In the study of electronic materials and processes for fabricating such materials into an electronic structure, a specimen of the electronic structure can be used for microscopic examination for purposes of failure analysis and device validation and metrology. For instance, a specimen of an electronic structure such as a silicon wafer can be analyzed in a scanning electron microscope (SEM) to study a specific characteristic feature in the wafer. Such a characteristic feature may include the circuit fabricated and any defects formed during the fabrication process. An electron microscope is one of the most useful pieces of equipment for analyzing the microscopic structure of semiconductor devices.
In preparing specimens of an electronic structure for electron microscopic examination, various polishing and milling processes can be used to section the structure until a specific characteristic feature is exposed. As device dimensions are continuously reduced to the nanometer scale, the techniques for preparing specimens for study in an electron microscope have become more important. The conventional methods for studying structures by an optical microscope cannot be used to study features in a modern electronic structure due to the unacceptable resolution of an optical microscope.
SEM imaging techniques can be used to see a surface of a region of interest (ROI) within a specimen and can also be used to see the bulk of the material within the ROI. For example, a ROI on a specimen can be bombarded with ions of Xenon, Gallium or other elements generated by a focused ion beam (FIB) column to erode the surface layer of the specimen in the ROI, thus allowing layers within the ROI below the surface, and initially covered by material above, to be imaged.
A dual column system incorporating both a scanning electron microscope and a focused ion beam (FIB) unit can produce high resolution SEM images of a localized area of an electronic structure formed on a sample, such as a semiconductor wafer. A typical dual column system includes an SEM column, an FIB column, a supporting element that supports the sample and a vacuum chamber in which the sample is placed while being milled (by the FIB column) and while being imaged (by the SEM column).
Removing one or more selected layers (or a portion of a layer) to uncover or isolate a portion of the specimen is known as delayering and can be done in a dual column system, such as that described above. For example, delayering can be done by: (i) locating a region of interest that should be milled in order to remove a certain thickness of material from the specimen, (ii) moving the sample (e.g., by a mechanical supporting element) so that the specimen is located under the FIB unit, and (iii) milling the specimen to remove a desired amount of material in the region of interest. The above steps of a delayering process can be repeated many times (e.g., tens or hundreds or thousands of times) forming a dent or a hole in the specimen (usually sized a few microns to few tens of microns in lateral and vertical dimensions).
By taking SEM images of the surface every few nanometers of the delayering process, tens to hundreds or more images can be collected at even depth intervals throughout the delayering process creating a three-dimensional image of the delayered region of interest. Furthermore, by applying Energy-Dispersive X-ray spectroscopy (EDX), the exact chemical composition of the sample structures within the region of interest can be measured at different depths.
When attempting to delayer a sample, the geometry of the structure being milled can present challenges in delayering the structure in a uniform manner. For example, different materials present in and/or different structures formed in different portions of a region being delayered can result in one portion of the region being milled faster than another portion. The nonuniform milling rate can make accurate metrology difficult in such areas. Accordingly, improved metrology techniques are desirable.
Embodiments of the disclosure pertain to an improved method and system for creating a three-dimensional image of a region within a sample via a delayering process. Embodiments of the disclosure can be employed to create an accurate three-dimensional image of such a sample even if the materials or structures within the region being delayered result in a nonuniform milling rate at different portions of the region. While embodiments of the disclosure can be used to delayer structures formed on a variety of different types of samples, some embodiments are particularly useful in delayering samples that are semiconductor wafers or similar specimens.
In some embodiments, a method of evaluating a region of interest of a sample is provided. The method can include: positioning the sample within in a vacuum chamber of an evaluation tool that includes a scanning electron microscope (SEM) column and a focused ion beam (FIB) column; acquiring a plurality of two-dimensional images of the region of interest by alternating a sequence of delayering the region of interest with a charged particle beam from the FIB column and imaging a surface of the region of interest with the SEM column; and generating an initial three-dimensional data cube representing the region of interest by stacking the plurality of two-dimensional images on top of each other in an order in which they were acquired.
Various implementations of the embodiments described herein can include one or more of the following features. The method can further include estimating distortions within the initial three-dimensional data cube and/or applying an inverse transformation to correct the estimated distortions creating an updated three-dimensional data cube in which the distortions are eliminated or diminished. In some instances estimating the distortions can include comparing geometric structures measured in the initial data cube to a ground truth geometry. In some instances estimating the distortions can include identifying locations of different materials within the initial data cube known to have different milling rates, and estimating distortions within the initial three-dimensional data cube based on the identified locations of the different materials and the known different milling rates. In some instances applying an inverse transformation to correct the estimated distortions can include applying reciprocal distortions to the initial data cube calculated based on the locations of and the different milling rates of the different materials. The method can further include segmenting the initial data cube into a plurality of uniform regions; performing chemical composition measurements of each of the plurality of uniform regions; and/or adding results of the chemical composition measurements to the initial three-dimensional data cube. In some instances the chemical composition measurements can be performed separately on each of the plurality of uniform regions by taking chemical composition measurements on a selected subset of delayered slices of the sample taken during the acquiring step. In some instances the chemical composition of each region can be determined by averaging EDX composition measurements of each region. The method can further include aligning the plurality of two-dimensional images to each other prior to generating the initial three-dimensional data cube. The method can further include creating a virtual cross-section at a pre-defined position and direction by calculating points corresponding to an intersection of the cross-section with the data cube and sampling the data cube in the calculated points. The region of interest can include a first sub-region and a second sub-region, adjacent to the first sub-region. A geometry and/or materials in the first sub-region can be different than a geometry and/or materials in the second sub-region such that the first sub-region has a first milling rate and the second sub-region has a second milling rate different than the first milling rate.
Some embodiments pertain to a non-transitory computer-readable medium that stores instructions for evaluating a region of interest of a sample is provided. For example, by: positioning the sample within in a vacuum chamber of an evaluation tool that includes a scanning electron microscope (SEM) column and a focused ion beam (FIB) column; acquiring a plurality of two-dimensional images of the region of interest by alternating a sequence of delayering the region of interest with a charged particle beam from the FIB column and imaging a surface of the region of interest with the SEM column; and generating an initial three-dimensional data cube representing the region of interest by stacking the plurality of two-dimensional images on top of each other in an order in which they were acquired.
Some embodiments pertain to a system for performing x-ray spectroscopy surface material analysis of a region of a sample according to any of the methods set forth above or herein. For example, the system can include: a vacuum chamber; a sample support configured to hold a sample within the vacuum chamber during a sample evaluation process; a focused ion beam (FIB) column configured to direct a charged particle beam into the vacuum chamber toward the sample; a scanning electron microscope (SEM) column configured to direct a charged particle beam into the vacuum chamber toward the sample; and a processor and a memory coupled to the processor. The memory can include a plurality of computer-readable instructions that, when executed by the processor, cause the system to: position the sample within in a vacuum chamber of an evaluation tool that includes a scanning electron microscope (SEM) column and a focused ion beam (FIB) column; acquire a plurality of two-dimensional images of the region of interest by alternating a sequence of delayering the region of interest with a charged particle beam from the FIB column and imaging a surface of the region of interest with the SEM column; and generate an initial three-dimensional data cube representing the region of interest by stacking the plurality of two-dimensional images on top of each other in an order in which they were acquired.
To better understand the nature and advantages of the present disclosure, reference should be made to the following description and the accompanying figures. It is to be understood, however, that each of the figures is provided for the purpose of illustration only and is not intended as a definition of the limits of the scope of the present disclosure. Also, as a general rule, and unless it is evident to the contrary from the description, where elements in different figures use identical reference numbers, the elements are generally either identical or at least similar in function or purpose.
Embodiments of the disclosure pertain to an improved method and system for creating a three-dimensional image of a region within a sample via a delayering process. Embodiments of the disclosure can be employed to create an accurate three-dimensional image of such a sample even if the materials or structures within the region being delayered result in a nonuniform milling rate at different portions of the region.
In order to better understand and appreciate the disclosure, reference is first made to
System 100 can include a vacuum chamber 110 along with a scanning electron microscope (SEM) column 120 and a focused ion beam (FIB) column 130. A supporting element 140 (e.g., a sample support pedestal) can support a sample 145 (e.g., a semiconductor wafer) within chamber 110 during a processing operation in which the sample 145 (sometimes referred to herein as an “object” or a “specimen”) is subject to a charged particle beam from one of the FIB or SEM columns. Supporting element 140 can also move the sample within vacuum chamber 110 between the field of view of the two columns 120 and 130 as required for processing.
SEM column 120 and FIB column 130 are connected to vacuum chamber 110 so that a charged particle beam generated by either one of the charged particle columns propagates through a vacuumed environment formed within vacuum chamber 110 before impinging on sample 145. SEM column 120 can generate an image of a portion of sample 145 by illuminating the sample with a charged particle beam (e.g., electron beam 125), detecting particles emitted due to the illumination and generating charged particle images based on the detected particles. Towards that end, system 100 can include a detector 150, such as an energy-dispersive x-ray spectroscopy (EDX) detector or a wavelength-dispersive x-ray spectroscopy (WDX) detector, that can be used to determine a composition of one or more microscopic structures within sample 145. The EDX detector 150 can collect x-ray photons emitted as a result of an illumination of the structures by electron beam 125, and can include an energy analyzer for determining the energy of photons that are detected by the detector, which in turn can enable system 100 to characterize the element from which an x-ray photon was emitted.
FIB column 130 can mill (e.g., drill a hole in or form a dent in) sample 145 by irradiating the sample with one or more charged particle beams to form a cross section and can also smooth the cross section. The cross section can include, at different locations along the cross-section, different materials that can subsequently be analyzed with SEM column 120.
The particle imaging and milling processes each typically include scanning a charged particle beam back-and-forth (e.g., in a raster scan pattern) at a constant rate across a particular area of the sample being imaged or milled. One or more lenses (not shown) coupled to each charged particle column can implement the scan pattern as is known to those of skill in the art. The area scanned is typically a very small fraction of the overall area of sample. For example, the sample can be a semiconductor wafer with a diameter of either 150, 200 or 300 mm while each area scanned on the wafer can be a rectangular area having a width and/or length measured in microns or tens of microns.
System 100 can include one or more controllers 160, such as one or more processors or other hardware units that control the operation of system 100 by executing computer instructions stored in one or more computer-readable memories 170 as would be known to persons of ordinary skill in the art. By way of example, the computer-readable memories can include a solid-state memory (such as a random access memory (RAM) and/or a read-only memory (ROM), which can be programmable, flash-updateable and/or the like), a disk drive, an optical storage device or similar non-transitory computer-readable storage mediums.
While not shown in
Creating a Three-Dimensional Model Using Delayering Techniques
System 100 is one example of an evaluation system that can be used in accordance with the techniques disclosed herein to delayer a region of a sample and generate a three-dimensional model of the delayered region. To illustrate, reference is made to
Challenges in Generating a Three-Dimensional Model
The process discussed above with respect to
Regardless of the reason for the different milling rates, in some evaluation processes it is desirable to delayer region 410 by scanning a focused ion beam across the entirety of the region as described above with respect to
Thus, unlike the collection of images 300 depicted in
If images are taken at immediately after the delayering steps illustrated by
As can be appreciated, model 550 might not be an accurate representation of the region 410 that was delayered. To illustrate, reference is made to
Creating a Three-Dimensional Data Cube
Accordingly, embodiments of the disclosure process each image 510, 520, 530, 540 to form a collection of images that can be combined to form a three-dimensional data cube that more accurately reflects the delayered region than does three-dimensional model 550. As used herein, a three-dimensional data cube refers to a three-dimensional (3D) (or higher) range of values that can be used to model a time sequence (which in the case of a delayering process is correlated to depth) of an image's data. It is a data abstraction to evaluate aggregated data from a variety of viewpoints. A data cube can be described as the multidimensional extensions of two-dimensional tables and can be viewed as a collection 2-D tables of identical sizes stacked upon one another where the position of each table within the stack represents a depth within the sample modeled by the data cube.
Next, the sample is moved away from the FIB column into the field of view of the scanning electron microscope (SEM) column where the ROI can be scanned with an electron beam and an SEM image of the ROI can be captured (block 720). In order to make a three-dimensional data cube of the ROI, many additional SEM images can be captured at different depths of the sample. Thus, the delayering and image taking steps can be repeated multiple times (e.g., many tens or hundreds or more) depending on the requirements of a given evaluation process (block 725).
As evident from the discussion above, the sample is moved in method 700 between the FIB column to the SEM column for each SEM image. While evaluation tool 100 enables highly precise movement and control of the sample, the SEM images resolution can reach 1 nm or less, and therefore a difference in sample location of just a few nanometers results in SEM images that are not aligned properly and can adversely impact any model that is created from the images. Thus, in order to build a three-dimensional data cube (block 730), the different SEM images taken during block 720 can be registered to (aligned with) each other. Registration can be done in several different ways. In some embodiments, an anchor-based alignment approach can be employed. For example, each SEM image taken in block 720 can be an image the captures the ROI along with one or more features of the sample outside the region of interest (and therefore not within the region that is delayered) that can be identified as unique in the SEM (e.g., feature 820 shown in
In other embodiments the anchor can be used to precisely align each image to the anchor prior to capturing the image. For example, two SEM images can be taken of the sample in block 720 where a first SEM image is taken of an area of the sample that includes the anchor (e.g., feature 820 shown in
Once the images have been registered to each other and an initial version of the data cube compiled, embodiments can identify distortions in the data cube that can be corrected (block 740). In some embodiments distortions can be identified and calibrated by comparing the data cube generated in block 730 to what can be referred to as the “Ground Truth”. As used herein, the “ground truth geometry” refers to the geometry of geometric structures within the specimen that would be produced from a manufacturing process, absent manufacturing variances, according to the known steps of the manufacturing process. Thus, the ground truth is information that would be known to be true if there were no manufacturing variances or other deviations during the manufacturing process of the specimen. The Ground Truth can typically be obtained from an entity (e.g., customer) that knows the layout and fabrication details that were used in fabricating the sample in the first place. In other embodiments, distortions can be identified and calibrated by comparing the initial data cube to results from delayering a three-dimensional region of interest of a known metrology having the same intended layout and manufactured using the same fabrication process as the sample. In some embodiments distortions can be identified and calibrated (block 740) based on different known milling rates of different materials within the region of interest. For example, the locations of different materials within the region of interest that are known to have different milling rates can be determined. Then, distortions within the initial three-dimensional data cube can be estimated and corrected for by applying reciprocal distortions to the initial data cube calculated based on the locations of and the different milling rates of the different materials.
Next, any distortions that have been identified can be corrected (block 750). In some embodiments, corrections can be made by calculating and applying transformations inverse to the distortions measured or otherwise determined in block 740. Once the transformations are applied to the initial data cube, the updated or transformed data cube will represent a more accurate model of the delayered region and enable metrology operations to perform nondestructive, virtual slicing of the data cube in any desired direction according to a metrology specification (block, 760). For example, a virtual cross-section of the region of interest can be created at a pre-defined position and direction by calculating points corresponding to an intersection of the cross-section with the data cube and sampling the data cube in the calculated points.
While not shown in
As stated above, embodiments of the disclosure can be used to delayer and form a three-dimensional image of one or more regions within many different types of samples including electronic circuits formed on semiconductor structures, solar cells formed on a polycrystalline or other substrate, nanostructures formed on various substrates and the like. As one non-limiting example,
Embodiments of the disclosure can generate an accurate three-dimensional data cube of region 810 by sequentially milling away an uppermost layer of the region. The milling process can mill region 810 by scanning the FIB back and forth within the region according to a raster pattern, such as the scan pattern 430 illustrated above. The removed portion can extend across the entirety of the region 810 in both the X and Y directions but, due to the different milling rates in sub-regions 810a and 810b, the removed portion can have a depth in the Z direction that differs over time in sub-region 810a as compared to sub-region 810b. For example, if region 810 is a square having a length and width of X microns, separate and very thin slices (as thin as 1 atomic layer or less) of X by X microns can be sequentially removed from region 810 during the milling process where, in each layer, the removed square includes material from sub-region 810a and material from sub-region 810b. As the delayering process proceeds over thousands of iterations, and due to the different milling rates between the sub-regions, more layers of material might be removed in sub-region 810a as compared to sub-region 810b. Thus, a portion of SEM images taken at various intervals during the delayering process from sub-region 810a will include materials and features present in sub-region 810a that are at a different depth than a second portion of the SEM image from sub-region 810b. Despite the non-planar aspects of such images, embodiments can stitch together an accurate three-dimensional image of region 810 using the techniques described above.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not target to be exhaustive or to limit the embodiments to the precise forms disclosed.
Additionally, while different embodiments of the disclosure were disclosed above, the specific details of particular embodiments may be combined in any suitable manner without departing from the spirit and scope of embodiments of the disclosure. Further, it will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings. Also, any reference in the specification above to a method should be applied mutatis mutandis to a system capable of executing the method and should be applied mutatis mutandis to a computer program product that stores instructions that once executed result in the execution of the method. Similarly, any reference in the specification above to a system should be applied mutatis mutandis to a method that may be executed by the system should be applied mutatis mutandis to a computer program product that stores instructions that can be executed by the system; and any reference in the specification to a computer program product should be applied mutatis mutandis to a method that may be executed when executing instructions stored in the computer program product and should be applied mutandis to a system that is configured to executing instructions stored in the computer program product.
Because the illustrated embodiments of the present disclosure may for the most part, be implemented using electronic components and equipment known to those skilled in the art, details of such are not be explained in any greater extent than that considered necessary as illustrated above, for the understanding and appreciation of the underlying concepts of the present disclosure and in order not to obfuscate or distract from the teachings of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
6670610 | Shemesh et al. | Dec 2003 | B2 |
8709269 | Shemesh | Apr 2014 | B2 |
9934938 | Uemoto | Apr 2018 | B2 |
9964654 | Laake | May 2018 | B2 |
10811219 | Shneyour et al. | Oct 2020 | B2 |
20090296073 | Wagganer | Dec 2009 | A1 |
20130082176 | Yamamoto et al. | Apr 2013 | A1 |
20130094716 | Carpio | Apr 2013 | A1 |
20150115156 | Suzuki | Apr 2015 | A1 |
20160181061 | Kim | Jun 2016 | A1 |
20190355550 | Hayworth | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
20200135218 | Dec 2020 | KR |
Entry |
---|
PCT/US2022/030951, “International Search Report and Written Opinion”, dated Sep. 23, 2022, 11 pages. |
Zakrzewski, et al., “A Three-Dimensional Reconstruction of Coal Microstructure using the Cryo-Fib-Sem Technique”, Fuel, vol. 275 Available Online at: https://doi.org/10.1016/j.fuel.2020.117919, Sep. 1, 2020, pp. 1-11. |
Number | Date | Country | |
---|---|---|---|
20220415610 A1 | Dec 2022 | US |