This is a divisional application based on pending application Ser. No. 11/219,805, filed Sep. 7, 2005, the entire contents of which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a precursor for forming a phase-change film and a memory device using the same. More particularly, the present invention relates to a precursor for forming a phase-change film for a Phase-change Random Access Memory (PRAM) that can reduce a reset current and a memory device using the precursor.
2. Description of the Related Art
Phase-change materials may undergo a structural transformation between crystalline and amorphous phases. The crystalline phase may exhibit a lower resistance relative to the amorphous phase and have a more orderly atomic arrangement. The crystalline phase and the amorphous phase may be reversibly changed. That is, the conversion of the crystalline phase to the amorphous phase, and vice versa, is possible. Phase-change Random Access Memories (PRAMs) are devices based on a reversible phase change between crystalline and amorphous phases that have distinctly different resistances. Various types of phase-change materials that can be applied to memory devices are known. A GST (GeSbTe, germanium-antimony-tellurium)-based alloy is a typical phase-change material.
PRAMs may have a general structure where a phase-change film is electrically connected to a source region or a drain region of a transistor via a contact plug. PRAMs typically operate on a resistance difference due to a change in the crystal structure of a phase-change film.
The first impurity region 11a, the gate electrode layer 13 and the second impurity region 11b may be covered with an insulating layer 15. A contact plug 14 may be formed through the insulating layer 15 to contact the second impurity region 11b. A lower electrode 16 may be formed on the contact plug 14. A phase-change film 17 and an upper electrode 18 may be formed on the lower electrode 16.
Data storage in the above-described PRAM may be accomplished as follows. When a current is applied to the second impurity region 11b and the lower electrode 16, Joule heat is generated at a contact area of the lower electrode 16 and the phase-change film 17. Therefore, the crystal structure of the phase-change film 17 may be changed, resulting in data storage. That is, the crystal structure of the phase-change film 17 may be changed into a crystalline phase or an amorphous phase by appropriately adjusting an applied current. Such a phase change between a crystalline phase and an amorphous phase leads to a change in resistance, which enables identification of stored binary data values.
To enhance the performance of memory devices, a power consumption (current) should be reduced. In particular, a PRAM using GST typically requires a high reset current, i.e., a high current to induce the transition from a crystalline phase to an amorphous phase.
A phase-change film may be formed by sputtering using targets of a Ge—Sb—Te material and may then be doped with nitrogen or silicon by a separate doping process, i.e., by separately performing a GST phase-change film formation process and a nitrogen or silicon doping process.
The present invention is therefore directed to a precursor used for forming a phase-change film and a memory device using the same, which substantially overcome one or more of the problems due to the limitations and disadvantages of the related art.
It is therefore a feature of an embodiment of the present invention to provide a precursor for forming a phase-change film that can reduce the intensity of an applied current necessary for change in crystal structure of a phase-change film, e.g., a reset/set programming current in a PRAM, to enable highly integrated, high capacity and high speed semiconductor memory devices.
It is therefore another feature of an embodiment of the present invention to provide a precursor for forming a phase-change including a nitrogen- and silicon-doped GST film.
At least one of the above and other features and advantages of the present invention may be realized by providing an antimony-containing compound including antimony, nitrogen and silicon.
The compound may include three nitrogen atoms covalently bound to an antimony atom. Each of the three nitrogen atoms may be covalently bound to two silicon atoms. Each silicon atom may be bound to three methyl groups. The compound may be a compound represented by the formula SbN3Si6(CH3)18. The compound may be a compound represented by structure 1:
At least one of the above and other features and advantages of the present invention may also be realized by providing a phase-change memory device including a semiconductor substrate including a transistor structure and a storage element electrically connected to the transistor structure, wherein the storage element may include a nitrogen- and silicon-containing GST phase-change film interposed between two conductive elements.
The phase-change memory device may include a nitrogen- and silicon-containing GST phase-change film of a Ge2—Sb2—Te5 material including nitrogen and silicon. The nitrogen- and silicon-containing GST phase-change film may reversibly change between a crystalline phase and an amorphous phase when heated by an electric current passed between the two conductive elements.
At least one of the above and other features and advantages of the present invention may further be realized by providing a method of manufacturing a memory device including a phase-change film, the method including forming the phase-change film using an antimony precursor including antimony, nitrogen and silicon.
The antimony precursor may be a material represented by the formula SbN3Si6(CH3)18. The antimony precursor may be a material represented by structure 1:
The phase-change film may be formed by chemical vapor deposition or atomic layer deposition. The method may also include forming a phase-change storage element on the substrate, the phase-change storage element including the phase-change film interposed between two electrically conductive elements, wherein forming the phase-change film includes providing the antimony precursor, a germanium precursor, and a tellurium precursor. The antimony precursor, the germanium precursor, and the tellurium precursor may be provided concurrently, or may be provided sequentially. The method may also include causing the antimony precursor, the germanium precursor and the tellurium precursor to react to form the phase-change film, wherein the phase-change film is a GST film that includes nitrogen and silicon.
The above and other features and advantages of the present invention will become more apparent to those of ordinary skill in the art by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
Korean Patent Application No. 10-2004-0071868, filed on Sep. 8, 2004, in the Korean Intellectual Property Office, and entitled: “Antimony Precursor, Phase-change Memory Device Using the Antimony Precursor, and Method of Manufacturing the Phase-change Memory Device,” is incorporated by reference herein in its entirety.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. The invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the figures, the dimensions of layers and regions are exaggerated for clarity of illustration. It will also be understood that when a layer is referred to as being “on” another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being “under” another layer, it can be directly under, and one or more intervening layers may also be present. In addition, it will also be understood that when a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. Like reference numerals refer to like elements throughout.
A precursor of a phase-change material according to the present invention, and a phase-change memory device using the same, will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are illustrated.
Referring to
Typically, the formation of a phase-change film on a lower electrode of a memory device is performed by Chemical Vapor Deposition (CVD) or Atomic Layer Deposition (ALD). To perform CVD or ALD, the use of a suitable precursor for CVD or ALD is essential. The present invention provides a precursor for CVD or ALD that may be used for forming a N- or Si-doped GST phase-change film.
Referring to
Referring to
A N- and Si-containing antimony precursor synthesized as described above should exist in a gas phase at high temperature to be used as a precursor for CVD or ALD. However, the binding of nitrogen and silicon with antimony must not be cracked. That is, the precursor should be thermally stable. In this regard, a Thermal Gravimetric Analysis (TGA) for an antimony precursor solution was performed. The TGA was carried out with heating from room temperature to a predetermined temperature to analyze a residual component content.
Hereinafter, a phase-change memory device including a phase-change film formed using a N- and Si-containing precursor and a method of manufacturing the same according to the present invention will be described in detail.
The first impurity region 21a, the gate electrode layer 23 and the second impurity region 21b may be covered with an insulating layer 25. A contact hole may be formed in the insulating layer 25 to expose the second impurity region 21b and a conductive plug 24 may be formed in the contact hole. A lower electrode 26, a phase-change film 27 and an upper electrode 28 may be sequentially formed on the conductive plug 24. The phase-change film 27 may be a Si- and N-containing GST phase-change film according to the present invention. Generally, the transistor structure below the phase-change film 27 may be manufactured by typical semiconductor fabrication process.
In the structure illustrated in
A method of manufacturing a phase-change memory device according to the present invention will now be described with reference to
A conductive material, e.g., a noble metal material, a metal nitride such as TiN, etc., may be selectively formed on the conductive plug 24 to form the lower electrode 26. The phase-change film 27 may be formed on the lower electrode 26, although, as noted above, the lower electrode 26 may be eliminated and the phase-change film 27 may be formed on the conductive plug 24.
The phase-change film 27 of the present invention may be formed by reacting a N- and Si-containing antimony precursor, a Ge-containing precursor and a Te-containing precursor on the substrate 20 in a reaction chamber. Finally, a conductive material, e.g., the same conductive material as the lower electrode 26, may be coated on the phase-change film 27 to form the upper electrode 28 to complete a phase-change memory device according to the present invention.
A precursor of a phase-change material according to the present invention may reduce the intensity of an applied current necessary for inducing a change in the crystal structure of a phase-change film, thereby enabling highly integrated, high capacity and high speed semiconductor memory devices.
Exemplary embodiments of the present invention have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0071868 | Sep 2004 | KR | national |
Number | Date | Country | |
---|---|---|---|
Parent | 11219805 | Sep 2005 | US |
Child | 12654839 | US |