The present invention relates to semiconductor devices using 4H-polytype GaN-based nitride semiconductor epitaxial layers grown on 4H-polytype substrates, and more particularly relates to method for increasing emission efficiency of the GaN-based optoelectronic devices and enabling high speed and high power operations of the GaN-based electronic devices.
III-V nitrides are wide band gap III-V compound semiconductors which contain nitrogen as a group-V element, and generally written as B1-x-yInxAlyGa2xN (0≦x≦1, 0≦y≦1, 0≦z≦1). Such III-V nitrides are widely used for visible light emitting diodes (LEDs) in many applications such as various indicators, traffic signals and so on. In addition, excitation of fluorescent material using the GaN-based blue or ultraviolet LEDs enables emitting white light, which would replace current light bulbs with longer lifetime. A blue-violet GaN-based semiconductor lasers for high-density optical disk systems is also a promising application of III-V nitrides. At present, III-V nitride lasers are commercially available for proto-type high density optical disk systems. High speed and high power GaN-based transistors are potential applications as well.
Due to the difficulties to obtain lattice-matched III-V nitride substrates, conventional III-V nitride devices are grown on foreign substrates such as sapphire or SiC. Among such foreign substrates, SiC is very promising since it has closer lattice constant from that of III-V nitrides as well as better thermal conductivity. SiC is also well-known material which has polytypism such as 3C-, 4H-, 6H-, 15R-type. So far, epitaxial growth of III-V nitrides on the various SiC polytypes are disclosed.
Karino et al. (Japanese Patent Published H8-125275) disclosed hexagonal III-V nitride-based laser devices on 2H-, 4H- and 6H-polytypes of (11-20) a-face or (10-10) m-face SiC substrates.
Hatano et al. (U.S. Pat. No. 5,432,808) disclosed formation of InGaAlN-based device on 3C (cubic) SiC (111) substrate.
Stummer et al. (Physical Review Letters Vol. 77, No. 9, (1996) p. 1797-1799) explained the epitaxial growth of 2H—AlN on 6H—SiC substrate.
However, how the combination of the polytype of SiC substrate and that of the overgrown III-V nitrides affect the crystal quality is not still clear. This invention is disclosed based on experimental results by inventors of this disclosure to find the best combination of the polytypes in view of crystal quality.
Accordingly, it is an object of present invention to provide the best combination of the polytypes for both SiC substrate and the overgrown III-V nitrides. The present invention provides a structure and method for overcoming many of the aforesaid limitations of the prior art by choosing the best combination of the polytypes, as summarized below and described in greater detail hereinafter.
The present invention provides a semiconductor device comprising a 4H-type epitaxial III-V nitride film grown on a 4H-type substrate. The substrate material is preferably SiC, and/or preferably (11-20) a-face. The III-V nitride epitaxial film preferably comprises AlN. The number of the group III atoms on the surface of the III-V nitride film is preferably equal to the number of nitrogen atoms on the surface.
In a somewhat different application, the present invention also provides a semiconductor laser comprising a 4H-type epitaxial III-V nitride film grown on a 4H-type substrate. The substrate material is preferably SiC, and/or preferably (11-20) a-face. The III-V nitride epitaxial film preferably comprises AlN. The number of the group III atoms on the surface of the III-V nitride film is preferably equal to the number of nitrogen atoms on the surface. It is also preferred that the waveguide is formed as a straight line perpendicular to either (0001) face or (1-100) face. The III-V nitride preferably contains either 4H—AlN or conductive 4H—AlGaN as a initial layer of the epitaxial growth. Highly conductive p-type 4H—SiC is preferably used with p-type 4H—AlGaN initial layer. The semiconductor laser may contain laterally epitaxial grown layers with reduced dislocation density on which the waveguide is formed. The seed layer of the lateral epitaxial growth is preferably 4H—GaN on 4H—AlN. It is also preferred that the lateral growth starts from the 4H—GaN and preferably air gaps are formed between the SiC substrate and the laterally grown layer. The semiconductor laser is preferably cleaved along to either <0001> or <1-100> direction.
In a somewhat different application, the present invention also provides a light emitting diode (LED) comprising a 4H-type epitaxial III-V nitride film grown on a 4H-type substrate. The substrate material is preferably SiC, and/or preferably (11-20) a-face. The III-V nitride epitaxial film preferably comprises AlN. The number of the group III atoms on the surface of the III-V nitride film is preferably equal to the number of nitrogen atoms on the surface. It is also preferred that the SiC substrate is p-type and the top layer of the III-V nitride layer is n-type on which ohmic contact is formed without any transparent electrode.
In a somewhat different application, the present invention also provides a transistor comprising a 4H-type epitaxial III-V nitride film grown on a 4H-type substrate. The substrate material is preferably SiC, and/or preferably (11-20) a-face. The III-V nitride epitaxial film preferably comprises AlN. The number of the group HI atoms on the surface of the III-V nitride film is preferably equal to the number of nitrogen atoms on the surface. It is also preferred that the III-V nitride film comprises AlGaN on GaN or AlGaN on InGaN on GaN heterostructure. The III-V nitride film preferably comprises modulation-doped layers.
In a somewhat different application, the present invention also provides fabrication methods of semiconductor laser, light emitting diode, and transistor comprising a 4H-type epitaxial III-V nitride film grown on a 4H-type substrate. The substrate material is preferably SiC, and/or preferably (11-20) a-face. The III-V nitride epitaxial film preferably comprises AlN. The number of the group III atoms on the surface of the III-V nitride film is preferably equal to the number of nitrogen atoms on the surface. The fabrication method of a semiconductor laser may contain lateral epitaxial growth and preferably the seed layer of the lateral growth may be selectively etched 4H—GaN on 4H—AlN. It is also preferred that the lateral growth starts from the 4H—GaN so that air gaps are formed between the SiC substrate and the laterally grown layer.
These and other objects, advantages and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following, or may be learned from the practice of the invention. The advantages of the invention may be realized and attained as particularly pointed out in the attained claims.
(Device Structure)
Referring first to
Detailed structural parameters of the semiconductor laser are summarized in Table 1. Table 1 shows the example for the thickness of each layer and the carrier concentrations of some layers including Ga and N. In Table 1, the carrier concentrations of p-AlGaN cladding layer and n-AlGaN cladding layer are substantially same, and the carrier concentration of the cladding layer is higher than the base layer. The active layer 105 has the quantum well and barrier layer. As shown in table 1, the composition of the well layer is undoped In0.1Ga0.9N, and the composition of the barrier layer is undoped In0.02Ga0.98N. The thickness of the well layer and the barrier layer is 4 nm. And the number of the well layer in the active layer 105 is three.
The (11-20) face represents the stacking sequence of the consisting atomic pair as shown in
On the other hand, in case the used substrate is 6H—SiC (11-20) face, of which the atomic configuration is shown in
In contrast the 4H—AlN on 4H—SiC (11-20) heterostructure does not contain such disarrangement as is described below in detail. The (11-20) is so-called non polar face on which both group III and nitrogen atoms are located. On the other hand, commonly used (0001) c-face of the III-V nitride device layer is polar face on which either group III or nitrogen atoms are located. Since polarization is aligned along (0001) direction of III-V nitride epitaxial films, the build in electric fields are produced by the spontaneous and piezoelectric polarization on such polar face. The electric field in the quantum well structure results in lower light emission efficiency with the longer wavelength, which is so-called quantum confined Stark effect. Even undoped AlGaN/GaN hetero structure exhibits sheet carrier concentration in the order of 1013 cm−2 as well.
On the contrary, the double hetero epi-structure with 4H-polytypes with non polar a-face described in the first embodiment exhibits a band structure as shown in
(Fabrication Process)
Referring next to
First, 380 nm-thick 4H—AlN is grown on a surface of a 4H—SiC (11-20) substrate 301 by molecular beam epitaxy (MBE).
In a degreasing step the 4H—SiC (11-20) substrate 301 is first degreased using organic solvents.
In a wet chemical treatment step the 4H—SiC (11-20) substrate 301 is dipped in solutions in turn. First solution is HCl, second solution is HCl+HNO3 (3:1) and third solution HF.
In a thermal cleaning step the 4H—SiC (11-20) substrate 301 is thermally cleaned at 1000° C. for 30 minutes to make a flat and/or a clean surface of the substrate 301, and then loaded into the MBE chamber.
Then, in a growth of an AlN buffer layer step the AlN layer 302 is epitaxially grown by supplying metal Al source from an effusion cell and the radical nitrogen atoms from RF plasma source. Typical growth temperature for the AlN layer is 1000° C. with an Al beam equivalent pressure of 4.7×10−7 Torr and RF power of 400 W with a nitrogen flow rate of 0.5 sccm. The growth rate under the condition is 380 nm/hr.
After the MBE growth, in a growth of III-V nitride epitaxially layers step the wafer is reloaded to a metal organic chemical vapor deposition (MOCVD) reactor to grow GaN-based double hetero structure for the blue-violet laser. Trimethyl gallium (TMGa) and ammonia are supplied for the GaN growth.
Trimethyl aluminum (TMA1) and/or trimethyl indium (TMIn) are added for the ternary or quaternary alloy growth. Cp2Mg and SiH4 are used for the p-type and n-type doping, respectively. As shown in
Dry etching process such as inductive coupled plasma (ICP) etching using Cl2 selectively etches the p-type AlGaN cladding layer 106 to form the straight ridge-shaped waveguide using a patterned photo resist as a mask. Then, the same etching technique etches the active layer 105 and cladding layer 104 to expose the n-GaN layer 103 prior to the ohmic contact 109 formations on it.
After the two processing steps of the dry etching, a 300 nm-thick SiO2 film 110 is deposited, typically by using plasma assisted chemical vapor deposition. The SiO2 film 110 on the side wall of the ridge-shaped waveguide confines the emitted light inside the ridge structure due to the difference of the effective refractive index between the SiO2 110 and the cladding layer 106. Ni/Au layer (electrode) 108 as a ohmic contact on p-AlGaN cladding layer 106 and Ti/Al layer (electrode) 109 as a ohmic contact on n-GaN 103 are formed after the selective wet chemical etching of SiO2 film 110 where the ohmic contacts are to be formed. The processed substrate is thinned from the back side typically down to 150 μm. The cleaved facets are formed along to <0001> axis to form mirrors of the laser. Typical cavity length is 600 μm. The fabricated laser exhibits lower threshold current density because of high emission efficiency on the non-polar face.
(Characterization of Initial AlN Epitaxial Layer)
The AlN initial epitaxial layer is characterized in detail as is described below.
The above-mentioned results shown in
Referring next to
As shown in
On the contrary, if the direction of the stripe is <0001> direction, the stacking order of the atoms in the wing region 1212 is determined by the growth condition rather than the stacking order in the wing region 1212. The detailed structural parameters of the semiconductor laser are summarized in Table 3. Table 3 discloses the thickness and carrier concentration each layers in one example. In Table 3 a p-type AlGaN cladding layer has substantially same carrier concentration “5×1017 cm−3” as an n-type AlGaN cladding layer, and an n-type GaN base layer has substantially same carrier concentration “1×1018 cm−3” as an n-type GaN seed layer. And an undoped AlN layer 1202 and an undoped quantum wells 1206 is not doped. The active layer 1206 has the quantum well and barrier layer. As shown in table 2, the composition of the well layer is undoped In0.1Ga0.9N, and the composition of the barrier layer is undoped In0.02Ga0.98N. The thickness of the well layer and the barrier layer is 4 nm. And the number of the well layer in the active layer 105 is three.
The detailed processing procedures are as follows. First, 380 nm-thick 4H—AlN is grown on 4H—SiC(11-20) face by molecular beam epitaxy (MBE) Details is described same as in the first embodiment as following.
In a degreasing step the 4H—SiC (11-20) substrate 1201 is first degreased using organic solvents.
In a wet chemical treatment step the 4H—SiC (11-20) substrate 1201 is dipped in solutions in turn. First solution is HCl, second solution is HCl+HNO3 (3:1) and third solution HF.
In a thermal cleaning step the 4H—SiC (11-20) substrate 1201 is thermally cleaned at 1000° C. for 30 min to make a flat and/or a clean surface of the substrate, and then loaded into the MBE chamber.
Then, in a growth of an AlN buffer layer step the AlN layer 1202 is epitaxially grown by supplying metal Al source from an effusion cell and the radical nitrogen atoms from RF plasma source. Typical growth temperature for the AlN layer is 1000° C. with an Al beam equivalent pressure of 4.7×10−7 torr and RF power of 400 W with a nitrogen flow rate of 0.5 sccm. The growth rate under the condition is 380 nm/hr.
After the MBE growth, n-type 4H—GaN seed layer 1203 having 2 μm-thickness is grown on the 4H—AlN initial layer 1202 by MOCVD.
Then, the n-type 4H—GaN seed layer 1203 and the 4H—AlN initial layer 1202 are selectively etched by dry etching such as ICP etching. Stripe pattern along to <0001> direction with the width of typically 5 μm is formed. Preferably, as shown in
After the stripe patterning, n-type 4H—GaN base layer having 4 μm thicknesses is grown on the stripes by lateral epitaxial growth. The laterally growth reduced dislocation density from that at the stripe region of the n-type 4H—GaN seed layer 1203. Note that the lateral growth takes place from the n-type 4H—GaN seed layer 1203 on the stripe of the 4H—AlN initial layer 1202, so that the no epitaxial film is grown on the sidewall of the 4H—AlN initial layer 1202. Subsequently, n-type 4H—Al0.07Ga0.93N cladding layer 1205 having 1 μm-thickness, an undoped InGaN multi-quantum well active layers 1206, p-type 4H—Al0.07Ga0.93N cladding layer 1207 having 0.5 μm-thickness are grown on the n-type 4H—GaN base layer 1204. All of the epitaxial growth layers exhibit 4H-polytype inheriting the atomic sequence of 4H—AlN initial layer 1202.
Following dry etching processes selectively etches the p-type 4H AlGaN cladding layer 1207 to form the straight ridge-shaped waveguide 1208 as well as the 4H—InGaN multi quantum well active layer 1206 and n-type 4H AlGaN cladding layer 1205 to expose the n-type 4H—GaN base layer 1204.
After the etching steps, a 300 nm-thick SiO2 film 1211 is deposited to confine the emitted light in the waveguide 1208. Ni/Au layer (electrode) 1209 as a p-ohmic contact and Ti/Al layer (electrode) 1210 as an n-ohmic contact are formed in contact with the SiO2 film 1209. The substrate thinning process followed by the cleaving process is conducted to fabricate a blue-violet laser diodes on the non-polar face with lower threshold current density.
Referring next to
As shown in
The laser structure on n-type 4H—SiC 1301 as shown in
The laser structure on p-type 4H—SiC as shown in
All of the III-V nitride layers shown in
The detailed processing procedures are described for the embodiment on p-type SiC substrate 1309.
First, 380 nm-thick p-type 4H—Al0.5Ga0.5N initial layer is grown on p-type 4H—SiC(11-20) face substrate 1301 by molecular beam epitaxy (MBE) using the same epitaxial procedure explained in the first embodiment.
In a degreasing step the p-type 4H—SiC (11-20) substrate 1309 is first degreased using organic solvents.
In a wet chemical treatment step the p-type 4H—SiC (11-20) substrate 1309 is dipped in solutions in turn. First solution is HCl, second solution is HCl+HNO3 (3:1) and third solution HF.
In a thermal cleaning step the p-type 4H—SiC (11-20) substrate 1309 is thermally cleaned at 1000° C. for 30 min to make a flat and/or clean surface of the substrate, and then loaded into the MBE chamber.
The dopant Mg is introduced from the heated effusion cell in the MBE. Dopant atom is showing shallower acceptor level with low resistivity.
After the MBE growth, p-type 4H Al0.07Ga0.93N cladding layer 1304 having 0.5 μm-thickness, undoped InGaN multi-quantum well active layers 1303, n-type 4H Al0.07Ga0.93N cladding layer 1302 having 0.5 μm-thickness are grown by MOCVD. As explained in the first embodiment, n-type 4H AlGaN cladding layer 1302 and p-type 4H AlGaN cladding layer 1304, p-type 4H AlGaN with higher Al content maybe placed between the p-type 4H Al0.07Ga0.93N cladding layer 1304 and the active layer 1303. All of the regrowth layers exhibit 4H-polytype inheriting the atomic sequence of the MBE grown p-type 4H—AlGaN layer 1304.
Following dry etching processes selectively etches the n-type 4H—AlGaN cladding layer 1302 to form the straight ridge-shaped waveguide 1305.
After the etching steps, a SiO2 film 1308 having 300 nm-thickness is deposited to confine the emitted light in the waveguide 1305. Then Ti/Au layer (electrode) 1310 as an n-ohmic contact 1310 is formed on the waveguide 1305. Wafer thinning process and Al—Si ohmic contact (electrode) 1311 formation for p-type SiC substrate followed by the cleaving are conducted to fabricate a blue-violet laser diodes on the non-polar face with vertical device configuration. In case the laser is formed on n-type SiC substrate, the top p-type ohmic contact is Ni/Au 1306, and back side contact for n-SiC is Ni 1307.
Referring next to
As shown in
The LED structure on n-type 4H—SiC 1401 as shown in
The LED structure on p-type 4H—SiC 1409 as shown in
As shown in
Table 5 (a) shows a device having an n-type 4H—SiC (11-20) substrate. In Table 5 (a) an n-type AlGaN cladding layer has substantially same carrier concentration “5×1017 cm−3” as a p-type AlGaN cladding layer, and an n-type AlGaN initial layer has substantially same carrier concentration “1×1018 cm−3” as an n-type GaN contact layer and n-type AlGaN initial layer. And an undoped quantum wells are not doped. The active layer 1403 has the quantum well and barrier layer. As shown in table 5(a), the composition of the well layer is undoped In0.02A10.15Ga0.848N, and the composition of the barrier layer is undoped Al0.15Ga0.85N.
The thickness of the well layer is 2 nm and the thickness of the barrier layer is 5 nm. And the number of the well layer in the active layer 1403 is three.
Table 5 (b) shows a device having a p-type 4H—SiC (11-20) 1409. In Table 5 (b) an n-type AlGaN cladding layer 1402 has substantially same carrier concentration “5×1017 cm−3” as a p-type AlGaN cladding layer 1404, and an p-type GaN initial layer has lower carrier concentration “1×1018 cm−3” than an p-type AlGaN cladding layer. And an undoped quantum wells 1403 are not doped.
The detailed processing procedures are described for the embodiment on p-type SiC (1.1-20) substrate 1409.
First, 380 nm-thick p-type 4H—Al0.5Ga0.5N is grown on p-type 4H—SiC (11-20) face by molecular beam epitaxy (MBE) as is explained in the third embodiment.
In a degreasing step the p-type 4H—SiC (11-20) substrate 1409 is first degreased using organic solvents.
In a wet chemical treatment step the p-type 4H—SiC (11-20) substrate 1409 is dipped in solutions in turn. First solution is HCl, second solution is HCl+HNO3 (3:1) and third solution HF.
In a thermal cleaning step the p-type 4H—SiC (11-20) substrate 1309 is thermally cleaned at 1000° C. for 30 min to make a flat and/or clean surface of the substrate, and then loaded into the MBE chamber.
The dopant Mg is introduced from the heated effusion cell in the MBE. Dopant atom is showing shallower acceptor level with low resistivity.
After the MBE growth, p-Al0.25Ga0.75N cladding layer 1404 having 100 nm-thickness, undoped InAlGaN multi-quantum well active layers 1403, n-type Al0.25Ga0.75N cladding layer 1402 having 100 nm-thickness are grown by MOCVD. A p-type 4H—AlGaN with higher Al content than the cladding layer 1404 maybe placed between the p-cladding layer 1404 and the active layer to suppress the overflow of the electrons.
The multi quantum well 1403 may be InAlGaN (well layer)/AlGaN (barrier layer) quantum well to emit the ultraviolet light at around 340 nm. All of the regrowth layers exhibit 4H-polytype inheriting the atomic sequence of the MBE grown 4H—AlGaN layer.
Then Ti/Au layer 1410 as a pad electrode is formed on the n-type 4H—AlGaN cladding layer 1402. Wafer thinning and Al—Si ohmic contact 1411 formation for p-type SiC substrate are conducted to fabricate an ultra violet LED on the non-polar face with vertical device configuration.
Referring next to
The detailed structure and the process sequences are described as follows. First, 4H—AlN initial layer 1502 as a buffer layer is grown on a semi-insulating 4H—SiC (11-20) substrate 1501 having 380 nm-thickness by molecular beam epitaxy (MBE) as is explained in the first embodiment.
In a degreasing step the p-type 4H—SiC (11-20) substrate 1501 is first degreased using organic solvents.
In a wet chemical treatment step the p-type 4H—SiC (11-20) substrate 1501 is dipped in solutions in turn. First solution is HCl, second solution is HCl+HNO3 (3:1) and third solution HF.
In a thermal cleaning step the p-type 4H—SiC (11-20) substrate 1501 is thermally cleaned at 1000° C. for 30 min to make a flat and/or clean surface of the substrate, and then loaded into the MBE chamber.
After the MBE growth, undoped 4H—AlGaN layer 1504 having 5 μm-thickness and n-type 4H—Al0.25Ga0.75N layer 1505 having 30 nm-thickness with carrier concentration of 2×1018 cm−3 are grown by MOCVD.
A dry etching process selectively etches the area to be isolated around the channel.
Then, Ti/Al n-type ohmic contact as a source electrode 1506 and p-type ohmic contact as a drain electrode 1507, and Pd—Si gate electrode 1508 is formed as a source, a drain and a gate of the field effect transistor (FET) as shown in
The detailed structural parameters of the field effect transistor are summarized in Table 6. Table 6 discloses the thickness and carrier concentration each layers in one example. The uniformly doped n-type 4H—Al0.25Ga0.75N layer 1505 may be a d-doped layer with higher carrier concentration with atomic level thickness.
Although the above five embodiments are disclosed for III-V nitrides on 4H—SiC substrate, the substrate is not limited to SiC and may be, for example, ZnO. The substrate with 4H-polytype such as 4H—SiC and 4H—ZnO is useful for each embodiment. In addition, the III-V nitride layers may be chosen from any composition of B1-x-y-zInxAlyGazN (0≦x≦1, 0≦y≦1, 0≦z≦1) alloy. The used (11-20) substrate may be inclined less than 10 degree from the main face towards either <0001> or <1-100> direction.
Having fully described a preferred embodiment of the invention and various alternatives, those skilled in the art will recognize, given the teachings herein, that numerous alternatives and equivalents exist which do not depart from the invention. It is therefore intended that the invention not be limited by the foregoing description, but only by the appended claims.
Number | Date | Country | |
---|---|---|---|
Parent | 10812416 | Mar 2004 | US |
Child | 12496271 | US |