Adjusting substrate temperature to improve CD uniformity

Information

  • Patent Grant
  • 10056225
  • Patent Number
    10,056,225
  • Date Filed
    Monday, December 23, 2013
    11 years ago
  • Date Issued
    Tuesday, August 21, 2018
    6 years ago
Abstract
A plasma etching system having a substrate support assembly with multiple independently controllable heater zones. The plasma etching system is configured to control etching temperature of predetermined locations so that pre-etch and/or post-etch non-uniformity of critical device parameters can be compensated for.
Description
BACKGROUND

With each successive semiconductor technology generation, diameters of substrates, e.g., wafers, tend to increase and transistor sizes decrease, resulting in the need for an ever higher degree of accuracy and repeatability in substrate processing. Semiconductor substrate materials, such as silicon substrates, are processed by techniques which include the use of vacuum chambers. These techniques include non plasma applications such as electron beam deposition, as well as plasma applications, such as sputter deposition, plasma-enhanced chemical vapor deposition (PECVD), resist strip, and plasma etch.


Plasma etching systems available today are among those semiconductor fabrication tools which are subject to an increasing need for improved accuracy and repeatability. One metric for plasma etching systems is increased uniformity, which includes uniformity of process results on a semiconductor substrate surface as well as uniformity of process results of a succession of substrates processed with nominally the same input parameters. Continuous improvement of within-substrate uniformity is desirable. Among other things, this calls for plasma chambers with improved uniformity, consistency and self diagnostics.,


SUMMARY

Disclosed herein is a method of using a plasma etching system comprising a substrate support assembly for supporting a substrate during plasma etching, the substrate support assembly comprising a plurality of independently controllable heater zones in an arrangement under device die locations on the substrate, and a controller unit that controls each heater zone. The method comprises (a) measuring pre-etch, or post-etch critical device parameters from previously etched substrate, on the device die locations of the substrate on the substrate; (b) communicating the pre-etch or post-etch critical device parameters to the plasma etching system; (c) subsequently supporting the substrate on the substrate support assembly; (d) communicating process recipe parameters to the plasma etching system and/or loading process recipe parameters from a memory to the plasma etching system; (e) deducing target etching temperatures at pre-determined locations on the substrate from the process recipe parameters, target post-etch critical device parameter data, and the pre-etch critical device parameters from incoming substrates, and/or the post-etch critical device parameters from previously etched substrate; (f) adjusting temperature at each predetermined location based on the target etching temperature at the predetermined location using the controllable heater zones; and (g) plasma etching the substrate.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic of the cross-sectional view of a substrate support assembly in which a heating plate with an array of heater zones is incorporated, the substrate support assembly also comprising an electrostatic chuck (ESC); and



FIG. 2 illustrates the topology coal connection between power supply and power return lines to an array of heater zones in one embodiment of a heating plate which can be incorporated in a substrate support assembly.





DETAILED DESCRIPTION

Radial and azimuthal substrate temperature control in a semiconductor processing apparatus to achieve target critical dimension (CD) uniformity on the substrate is becoming more demanding. Even a small variation of temperature may affect CD to an unacceptable degree, especially as CD approaches sub-20 nm in semiconductor fabrication processes.


A substrate support assembly may be configured for a variety of functions during processing, such as supporting the substrate, tuning the substrate temperature, and supplying radio frequency power. The substrate support assembly can comprise an electrostatic chuck (ESC) useful for electrostatically clamping a substrate onto the substrate support assembly during processing. The ESC may be a tunable ESC (T-ESC). A T-ESC is described in commonly assigned U.S. Pat. Nos. 6,847,014 and 6,921,724, which are hereby incorporated by reference. The substrate support assembly may comprise a ceramic substrate holder, a fluid-cooled heat sink (hereafter referred to as cooling plate) and a plurality of concentric heater zones to realize step by step and radial temperature control. Typically, the cooling plate is maintained between 0° C. and 30° C. The heaters are located on the cooling plate with a layer of thermal insulator in between. The heaters can maintain the support surface of the substrate support assembly at temperatures about 0° C. to 80° C. above the cooling plate temperature. By changing the heater power within the plurality of heater zones, the substrate support temperature profile can be changed between center hot, center cold, and uniform. Further, the mean substrate support temperature can be changed step by step within the operating range of 0 to 80° C. above the cooling plate temperature. A small azimuthal temperature variation poses increasingly greater challenges as CD decreases with the advance of semiconductor technology.


Controlling temperature is not an easy task for several reasons. First, many factors can affect heat transfer, such as the locations of heat sources and heat sinks, the movement, materials and shapes of the media. Second, heat transfer is a dynamic process. Unless the system in question is in heat equilibrium, heat transfer will occur and the temperature profile and heat transfer will change with time. Third, non-equilibrium phenomena, such as plasma, which of course is always present in plasma processing, make theoretical prediction of the heat transfer behavior of any practical plasma processing apparatus very difficult if not impossible.


The substrate temperature profile in a plasma processing apparatus is affected by many factors, such as the plasma density profile, the RF power profile and the detailed structure of the various heating the cooling elements in the electrostatic chuck, hence the substrate temperature profile is often not uniform and difficult to control with a small number of heating or cooling elements. This deficiency translates to non-uniformity in the processing rate across the whole substrate and non-uniformity in the critical dimension of the device dies on the substrate.


Non-uniformity in the critical dimension can be caused by upstream processes, for example, photolithography. Because of the parallel nature of photolithography (i.e. all device dies on a substrate are exposed together) and factors difficult to control such as light source non-uniformity, diffraction on photomasks, non-uniformity in temperature, non-uniformity in photoresist thickness, etc., post-lithography and pre-etch substrates usually have non-uniformity in device features. If unchecked and allowed to propagate to downstream processes, such non-uniformity can result in reduced device yield.


It would be advantageous and desirable to incorporate multiple independently controllable heater zones in the substrate support assembly to enable a plasma etching system to actively create and maintain the target spatial and temporal temperature profile, and to compensate for adverse factors that affect CD uniformity.


A substrate support assembly with independently controlled heater zones is described in U.S. patent application Ser. No. 12/582,991 filed on Oct. 21, 2009, which is hereby incorporated by reference.



FIGS. 1-2 show a substrate support assembly comprising one embodiment of the heating plate having an array of heater zones 101 incorporated in two electrically insulating layers 104A and 104B. The electrically insulating layers may be a polymer material, an inorganic material, a ceramic such as silicon oxide, alumina, yttria, aluminum nitride or other suitable material. The substrate support assembly further comprises (a) an ESC having a ceramic layer 103 (electrostatic clamping layer) in which an electrode 102 (e.g. monopolar or bipolar) is embedded to electrostatically clamp a substrate to the surface of the ceramic layer 103 with a DC voltage, (b) a thermal barrier layer 107, (c) a cooling plate 105 containing channels 106 for coolant flow.


As shown in FIG. 2, each of the heater zones 101 is connected to one of the power supply lines 201 and one of the power return lines 202. No two heater zones 101 share the same pair of power supply 201 and power return 202 lines. By suitable electrical switching arrangements, it is possible to connect a pair of power supply 201 and power return 202 lines to a power supply (not shown), whereby only the heater zone connected to this pair of lines is turned on. The time-averaged heating power of each heater zone can be individually tuned by time-domain multiplexing. In order to prevent crosstalk between different heater zones, a rectifier 250 (e.g. a diode) may be serially connected between each heater zone and the power supply lines connected thereto (as shown in FIG. 2), or between each heater zone and the power return lines connected thereto (not shown). The rectifier can be physically located in the heating plate or any suitable location. Alternatively, any current blocking arrangement such as solid state switches can be used to prevent crosstalk.


Described herein is a method of using a plasma etching system having a substrate support assembly with independently controllable heater zones, for compensation for non-uniformity on a substrate to be etched by measuring pre-etch critical device parameters, or post-etch critical device parameters from previously etched substrate, on a plurality of device die locations on the substrate and using the measured information to tune temperatures at predetermined locations on the substrate during etching.


For example, after a substrate undergoes lithography, a pattern is formed in a resist layer on the substrate. The pattern in the resist layer can have non-uniformity in critical dimensions. Pre-etch critical dimensions in the resist layer on each device die on the substrate can be measured with a suitable tool. The patterned resist layer is used as a mask in later plasma etching of the substrate underneath. Temperature during plasma etching can affect critical dimensions of the etched pattern in the substrate (post-etch critical dimensions). If the pre-etch critical dimensions at a device die location are determined to fall outside of tolerable error from target values, etching temperature of the device die location can be tuned by the heater zones such that the post-etch critical dimensions are within tolerable error from the target values. Thus, the measured pre-etch critical dimensions can be used to adjust etching temperature of each device die location to compensate for the particular amount of error in the pre-etch critical dimensions at the device die location.


The plasma etching system can have independently controllable heater zones assembled in a heating plate, and a controller unit that controls each heater zone. By tuning the power of each heater zone under control of the controller unit, the temperature profile during processing can be shaped both radially and azimuthally. The heater zones are preferably arranged in a defined pattern, for example, a rectangular grid, a hexagonal grid, or other pattern. Each heater zone of the heating plate is preferably of similar size (e.g. ±10%) to a single device die on the substrate. In an exemplary arrangement, to minimize the number of electrical connections, power supply and power return lines are arranged such that each power supply line is connected to a different group of heater zones and each power return line is connected to a different group of heater zones with each heater zone being in one of the groups connected to a particular power supply line and one of the groups connected to a particular power return line. No two heater zones are connected to the same pair of power supply and power return lines. Thus, a heater zone can be activated by directing electrical current through a pair of power supply and power return lines to which this particular heater zone is connected. The power of the heater elements is preferably smaller than 20 W, more preferably 5 to 10 W. The heater elements can be Peltier devices and/or resistive heaters such as polyimide heaters, silicone rubber heaters, mica heaters, metal heaters (e.g. W, Ni/Cr alloy, Mo or Ta), ceramic heaters (e.g. WC), semiconductor heaters or carbon heaters. The heater elements may be screen printed, wire wound or etched foil heaters. The thickness of the heater elements may range from 2 micrometers to 1 millimeter, preferably 5-80 micrometers. To allow space between heater zones and/or power supply and power return lines, the total area of the heater zones may be up to 90% of the area of the upper surface of the substrate support assembly, e.g. 50-90% of the area. The power supply lines or the power return lines (power lines, collectively) may be arranged in gaps ranging from 1 to 10 mm between the heater zones, or in separate planes separated from the heater zones plane by electrically insulating layers. The power supply lines and the power return lines are preferably made as wide as the space allows, in order to carry large current and reduce Joule heating. The power lines can be in the same plane as the heater zones, or can be on different planes than the heater zones. The materials of the power supply and power return lines may be the same as or different from the materials of the heater elements. Preferably, the materials of the power supply and power return lines are materials with low resistivity, such as Cu, Al, W, Inconel® or Mo. The substrate support assembly is operable to control the substrate temperature and consequently the plasma etching process at each device die location to maximize the yield of devices from the substrate. The plasma etching system preferably has at least 9 heater zones.


In one embodiment, the plasma etching system is able to receive measured critical device parameters (e.g. pre-etch critical dimensions) at a plurality of device die locations (preferably at least one location in each device die location) on a substrate to be processed therein (pre-etch critical device parameters), from sources such as a human user, an onboard measurement tool, a host network (a network that shares data between processing tools in a processing line) or the like. Preferably, the plasma etching system receives pre-etch critical device parameters of a batch of substrates to be processed, from an off-board inspection tool via a host communication network. Such off-board inspection tool can be an optical and/or electron beam inspection tool. The plasma etching system can have a hardware and/or software interface for receiving the pre-etch critical device parameters. The plasma etching system can have suitable software for processing the pre-etch critical device parameters.


The plasma etching system is also able to receive through a hardware and/or software interface and/or load from a memory, process recipe parameters that define dependence of target post-etch critical device parameters on the measured pre-etch critical device parameters and etching temperatures; and to deduce target etching temperature at predetermined locations on the substrate from the process recipe parameters, target post-etch critical device parameters, and measured pre-etch critical device parameters. Preferably, the plasma etching system is able to receive such process recipe parameters for each process recipe step.


Preferably, the plasma etching system is further able to calculate target control parameters (parameters that can be directly controlled such as power, voltage, current, etc.) for each heater zone based on the target etching temperature of each device die location to achieve the target critical device parameter for each device die.


The target control parameters can be obtained during manufacture of the substrate support assembly, by measuring response of surface temperatures of the substrate support assembly to different control parameters applied thereto. Alternatively, the target control parameters can be determined by using a theoretical or empirical model such as heat transfer theories or finite element analyses.


Preferably, a steady gain matrix can be used to calculate the target control parameters with direct response of each device die location to a control parameter applied to a heater zone underneath, and with indirect response (crosstalk) of said device die to control parameters applied to other heater zones. A steady gain matrix can be calculated using methods described in Matrix Computation by G. Golub, et al. (The Johns Hopkins University Press, Boston 1996), which is hereby incorporated by reference in its entirety.


In one embodiment, assuming the plasma etching system has n independent heater zones. Their respective control parameter is X, (i=1, 2, . . . , n). All the control parameters Xi can be written as a vector:







X
=

(




X
1






X
2











X
n




)


,




wherein Xi is preferably time-averaged power applied to the i-th heater zone.


Ti is a target etching temperature at a device die location within the i-th heater zone, which can be written as another vector:







T
=

(




T
1






T
2











T
n




)


,




The vector T is a function of the vector X. A relationship between the vector X and T can described by a n-by-n matrix K, wherein T=K·X. Diagonal elements Kij, can be measured during manufacture of the substrate support assembly or the plasma etching system. Off-diagonal elements Kij (i≠j) can be measured during manufacture of the substrate support assembly or plasma etching system, or derived from a finite element thermal model, the values of diagonal elements and the physical distance between the i-th and j-th heater zones. The matrix K is stored in the plasma etching system. The plasma etching system also has software or firmware functional to execute an algorithm to deduce X based on T. The algorithm is a matrix inversion followed by a matrix multiplication, i.e. X=K−1·T.


In another embodiment, assuming the plasma etching system has n independent heater zones. Their respective control parameter is Xi (i=1, 2, . . . , n). All the control parameters Xi can be written as a vector:







X
=

(




X
1






X
2











X
n




)


,




wherein Xi is preferably time-averaged power applied to the i-th heater zone.


P={Pj} is a set of predicated etching temperatures at predetermined locations on the substrate at which the temperature response to each heater zone is known based on prior modeling or calibration measurements. P can be written as another vector:







P
=

(




P
1






P
2










Pm



)


,




T={Tj} are a set of target etching temperatures at the same predetermined locations on the substrate. T can be written as another vector:







T
=

(




T
1






T
2










Tm



)


,




In this embodiment, the number m of the locations on the substrate having respective target etching temperatures does not equal the number of heater zones, i.e., m≠n. The locations having temperature response may differ from the locations of the heater zones. The vector P is a function of the vector X. A relationship between the vector P and T can be described by an m-by-n matrix K, wherein P=K·X. Elements Kij can be measured during manufacture of the substrate support assembly or plasma etching system, or derived from a finite element thermal model. The matrix K is stored in the plasma etching system. The plasma etching system also has software or firmware functional to execute an algorithm to deduce X based on T, using the matrix and an optimization algorithm, e.g., a least squares optimization. The optimization algorithm facilitates determination of heater power setpoints by minimizing the differences between predicted temperatures at device die locations and target temperatures at the respective locations on the substrate.


In the above embodiments, the location at which the substrate characteristics, e.g., CD measurements, are measured may differ from the number of heater zones. In addition, the locations at which the substrate characteristics are measured may not coincide with the locations at which temperature response for each heater zone is known based on modeling or previous measurements, e.g., during manufacturing. That is, the substrate characteristics measurement locations differ from those used to construct the matrix K. Consequently, the substrate characteristics need to be estimated at the same locations as those used to construct matrix K. In a preferred embodiment, a technique, such as linear or nonlinear interpolation, can be used to transform the data for the substrate characteristics, e.g. CD measurements, from the substrate characteristics measurement locations to the locations at which the individual heater responses have been modeled/measured during calibration, i.e., the locations used to construct matrix K.


In an alternative embodiment, the control parameters can be dynamically determined by a control circuit (e.g. a PID controller) based on output of temperature sensors (e.g. optical sensors, thermal couples, diodes, or the like) in each heater zone.


While the method of using a plasma etching system has been described in detail with reference to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made, and equivalents employed, without departing from the scope of the appended claims.

Claims
  • 1. A plasma etching system comprising a substrate support assembly for supporting a substrate during plasma etching, the substrate support assembly comprising: an electrostatic chuck including a ceramic layer with an embedded electrode to electrostatically clamp the substrate to a surface of the ceramic layer when a DC voltage is applied to the embedded electrode during the plasma etching of the substrate, wherein RF power is applied across the embedded electrode and a showerhead electrode to strike plasma between the electrostatic chuck and the showerhead electrode;a plurality of heater zones that are independently controllable and that are arranged on a cooling plate under the substrate, the plurality of heater zones maintaining the surface supporting the substrate at temperatures above a temperature of the cooling plate and providing radial and azimuthal temperature control across the substrate in the presence of the plasma and the RF power,wherein the plurality of heater zones includes a plurality of power supply lines and a plurality of power return lines, each of the plurality of power supply lines is connected to at least two of the plurality of heater zones, each of the plurality of power return lines is connected to at least two of the plurality of heater zones, and each of the plurality of heater zones is connected to a different pair of the plurality of power supply and power return lines; anda controller configured to control each of the plurality of heater zones by deducing a target etching temperature for predetermined locations on the substrate based on pre-etch critical device parameters and post-etch critical device parameters from previously etched substrates and to adjust a temperature of each of the predetermined locations to a respective target etching temperature using the plurality of heater zones.
  • 2. The plasma etching system of claim 1, comprising an interface that receives the pre-etch or the post-etch critical device parameters from an off-board inspection tool via a host communication network.
  • 3. The plasma etching system of claim 1, wherein heater power setpoints for the plurality of heater zones are determined based on a matrix describing a relationship of target control parameters of the plurality of heater zones and predicted etching temperatures of the predetermined locations on the substrate.
  • 4. The plasma etching system of claim 1, wherein the controller determines whether the pre-etch critical device parameters fall outside target values and controls the plurality of heater zones such that the post-etch critical device parameters are within the target values.
  • 5. The plasma etching system of claim 1, wherein the plurality of heater zones is arranged in a grid.
  • 6. The plasma etching system of claim 1, wherein the plurality of heater zones covers 50 to 90% of an area of an upper substrate support surface of the substrate support assembly.
  • 7. The plasma etching system of claim 1, wherein each of the plurality of heater zones includes at least one resistive heater.
  • 8. The plasma etching system of claim 1, wherein the plurality of heater zones includes at least 9 heater zones.
  • 9. The plasma etching system of claim 1 further comprising a rectifier serially connected between each of the plurality of heater zones and one of the plurality of power supply lines or one of the plurality of power return lines connected thereto.
  • 10. A plasma etching system comprising a substrate support assembly for supporting a substrate during plasma etching, the substrate support assembly comprising: an electrostatic chuck including a ceramic layer with an embedded electrode to electrostatically clamp the substrate to a surface of the ceramic layer when a DC voltage is applied to the embedded electrode during the plasma etching of the substrate, wherein RF power is applied across the embedded electrode and a showerhead electrode to strike plasma between the electrostatic chuck and the showerhead electrodes;a plurality of heater zones that are independently controllable and that are arranged on a cooling plate under the substrate, the plurality of heater zones maintaining the surface supporting the substrate at temperatures above a temperature of the cooling plate and providing radial and azimuthal temperature control across the substrate in the presence of the plasma and the RF power; wherein the plurality of heater zones are connected to power supply lines and power return lines, and wherein each of the power supply lines is connected to a different group of the plurality of heater zones than each of the power return lines; andwherein the plurality of heater zones are connected to power supply lines and power return lines such that no two heater zones from the plurality of heater zones are connected to the same pair of the power supply and power return lines; anda controller that controls each of the plurality of heater zones,wherein the controller deduces a target etching temperature for predetermined locations on the substrate based on pre-etch critical device parameters and post-etch critical device parameters from previously etched substrates and adjusts a temperature of each of the predetermined locations to a respective target etching temperature using the plurality of heater zones, andwherein heater power setpoints for the plurality of heater zones are determined based on a matrix describing a relationship of target control parameters of the plurality of heater zones and predicted etching temperatures of the predetermined locations on the substrate.
  • 11. A substrate support assembly for supporting a substrate, the substrate support assembly comprising: an electrostatic chuck including a ceramic layer with an embedded electrode to electrostatically clamp the substrate to a surface of the ceramic layer when a DC voltage is applied to the embedded electrode during plasma etching of the substrate, wherein RF power is applied across the embedded electrode and a showerhead electrode to strike plasma between the electrostatic chuck and the showerhead electrode;a plurality of heater zones that are independently controllable and that are arranged on a cooling plate under the substrate, the plurality of heater zones maintaining the surface supporting the substrate at temperatures above a temperature of the cooling plate and providing radial and azimuthal temperature control across the substrate in the presence of the plasma and the RF power, the plurality of heater zones including a plurality of power supply lines and a plurality of power return lines, each of the plurality of power supply lines connected to at least two of the plurality of heater zones, each of the power return lines connected to at least two of the plurality of heater zones, each of the plurality of heater zones connected to a different pair of the plurality of power supply and power return lines, and a rectifier serially connected between each of the plurality of heater zones and one of the plurality of power supply lines or one of the plurality of power return lines connected thereto; anda controller to control each of the plurality of heater zones by deducing a target etching temperature for predetermined locations on the substrate based on pre-etch critical device parameters and post-etch critical device parameters from previously etched substrates and to adjust a temperature of each of the predetermined locations to a respective target etching temperature.
RELATED APPLICATION

This application is a divisional of U.S. Application No. 12/966,506 filed Dec. 13, 2010, which claims priority under 35 U.S.C. § 119 to U.S. Provisional Application No. 61/286,653 filed Dec. 15, 2009, the contents of which are incorporated herein by reference in its entirety.

US Referenced Citations (107)
Number Name Date Kind
3440883 Lightner Apr 1969 A
3946370 Schmidt Mar 1976 A
4351894 Yonezawa Sep 1982 A
5255520 O'Geary et al. Oct 1993 A
5414245 Hackleman May 1995 A
5504471 Lund Apr 1996 A
5515683 Kessler May 1996 A
5536918 Ohkase et al. Jul 1996 A
5635093 Arena et al. Jun 1997 A
5665166 Deguchi et al. Sep 1997 A
5667622 Hasegawa et al. Sep 1997 A
5740016 Dhindsa Apr 1998 A
5802856 Schaper Sep 1998 A
5851298 Ishii Dec 1998 A
5886866 Hausmann Mar 1999 A
6060697 Morita et al. May 2000 A
6095084 Shamouilian et al. Aug 2000 A
6100506 Colelli, Jr. et al. Aug 2000 A
6175175 Hull Jan 2001 B1
6222161 Shirakawa et al. Apr 2001 B1
6271459 Yoo Aug 2001 B1
6353209 Schaper et al. Mar 2002 B1
6403403 Mayer et al. Jun 2002 B1
6475336 Hubacek Nov 2002 B1
6483690 Nakajima et al. Nov 2002 B1
6512207 Dress et al. Jan 2003 B1
6523493 Brcka Feb 2003 B1
6566632 Katata et al. May 2003 B1
6612673 Giere et al. Sep 2003 B1
6664515 Natsuhara et al. Dec 2003 B2
6739138 Saunders et al. May 2004 B2
6740853 Johnson et al. May 2004 B1
6741446 Ennis May 2004 B2
6746616 Fulford et al. Jun 2004 B1
6770852 Steger Aug 2004 B1
6795292 Grimard et al. Sep 2004 B2
6815365 Masuda et al. Nov 2004 B2
6825617 Kanno et al. Nov 2004 B2
6847014 Benjamin et al. Jan 2005 B1
6858361 Mui et al. Feb 2005 B2
6886347 Hudson et al. May 2005 B2
6921724 Kamp et al. Jul 2005 B2
6979805 Arthur et al. Dec 2005 B2
6985000 Feder et al. Jan 2006 B2
6989210 Gore Jan 2006 B2
7075031 Strang et al. Jul 2006 B2
7141763 Moroz Nov 2006 B2
7173222 Cox et al. Feb 2007 B2
7175714 Ootsuka et al. Feb 2007 B2
7206184 Ennis Apr 2007 B2
7230204 Mitrovic et al. Jun 2007 B2
7250309 Mak et al. Jul 2007 B2
7268322 Kuibira et al. Sep 2007 B2
7274004 Benjamin et al. Sep 2007 B2
7275309 Matsuda et al. Oct 2007 B2
7279661 Okajima et al. Oct 2007 B2
7297894 Tsukamoto Nov 2007 B1
7311782 Strang et al. Dec 2007 B2
7372001 Tachikawa et al. May 2008 B2
7396431 Chen et al. Jul 2008 B2
7415312 Barnett, Jr. et al. Aug 2008 B2
7475551 Ghoshal Jan 2009 B2
7480129 Brown et al. Jan 2009 B2
7504006 Gopalraja et al. Mar 2009 B2
7782583 Moon Aug 2010 B2
7893387 Ohata Feb 2011 B2
7940064 Segawa et al. May 2011 B2
7952049 Tsukamoto May 2011 B2
7968825 Jyousaka et al. Jun 2011 B2
8057602 Koelmel et al. Nov 2011 B2
8136820 Morioka et al. Mar 2012 B2
8168050 Lu May 2012 B2
8207476 Tsukamoto et al. Jun 2012 B2
8222574 Sorabji et al. Jul 2012 B2
8441764 Blakes May 2013 B2
8461674 Gaff et al. Jun 2013 B2
8546732 Singh Oct 2013 B2
8624168 Gaff et al. Jan 2014 B2
8637794 Singh et al. Jan 2014 B2
8642480 Gaff et al. Feb 2014 B2
8963052 Benjamin et al. Feb 2015 B2
20020043528 Ito Apr 2002 A1
20040200574 Davis et al. Oct 2004 A1
20050007136 Feder Jan 2005 A1
20050016465 Ramaswamy et al. Jan 2005 A1
20050215073 Nakamura et al. Sep 2005 A1
20050229854 Moroz Oct 2005 A1
20060090855 Kimura May 2006 A1
20060191637 Zajac et al. Aug 2006 A1
20060226123 Birang Oct 2006 A1
20070125762 Cui et al. Jun 2007 A1
20070296980 Mak et al. Dec 2007 A1
20080105669 Jyousaka et al. May 2008 A1
20080169282 Sorabji et al. Jul 2008 A1
20080197121 Carcasi Aug 2008 A1
20080202924 Bluck et al. Aug 2008 A1
20090000738 Benjamin Jan 2009 A1
20090173445 Yeom et al. Jul 2009 A1
20090178764 Kanno et al. Jul 2009 A1
20090183677 Tian et al. Jul 2009 A1
20100163546 Nanno et al. Jul 2010 A1
20100257871 Venkatasubramanian et al. Oct 2010 A1
20110005682 Savas et al. Jan 2011 A1
20110092072 Singh Jan 2011 A1
20110033175 Kasai et al. Feb 2011 A1
20120097661 Singh Apr 2012 A1
20130072025 Singh et al. Mar 2013 A1
Foreign Referenced Citations (25)
Number Date Country
101111934 Jan 2008 CN
102652352 Aug 2012 CN
102668058 Sep 2012 CN
601918 Jan 1985 JP
621176 Jan 1987 JP
06010391 Mar 1994 JP
2004152913 May 2004 JP
2005123286 May 2005 JP
20050294237 Oct 2005 JP
2005347612 Dec 2005 JP
2006-074067 Mar 2006 JP
2006519497 Aug 2006 JP
2007-081160 Mar 2007 JP
2007082374 Mar 2007 JP
2008117915 May 2008 JP
2008288427 Nov 2008 JP
2009170509 Jul 2009 JP
2009267256 Nov 2009 JP
2010153730 Jul 2010 JP
201998028601 Aug 1998 KR
1020050053464 Jun 2005 KR
20050121913 Dec 2005 KR
1020060067552 Jun 2006 KR
20080058109 Jun 2008 KR
2004077505 Sep 2004 WO
Non-Patent Literature Citations (7)
Entry
Decision of Rejection dispatched Mar. 24, 2015 for Japanese Patent Appln. No. 2012-544478.
Notice of Reasons for Rejection issued by the Japanese Patent Office dated Nov. 10, 2015 in corresponding Japanese Patent Application No. 2015-142544, filed on Dec. 13, 2010, with full English Translation (11 pages).
Chinese Office Action issued by the Chinese Patent Office dated Oct. 10, 2015 in corresponding Chinese Application No. 201310628285.9 (5 pages).
International Search Report and Written Opinion dated Aug. 24, 2011 for PCT/US2010/003149.
Ayars, Eric, “Bandgap in a Semiconductor Diode”, Advanced and Intermediate Instructional Labs Workshop, AAPT Summer Meeting, California State university, Chicago, Jul. 20, 2008 http://phys.csuchico.edu/-eayars/publications/bandgap.pdf.
Office Action (Notification of the Final Office Action) dated Apr. 26, 2016, by the Korean Patent Office in corresponding Korean Patent Application No. 10-2013-7012033, and a Partial English Translation of the Office Action. (5 pages).
Japanese Notification of Reasons for Rejection for Application No. JP2016-084093 dated Mar. 17, 2017.
Related Publications (1)
Number Date Country
20140110060 A1 Apr 2014 US
Provisional Applications (1)
Number Date Country
61286653 Dec 2009 US
Divisions (1)
Number Date Country
Parent 12966506 Dec 2010 US
Child 14139238 US