Alkyl-substituted allyl carbonyl metal complexes and use thereof for preparing dielectric thin films

Information

  • Patent Grant
  • 8927748
  • Patent Number
    8,927,748
  • Date Filed
    Wednesday, August 8, 2012
    11 years ago
  • Date Issued
    Tuesday, January 6, 2015
    9 years ago
Abstract
Organometallic complexes and use thereof in thin film deposition, such as CVD and ALD are provided herein. The organometallic complexes are (alkyl-substituted η3-allyl)(carbonyl)metal complexes.
Description
FIELD OF THE INVENTION

The present invention relates to (alkyl-substituted η3-allyl)(carbonyl)metal complexes and methods of preparing thin films by chemical vapor deposition (CVD) or atomic layer deposition (ALD) using such complexes.


BACKGROUND OF THE INVENTION

Various organometallic precursors are used to form thin metal films and a variety of deposition techniques have been employed. These include reactive sputtering, ion-assisted deposition, sol-gel deposition, CVD, and ALD, also known as atomic layer epitaxy. The CVD and ALD processes are increasingly used as they have the advantages of good compositional control, high film uniformity, good control of doping and, significantly, they give excellent conformal step coverage on highly non-planar microelectronics device geometries.


CVD (also referred to as metalorganic CVD or MOCVD) is a chemical process whereby precursors are used to form a thin film on a substrate. In a typical CVD process, the precursors are passed over a substrate (wafer) within a low pressure or ambient pressure reaction chamber. The precursors react and/or decompose on the substrate surface creating a thin film of deposited material. Volatile by-products are removed by gas flow through the reaction chamber. The deposited film thickness can be difficult to control because it depends on coordination of many parameters such as temperature, pressure, gas flow volumes and uniformity, chemical depletion effects and time.


ALD is a common method for the deposition of thin films. It is a self-limiting, sequential, unique film growth technique based on surface reactions that can provide atomic layer-forming control and deposit-conformal thin films of materials provided by precursors onto substrates of varying compositions. In ALD, the precursors are separated during the reaction. The first precursor is passed over the substrate producing a monolayer on the substrate. Any excess unreacted precursor is pumped out of the reaction chamber. A second precursor is then passed over the substrate and reacts with the first precursor, forming a second monolayer of film over the first-formed monolayer of film on the substrate surface. This cycle is repeated to create a film of desired thickness. ALD film growth is self-limited and based on surface reactions, creating uniform depositions that can be controlled at the nanometer-thickness scale.


Dielectric thin films have a variety of important applications, such as nanotechnology and fabrication of semiconductor devices. Examples of such applications include high-refractive index optical coatings, corrosion-protection coatings, photocatalytic self-cleaning glass coatings, biocompatible coatings, dielectric capacitor layers and gate dielectric insulating films in FETs (Field-Effect Transistor), capacitor electrodes, gate electrodes, adhesive diffusion barriers and integrated circuits. Dielectric thin films are also used in microelectronics applications, such as the high-K dielectric oxide for dynamic random access memory (DRAM) applications and the ferroelectric perovskites used in infra-red detectors and non-volatile ferroelectric random access memories (NV-FeRAMs). The continual decrease in the size of microelectronics components has increased the need for the use of such dielectric thin films.


Manganese-containing films have found numerous practical applications in areas such as catalysts, batteries, memory devices, displays, sensors, and nano- and microelectronics. In the case of electronic applications, metallic manganese films can act as barriers to prevent diffusion of copper interconnects into underlying silicon dioxide substrate.


Others have reported manganese carbonyl complexes with allyl ligands. See, for example, Palmer G. and Basolo F. J. Am. Chem. Soc. 107:3122-3129 (1985). Deposition of certain manganese complexes has also been reported. See, for example: Burton B. B. et al. Thin Solid Films 517:5658-5665 (2009); Nilsen O. et al. Thin Solid Films 444:44-51 (2003); and Qin X. et al. J. Vac. Sci. Technol. A. 30:01 A112-1-01A112-10 (2012).


Current precursors for use in CVD and ALD do not provide the required performance to implement new processes for fabrication of next generation devices, such as semiconductors. For example, improved thermal stability, higher volatility, reduced vapor pressures, increased deposition rates and a high permittivity and/or increased barrier properties are needed.


SUMMARY OF THE INVENTION

In one embodiment, an organometallic complex represented by Formula I is provided:




embedded image



wherein

  • M is Ni, V, Nb, Ta, Mn, Re, Rh or Ir;
  • R1, R2, and R3 are independently C1-C8-alkyl;
  • x and z are independently zero, 1 or 2;
  • y is zero or 1; and wherein
  • when M is Ni, then n is 1;
  • when M is V, Nb or Ta, then n is 5;
  • when M is Re, then n is 4; and
  • when M is Rh or Ir, then n is 3.


In some such embodiments, the complex represented by Formula I is a manganese complex represented by Formula IA:




embedded image



wherein

  • R1, R2, and R3 are independently C1-C8-alkyl;
  • x and z are independently zero, 1 or 2; and
  • y is zero or 1.


In another embodiment, an organometallic complex represented by Formula II is provided:




embedded image



wherein

  • M is Ti, Cr, Fe or Ni;
  • R1, R2, R3, R4, R5, and R6 are independently C1-C8-alkyl;
  • x, z, a, and c are independently zero, 1, or 2;
  • y and b are independently zero or 1; and wherein
  • when M is Ni, then n is zero;
  • when M is Fe, then n is 2;
  • when M is Cr, then n is 3; and
  • when M is Ti, then n is 4.


In another embodiment, an organometallic complex represented by Formula III is provided:




embedded image



wherein

  • M is Mn or V;
  • R1, R2, R3, R4, R5, R6, R7, R8, and R9 are independently C1-C8-alkyl;
  • x, z, a, c, d, and f are independently zero, 1, or 2;
  • y, b, and e are independently zero or 1; and wherein
  • when M is Mn, then n is 1; and
  • when M is V, then n is 2.


In another embodiment, an organometallic complex represented by Formula IV is provided:




embedded image



wherein

  • M is Cr or Ti;
  • R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, and R12 are independently C1-C8-alkyl;
  • x, z, a, c, d, f, g, and k are independently zero, 1, or 2;
  • y, b, e, and j are independently zero or 1; and wherein
  • when M is Cr, then n is zero; and
  • when M is V, then n is 1.


In another embodiment, an organometallic complex represented by Formula V is provided:




embedded image



wherein

  • M is Ni, Fe, Cr, or Ti;
  • R1, R2, R3, R4, R5, and R6 are independently C1-C8-alkyl;
  • x, z, a, and c are independently zero, 1, or 2;
  • y and b are independently zero or 1; and wherein
  • when M is Ni, then n is 2;
  • when M is Fe, then n is 3;
  • when M is Cr, then n is 4; and
  • when M is Ti, then n is 5.


In another embodiment, an organometallic complex represented by Formula VI is provided:

M(CO)n  (Formula VI),

  • wherein
  • M is Fe, Cr, Ti, and Ni; and wherein
  • when M is Ni, then n is 4;
  • when M is Fe, then n is 5;
  • when M is Cr, then n is 6; and
  • when M is Ti, then n is 7.


Methods for forming metal-containing films by vapor deposition processes, such as CVD and ALD are also provided herein using organometallic complexes according to any of the Formulas above.


Other embodiments, including particular aspects of the embodiments summarized above, will be evident from the detailed description that follows.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graphical representation of thermal gravimetric analysis (TGA) data demonstrating % weight loss vs. temperature for Mn(η3-2-tert-butylallyl)(CO)4 and Mn(η3-allyl)(CO)4.



FIG. 2 is a graphical representation of X-ray photoelectron spectroscopy (XPS) data of a film deposited by CVD on SiO2. The film was prepared using Mn(η3-2-tert-butylallyl)(CO)4 as the manganese precursor.



FIG. 3 represents scanning electron microsopy (SEM) of 148 nm of Mn-containing film on tantalum nitride, prepared using Mn(η3-2-tert-butylallyl)(CO)4 as the manganese precursor. The growth rate was 1.48 Å/cycle.



FIG. 4 represents SEM of 48 nm of Mn-containing film on 99 nm of SiO2, prepared using Mn(η3-2-tert-butylallyl)(CO)4 as the manganese precursor. The growth rate was 0.48 Å/cycle.



FIG. 5 represents SEM of 58 nm of Mn-containing film on Si(100) native oxide, prepared using Mn(η3-2-tert-butylallyl)(CO)4 as the manganese precursor. The growth rate was 0.58 Å/cycle.





DETAILED DESCRIPTION OF THE INVENTION

In various aspects of the invention, allyl organometallic complexes, methods of making such complexes and methods of using such complexes to form thin metal-containing films, such as but not limited to, metal, metal-Si, metal-oxide or metal-nitride films, are provided.


The methods of the invention are used to create or grow metal-containing thin films which display high dielectric constants or which act as barrier films. A dielectric thin film as used herein refers to a thin film having a high permittivity.


As used herein, the term “high-ic dielectric” refers to a material, such as a metal-containing film, with a higher dielectric constant (κ) when compared to silicon dioxide (which has a dielectric constant of about 3.7). Typically, a high-κ dielectric film is used in semiconductor manufacturing processes to replace a silicon dioxide gate dielectric. A high-κdielectric film may be referred to as having a “high-κgate property” when the dielectric film is used as a gate material and has at least a higher dielectric constant than silicon dioxide.


As used herein, the term “relative permittivity” is synonymous with dielectric constant (κ).


As used herein, the term “precursor” refers to an organometallic molecule, complex and/or compound which is deposited or delivered to or passed over a substrate to form a thin film by a vapor deposition process such as CVD or ALD.


As used herein, the term “vapor deposition process” is used to refer to any type of vapor deposition technique such as CVD or ALD. In various embodiments of the invention, CVD may take the form of conventional (pulsed) CVD, liquid injection CVD or photo-assisted CVD. In other embodiments, ALD may take the form of conventional (pulsed) ALD, liquid injection ALD, photo-assisted ALD, plasma-assisted ALD, or plasma-enhanced ALD.


The allyl and substituted-allyl organometallic complexes of the invention represent substantially improved sources for thin film deposition. For example, the inventors have found that the more bulky substituted-allyl complexes actually reduce vapor pressure and thus are easier to handle. Further, the new complexes have a different volatility which allows for common solvents to be used in their synthesis. This permits a more efficient separation, making it easier to isolate the complex to very high purity.


The targeted deposition temperatures for these complexes, for example about 90° C. to about 200° C., are lower than for other complexes. Access to low-temperature processing makes integration easier as underlying circuitry does not have to withstand such a high thermal budget.


Carbon incorporation should be avoided as it reduces the conductivity of the film and degrades device performance. Without being bound by theory, the inventors propose that the bulky groups substituted on the allyl may decompose via a different mechanism which does not result in as many methyl radicals on the surface. Methyl radicals react to provide very strong metal-carbon bonds, leading to impermissibly high levels of carbon incorporation. The cleaner “leaving” of the organic groups reduces this unwanted reaction and should therefore reduce resistance and improve conductivity of the final films formed.


Further, another advantage of the instant complexes are that they are typically liquid at room temperature, which is beneficial for handling.


Therefore, in a first embodiment, an (alkyl-substituted η3-allyl)(carbonyl)metal organometallic complex is provided. The organometallic complex corresponds in structure to Formula I:




embedded image



wherein

  • M is V, Nb, Ta, Mn, Re, Rh or Ir;
  • R1, R2, and R3 are independently C1-C8-alkyl;
  • x and z are independently zero, 1 or 2;
  • y is zero or 1; and wherein
  • when M is V, Nb or Ta, then n is 5;
  • when M is Mn or Re, then n is 4; and
  • when M is Rh or Ir, then n is 3.


It should be noted that the complexes of the invention, represented by the depiction above, have a resonating double bond in the allyl portion and the allyl portion is [C3H5] which is in η3-coordination with the metal center. Both of these features are represented by the dashed bonds. When the allyl portion is substituted by one R group, the R group replaces an allylic hydrogen to become [RC3H4], when substituted with two R groups it becomes [R1R2C3H3] where R1 and R2 are the same or different, and so forth.


The term “alkyl” (alone or in combination with another term(s)) refers to a saturated hydrocarbon chain of 1 to about 8 carbon atoms in length, such as, but not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl. The alkyl group may be straight-chain or branched-chain. “Alkyl” is intended to embrace all structural isomeric forms of an alkyl group. For example, as used herein, propyl encompasses both n-propyl and isopropyl; butyl encompasses n-butyl, sec-butyl, isobutyl and tert-butyl. Further, as used herein, “Me” refers to methyl, “Et” refers to ethyl, “i-Pr” refers to isopropyl, “t-Bu” refers to tert-butyl, and “Np” refers to neopentyl. It should also be noted that C2 is intended to refer to an ethyl group and not geminal dimethyl groups.


In one embodiment, R1, R2 and R3 are independently C1-C8-alkyl, particularly C2-C8-alkyl, more particularly C3-C8-alkyl, more particularly C4-C8-alkyl, and even more particularly C5-C8-alkyl.


In another particular embodiment, R1, R2 and R3 are independently C3-C7-alkyl, and even more particularly C4-C7-alkyl.


In one embodiment, R1, R2 and/or R3 is propyl. Therefore, R1, R2 and/or R3 may be n-propyl or isopropyl.


In another embodiment, R1, R2 and/or R3 is butyl. R1, R2 and/or R3 may be n-butyl, sec-butyl, isobutyl or tert-butyl. In a particular embodiment, R1, R2 and/or R3 is tert-butyl.


In another embodiment, R1, R2 and/or R3 is pentyl. R1, R2 and/or R3 may be neopentyl, straight-chained, or isopentyl. In a particular embodiment, R1, R2 and/or R3 is neopentyl.


In another embodiment, R1, R2 and/or R3 is hexyl.


In another embodiment, R1, R2 and/or R3 is heptyl.


In another embodiment, R1, R2 and/or R3 is octyl.


As used herein, the variables, x, y and z are used to represent how many particular R substituents are attached to the appropriate carbon.


In one embodiment, x and z are independently zero, 1 or 2.


In one embodiment, y is zero or 1.


In a particular embodiment, x is one and y and z are each zero.


In another particular embodiment, y is one, and x and z are each zero.


In another particular embodiment, at least two of x, y and z are one.


In another particular embodiment, x, y and z are each one.


The center metal can be Mn, Ni, V, Nb, Ta, Re, Rh or Ir. In a particular embodiment, the metal is Mn.


The variable “n” in the complex of Formula I is used to designate how many carbonyl ligands are bonded to the metal center which depends on the valency of the metal used. For example, when M is Ni, then n is 1; when M is V, Nb or Ta, then n is 5; when M is Re or Mn, then n is 4; and when M is Rh or Ir, then n is 3, and so forth.


Other examples are shown in Table 1, below.












TABLE 1









Ti(allyl)2x(CO)7−3x
x = 0, 1, 2



V(allyl)1+2x(CO)5−3x
x = 0, 1



Cr(allyl)2x(CO)6−3x
x = 0, 1, 2



Mn(allyl)1+2x(CO)4−3x
x = 0, 1



Fe(allyl)2x(CO)5−3x
x = 0, 1



Ni(allyl)2x(CO)4−3x
x = 0, 1










In a particular embodiment, the complex represented by Formula I is a manganese complex represented by Formula IA:




embedded image



wherein

  • R1, R2, and R3 are independently C1-C8-alkyl;
  • x and z are independently zero, 1 or 2; and y is zero or 1.


In one such embodiment, R1, R2 and R3 are independently C1-C8-alkyl, particularly C2-C8-alkyl, more particularly C3-C8-alkyl, more particularly C4-C8-alkyl, and even more particularly C5-C8-alkyl.


In one embodiment, at least one of R1, R2, or R3 is C5-C8-alkyl.


In one embodiment, at least one of R1, R2, or R3 is branched C5-C8-alkyl.


In another particular embodiment, R1, R2 and R3 are independently C3-C7-alkyl, and even more particularly C4-C7-alkyl.


In one embodiment, R1, R2 and/or R3 is propyl. Therefore, R1, R2 and/or R3 may be n-propyl or isopropyl.


In another embodiment, R1, R2 and/or R3 is butyl. R1, R2 and/or R3 may be n-butyl, sec-butyl, isobutyl or tert-butyl. In a particular embodiment, R1, R2 and/or R3 is tert-butyl.


In another embodiment, R1, R2 and/or R3 is pentyl. R1, R2 and/or R3 may be straight-chained (n-pentyl) or branched (e.g., neopentyl or isopentyl). In a particular embodiment, R1, R2 and/or R3 is neopentyl. In another particular embodiment, R1 or R2 is neopentyl.


In another embodiment, R1, R2 and/or R3 is hexyl.


In another embodiment, R1, R2 and/or R3 is heptyl.


In another embodiment, R1, R2 and/or R3 is octyl.


As used herein, the variables, x, y and z are used to represent how many particular R substituents are attached to the appropriate carbon.


In one embodiment, x and z are independently zero, 1 or 2.


In one embodiment, y is zero or 1.


In a particular embodiment, x is one and y and z are each zero.


In another particular embodiment, y is one, and x and z are each zero.


In another particular embodiment, at least two of x, y and z are one.


In another particular embodiment, x, y and z are each one.


In a particular embodiment, the complex according to Formula IA is




embedded image


In another embodiment, an organometallic complex is provided represented by Formula II:




embedded image



wherein

  • M is Ti, Cr, Fe or Ni;
  • R1, R2, R3, R4, R5, and R6 are independently C1-C8-alkyl;
  • x, z, a, and c are independently zero, 1, or 2;
  • y and b are independently zero or 1; and wherein
  • when M is Ni, then n is zero;
  • when M is Fe, then n is 2;
  • when M is Cr, then n is 3; and
  • when M is Ti, then n is 4.


In a particular embodiment, the organometallic complex according to Formula II is Ti(allyl)2(CO)4, Cr(allyl)2(CO)3, Fe(allyl)2(CO)2, or Ni(allyl)2.


In another embodiment, an organometallic complex is provided represented Formula III:




embedded image



wherein

  • M is Mn or V;
  • R1, R2, R3, R4, R5, R6, R7, R8, and R9 are independently C1-C8-alkyl;
  • x, z, a, c, d, and f are independently zero, 1, or 2;
  • y, b, and e are independently zero or 1; and wherein
  • when M is Mn, then n is 1; and
  • when M is V, then n is 2.


In a particular embodiment, the organometallic complex according to Formula III is V(allyl)3(CO)2 or Mn(allyl)3(CO).


In another embodiment, an organometallic complex is provided represented by Formula IV:




embedded image



wherein

  • M is Cr or Ti;
  • R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, and R12 are independently C1-C8-alkyl;
  • x, z, a, c, d, f, g, and k are independently zero, 1, or 2;
  • y, b, e, and j are independently zero or 1; and wherein
  • when M is Cr, then n is zero; and
  • when M is V, then n is 1.


In a particular embodiment, the organometallic complex according to Formula IV is Ti(allyl)4(CO) or Cr(allyl)4.


In another embodiment, an organometallic complex is provided represented by Formula V:




embedded image



wherein

  • M is Ni, Fe, Cr, or Ti;
  • R1, R2, R3, R4, R5, and R6 are independently C1-C8-alkyl;
  • x, z, a, and c are independently zero, 1, or 2;
  • y and b are independently zero or 1; and wherein
  • when M is Ni, then n is 2;
  • when M is Fe, then n is 3;
  • when M is Cr, then n is 4; and
  • when M is Ti, then n is 5.


In a particular embodiment, the organometallic complex according to Formula V is Ti2(allyl)2(CO)10, Cr2(allyl)2(CO)8, Fe2(allyl)2(CO)6, or Ni2(allyl)2(CO)4.


In another embodiment, an organometallic complex is provided represented by Formula VI:

M(CO)n  (Formula VI),

  • wherein
  • M is Fe, Cr, Ti, and Ni; and wherein
  • when M is Ni, then n is 4;
  • when M is Fe, then n is 5;
  • when M is Cr, then n is 6; and
  • when M is Ti, then n is 7.


In a particular embodiment, the organometallic complex according to Formula VI is Ti(CO)7, Cr(CO)6, Fe(CO)5, or Ni(CO)4.


In another embodiment a method of forming a metal-containing film by a vapor deposition process is provided. The method comprises using at least one complex represented by any of the Formulas disclosed herein. For example, this may include (1) vaporizing the at least one complex and (2) delivering the at least one complex to a substrate surface or passing the at least one complex over a substrate (and/or decomposing the at least one complex on the substrate surface).


In a particular embodiment, the complex may be dissolved in an appropriate solvent such as a hydrocarbon or an amine solvent. Appropriate hydrocarbon solvents include, but are not limited to, aliphatic hydrocarbons, such as hexane, heptane and nonane; aromatic hydrocarbons, such as toluene and xylene; aliphatic and cyclic ethers, such as diglyme, triglyme and tetraglyme. Examples of appropriate amine solvents include, without limitation, octylamine and N,N-dimethyldodecylamine. For example, the complex may be dissolved in toluene to yield a 0.05 to 1 M solution.


In one embodiment, the vapor deposition process is chemical vapor deposition.


In another embodiment, the vapor deposition process is atomic layer deposition.


The ALD and CVD methods of the invention encompass various types of ALD and CVD processes such as, but not limited to, conventional processes, liquid injection processes, photo-assisted processes, plasma-assisted, and plasma-enhanced processes.


In one embodiment, conventional (pulsed) CVD is used to form a metal-containing thin film using at least one complex according to any of the Formulas disclosed herein. For conventional CVD processes, see for example Smith, Donald (1995). Thin-Film Deposition: Principles and Practice. McGraw-Hill.


In another embodiment, liquid injection CVD is used to form a metal-containing thin film using at least one complex according to any of the Formulas disclosed herein.


Examples of liquid injection CVD growth conditions include, but are not limited to:


(1) Substrate temperature: 100-600° C. on Si(100)


(2) Evaporator temperature: 100-200° C.


(3) Reactor pressure: 1-100 mbar


(4) Solvent: toluene, or any solvent mentioned above


(5) Solution concentration: 0.05-0.2 M


(6) Injection rate: 10-50 cm3 hr−1


(7) Argon flow rate: 100-300 cm3 min−1


(8) Oxygen flow rate: 0-200 cm3 min−1


(9) Hydrogen flow rate: 0-200 cm3 min−1


(10) Run time: 5-30 min


In another embodiment, photo-assisted CVD is used to form a metal-containing thin film using at least one complex according to any of the Formulas disclosed herein.


In a further embodiment, conventional ALD is used to form a metal-containing thin film using at least one complex according to any of the Formulas disclosed herein. For conventional and/or pulsed injection ALD processes see, for example, George S. M., et al. J. Phys. Chem. 100:13121-13131 (1996).


In another embodiment, liquid injection ALD is used to form a metal-containing thin film using at least one complex according to any of the Formulas disclosed herein, wherein at least one liquid complex is delivered to the reaction chamber by direct liquid injection as opposed to vapor draw by a bubbler. For liquid injection ALD processes see, for example, Potter R. J., et al. Chem. Vap. Deposition. 11(3):159 (2005).


Examples of liquid injection ALD growth conditions include, but are not limited to:


(1) Substrate temperature: 50-300° C.


(2) Evaporator temperature: 100-200° C.


(3) Reactor pressure: 1-100 mbar


(4) Solvent: toluene, or any solvent mentioned above


(5) Solution concentration: 0.05-0.2 M


(6) Injection rate: about 2.5 μL pulse−1 (4 pulses cycle−1)


(7) Inert gas flow rate: 100-300 cm3 min−1


(8) Reactive gas flow rate: 0-200 cm3 min−1


(9) Pulse sequence (sec) (complex/purge/reactive gas/purge): will vary according to chamber size.


(10) Number of cycles: will vary according to desired film thickness.


In another embodiment, photo-assisted ALD is used to form a metal-containing thin film using at least one complex according to any of the Formulas disclosed herein. For photo-assisted ALD processes see, for example, U.S. Pat. No. 4,581,249.


In another embodiment, plasma-assisted ALD is used to form a metal-containing thin film using at least one complex according any of to the Formulas disclosed herein.


Thus, the organometallic complexes according any of to the Formulas disclosed herein utilized in these methods may be liquid, solid, or gaseous. Particularly, the complexes are liquid at ambient temperatures with high vapor pressure allowing for consistent transport of the vapor to the process chamber.


In one embodiment, the complexes represented by the Formulas disclosed herein are delivered to the substrate in pulses alternating with pulses of an oxygen source, such as a reactive oxygen species. Examples of such oxygen source include, without limitation, H2O, H2O2, O2 and/or ozone.


In one embodiment a manganese-containing film is formed.


In another embodiment, a manganese-oxide film is formed.


In another embodiment, a manganese-nitride film is formed.


In another embodiment, a MnSi film is formed.


In another embodiment, two or more complexes represented by the Formulas disclosed herein may be used to form a thin film.


In another embodiment a “mixed” metal thin film is formed. This method comprises using at least one “co-complex” to form a “mixed” metal film. As used herein, a mixed-metal film contains at least two different metals.


In a particular embodiment, the complexes represented by the Formulas disclosed herein may be used in CVD or ALD with at least one different metal complex to form a mixed-metal film, such as a manganese-tantalum film, a manganese-silicon film, a manganese-iron film, etc.


In a particular embodiment a mixed-metal oxide thin film is formed, such as a manganese-silicon oxide thin film.


In a particular embodiment a mixed-metal nitride thin film is formed, such as a manganese-silicon nitride thin film.


A dielectric film can also be formed by the at least one complex represented by the Formulas disclosed herein, independently or in combination with a co-reactant. In this regard, the co-reactant may be deposited or delivered to or passed over a substrate, independently or in combination with the at least one complex. Examples of such co-reactants include, but are not limited to, hydrogen, hydrogen plasma, oxygen, air, water, H2O2, ammonia, hydrazine, an alkyl-substituted hydrazine, a borane, a silane, ozone or any combination thereof.


In a particular embodiment, a co-reactant such as hydrazine or an alkyl-substituted hydrazine is used to form a film using at least one complex represented by the Formulas disclosed herein. For example, N,N-dimethylhydrazine (DMHz), tert-butylhydrazine and/or trisilane may be used as a co-reactant.


A variety of substrates can be used in the methods of the present invention to support thin films. For example, the complexes according to any of the Formulas disclosed herein may be delivered for deposition to substrates such as, but not limited to, silicon, silicon oxide, silicon nitride, tantalum, tantalum nitride, copper, ruthenium, titanium nitride, tungsten, and tungsten nitride.


In one embodiment, the method is used for applications such as dynamic random access memory (DRAM) and complementary metal oxide semi-conductor (CMOS) for memory and logic applications on, for example, silicon chips.


In one embodiment, the method provides a film which prevents or resists migration of copper (e.g., copper atoms) through the film to an underlying substrate, for example a silicon dioxide substrate. In this regard, the film provided may be considered a barrier film.


Fundamental differences exist between the thermally-driven CVD process and the reactivity-driven ALD process. The requirements for complex properties to achieve optimum performance vary greatly. In CVD a clean thermal decomposition of the complex to deposit the required species onto the substrate is critical. However, in ALD such a thermal decomposition is to be avoided at all costs. In ALD the reaction between the input reagents must be rapid and result in the target material formation on the substrate. However, in CVD any such reaction between species is detrimental due to their gas phase mixing before reaching the substrate to generate particles. In general it is accepted that a good CVD source will be a poorer ALD source and vice versa and therefore it is surprising that the substituted-allyl complexes of this invention perform well in both ALD and CVD processes albeit under different process conditions.


The substituted-allyl complexes offer access to different temperature windows for deposition processes when compared to conventional precursors. This makes matching of these substituted-allyl complexes with other metal sources open to more manipulation when attempting to deposit ternary or quaternary alloys in an optimized fashion.


The present invention, thus generally described, will be understood more readily by reference to the following examples, which is provided by way of illustration and is not intended to be limiting.


EXAMPLES

The following examples are merely illustrative, and do not limit this disclosure in any way.


Conventional synthesis processes use Et2O as solvent. Raw materials/intermediates are not very soluble in Et2O and thus need large amounts of solvent. Alternative solvents in which these materials are more soluble, for example THF (tetrahydrofuran)-Me2O, are better for scale up and reduction in chemical volumes needed.


Example 1
Preparation of Mn(η3-2-tert-butylallyl)(CO)4



embedded image


A. Preparation of K[Mn(CO)5].


A pale-yellow solution of Mn2(CO)10 (20.0 g, 0.051 mol) in THF (˜600 mL) was cooled to 0° C. and NaK (10 mL) was added. The solution was stirred for 6 hours and then overnight. On stifling vigorously overnight, a green solution with a dark suspension was obtained. Quenching a small sample with methyl iodide (MeI) confirmed complete conversion to KMn(CO)5. The solution was filtered through a small plug of celite and approximately half the volume of THF removed in vacuo.


B. Preparation of Mn(η1-2-tert-butylallyl)(CO)5.


The THF solution of K[Mn(CO)5] (0.103 mol) was cooled using dry ice and tert-butylallyl bromide (i.e., 2-bromomethyl-3,3-dimethylbut-ene, 18.2 g, 15.1 mL, 0.103 mol) was syringed in. There was an immediate reaction and the solution turned orange. The dry ice was removed from around the reaction mixture and the reaction stirred overnight, by which time it was light orange with a white precipitate. An infrared spectrum showed that the product was essentially Mn(η1-2-tert-butyllallyl)(CO)5 with virtually nothing else present. The solution was reduced to an oily solid on the rotavap and the solid extracted into ˜300 mL of hexane and filtered.


C. Preparation of Mn(η3-2-tert-butylallyl)(CO)4.


The filtered solution containing Mn(η1-2-tert-butyllallyl)(CO)5 was pumped through an UV lamp using a liquid pump for 3-6 hours to convert the η1 complex to η3 complex. The solvent was removed in vacuo and the liquid transferred into a 250 mL flask. Distillation up a 10 cm B14 Vigreux column gave 9.97 g (50%) of a yellow/brown fraction starting at 62-64° C. at 0.4 mmHg.


NMR (C6D6) 1H; 0.92 (s, 9H, tert-Bu), 1.19 (s, 2H, Hanti), 2.37 (s, 2H, Hsyn), 13C{1H} 30.2 (s, tert-Bu), 36.5 (s, C tert-Bu), 37.0 (s, CH2), 219.9, 218.3, 214.8 (s, br, CO).


IR (cm−1, in cyclohexane): 2065(m), 1993(m), 1960(s), 1926(w).



FIG. 1 shows a TGA plot of Mn(η3-2-tert-butylallyl)(CO)4 in comparison to that of Mn(η3-allyl)(CO)4 with a temperature ramp from RT to ˜400° C. Mn(η3-allyl)(CO)4 was prepared in a similar manner to Mn(η3-2-tert-butylallyl)(CO)4, using allyl bromide instead of tert-butylallyl bromide (see, for example, McClellan W. R. et al. J. Am. Chem. Soc. 83:1601-1607 (1961)).


Example 2
Preparation of Mn(η3-2-neopentylallyl)(CO)4



embedded image


Mn(η3-2-neopentylallyl)(CO)4 may be prepared in a similar manner to Mn(η3-2-tert-butylallyl)(CO)4, using neopentylallyl bromide instead of tert-butylallyl bromide.


Example 3
CVD Studies

In general, conventional, pulsed CVD experiments were carried out using a homemade tool fitted with a bubbling/vapor draw precursor inlet system. For CVD experiments targeting pure metal, nitrogen gas was employed as the carrier/purge gas. Mn(η3-2-tert-butylallyl)(CO)4 was used as the precursor. Mn(η3-2-neopentylallyl)(CO)4, Mn(η3-allyl)(CO)4, and other Mn(η3-alkylallyl)(CO)4 derivatives may similarly be used to prepare Mn-containing films.


Example 3a
CVD with No Co-Reactant

Films were deposited on hydrogen terminated silicon, tantalum nitride, ruthenium, or thermal silicon oxide using neat precursor.


CVD of the precursor (40° C.) was performed using bubbler delivery. Runs were done with a substrate temperature of 200° C. and 500 cycles with no co-reactant. Additional parameters are shown in Table 2, below.









TABLE 2





CVD Growth Conditions with No Co-reactant



















Ampoule (precursor) temperature
40°
C.



Substrate temperature(s)
200°
C.



Carrier gas
0 to 100
sccm N2



Temperature of lines to chamber
60°
C.



Purge gas
100
sccm N2



Base pressure during run
500
mtorr



Pulse sequence
2.0
sec every 7.0 sec










Table 3, below, shows the composition of film (atomic %) deposited by the parameters listed in Example 3a, as determined by XPS analysis. The surface was sputtered with argon ions for 0 sec, 30 sec, 1.5 min, 3 min, and 5 min. Within the film (>30 min sputter time), the carbon levels are very low. The high O content within the film is presumably caused by post deposition exposure to air.














TABLE 3







Si 2p
C 1s
O 1s
Mn 2p






















  0 sec
0
36
42
21



 30 sec
0
4.5
42
53



1.5 min
0
2.4
42
55



  3 min
0
2
41
56



  5 min
0
1.8
40
58











FIG. 2 is a graphical representation of XPS data of a film deposited on silicon dioxide by the parameters listed in Example 3a. The spectra show ionizations belonging to O 1s (FIG. 2A), Mn 2p (FIG. 2B), and C 1s (FIG. 2C with expansion shown in FIG. 2D) at different sputtering intervals from 0-5 minutes. The oxygen is likely being incorporated by post deposition exposure to air.


Example 3b
CVD with N,N-Dimethylhydrazine Co-Reactant

Films were deposited on silicon with native oxide, tantalum nitride or thermal silicon oxide using neat precursor.


CVD of the precursor (50° C.) was performed using vapor draw delivery. Runs were done with a substrate temperature of 140° C. and 500 cycles with N,N-dimethylhydrazine as co-reactant. Additional parameters are shown in Table 4 below.









TABLE 4





CVD Growth Conditions with N,N-Dimethylhydrazine Co-reactant

















Ampoule (precursor) temperature
50°
C.


Substrate temperature(s)
140°
C.


Carrier gas
0 to 100
sccm N2


Temperature of lines to chamber
65°
C.


Purge gas
10
sccm N2


Base pressure during run
100
mtorr


Pulse sequence
0.5
sec pulse every 20 sec









Example 4
ALD Studies

In general, conventional (pulsed), ALD experiments were carried out using a homemade tool fitted with bubbling/vapor draw precursor inlet system. For ALD experiments targeting pure metal, nitrogen gas was employed as carrier/purge gas. Mn(η3-2-tert-butylallyl)(CO)4 was used as the precursor. Mn(η3-2-neopentylallyl)(CO)4, Mn(η3-allyl)(CO)4, and other Mn(η3-alkylallyl)(CO)4 derivatives may similarly be used to prepare Mn-containing films.


Example 4a
ALD with Hydrazine Co-Reactant

Films were deposited on hydrogen terminated silicon, tantalum nitride, ruthenium, or thermal silicon oxide using neat precursor.


ALD of the precursor (50° C.) was performed using bubbler delivery. Runs were done with a substrate temperature of 200° C. and 500 cycles with hydrazine as a co-reactant. Additional parameters are shown in Table 5, below.









TABLE 5





ALD Growth Conditions with Hydrazine Co-reactant



















Ampoule (precursor) temperature
50°
C.



Substrate temperature(s)
200°
C.



Carrier gas
0 to 100
sccm N2



Temperature of lines to chamber
60°
C.



Purge gas
100
sccm N2



Base pressure during run
500
mtorr



Mn Precursor pulse
2.0
sec



Hydrazine pulse
1.0
sec



Purge between precursor pulses
5.0
sec










Example 4b
ALD with N,N-Dimethylhydrazine Co-Reactant

The ALD experiments targeted pure metal, and nitrogen gas was employed as carrier/purge gas and was employed in the alternating pulse cycle.


Films were deposited on silicon with native SiO2, thermal silicon oxide or tantalum nitride using neat precursor.


ALD of the precursor (50° C.) was performed using vapor draw delivery. Runs were done with a substrate temperature of 150° C. with N,N-dimethylhydrazine as co-reactant.


Additional parameters are shown in Table 6, below.









TABLE 6





ALD Growth Conditions with N,N-Dimethylhydrazine Co-reactant
















Substrate temperature
150° C.


Number of cycles
300-1000


Pulse sequence (sec)


[Mn precursor]/purge/[co-reactant]/
0.2 sec/10 sec N2 purge/0.2 sec


purge/--
DMHz/10 sec N2 purge










FIGS. 3-5 show SEM micrographs of Mn-containing films on tantalum nitride (FIG. 3), thermal SiO2 (FIG. 4), and Si(100) native oxide (FIG. 5), obtained from this Example.


Example 5
Plasma Enhanced-ALD (PE-ALD)

PE-ALD experiments were carried out using a homemade tool fitted with bubbling/vapor draw precursor inlet system and a RF plasma generator. For PE-ALD experiments targeting pure metal, nitrogen gas was employed as carrier/purge gas. Hydrogen was used as the plasma gas, at a base pressure of 68 mTorr. The load power for the plasma generator was set to 200 W, with a reflected power of ˜7-10 W.


Films were deposited on hydrogen terminated silicon, tantalum nitride, ruthenium, or thermal silicon oxide using neat Mn(η3-2-tert-butylallyl)(CO). Mn(η3-2-neopentylallyl)(CO)4, Mn(η3-allyl)(CO)4, and other Mn(η3-alkylallyl)(CO)4 derivatives may similarly be used to prepare Mn-containing films.


PE-ALD of the precursor (50° C.) was performed using bubbler delivery. Runs were done with a substrate temperature of 150° C. and 500 cycles with hydrogen plasma as a co-reactant. Additional parameters are shown in Table 7, below.









TABLE 7





PE-ALD Growth Conditions



















Ampoule (precursor) temperature
50°
C.



Substrate temperature(s)
150°
C.



Carrier gas
0 to 100
sccm N2



Temperature of lines to chamber
60°
C.



Purge gas
40
sccm N2



Base pressure during run
68
mtorr



Mn Precursor pulse
1.0
sec



Hydrogen plasma pulse
10.0
sec



Purge between precursor pulses
10.0
sec










When used in combination with hydrazines, such as N,N-dimethylhydrazine or tert-butylhydrazine, ALD growth of manganese film is observed at substrate temperatures of 150° C. Therefore, bulky-substituted allyl precursors, such as Mn(η3-2-neopentylallyl)(CO)4 and Mn(η3-2-tert-butylallyl)(CO)4 are clearly much better suited to deposition of high quality films using ALD. The ability to perform ALD below the CVD window with Mn(η3-2-neopentylallyl)(CO)4 and Mn(η3-2-tert-butylallyl)(CO)4 is surprising.


All publications, patent applications, issued patents, and other documents referred to in this specification are herein incorporated by reference as if each individual publication, patent application, issued patent, or other document was specifically and individually indicated to be incorporated by reference in its entirety. Definitions that are contained in text incorporated by reference are excluded to the extent that they contradict definitions in this disclosure.


The words “comprise”, “comprises”, and “comprising” are to be interpreted inclusively rather than exclusively.

Claims
  • 1. An organometallic complex represented by Formula IA:
  • 2. The complex of claim 1, wherein at least one of R1, R2, or R3 is branched C5-C8-alkyl.
  • 3. The complex of claim 1, wherein R1 or R2 is neopentyl.
  • 4. The complex of claim 1, wherein the complex is:
  • 5. A method for forming a metal-containing film by a vapor deposition process, the method comprising delivering to a substrate at least one complex represented by Formula IA:
  • 6. The method of claim 5, wherein x is one; and y and z are each zero.
  • 7. The method of claim 5, wherein y is one; and x and z are each zero.
  • 8. The method of claim 5, wherein at least two of x, y and z are one.
  • 9. The method of claim 5, wherein x, y and z are each one.
  • 10. The method of claim 5, wherein R1, R2, and R3 are independently selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, and neopentyl.
  • 11. The method of claim 5, wherein the at least one complex is:
  • 12. The method of claim 5, wherein the at least one complex is:
  • 13. The method of claim 5, wherein the vapor deposition process is chemical vapor deposition.
  • 14. The method of claim 13, wherein the chemical vapor deposition is liquid injection chemical vapor deposition.
  • 15. The method of claim 5, wherein the vapor deposition process is atomic layer deposition.
  • 16. The method of claim 15, wherein the atomic layer deposition is selected from the group consisting of liquid injection atomic layer deposition; pulsed injection atomic layer deposition; and plasma-enhanced atomic layer deposition.
  • 17. The method of claim 5, wherein the at least one complex is delivered to the substrate in pulses alternating with pulses of an oxygen source to form a metal oxide film.
  • 18. The method of claim 17, wherein the oxygen source is selected from the group consisting of H2O, O2 and ozone.
  • 19. The method of claim 5, further comprising delivering to the substrate at least one co-complex to form a mixed-metal oxide film.
  • 20. The method of claim 19, wherein the mixed-metal oxide film comprises manganese and silicon.
  • 21. The method of claim 5, further comprising using at least one co-reactant selected from the group consisting of hydrogen, hydrogen plasma, oxygen, air, water, ammonia, hydrazine, an alkyl-substituted hydrazine, a borane, a silane, ozone and a combination thereof.
  • 22. The method of claim 5, further comprising using an alkyl-substituted hydrazine as a co-reactant.
  • 23. The method of claim 22, wherein the alkyl-substituted hydrazine is N,N-dimethylhydrazine.
  • 24. The method of claim 5, wherein the at least one complex is delivered to a substrate selected from the group consisting of silicon, silicon oxide, silicon nitride, tantalum, tantalum nitride, copper, ruthenium, titanium nitride, tungsten, and tungsten nitride.
  • 25. The method of claim 5, wherein the film formed comprises a manganese-nitride thin film.
  • 26. The method of claim 5, wherein the method is used for a DRAM or CMOS application.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 61/522,985 filed Aug. 12, 2011, the disclosure of which is hereby incorporated by reference for all purposes in its entirety as if fully set forth herein.

US Referenced Citations (28)
Number Name Date Kind
4388021 Weiss Jun 1983 A
4680953 Fabris Jul 1987 A
4988159 Turner et al. Jan 1991 A
6541067 Marsh et al. Apr 2003 B1
6698728 Ravetz et al. Mar 2004 B1
7282119 Odedra et al. Oct 2007 B2
7419698 Jones Sep 2008 B2
7927661 Jones Apr 2011 B2
8039062 Heys et al. Oct 2011 B2
8221852 Heys et al. Jul 2012 B2
20030096468 Soininen et al. May 2003 A1
20070202254 Ganguli et al. Aug 2007 A1
20080132050 Lavoie Jun 2008 A1
20080251016 Cunning et al. Oct 2008 A1
20080282970 Heys et al. Nov 2008 A1
20090022891 Sakai et al. Jan 2009 A1
20100256406 Kanjolia et al. Oct 2010 A1
20100261350 Kanjolia et al. Oct 2010 A1
20110021803 Jin et al. Jan 2011 A1
20110151227 Chalker et al. Jun 2011 A1
20110165401 Chalker et al. Jul 2011 A1
20110165780 Kanjolia et al. Jul 2011 A1
20110174416 Hubsch et al. Jul 2011 A1
20110184156 Jones Jul 2011 A1
20120177845 Odedra et al. Jul 2012 A1
20120178266 Heys et al. Jul 2012 A1
20130052368 Rushworth et al. Feb 2013 A1
20130196065 Heys et al. Aug 2013 A1
Foreign Referenced Citations (26)
Number Date Country
2006-328526 Dec 2006 JP
200540291 Dec 2005 TW
200746268 Dec 2007 TW
WO 2006131751 Dec 2006 WO
WO 2007057631 May 2007 WO
WO 2009015270 Jan 2009 WO
WO 2009015271 Jan 2009 WO
WO 2009036045 Mar 2009 WO
WO 2009036046 Mar 2009 WO
WO 2009086263 Jul 2009 WO
WO 2009117583 Sep 2009 WO
WO 2009143452 Nov 2009 WO
WO 2009143456 Nov 2009 WO
WO 2009143458 Nov 2009 WO
WO 2009143460 Nov 2009 WO
WO 2009146423 Dec 2009 WO
WO 2009155507 Dec 2009 WO
WO 2009155520 Dec 2009 WO
WO 2011011299 Jan 2011 WO
WO 2011017068 Feb 2011 WO
WO 2011053505 May 2011 WO
WO 2011097100 Aug 2011 WO
WO 2011112413 Sep 2011 WO
WO 2011115878 Sep 2011 WO
WO 2012027575 Mar 2012 WO
WO-2013112383 Aug 2013 WO
Non-Patent Literature Citations (19)
Entry
Palmer et al., Journal of American Chemical Society, vol. 107, No. 11, pp. 3122-3129 (1985).
Abel et al., Angew. Chem. Internat. Edit., vol. 10, No. 5, pp. 339-340 (1971).
Dickson, R., et al. (1996) “The assessment of some cobalt and cobalt-tellurium complexes for MOCVD applications” Polyhedron, 15(13):2237-2245.
George, S., et al. (1996) “Surface chemistry for atomic layer growth” Journal of Physical Chemistry, 100:13121-13131.
Husebye, S., et al. (1964) “Hydrogen shift in the complex formation between deuterium tetracarbonylcobaltate (-I) and 1,4-Pentadiene” Acta Chemica Scandinavica 18(7):1581-1585.
Pankayatselvan, R., et al. (1990) “Regioselectivity of nucleophilic additions to substituted (η4-diene) Co(CO)3BF4 complexes” Journal of Organometallic Chemistry 384:361-380.
Potter, R., et al. (2005) “Deposition of HfO2, Gd2O3 and PrOx by liquid injection ALD techniques” Chemical Vapor Deposition, 11(3):159-169.
International Search Report for PCT/US2010/043300 dated Sep. 17, 2010.
EP Communication for EP Application No. 10738124.6 dated Feb. 11, 2013.
International Preliminary Report on Patentability for International Application No. PCT/US2010/043300 dated Feb. 7, 2012.
Burton, B., et al. (2009) “Atomic layer deposition of MnO using Bis(ethylcyclopentadienyl)manganese and H2O)” Thin Solid Films 517:5658-5665.
McClellan, W., et al. (1961) “π-Allyl derivatives of transition metals” π-Allyl Derivatives of Transition Metals, Contribution No. 643 from the Central Research Department, 83:1601-1607.
Nilsen, O., et al. (2003) “Growth of manganese oxide thin films by atomic layer deposition” Thin Solid Films 444:44-51.
Qin, X., et al. (2012) “Thermal chemistry of Mn2(CO)10 during deposition of thin manganese films on silicon oxide and on copper surfaces” J. Vac. Sci. Technol. A 30(1).
Office Action dated Feb. 25, 2014 issued in U.S. Appl. No. 13/388,861.
Office Action dated Feb. 17, 2014 issued in Chinese Application No. 201080041747.1 with English Translation.
Search Report and Written Opinion dated Apr. 15, 2013 issued in Singapore Application No. 201200801-7.
Office Action dated Jul. 10, 2014 issued in U.S. Appl. No. 13/388,861.
Japanese Office Action dated Mar. 4, 2014 issued in Japanese Application No. 2012-523641 with English Translation.
Related Publications (1)
Number Date Country
20130041170 A1 Feb 2013 US
Provisional Applications (1)
Number Date Country
61522985 Aug 2011 US