Non-disruptive techniques for depth profiling in photoemission spectroscopy,” Nature Review Physics, https://doi.org/10.1038/s42254-021-00331-4 (2021).
Dittler et al., “A mail-in and user facility for X-ray absorption near-edge structure: the CEI-XANES laboratory X-ray spectrometer at University of Washington,” J. Synch. Rad. vol. 26, eight pages, (2019).
Dong et al., “Improving Molecular Sensitivity in X-Ray Fluorescence Molecular Imaging (XFMI) of Iodine Distribution in Mouse-Sized Phantoms via Excitation Spectrum Optimization,” IEEE Access, vol. 6, pp. 56966-56976 (2018).
Du et al., “Removal of artifacts caused by grating imperfections in X-ray phase contrast tomography,” J. of Inst. vol. 16, P06039, doi.org/10.1088/1748-0221/16/06/P06039 (2021).
Erko et al., “X-ray Optics,” Ch. 3 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin, Germany, 2006), pp. 85-198.
Espes et al., “High-resolution X-ray source with advanced e-beam technology: pushing the resolution limitation for lab-scale NanoCT,” Micros. Microanal., vol. 27 (Suppl. 1), pp. 1230 (2021).
Feng et al., “Reduction of Compton Background Noise for X-ray Fluorescence Computed Tomography with Deep Learning,” Photonics, vol. 9, p. 108 (2022).
Fernández-Ruiz, “Txrf Spectrometry as a Powerful Tool for the Study of Metallic Traces in Biological Systems,” Development in Analytical Chemistry, vol. 1 (2014), pp. 1-14.
Fisher et al., “Laminography in the lab: imaging planar objects using a conventional x-ray CT scanner,” Meas. Sci. Technol., vol. 30, p. 035401 (2019).
Flenner et al., “Hard X-ray full-field nanoimaging using a direct photon-counting detector,” J. Synch. Rad., https://doi.org/10.1107/S1600577522012103 (2022).
Gaur et al., “On the method of calibration of the energy dispersive EXAFS beamline and Indus-2 and fitting theoretical model to the EXAFS spectrum,” Sadhana, vol. 36, No. 3 pp. 3390348 (2011).
Ge et al., “Investigation of the partially coherent effects in a 2D Talbot interferometer,” Anal. Bioanal. Chem. vol. 401, (2011), pp. 865-870.
Ge et al., “Self-absorption correction on 2D X-ray fluorescence maps,” Sci. Rep. 13, p. 7271, https://doi.org/10.1038/s41598-023-33383-w (2023).
Ghani et al., “A Phase Sensitive X-ray Brest Tomosynthesis System: Preliminary Patient Images with Cancer Legions,” Phys. Med. Biol. https://doi.org/10.1088/1361-6560/ac2ea6 (2021).
Gonzales et al., “Angular Distribution of Bremsstrahlung Produced by 10-Kev And 20 Kev Electrons Incident an a Thick Au Target”, in Application of Accelerators in Research and Industry, AIP Conf. Proc. 1221 (2013), pp. 114-117.
Gonzales et al., “Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag”, Phys. Rev. A vol. 84 (2011): 052726.
Graetz et al., “Lenseless C-ray Nano-Tomography down to 150 nm Resolution: On the Quantification of Modulation Transfer and Focal Spot of the Lab-based ntCT System,” arXiv:2009.11749v1 [physics.ins-det] Sep. 24, 2020, 10 pages.
Günther et al., “Full-field structured-illumination super-resolution X-ray transmission microscopy,” Nature Comm. 10:2494 (2019) and supplementary information.
Gustschin et al., “High resolution and sensitivity bi-directional x-ray phase contrast imaging using 2D Talbot array illuminators,” arXiv:2105.07347v1 [physics.med-ph] May 16, 2021.
Harasse et al., “Iterative reconstruction in x-ray computed laminography from differential phase measurements”, Opt. Express. vol. 19 (2011), pp. 16560-16573.
Harasse et al., “X-ray Phase Laminography with a Grating Interferometer using Iterative Reconstruction”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Conf. Proc. vol. 1466, (2012), pp. 163-168.
Harasse et al., “X-ray Phase Laminography with Talbot Interferometer”, in Developments in X-Ray Tomography VII, Proc. SPIE vol. 7804 (2010), 780411.
Hashimoto et al., “Improved reconstruction method for phase stepping data with stepping errors and dose fluctuations,” Optics Express, vol. 28, No. 11, pp. 16363-16384 (2020).
Hasse et al., “New developments in laboratory-based x-ray sources and optics,” Adv. In Laboratory-based X-Ray Sources, Optics, and Applications VI, ed. A.M. Khounsary, Proc. SPIE vol. 10387, 103870B-1 (2017).
Haug et al., A laboratory-based multifunctional near ambient pressure X-ray photoelectron spectroscopy system for electrochemical, catalytic, and cryogenic studies, Rev. Sci. Instr. vol. 94, 065104, https://doi.org/10.1063/5.0151755 (2023).
Heirwegh et al., “The focused beam X-ray fluorescence elemental quantification software package PIQUANT,” Spectrochimica Acta Part B: Atomic Spectroscopy, https://doi.org/10/1016/j.sab.2022.106520 (2022).
Hemraj-Benny et al., “Near-Edge X-ray Absorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials,” Small, vol. 2(1), (2006), pp. 26-35.
Hennekam et al., “Trace metal analysis of sediment cores using a novel X-ray fluorescence core scanning method,” Quaternary Int'l, https://doi.org/10.1016/j.quaint.2018.10.018 (2018).
Hirano et al., “X-ray zooming optics for analyzer-based multi-contrast computed tomography,” J. Synch. Rad. vol. 29, https://doi.org/10.1107/S1600577522001412 (2022).
Holberg et al., “High-Resolution Table-Top NEXAFS Spectroscopy,” Anal. Chem. https://10.1021/acs.analchem.1c04374 (2022).
Holfelder et al., “A double crystal von Hamos spectrometer for traceable x-ray emission spectroscopy,” Rev. Sci. Instrum. vol 92, p. 123105 (2021).
Honma et al., Full-automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at Spring-8, 2011, AIP Conference Proceedings 1234, pp. 13-16.
Hoshino et al., “High-energy X-ray micro-laminography to visualize microstructures in dense planar object,” J. Synch. Rad. https://doi.org/10.1107/S1600577522012176 (2022).
Howard et al., “High-Definition X-ray Fluorescence Elemental Mapping of Paintings,” Anal. Chem., 2012, vol. 84(7), pp. 3278-3286.
Hu et al., “Improving small animal cone beam CT resolution by mitigating x-ray focal spot induced blurring via deconvolution,” Phys. Med. Bio., in press, https://doi.org/10.1088/1361-6560/ac6b7a (2022).
Ide-Ektessabi et al., “The role of trace metallic elements in neurodegenerative disorders: quantitative analysis using XRF and XANES spectroscopy,” Anal. Sci., vol. 21(7) (Jul. 2005), pp. 885-892.
Ihsan et al., “A microfocus X-ray tube based on a microstructured X-ray target”, Nuclear Instruments and Methods in Physics Research B vol. 267 (2009) pp. 3566-3573.
Ishisaka et al., “A New Method of Analyzing Edge Effect in Phase Contrast Imaging with Incoherent X-rays,” Optical Review, vol. 7, No. 6, (2000), pp. 566-572.
Ito et al., “A Stable In-Laboratory EXAFS Measurement System,” Jap. J. Appl. Phys., vol. 22, No. 2, Feb. 1, 1983, pp. 357-360.
Itoh et al., “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Op. Express, vol. 19, No. 4 (2011) pp. 3339-3346.
Jahrman et al., “Vacuum formed temporary spherically and toroidally bent crystal analyzers for x-ray absorption and x-ray emission spectroscopy,” Rev. Sci. Inst. vol. 90, 013106 (2019).
Janssens et al., “Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis,” TrAC Trends in Analytical Chemistry 29.6 (Jun. 2010): 464-478.
Jiang et al., “X-Ray Phase-Contrast Imaging with Three 2D Gratings,” Int. J. Biomed. Imaging, (2008), 827152, 8 pages.
Jin et al., “Development of an X-ray tube with two selective targets modulated by a magnetic field,” Rev. Sci. Inst. vol. 90, 083105 (2019).
Kalasová et al., “Characterization of a laboratory-based X-ray computed nanotomography system for propagation-based method of phase contrast imaging,” IEEE Trans. on Instr. and Meas., DOI 10.1109/TIM.2019.2910338 (2019).
Keyrilainen et al., “Phase contrast X-ray imaging of breast,” Acta Radiologica, vol. 51 (8), (2010), pp. 866-884.
Khan et al., “Recent Trends in Applications of X-ray Photoelectron Spectroscopy (XPS) Technique in Coatings for Corrosion Protection,” Chapter of “Recent Developments in Analytical Techniques for Corrosion Research,” I. Toor (ed.), Springer Nature Switzerland AG https://doi.org/10.1007/978-3-030-89101-5_8 (2022).
Kido et al., “Bone Cartilage Imaging with X-ray Interferometry using a Practical X-ray Tube”, in Medical Imaging 2010: Physics of Medical Imaging, Proc. SPIE vol. 7622 (2010), 762240.
Kim et al., “Observation of the Talbot Effect at Beamline 6C Bio Medical Imaging of the Pohang Light Source-II,” J. Korean Phys. Soc., vol. 74, No. 10, pp. 935-940 (May 2019).
Kim et al., “A Simulation Study on the Transfer Characteristics of the Talbot Pattern Through Scintillation Screens in the Grating Interferometer,” J. Rad. Sci. and Tech. 42(1), pp. 67-75 (2019).
Kim, “Talbot images of wavelength-scale amplitude gratings,” Opt. Express vol. 20(5), (2012), pp. 4904-4920.
Kiranjot et al., “Surface and interface characterization of Ru/C/Ru trilayer structure using grazing incidence X-ray reflectivity and X-ray fluorescence,” Surf. and Interface Analysis, doi: 10.1002/sia7016 (2021).
Kiyohara et al., “Development of the Talbot-Lau Interferometry System Available for Clinical Use”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Cong. Proc. vol. 1466, (2012), pp. 97-102.
Klockenkämper et al., “7.1 Instrumental Developments” and “7.3 Future Prospects by Combinations,” from Chapter 7 of Total Reflection X-ray Fluorescence Analysis and Related Methods 2nd Ed. (J. Wiley and Sons, Hoboken, NJ, 2015).
Klockenkämper et al., “Chapter 3: Instrumentation for TXRF and GI-XRF,” Total Reflection X-ray Fluorescence Analysis and Related Methods 2nd Ed. (J. Wiley and Sons, Hoboken, NJ, 2015).
Kottler et al., “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express vol. 15(3), (2007), pp. 1175-1181.
Kottler et al., “Dual energy phase contrast x-ray imaging with Talbot-Lau interferometer,” J. Appl. Phys. vol. 108(11), (2010), 114906.
Kulow et al., “On the Way to Full-Field X-ray Fluorescence Spectroscopy Imaging with Coded Apertures,” J. Anal. At. Spectrom. Doi: 10.1039/C9JA00232D (2019).
Kuwabara et al., “Hard-X-ray Phase-Difference Microscopy with a Low-Brilliance Laboratory X-ray Source”, Appl. Phys. Express vol. 4 (2011) 062502.
Langhoff et al., “X-ray Sources,” Ch. 2 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin Heidelberg New York, 2006), pp. 33-82.
Leatham et al., “X-ray dark-field and phase retrieval without optics, via the Fokker-Planck equation,” arXiv:2122.10999v1, physics.med-ph, Dec. 21, 2021.
Lei et al., “8-inch-diameter field of view for X-ray differential phase-contrast imaging,” Nucl. Inst. and Methods in Physics Research A, https://doi.org/10-1016/j.nima.2021.165375 (2021).
Li et al., “Study on High Thermal Conductivity of X-ray Anode with Composite Diamond Substrate,” J. Phys.: Conf. Ser., vol. 1300, 012115 (2019).
Li et al., “X-ray phase-contrast imaging using cascade Talbot-Lau interferometers,” Proc. SPIE 10964 (2018), pp. 1096469-1-1096469-6.
Li et al., “Production and Heat Properties of an X-ray Reflective Anode Based on a Diamond Heat Buffer Layer,” Materials vol. 13, p. 241 (2020).
Lin et al., “Quasi-Monte Carlo method for calculating X-ray scatter in CT,” Op. Express, vol. 29, No. 9, p. 13746 (2021).
Lohmann et al., “An interferometer based on the Talbot effect,” Optics Communications vol. 2 (1971), pp. 413-415.
Longo et al., “Flexible Plenoptic X-ray Microscopy,” Photonics, vol. 9, p. 98 (2022).
Luani, “Optimization of e-beam and x-ray target geometry of a solid x-ray anode source,” Uppsala Universitet, Dept. of Physics, Thesis for Masters degree in physics (2021).
Lübcke et al., “Soft X-ray nanoscale imaging using a sub-pixel resolution charge coupled device (CCD) camera,” Rev. Sci. Instrum. vol. 90, 043111 (2019).
Lühl et al., “Scanning transmission X-ray microscopy with efficient X-ray fluorescence detection (STXM-XRF) for biomedical applications in the soft and tender energy range,” J. Synch. Rad. vol. 26, https://doi.org/10.1107/S1600577518016879, (2019).
Malzer et al., “A laboratory spectrometer for high throughput X-ray emission spectroscopy in catalysis research,” Rev. Sci. Inst. 89, 113111 (2018).
Mamyrbayev et al., “Staircase array of inclined refractive multi-lenses for large field of view pixel super-resolution scanning transmission hard X-ray microscopy,” J. Synch. Rad., vol. 28 https://doi.org/10.1107/S1600577521001521 (2021).
Matsunaga et al., “Development of projection X-ray microscope with 10 nm spot size,” Nodestr. Test. and Eval., https://doi.org.10.1080/10589759.2022.2083616 (2022).
Matsuyama et al., “Wavefront measurement for a hard-X-ray nanobeam using single-grating interferometry”, Opt Express vol. 20 (2012), pp. 24977-24986.
Menzies et al., “Dual source X-ray and electron SEM system: Elemental mapping of an Epithermal gold-bearing sample from Karangahake, New Zealand,” Microsc. Microanal., vol. 27 (Suppl. 1), pp. 456 (2021).
Miao et al., “Motionless phase stepping in X-ray phase contrast imaging with a compact source,” Proceedings of the National Academy of Sciences, vol. 110(48), (2013), pp. 19268-19272.
Mijovilovich et al., “Analysis of trace metal distribution in plants with lab-based microscopic X-ray fluorescence imaging,” Plant Methods, vol. 16, No. 82, 21 pages (2020).
Mizutani et al., X-ray microscopy for neural circuit reconstruction in 9th International Conference on X-Ray Microscopy, J. Phys: Conf. Ser. 186 (2009) 012092.
Modregger et al., “Grating-Based X-ray Phase Contrast Imaging,” Ch. 3 of Emerging Imaging Technologies in Medicine, M. Anastasio & P. La Riviere, ed., CRC Press, Boca Raton, FL, (2012), pp. 43-56.
Momose et al., “Biomedical Imaging by Talbot-Type X-Ray Phase Tomography” in Developments in X-Ray Tomography V, Proc. SPIE vol. 6318 (2006) 63180T.
Momose et al., “Grating-Based X-ray Phase Imaging Using Multiline X-ray Source”, Jpn. J. Appl. Phys. vol. 48 (2009), 076512.
Momose et al., “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging” Jpn. J. Appl. Phys. vol. 45 2006 pp. 5254-5262.
Momose et al., “Phase Tomography Using X-ray Talbot Interferometer”, in Synchrotron Radiation Instrumentation: Ninth International Conference, AIP Conf. Proc. vol. 879 (2007), pp. 1365-1368.
Momose et al., “Phase-Contrast X-Ray Imaging Using an X-Ray Interferometer for Biological Imaging”, Analytical Sciences vol. 17 Supplement (2001), pp. i527-i530.
Momose et al., “Recent Progress in X-ray and Neutron Phase Imaging with Gratings,” Quantum Beam Science, vol. 4, No. 9; doi:10.3390/qubs4010009 (2020).
Momose et al., “Sensitivity of X-ray Phase Imaging Based on Talbot Interferometry”, Jpn. J. Appl. Phys. vol. 47 (2008), pp. 8077-8080.
Momose et al., “X-ray Phase Measurements with Talbot Interferometry and Its Applications”, in International Conference on Advanced Phase Measurement Methods in Optics and Imaging, AIP Conf. Proc. vol. 1236 (2010), pp. 195-199.
Momose et al., “X-ray Phase Imaging—From Static Observation to Dynamic Observation—”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 67-77.
Momose et al., “X-ray Phase Imaging Using Lau Effect”, Appl. Phys. Express vol. 4 (2011) 066603.
Momose et al., “X-Ray Phase Imaging with Talbot Interferometry”, in “Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning, and Inverse Problems”, Y. Censor, M. Jiang & G.Wang, eds. (Medical Physics Publishing, Madison, WI, USA, 2010), pp. 281-320.
Momose et al., “X-ray phase tomography with a Talbot interferometer in combination with an X-ray imaging microscope”, in 9th International Conference on X-Ray Microscopy, J. Phys: Conf. Ser. 186 (2009) 012044.
Momose et al., “X-ray Talbot Interferometry with Capillary Plates”, Jpn. J. Appl. Phys. vol. 45 (2006), pp. 314-316.
Momose et al., “Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm”, Opt. Express vol. 19 (2011), pp. 8423-8432.
Momose et al., “High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation”, Opt. Express vol. 17 (2009), pp. 12540-12545.
Momose et al., “Phase Imaging with an X-ray Talbot Interferometer”, Advances in X-ray Analysis vol. 49(3) (2006), pp. 21-30.
Momose et al., “Demonstration of X-Ray Talbot Interferometry”, Jpn. J. Appl. Phys. vol. 42 (2003), pp. L866-L868.
Momose et al., “Phase Tomography Using an X-ray Talbot Interferometer”, in Developments in X-Ray Tomography IV, Proc. SPIE vol. 5535 (2004), pp. 352-360.
Momose, “Recent Advances in X-ray Phase Imaging”, Jpn. J. Appl. Phys. vol. 44 (2005), pp. 6355-6367.
Morimoto et al., “Design and demonstration of phase gratings for 2D single grating interferometer,” Optics Express vol. 23, No. 23, 29399 (2015).
Morimoto et al., “Development of multiline embedded X-ray targets for X-ray phase contrast imaging,” XTOP 2012 Book of Abstracts, (Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 2012), pp. 74-75.
Morimoto et al., “X-ray phase contrast imaging by compact Talbot-Lau interferometer with a signal transmission grating,” 2014, Optics Letters, vol. 39, No. 15, pp. 4297-4300.
Munro et al., Design of a novel phase contrast imaging system for mammography, 2010, Physics in Medicine and Biology, vol. 55, No. 14, pp. 4169-4185.
Nango et al., “Talbot-defocus multiscan tomography using the synchrotron X-ray microscope to study the lacuno-canalicular network in mouse bone”, Biomed. Opt. Express vol. 4 (2013), pp. 917-923.
Nemeth et al., “Laboratory von Hamos X-ray Spectroscopy for Routine Sample Characterization, ” arvix:1607.08045v1 (2016).
Neuhausler et al., “Non-destructive high-resolution X-ray imaging of ULSI micro-electronics using keV X-ray microscopy in Zernike phase contrast,” Microelectronic Engineering, Elsevier Publishers BV., Amsterdam, NO, vol. 83, No. 4-9 (Apr. 1, 2006) pp. 1043-1046.
Newville, “Fundamentals of XAFS,” (Univ. of Chicago, Chicago, IL, Jul. 23, 2004).
Nojeh, “Carbon Nanotube Electron Sources: From Electron Beams to Energy Conversion and Optophononics”, ISRN Nanomaterials vol. 2014 (2014): 879827.
Nykanen et al., “X-ray scattering in full-field digital mammography,” Med. Phys. vol. 30(7), (2003), pp. 1864-1873.
O'Brien et al., “Recent Advances in X-ray Cone-beam Computed Laminography,” J. X-ray Sci. and Tech., vol. 24, No. 5, pp. 691-707 (2016).
Ohba et al., “Laboratory-size x-ray microscope using Wolter mirror optics and an electron-impact x-ray source,” Rev. Sci. Inst. 92, 093704 (2021).
Oji et al., Automatic XAFS measurement system developed at BL14B2 in SPring-8, Available online Nov. 15, 2011, Journal of Synchrotron Radiation, vol. 19, pp. 54-59.
Okolo, “A guide into the world of high-resolution 3D imaging: the case of soft X-ray tomography for the life sciences,” Biochem. Soc. Trans., https://doi.org/10.1042/BST20210886 (2002).
Olbinado et al., “Demonstration of Stroboscopic X-ray Talbot Interferometry Using Polychromatic Synchrotron and Laboratory X-ray Sources”, Appl. Phys. Express vol. 6 (2013), 096601.
Ortega et al., “Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy,” J. Royal Society Interface vol. 6 suppl. 5 (Oct. 6, 2009), pp. 6S649-6S658.
Otendal et al., A 9 keV electron-impact liquid-gallium-jet x-ray source, Rev. Sci. Instrum. vol. 79 (2008): 016102.
Oxford Instruments Inc., Series 5000 Model XTF5011 X-ray Tube information, Jun. 1998, 3 pages.
Pandeshwar et al., “Envelope modulated x-ray grating interferometry,” Appl. Phys. Lett. 120, 193701 (2022).
Pandeshwar et al., “Modeling of beam hardening effects in a dual-phase X-ray grading interferometer for quantitative dark-field imaging,” Optics Express, vol. 28, No. 13, Jun. 22, 2020, pp. 19187-19204 (2020).
Parrill et al., “GISAXS—Glancing Incidence Small Angle X-ray Scattering,” Journal de Physique IV, vol. 3 (Dec. 1993), pp. 411-417.
Paunesku et al., “X-Ray Fluorescence Microprobe Imaging in Biology and Medicine,” J. Cell. Biochem. vol. 99, pp. 1489-1502 (2006).
Pekel et al., “Geometric calibration of seven degree of freedom robotic sample holder for x-ray CT,”Proc. of SPIE 12304, 7th Int'l Conf. on Image Formation in X-Ray Computed Tomography, 123042L, doi:10.1117/12.2646492 (2022).
Pfeiffer et al., “Hard-X-ray dark-field imaging using a grating interferometer,” Nature Materials vol. 7, (2008), pp. 134-137.
Pfeiffer et al., “Hard x-ray phase tomography with low brilliance x-ray sources,” Phys. Rev. Lett. vol. 98, (2007), 108105.
Pfeiffer et al., “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Physics vol. 2, (2006), pp. 258-261.
Pfeiffer, “Milestones and basic principles of grating-based x-ray and neutron phase-contrast imaging,” in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 2-11.
Pianetta et al., “Application of synchrotron radiation to TXRF analysis of metal contamination on silicon wafer surfaces,” Thin Solid Films, vol. 373(1-2), 2000, pp. 222-226.
Poludniowski et al., “Technical Note: SpekPy v2.0—a software toolkit for modelling x-ray tube spectra,” doi: 10.1002/MP.14945 (2021).
Potts, “Electron Probe Microanalysis”, Ch. 10 of “A Handbook of Silicate Rock Analysis” (Springer Science + Business Media, New York, 1987), pp. 326-382.
Prewitt et al., “FIB Repair of 5X Reticles and Effects on IC Quality,” Integrated Circuit Metrology, Inspection, and Process Control VII, Proc. SPIE vol. 1926 (1993), pp. 517-526.
Prewitt et al., “Focused ion beam repair: staining of photomasks and reticles,” J. Phys. D Appl. Phys. vol. 26 (1993), pp. 1135-1137.
Prewitt et al., “Gallium Staining in FIB Repair of Photomasks,” Microelectronic Engineering, vol. 21 (1993), pp. 191-196.
Pushie et al., “Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems,” Chem. Rev. 114:17, 8499-8541 (2014).
Pushie et al., “Prion protein expression level alters regional copper, iron and zinc content in the mouse brain,” Metallomics vol. 3, 206-214 (2011).
Qiao et al., “Single-shot x-ray phase-contrast and dark-field imaging based on coded binary phase mask,” Appl. Phys. Lett. 119, 011105 (2021).
Qin et al., “Trace metal imaging with high spatial resolution: Applications in biomedicine,” Metallomics, vol. 3 (Jan. 2011), pp. 28-37.
Redus et al., “Spectrometer configuration and measurement uncertainty in X-ray spectroscopy,” X-Ray Spectrom., pp. 1-14 (2020).
Renaud et al., “Probing surface and interface morphology with Grazing Incidence Small Angle X-ray Scattering,” Surface Science Reports, vol. 64:8 (2009), pp. 255-380.
Riege, “Electron Emission from Ferroelectrics—A Review”, CERN Report Cern AT/93-18 (Cern, Geneva, Switzerland, Jul. 1993).
Rix et al., “Super-Resolution X-ray phase-contrast and dark-field imaging with a single 2D grating and electromagnetic source stepping,” Phys. Med. Biol. In press https://doi.org/10.1088/1361-6560/ab2ff5 (2019).
Rutishauser, “X-ray grating interferometry for imaging and metrology,” 2003, Eth Zurich, Diss. ETH No. 20939.
Sato et al., Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube, 2011, Optics Letters, vol. 36, No. 18, pp. 3551-3553.
Scherer et al., “Bi-Directional X-Ray Phase-Contrast Mammography,” PLoS One, vol. 9, Issue 5 (May 2014) e93502.
Scholz, “X-ray Tubes and Monochromators,” Technical Workshop EPIC, Universität Würzburg (2007); 41 slides, 2007.
Scholze et al., “X-ray Detectors and XRF Detection Channels,” Ch. 4 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin Heidelberg, Germany, 2006), pp. 85-198.
Schunck et al., “Soft x-ray imaging spectroscopy with micrometer resolution,” Optica vol. 8, No. 2, pp. 156-160 (2021).
Seddon-Ferretti et al., “HERMES—a GUI-based software tool for pre-processing of X-ray absorption spectroscopy data from laboratory Rowland circle spectrometers,” J. Synch. Rad., vol. 29, https://doi.org/10.1107/S1600577521012583, pp. 1-4 (2022).
Seifert et al., “Talbot-Lau x-ray phase-contrast setup for fast scanning of large samples,” Sci. Rep. 9:4199, pp. 1-11 (2019).
Shi et al., “Laboratory X-ray interferometry imaging with a fan-shaped source grating,” Optics Lett., doi.org/10.1364/OL.426867 (2021).
Shimura et al., “Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets”, Opt. Lett. vol. 38(2) (2013), pp. 157-159.
Simionovici et al., “X-ray focusing methods for X-ray absorption spectroscopy,” Int'l Tables Crystallog. vol. I, https://doi.org/10.1107/S1574870721006844 (2022).
Soltau et al., “Coherent Diffractive Imaging with Diffractive Optics,” Phys. Rev. Lett. 128, 223901 (2022).
Sparks Jr., “X-ray Fluorescence Microprobe for Chemical Analysis,” in Synchrotron Radiation Research, H. Winick & S. Doniach, eds. (Plenum Press, New York, NY 1980), pp. 459-512.
Stampanoni et al., “The First Analysis and Clinical Evaluation of Native Breast Tissue Using Differential Phase-Contrast Mammography,” Investigative Radiology, vol. 46, pp. 801-806. pub Dec. 2011.
Storm et al., “Optimizing the energy bandwidth for transmission full-field X-ray microscopy experiments,” J. Synch. Rad., vol. 29, https://doi.org/10.1107/S1600577521011206, pp. 1-10 (2022).
Streli et al., “Micro-X-ray fluorescence spectroscopy,” Chapter l.9.f of “Imaging Modalities for Biological and Preclinical Research: A compendium, vol. 1, Part I: Ex vivo biological imaging,” Ed. Walter et al., 8 pages, doi:10.1088/978-0-7503-3059-6ch42 (2021).
Stupple et al., “Modeling of Heat Transfer in an Aluminum X-Ray Anode Employing a Chemical Vapor Deposited Diamond Heat Spreader,” J. Heat Transfer, Vo. 140, 124501-1-5 (Dec. 2018).
Sunday et al., “X-ray Metrology for the Semiconductor Industry Tutorial,” J. Res. Nat'l Inst. Stan. vol. 124: 124003 (2019); https://doi.org/10.6028/jres.124.003.
Takeda et al., “Differential Phase X-ray Imaging Microscopy with X-ray Talbot Interferometer” Appl. Phys. Express vol. 1 (2008) 117002.
Takeda et al., “X-Ray Phase Imaging with Single Phase Grating”, Jpn. J. Appl. Phys. vol. 46 (2007), pp. L89-L91.
Talbot, “Facts relating to optical science No IV,” Philos. Mag. vol. 9 (1836), pp. 401-407.
Tanaka et al., “Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot-Lau interferometry”, Z. Med. Phys. vol. 23 (2013), pp. 222-227.
Tanaka et al., “Propagation-based phase-contrast imaging method for full-field X-ray microscopy using advanced Kirkpatrick-Baez mirrors,” Op. Express vol. 31, No. 16, pp. 26135-26144 (2023).
Tang et al., “Detailed analysis of the interference patterns measured in lab-based X-ray dual-phase grating interferometry through wave propagation simulation,” Opt. Ex. vol. 31, No. 2, pp. 1677-1691 (2023).
Tao et al., “Factors Affecting the Spatial Resolution in 2D Grating-Based X-Ray Phase Contrast Imaging,” Frontiers in Physics, doi: 10.3389/fphy.2021.672207 (2021).
Tao et al., “Moire artifacts reduction in Talbot-Lau X-ray phase contrast imaging using a three-step iterative approach,” Opt. Ex. vol. 30, No. 20, pp. 35096-35111 (2022).
Taphorn et al., “Grating-based spectral X-ray dark-field imaging for correlation with structural size measures,” Sci. Reports, vol. 10, 13195 (2020).
Tebina et al., “X-Ray Fault Injection: Reviewing Defensive Approaches from a Security Perspective,” 2022 IEEE Int'l Symp. Defect and Fault Tolerances in VLSI and Nanotechnology Systems (DFT), doi: 10.1109/DFT56152.2022.9962362 (2022).
Terzano et al., Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report), Pure Appl. Chem. 2019.
Tessarini et al., “Semi-classical Monte Carlo algorithm for the simulation of X-ray grating interferometry,” Sci. Rep. vol. 12, p. 2485 (2022).
Tetef et al., “Unsupervised Machine Learning for Unbiased Chemical Classification in X-ray Absorption Spectroscopy and X-ray Emission Spectroscopy,” Royal Soc. of Chem. Doi: 10.33774/chemrxiv-2021-5tvrv (2021).
Titus et al., “Advancing the in-situ characterization of light elements via X-ray absorption spectroscopy using superconducting detectors,” Microsc. Microanal., vol. 27, (Suppl. 1), pp. 2890 (2021).
Tkachuk et al., “High-resolution x-ray tomography using laboratory sources”, in Developments in X-Ray Tomography V, Proc. SPIE 6318 (2006): 631810.
Tkachuk et al., “Multi-length scale x-ray tomography using laboratory and synchrotron sources”, Microsc. Microanal. vol. 13 (Suppl. 2) (2007), pp. 1570-1571.
Topperwien et al., “Multiscale x-ray phase-contrast tomography in a mouse model of transient focal cerebral ischemia,” Biomed. Op. Express, vol. 10, No. 1, Jan. 2019, pp. 92-103.
Tsuji et al., “X-Ray Spectrometry: Recent Technological Advances,” John Wiley & Sons Ltd. Chichester, West Sussex, UK 2004), Chapters 1-7.
Tucker, “Design of X-Ray Source for Real-Time Computed Tomography,” Dissertation, Missouri Univ. of Sci. and Tech., Scholars' Mine, 104 pages (2020).
Udagawa, “An Introduction to In-House EXAFS Facilities,” The Rigaku Journal, vol. 6, (1) (1989), pp. 20-27.
Udagawa, “An Introduction to X-ray Absorption Fine Structure,” The Rigaku Journal, vol. 11(2)(1994), pp. 30-39.
Uehara et al., “Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices”, J. Appl. Phys. vol. 114 (2013), 134901.
Viermetz et al., “High resolution laboratory grating-based X-ray phase-contrast CT,” Scientific Reports 8:15884 (2018).
Vila-Comamala et al., “High sensitivity X-ray phase contrast imaging by laboratory grating-based interferometry at high Talbot order geometry,” Op. Express vol. 29, No. 2, pp. 2049-2064 (2021).
Vogt, “X-ray Fluorescence Microscopy: A Tool for Biology, Life Science and Nanomedicine,” Presentation on May 16, 2012 at James Madison Univ., Harrisonburg, VA (31 slides), 2012.
Wan et al., “Fabrication of Multiple Slit Using Stacked-Sliced Method for Hard X-ray Talbot—Lau Interferometer”, Jpn. J. Appl. Phys. vol. 47 (2008), pp. 7412-7414.
Wang et al., “Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy,” Biotech. Adv., vol. 31 (2013) pp. 387-392.
Wang et al., “High beam-current density of a 10-keV nano-focus X-ray source,” Nucl. Inst. and Meth. A940, 475-478 (2019).
Wansleben et al., “Photon flux determination of a liquid-metal jet x-ray source by means of photon scattering,” arXiv:1903.06024v1, Mar. 14, 2019.
Weitkamp et al., “Design aspects of X-ray grating interferometry,” in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 84-89.
Weitkamp et al., “Hard X-ray phase imaging and tomography with a grating interferometer,” Proc. SPIE vol. 5535, (2004), pp. 137-142.
Weitkamp et al., “X-ray wavefront diagnostics with Talbot interferometers,” International Workshop on X-Ray Diagnostics and Scientific Application of the European XFEL, Ryn, Poland, (2010), 36 slides.
Weitkamp et al., Tomography with grating interferometers at low-brilliance sources, 2006, SPIE, vol. 6318, pp. 0S-1 to 0S-10.
Weitkamp et al., “X-ray phase imaging with a grating interferometer,” Opt. Express vol. 13(16), (2005), pp. 6296-6304.
Weitkamp et al., “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. vol. 86, (2005), 054101.
Wen et al., “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology, vol. 251 (2009) pp. 910-918.
Wen et al., “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Op. Lett. vol. 35, No. 12, (2010) pp. 1932-1934.
Wilde et al., “Modeling of an X-ray grating-based imaging interferometer using ray tracing,” Op. Express vol. 28, No. 17, p. 24657 (2020).
Wilde et al., “Statistical optics modeling of dark-field scattering in X-ray grating interferometers: Part 1. Theory,” Op. Express vol. 29, No. 25, p. 40891 (2021).
Wilde et al., “Statistical optics modeling of dark-field scattering in X-ray grating interferometers: Part 2. Simulation,” Op. Express vol. 29, No. 25, p. 40917 (2021).
Withers et al., “X-ray computed tomography,” Nature Reviews | Methods Primers, vol. 1, No. 18, pp. 1-21 (2021).
Witte et al., “From 2D STXM to 3D Imaging: Soft X-ray Laminography of Thin Specimens,” Nano Lett. vol. 20, pp. 1305-1314 (2020).
Wittry et al., “Properties of fixed-position Bragg diffractors for parallel detection of x-ray spectra,” Rev. Sci. Instr. Vol. 64, pp. 2195-2200 (1993).
Wobrauschek et al., “Energy Dispersive, X-Ray Fluorescence Analysis,” Encyclopedia of Analytical Chemistry, R.A. Meyers, Ed. (Wiley 2010).
Wobrauschek et al., “Micro XRF of light elements using a polycapillary lens and an ultra-thin window Silicon Drift Detector inside a vacuum chamber,” 2005, International Centre for Diffraction Data 2005, Advances in X-ray Analysis, vol. 48, pp. 229-235.
Woicik et al., “Soft X-ray absorption spectra,” Int. Tables Crystallogr. vol. 1, https://doi.org.10.1107/51574870720008484 (2023).
Xiao et al., “TXM-Sandbox: an open-source software for transmission X-ray microscopy data analysis,” J. Synch. Rad., vol. 29, https://doi.org/10.1107/S1600577521011978, p. 1-10 (2022).
Xu et al., “Comparison of image quality in computed laminography and tomography,” Op. Express, vol. 20, No. 2, pp. 794-806 (2012).
Xu et al., “Synchrotron radiation computed laminography for polymer composite failure studies,” J. Synch. Rad., vol. 17, pp. 222-226 (2010).
Yamada et al., “Compact full-field hard x-ray microscope based on advanced Kirkpatrick-Baez mirrors,” Optica, vol. 7, No. 4 pp. 367-370 (2020).
Yamamoto, “Fundamental physics of vacuum electron sources”, Reports on Progress in Physics vol. 69, (2006), pp. 181-232.
Yan et al., “X-ray source design optimization using differential evolution algorithms—A case study,” Rev. Sci. Instrum. 93, 053101 (2022).
Yashiro et al., “Distribution of unresolvable anisotropic microstructures revealed in visibility-contrast images using x-ray Talbot interferometry”, Phys. Rev. B vol. 84 (2011), 094106.
Yashiro et al., “Hard x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating”, Phys. Rev. A vol. 82 (2010), 043822.
Yashiro et al., “Theoretical Aspect of X-ray Phase Microscopy with Transmission Gratings” in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Conf. Proc. vol. 1466, (2012), pp. 144-149.
Yashiro et al., “X-ray Phase Imaging and Tomography Using a Fresnel Zone Plate and a Transmission Grating”, in “The 10th International Conference on X-ray Microscopy Radiation Instrumentation”, AIP Conf. Proc. vol. 1365 (2011) pp. 317-320.
Yashiro et al., “Efficiency of capturing a phase image using cone-beam x-ray Talbot interferometry”, J. Opt. Soc. Am. A vol. 25 (2008), pp. 2025-2039.
Yashiro et al., “On the origin of visibility contrast in x-ray Talbot interferometry”, Opt. Express (2010), pp. 16890-16901.
Yashiro et al., “Optimal Design of Transmission Grating for X-ray Talbot Interferometer”, Advances in X-ray Analysis vol. 49(3) (2006), pp. 375-379.
Yashiro et al., “X-ray Phase Imaging Microscopy using a Fresnel Zone Plate and a Transmission Grating”, in The 10th International Conference on Synchrotron Radiation Instrumentation, AIP Conf. Proc. vol. 1234 (2010), pp. 473-476.
Yashiro et al., “Hard-X-Ray Phase-Difference Microscopy Using a Fresnel Zone Plate and a Transmission Grating”, Phys. Rev. Lett. vol. 103 (2009), 180801.
Yoshioka et al., “Imaging evaluation of the cartilage in rheumatoid arthritis patients with an x-ray phase imaging apparatus based on Talbot-Lau interferometry,” Scientific Reports, 10:6561, https://doi.org/10.1038/s41598-020-63155-9 (2020).
Zan et al., “High-resolution multicontrast tomography with an X-ray microarray anode-structured target source,” PNAS, doi.org10.1073/pnas.2103126118 (2021).
Zanette et al., “Two-Dimensional X-Ray Grating interferometer,” Phys. Rev. Lett. vol. 105 (2010) pp. 248102-1 248102-4.
Zeeshan et al., “In-house setup for laboratory-based x-ray absorption fine structure spectroscopy measurements,” Rev. Sci. Inst. 90, 073105 (2019).
Zeng et al., “Glass Monocapillary X-ray Optics and Their Applications in X-Ray Microscopy,” X-ray Optics and Microanalysis: Proceedings of the 20th International Congress, AIP Conf. Proc. Vol. 1221, (2010), pp. 41-47.
Zhan et al., “A Lightweight Method for Detecting IC Wire Bonding Defects in X-ray Images,” Micromachines, vol. 14, p. 1119, https://doi.org/10.3390/mi14061119 (2023).
Zhang et al., “Application of confocal X-ray fluorescence based on capillary X-ray optics in nondestructively measuring the inner diameter of monocapillary optics,” Optics Comm. (2018) https://doi.org/10.1016/j.optcom.2018.11.064.
Zhang et al., “Laboratory-scale X-ray absorption spectrometer with a cylindrical Johansson crystal analyzer,” Nuclear Inst. and Methods in Physics Research, A (2023), doi: https://doi.org/10.1016/j.nima.2023.168067 (2023).
Zhang et al., “Measurement of the inner diameter of monocapillary with confocal X-ray scattering technology based on capillary X-ray optics, ” Appl. Opt. (Jan. 8, 2019), doc ID 351489, pp. 1-10.
Zhao et al., “X-ray wavefront sensing and optics metrology using a microfocus x-ray grating interferometer with electromagnetic phase stepping,” Appl. Phys. Lett. 120, 181105 (2022).
Zhou et al., “A study of new type electric field modulation multi-target X-ray source,” Nucl. Inst. and Methods in Physics Research A, https://doi.org/10.1016/j.nima.2020.164342 (2020).
Zhou et al., “X-ray wavefront characterization with grating interferometry using an x-ray microfocus laboratory source,” Proceedings, vol. 11492, Advances in Metrology for X-Ray and EUV Optics IX; 114920Q, https://doi.org/10.1117/12.2576152 (2020).
Zhu et al., “Optical Wafer Defect Inspection at the 10 nm Technology Node and Beyond,” 2022 Int. Extrem. Manuf. In press https://doi.org/10.1088/2631-7990/ac64d7 (2022).
Arsana et al., “Laboratory Liquid-Jet X-ray Microscopy and X-ray Fluorescence Imaging for Biomedical Applications,” Int'l J. Mol. Sci., Vo. 25, p. 920 (2024).
De Pauw et al., “A review of laboratory, commercially available, and facility based wavelength dispersive X-ray fluorescence spectrometers,” J. Anal. At. Spectrom., doi: 10.1039/d3ja00315a (2023).
Fahmi et al., “Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals,” Current Opinion in Chem. Bio. vol. 11, pp. 121-127 (2007).
Greczynski et al., “Binding energy referencing in X-ray photoelectron spectroscopy,” Nature Reviews Mat'ls, doi.org/10.1038/s41578-024-00743-5 (2024).
Hayashi et al., “Wave-dispersive x-ray spectrometer for simultaneous acquisition of several characteristic lines based on strongly and accurately shaped Ge crystals, ” Rev. Sci. Instr. vol. 79, 033110 (2008).
Holden et al., “Probing Sulfur Chemical and Electronic Structure with Experimental Observation and Quantitative Theoretical Prediction of K# and Valence-to -Core K# X-ray Emission Spectroscopy,” J. Phys. Chem. A doi: 10.1021/acs.jpca.0c04195 (2020).
Hönlcke et al., “Reference-free X-ray fluorescence analysis with a micrometer-sized incident beam,” Nanotechnology, https://doi.org/10.1088/1361-6528/ad3aff (2024).
Masteghin et al., “Benchmarking of X-Ray Fluorescence Microscopy with Ion Beam Implanted Samples Showing Detection Sensitivity of Hundreds of Atoms,” Small Methods, doi: 10.1002/smtd.202301610 (2024).
McRae et al., “In Situ Imaging of Metals in Cells and Tissues,” Chem Rev. vol. 109, doi:10.1021/cr900223a (2009).
Morvay, “Chemical composition depth profiling of thin films using x-ray reflectometry and fluorescence,” Ph.D. thesis, Masaryk University, Brno, Czech Republic (2024).
Novichkov et al., “Laboratory-based X-ray spectrometer for actinide science,” J. Synch. Rad. vol. 30, doi.org/10.1107/S1600577523006926 (2023).
Shafkat et al., “Assessing Compatibility of Advanced IC Packages to X-Ray Based Physical Inspection,” Elec. Device Failure Analysis, vol. 26, No. 3, pp. 14-24 (2024).
Watanabe et al., “X-ray fluorescence micro-tomography and laminography using an x-ray scanning microscope,” J. Phys: Conf. Series 186, 012022 (2009).
Yuan at al., “Micro X-ray fluorescence device based on monocapillary ellipsoidal lens for thin film thickness measurements,” Nucl. Inst. Meth. Phys. Res. A, vol. 1058, p. 168923 (2024).
Zhao et al., “Applications of the non-negative least-squares deconvolution method to analyze energy-dispersive x-ray fluorescence spectra,” Appl. Op., Vo 62, No. 20, pp. 5556-5564 (2023).
Related Publications (1)
Number Date Country
20230280291 A1 Sep 2023 US
Provisional Applications (1)
Number Date Country
63268778 Mar 2022 US