Antisense Oligonucleotide for Targeting Progranulin

Abstract
The present invention relates to oligonucleotides which alter the splicing pattern of progranulin in cells, and their use in the treatment of neurological disorders.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims benefit of and priority to the European Patent Application EP 20215791.3 filed on Dec. 18, 2020, which is incorporated by reference in its entirety where permissible.


TECHNICAL FIELD OF THE INVENTION

The present invention relates to antisense oligonucleotides which alter the splicing pattern of progranulin, and their use in the treatment of neurological disorders. Such antisense oligonucleotides may up-regulate or restore expression of the Exon1-Exon2 progranulin splice variant in cells.


REFERENCE TO SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Dec. 14, 2021, is named 067211_016US1_SL.txt and is 64,354 bytes in size.


BACKGROUND OF THE INVENTION

Progranulin (PGRN) is a highly conserved secreted protein that is expressed in multiple cell types, both in the CNS and in peripheral tissues.


Deficiency of the secreted protein progranulin in the central nervous system causes the neurodegenerative disease fronto temporal dementia (FTD). Pathogenic progranulin mutations lead to a loss of about 50% in progranulin levels through haploin sufficiency and to intraneuronal aggregation of TDP-43 protein. Progranulin plays a supportive and protective role in numerous processes within the brain, including neurite outgrowth, synapse biology, response to exogenous stressors, lysosomal function, neuroinflammation, and angiogenesis in both cell autonomous and non-autonomous manners.


Both directly and via its conversion to granulins, progranulin regulates lysosomal function, cell growth, survival, repair, and inflammation. Progranulin has a major role in regulation of lysosomal function associated microglial responses in the CNS. Autosomal dominant mutations of the progranulin gene leading to protein haploinsufficiency are linked to familial frontotemporal dementia with neuropathologic frontotemporal lobar degeneration (FTLD) associated with accumulation of TAR-DNA binding protein of 43kDA (TDP-43) inclusions (FTLD-TDP). Homozygous GRN mutations are linked to neuronal ceroid lipofuscinosis (NCL) (Townley, et al., Neurology, 2018 Jun. 12; 90(24): 1127).


Mutations in the progranulin gene have recently been identified as a cause of about 5% of all FTD, including some sporadic cases. Recent studies using mouse models have defined the expression of progranulin in the brain (Petkau et al., 2010). Progranulin is expressed late in neurodevelopment, localizing with markers of mature neurons. Progranulin is expressed in neurons in most brain regions, with highest expression in the thalamus, hippocampus, and cortex. Microglia cells also express progranulin, and the level of expression is upregulated by microglial activation. Around 70 different progranulin gene mutations have been identified in FTD and all reduce progranulin levels or result in loss of progranulin function.


There is therefore an urgent need for therapeutic agents which can increase the expression and/or activity of progranulin.


SUMMARY OF THE INVENTION

A splice variant of progranulin which retains the 5′ part of Intron 1 is expressed in the brain such as in neurons or microglia cells (Capell et al. The Journal of Biological Chemistry, 2014, 289(37), 25879-25889). This splice variant include the 5′ most 271 nucleotides of intron 1, which totals 3823 nucleotides. The 271 nucleotide fragment of intron 1 includes two AUG sites upstream of the canonical downstream AUG (open reading frame) in exon 2. Translation from these two upstream AUG sites will not encode the progranulin protein, and due to premature termination codons the transcript may undergo non-sense mediated mRNA decay (NMD).


WO2020/191212 describes specific oligonucleotides which can target the progranulin mRNA. Here the inventors have determined that reducing the splice variant which retains the 5′ part of intron 1 increases the Exon1 and Exon2 splice variant and further increases progranulin protein expression.


The present invention provides antisense oligonucleotides of progranulin. These antisense oligonucleotides are capable of altering the splicing pattern of progranulin, In particular the antisense oligonucleotides may up-regulate expression of the Exon1-Exon2 progranulin splice variant, reducing production of the progranulin Intron1-Exon2 splice variant which retains the 5′ part of intron 1, increasing the expression of the progranulin protein. These antisense oligonucleotides could be described as modulators of progranulin splicing, or as agonists of progranulin Exon1-Exon 2.


The antisense oligonucelotides of the invention may be used to restore or enhance expression of the progranulin Exon1-Exon2 splice variant in cells.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary, such as fully complementary, to a splice regulation site of the human progranulin pre-mRNA.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary, such as fully complementary, to a splice regulation site of the exon 1, intron 1 and exon 2 sequence of the human progranulin pre-mRNA.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary, such as fully complementary, to a human progranulin pre-mRNA transcript that comprises the exon1, intron 1 and exon 2 sequence of the human progranulin pre-mRNA transcript (SEQ ID NO: 276).


The progranulin exon 1, intron 1 and exon 2 sequence is shown below as SEQ ID NO: 276. The progranulin exon1 sequence (in capital letters) corresponds to genome Ensemble (www.ensemble.org) chromosome 17 position 44,345,123; to position 44,345,334. Intron 1 corresponds to genome Ensemble chromosome 17 position 44,345,335 to 44,349,157 and Exon 2 sequence (in capital letters) corresponds to genome Ensemble chromosome 17 position 44,349,158 to position 44,349,302.










Exon 1, intron 1 and exon 2 sequence of the human progranulin pre-mRNA (SEQ ID NO: 276):



GGCGAGAGGAAGCAGGGAGGAGAGTGATTTGAGTAGAAAAGAAACACAGCATTCC





AGGCTGGCCCCACCTCTATATTGATAAGTAGCCAATGGGAGCGGGTAGCCCTGATCC





CTGGCCAATGGAAACTGAGGTAGGCGGGTCATCGCGCTGGGGTCTGTAGTCTGAGC





GCTACCCGGTTGCTGCTGCCCAAGGACCGCGGAGTCGGACGCAGgtaggagagcggccgcgc





agacctctcgcctgctcctgcccaggggcccgccagggccatgtgagcttgaggttcccctggagtctcagccggagacaacagaagaa





ccgcttactgaaactccttgggggttctgatacactagggggagttttatgggaaagaggaagcagtaattgcagtgacgccccgttagaag





gggcttctacctccccagcattcccccaaagcagggaccacaccattcttgacccagctccacccctgtcggtaggtgctggcttcttcccc





tctcctggtggtggtgggtggttcccgcggcggcctggagccggaggggcgcgcgaccctgggctgggagctccgagggcctgggaa





cgagacctgagaccttggcttctcgaaggtagtagggacttgggagtggtgactgaacctggtctggctcctccttacttcctcttgttgcggg





tgggacgagctagcttccgcctctcccagccactttttcctgctcatttgcagctaggttggctccccttttgggaatttcctctccccttggcact





cggagttggggggtgccacctagtggaagataacggagctagggtcttgaagaggctgctgtcccctctggctgttttggcggtgtagggt





ggcatgagagactgcgactcgcctcctcatccctgtttctgtatgcgagtgcttgtattcagtagaagcatacactatactccctcaatttagggt





aaacaggaggggccacatgcacaggtaattcaccagggagccgaacactcctgtgcagacagactccccttcccagcaagccatggcag





cggacagcctgctgagaacacccaggaagcaggcggtgccagctgcaggtgctttgcctgggagctgtggggctgaggagagggtcca





ctgtccaggaccagtgaacttcatccttatctgtccaggaggtggcctcttggggatgctgagttaggggaggggcacttgaggaaagcca





ggtggagcagagaggatgtgagtgactgggtgggtgagatttcctgcccctccccccgcagtggtatccacacctagactcgtggggtaa





ctgaggcacagacagagagcaacttctcaggccctcacagttggcaattctaggattaggacccaagtgcgattttcaggcagtccctgtac





cctgtttctgttgtacctgttgcaccattcccaggcactgcccatcgtgccactagtgatatgaacccaggtccaatacgctctggggccatca





aagcctgacgtcaccatgacctgatgtgtgacgtgttataggtgtcccttggtatcttcacggaactggttccaggaccccaaaatctgtgggt





gctcaagcccctgagataaaatggtgtaatatttgcatataacctatacatactttaaatcatttctagattacttatacctaatacaatggaaatga





catgtcggctgggcgtggtggctcatgcctgtaatcccaccactttgggaggccgtggcaggtggatcacctgaggtctggagtttgagac





cagcctgaccaacatggtgaaacccccatctctactaaaaatacaaaaattagccaggtgtggtagcgcacacctataatcccacctacttgg





gaggctgaggcaggagaattgcttgaacctgggaggcggagttcgcagtaagctgagatcgcgccactgtactacagcctgggtgacag





agcaggactccatctcaaaaaaaaaagagaaaaagaaaaagaaatgccatgtaaatagttgtgatcctgaattgtttagggaataataagaa





agaactatctgtagatgttcagtatagatgcacccatcgtaagcctaactacattgtataactcagcaacgatgtaacattttcaggggtttttttg





ttttgttttttgagacagaatctcagtctcactctgtcacccaggctggagtatgttggcgtgatctctgctcactgcaacctccacctcctgggct





caagcgattctcctgcctcagcctcttgagtagctgggattgcaggtgtgcgctaccacgcatggctaatttttgtatttttaatagagatggggt





tttaccacgttggtcaggctggtcttgaactcctgaccttgggatccgcccacctgggcctcccaaagtgctgggattacaggcgttagccac





cgcgcccaatatattttgatccctggttggatatggagggctgactgtacttaacatctctaagcttcagtttcctcctttaaaataaaggtgtggc





tgggtgtggtggttcaagcctgtaatcccagcacttagggaggctgaggtgggtggatcagctgaggtcaggagttcaagaccagcctgac





caatatggtgaaaccccctctctgctaaaaatacaaaaattagccaggcgtggtggcgagcgcctgtagtcccagctacttgcttgaacttgg





gaggcagaggttgcagtgagctgagatcgtgccactgaactcgagcatgggcaacagagcaagactgtctcaaaaaaaaaaaaaaaaag





ggggtgagcagacgtggtggcacgctcccacagtcccagctacttagtaggaggccaaggttggaggattgcttgatcccaggagtctga





gtccagcctgggcaacatggcaatacctcatctctaaaaataaaataaaagtaaaggtattaattactactttggatggttgttgcaaagaaata





tatataaaataatggagagtcttgtaactggctcccaagaggctcaacagacattactgtttttgcttcttcattatgagttacctctctggccacc





ccactgaactagctgggctagctgagcctgggagaagagttgtttaggaagtgagaggctgctctccacagagactcaaggctcagttcct





cctggtgactcagatgggcagcccagtgggcacacgtggtctctctccacatgtggctgagtttcacttccagaatagatggagaggcaag





ggcagggtttagcatgcttgaggaatctcagagggccctggtggtgtgggggaccctcagaacacaggtgtctcaagggctgacccagct





tctgtgtccttttctctgggtgaggaggggacattcatgggcagatggtgacctctggggaaggcagcccagactccactggccaccatattt





cctttttcacaactttctcacccctgtggtttcccatgtcatcatgtggccgcttcccgcaaggccttagcggggtgcaggtatgaacatagtgt





caggcaaggaggcatctggaggggaaccctggatttcctggggggactccctccctgcaccctagccctgtcctctcccatggctactgat





gccttcccctcaccccagaggtggcccacatctgcacagatcagacccacaaaaatcacgtcttcctgactctcataagcctgcccagtgag





gcccaggcattaggccatgtgctggggactcagacccacacatatacgcatgtcagcattcatgcttacaggtccgcacatgctggggcaa





gtgtcacacacggggcgctgtaggaagctgactctcagcccctgcagatttctgcctgcctggacagggaggtgttgagaaggctcaggc





agtcctgggccaggaccttggcctggggctagggtactgagtgaccctagaatcaagggtggcgtgggcttaagcagttgccagacgttc





cttggtactttgcagGCAGACCATGTGGACCCTGGTGAGCTGGGTGGCCTTAACAGCAGGGCT





GGTGGCTGGAACGCGGTGCCCAGATGGTCAGTTCTGCCCTGTGGCCTGCTGCCTGGA





CCCCGGAGGAGCCAGCTACAGCTGCTGCCGTCCCCTTCTG






The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of at least 12 nucleotides in length which is complementary, such as fully complementary, to a splice regulation site of the human progranulin pre-mRNA.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 12-16 nucleotides in length which is complementary, such as fully complementary, to a splice regulation site of the human progranulin pre-mRNA.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 12-16 nucleotides in length and comprises a contiguous nucleotide sequence of 12-16 nucleotides in length which is complementary, such as fully complementary, to a splice regulation site of the human progranulin pre-mRNA.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 12-18 nucleotides in length which is complementary, such as fully complementary, to a splice regulation site of the human progranulin pre-mRNA.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 12-18 nucleotides in length and comprises a contiguous nucleotide sequence of 12-18 nucleotides in length which is complementary, such as fully complementary, to a splice regulation site of the human progranulin pre-mRNA.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 nucleotides in length which is complementary, such as fully complementary, to a splice regulation site of the human progranulin pre-mRNA.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary, such as fully complementary, to a nucleotide sequence comprised within SEQ ID NO: 276.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary, such as fully complementary, to a nucleotide sequence comprised within nucleotides 441-468 of SEQ ID NO: 276.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary, such as fully complementary, to a nucleotide sequence comprised within nucleotides 441-462 of SEQ ID NO: 276.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary, such as fully complementary, to a sequence selected from the group consisting of: SEQ ID NO: 277, SEQ ID NO: 278, SEQ ID NO: 279 and SEQ ID NO: 280.









Target site for SEQ ID NO: 71


(SEQ ID NO: 277)


ATTCTTGACCCAGCTC.





Target site for SEQ ID NO: 73


(SEQ ID NO: 278)


CACACCATTCTTGACC.





Target site for SEQ ID NO: 74


(SEQ ID NO: 279)


GACCACACCATTCTTG.





Target site for SEQ ID NO: 75


(SEQ ID NO: 280)


AGGGACCACACCATTC.






The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary, such as fully complementary, to a nucleotide sequence comprised within nucleotides 268-283 of SEQ ID NO: 276.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary, such as fully complementary, to SEQ ID NO: 281.









Target site for SEQ ID NO: 134


(SEQ ID NO: 281)


GCCATGTGAGCTTGAG.






The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary, such as fully complementary, to a sequence selected from the group consisting of: SEQ ID NO: 291 and SEQ ID NO: 292.


The antisense oligonucleotide may be 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 nucleotides in length. In some embodiments the antisense oligonucleotide is 8-40, 12-40, 12-20, 10-20, 14-18, 12-18 or 16-18 nucleotides in length.


The contiguous nucleotide sequence may be 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 nucleotides in length. In some embodiments, the contiguous nucleotide sequence is of a length of at least 12 nucleotides in length, such as 12-16 or 12-18 nucleotides in length.


In some embodiments, the contiguous nucleotide sequence is the same length as the antisense oligonucleotide.


In some embodiments the antisense oligonucleotide consists of the contiguous nucleotide sequence.


In some embodiments the antisense oligonucleotide is the contiguous nucleotide sequence.


In some embodiments, the contiguous nucleotide sequence is fully complementary to a nucleotide sequence comprised within SEQ ID NO: 276.


In some embodiments, the contiguous nucleotide sequence is fully complementary to a nucleotide sequence comprised within nucleotides 441-468 of SEQ ID NO: 276.


In some embodiments, the contiguous nucleotide sequence is fully complementary to a nucleotide sequence comprised within nucleotides 441-462 of SEQ ID NO: 276.


In some embodiments, the contiguous nucleotide sequence is fully complementary to a sequence selected from the group consisting of SEQ ID NO: 277, SEQ ID NO:278, SEQ ID NO:279 and SEQ ID NO:280.


In some embodiments, the contiguous nucleotide sequence is fully complementary to SEQ ID NO:277.


In some embodiments, the contiguous nucleotide sequence is fully complementary to SEQ ID NO:278.


In some embodiments, the contiguous nucleotide sequence is fully complementary to SEQ ID NO:279.


In some embodiments, the contiguous nucleotide sequence is fully complementary to SEQ ID NO:280.


In some embodiments, the contiguous nucleotide sequence is fully complementary to a nucleotide sequence comprised within nucleotides 256-283 of SEQ ID NO: 276.


In some embodiments, the contiguous nucleotide sequence is fully complementary to SEQ ID NO:281.


In some embodiments, the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252, or at least 8 contiguous nucleotides thereof.


In some embodiments, the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252, or at least 9 contiguous nucleotides thereof.


In some embodiments, the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252, or at least 10 contiguous nucleotides thereof.


In some embodiments, the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252, or at least 11 contiguous nucleotides thereof.


In some embodiments, the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252, or at least 12 contiguous nucleotides thereof.


In some embodiments, the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID


NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252, or at least 13 contiguous nucleotides thereof.


In some embodiments, the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252, or at least 14 contiguous nucleotides thereof.


In some embodiments, the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252, or at least 15 contiguous nucleotides thereof.


In some embodiments the contiguous nucleotide sequence is selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252.


In some embodiments the contiguous nucleotide sequence is SEQ ID NO:71.


In some embodiments the contiguous nucleotide sequence is SEQ ID NO:73.


In some embodiments the contiguous nucleotide sequence is SEQ ID NO:74.


In some embodiments the contiguous nucleotide sequence is SEQ ID NO:75.


In some embodiments the contiguous nucleotide sequence is SEQ ID NO:134.


The invention provides an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length, wherein the contiguous nucleotide sequence is selected from the group consisting of : SEQ ID NO: 289 and SEQ ID NO: 290.


The invention provides for an antisense oligonucleotide which is isolated, purified or manufactured.


In some embodiments, the antisense oligonucleotide is or comprises an antisense oligonucleotide mixmer or totalmer. In some embodiments, the contiguous nucleotide sequence is a mixmer or a tolalmer.


The invention provides for a conjugate comprising the antisense oligonucleotide according to the invention, and at least one conjugate moiety covalently attached to said antisense oligonucleotide.


The invention provides an antisense oligonucleotide covalently attached to at least one conjugate moiety.


The invention provides for a pharmaceutically acceptable salt of the antisense oligonucleotide according to the invention, or the conjugate according to the invention.


The invention provides for an antisense oligonucleotide according to the invention wherein the antisense oligonucleotide is in the form of a pharmaceutically acceptable salt. In some embodiments the pharmaceutically acceptable salt may be a sodium salt, a potassium salt or an ammonium salt.


The invention provides for a pharmaceutically acceptable sodium salt of the antisense oligonucleotide according to the invention, or the conjugate according to the invention.


The invention provides for a pharmaceutically acceptable potassium salt of the antisense oligonucleotide according to the invention, or the conjugate according to the invention.


The invention provides for a pharmaceutically acceptable ammonium salt of the antisense oligonucleotide according to the invention, or the conjugate according to the invention.


The invention provides for a pharmaceutical composition comprising the antisense oligonucleotide of the invention, or the conjugate of the invention, and a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.


The invention provides for a pharmaceutical composition comprising the antisense oligonucleotide of the invention, or the conjugate of the invention, and a pharmaceutically acceptable salt. For example, the salt may comprise a metal cation, such as a sodium salt, a potassium salt or an ammonium salt.


The invention provides for a pharmaceutical composition according to the invention, wherein the pharmaceutical composition comprises the antisense oligonucleotide of the invention or the conjugate of the invention, or the pharmaceutically acceptable salt of the invention; and an aqueous diluent or solvent.


The invention provides for a solution, such as a phosphate buffered saline solution of the antisense oligonucleotide of the invention, or the conjugate of the invention, or the pharmaceutically acceptable salt of the invention. Suitably the solution, such as phosphate buffered saline solution, of the invention, is a sterile solution.


The invention provides for a method for enhancing the expression of the Exon1-Exon2 progranulin splice variant in a cell which is expressing progranulin, said method comprising administering an antisense oligonucleotide of the invention, or a conjugate of the invention, or a salt of the invention, or a pharmaceutical composition of the invention in an effective amount to said cell. In some embodiments the method is an in vitro method. In some embodiments the method is an in vivo method.


In some embodiments, the cell is either a human cell or a mammalian cell.


The invention provides for a method for treating or preventing progranulin haploinsufficiency or a related disorder, comprising administering a therapeutically or prophylactically effective amount of an antisense oligonucleotide of the invention, or a conjugate of the invention, or a salt of the invention, or a pharmaceutical composition of the invention to a subject suffering from or susceptible to progranulin haploinsufficiency or a related disorder.


The invention provides for a method for treating or preventing neurological disease, comprising administering a therapeutically or prophylactically effective amount of an antisense oligonucleotide of the invention, or a conjugate of the invention, or a salt of the invention, or a pharmaceutical composition of the invention to a subject suffering from or susceptible to neurological disease. In one embodiment the neurological disease may be a TDP-43 pathology.


The invention provides for an antisense oligonucleotide of the invention, for use as a medicament.


The invention provides for an antisense oligonucleotide of the invention, for use in therapy.


The invention provides for the antisense oligonucleotide of the invention or the conjugate of the invention, or the salt of the invention, or the pharmaceutical composition of the invention, for use as a medicament.


The invention provides the antisense oligonucleotide of the invention or the conjugate of the invention, or the salt of the invention, or the pharmaceutical composition of the invention for use in therapy.


The invention provides for the antisense oligonucleotide of the invention or the conjugate of the invention, or the salt of the invention, or the pharmaceutical composition of the invention for use in the treatment of a neurological disease. In one embodiment the neurological disease may be a TDP-43 pathology.


The invention provides for the antisense oligonucleotide of the invention or the conjugate of the invention, or the salt of the invention, or the pharmaceutical composition of the invention for use in the treatment or prevention of progranulin haploinsufficiency or a related disorder.


The invention provides for the use of the antisense oligonucleotide of the invention or the conjugate of the invention, or the salt of the invention, or the pharmaceutical composition of the invention, for the preparation of a medicament for treatment or prevention of a neurological disease. In one embodiment the neurological disease may be a TDP-43 pathology.


The invention provides for the use of the antisense oligonucleotide of the invention or the conjugate of the invention, or the salt of the invention, or the pharmaceutical composition of the invention, for the preparation of a medicament for treatment or prevention of progranulin haploinsufficiency or a related disorder.


In some embodiments the method, use, or antisense oligonucleotide for use, of the invention is for the treatment of fronto temporal dementia (FTD), neuropathologic frontotemporal lobar degeneration or neuroinflammation. In other embodiments the method, use, or antisense oligonucleotide for use, of the invention is for the treatment of amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, spinocerebellar ataxia 3, myopathies or Chronic Traumatic Encephalopathy.


In one aspect the invention includes an oligonucleotide progranulin agonist having the structure corresponding to SEQ ID NO:71:




embedded image


In another aspect the invention includes an oligonucleotide progranulin agonist having the structure corresponding to SEQ ID NO:73:




embedded image


In another aspect the invention includes an oligonucleotide progranulin agonist having the structure corresponding to SEQ ID NO:74:




embedded image


In another aspect the invention includes an oligonucleotide progranulin agonist having the structure corresponding to SEQ ID NO:75:




embedded image


In another aspect the invention includes an oligonucleotide progranulin agonist having the structure corresponding to SEQ ID NO:134:




embedded image


In another aspect the invention includes an antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound GaGctGggTcAagAAT (SEQ ID NO: 71) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.


In another aspect the invention includes an antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound GgtCaaGaAtgGtgTG (SEQ ID NO: 73) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.


In another aspect the invention includes an antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound CaGaAtGgtGtGgTC (SEQ ID NO:74) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.


In another aspect the invention includes an antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound GaAtGgtGtGgTccC (SEQ ID NO:75) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.


In another aspect the invention includes an antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound CtcAagCtcAcAtgGC (SEQ ID NO:134) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1E shows expression levels of the Exon1-Exon2 mRNA splice form of progranulin relative to HPRT1 and Intron1-Exon2 relative to HPRT1. SEQ ID NOs: 1-49 are shown in FIG. 1A. SEQ ID NOs: 50-109 are shown in FIG. 1B. SEQ ID NOs: 110-169 are shown in FIG. 1C. SEQ ID NOs: 170-229 are shown in FIG. 1D. SEQ ID Nos: 230-275 are shown in FIG. 1E.



FIG. 2 shows progranulin expression levels following treatment with an oligonucleotide for 5 days.



FIG. 3 shows progranulin expression levels following treatment with an oligonucleotide for 5 days compared to oligonucleotides S7 and S10 from WO 2020/191212.



FIG. 4 shows sequence localization of SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75 and SEQ ID NO: 134.



FIG. 5 shows progranulin expression levels following treatment with an oligonucleotide for 4 days.



FIG. 6 shows progranulin expression levels following treatment with an oligonucleotide for 4 days compared to oligonucleotides S7, S10 and S37 from WO 2020/191212.



FIGS. 7A-7D shows ddPCR data quantifying the abundance of the 5 UTR splice variants in GRN mRNA 48 h after transfection in H4 cells relative to Mock transfected cells. Grey bars quantify the abundance of the splice variant with retention of intron1 (Int1-Ex2) and the black bars the splice variant with the splicing of Ex1- Ex2 (Ex1-Ex2). SEQ ID NO: 73 (FIG. 7A), SEQ ID NO: 74 (FIG. 7B) and SEQ ID NO: 75 (FIG. 7C) show dose-dependent skipping of intron1 retention (Int1-Ex2) and an increase in Ex1-Ex2 splice-variant. The S10 compound from WO 2020/191212 (FIG. 7D) shows no/limited effects on skipping of intron1 retention.



FIGS. 8A-8C shows ddPCR data quantifying the abundance of the 5 UTR splice variants in GRN mRNA 48 h after transfection in H4 cells relative to Mock transfected cells. Grey bars quantify the abundance of the splice variant with retention of intron1 (Int1-Ex2) and the black bars the splice variant with the splicing of Ex1-Ex2 (Ex1-Ex2). SEQ ID NO: 289 (FIG. 8A) and SEQ ID NO: 290 (FIG. 8B) show dose-dependent skipping of intron1 retention (Int1-Ex2) and an increase in Ex1-Ex2 splice-variant. The S10 compound from WO 2020/191212 showed no/limited effects on skipping of intron1 retention (FIG. 8C).



FIG. 9 shows ddPCR data quantifying the abundance of the 5 UTR splice variants in GRN mRNA after 5 days gymnosis in Microglia cells relative to PBS transfected cells. Grey bars quantify the abundance of the splice variant with retention of intron1 (Intron 1 retention) and the black bars the splice variant with the splicing of Exon1- Exon 2 (exon1-exon2). SEQ ID NO: 290 showed dose-dependent skipping of intron1 retention and an increase in Exon1-Exon2 splice-variant. The S10 compound from WO 2020/191212 showed no/limited effects on skipping of intron1 retention. The gapmer control show the expected dose-dependent knockdown of both splice variants.



FIG. 10 shows a Sashimi plot corresponding to the splice-switch occurring with SEQ ID NO: 290, and not occurring with compound S10 according to WO 2020/191912.





DETAILED DESCRIPTION OF THE INVENTION
I. Definitions

It should be appreciated that this disclosure is not limited to the compositions and methods described herein as well as the experimental conditions described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing certain embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any compositions, methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention. All publications mentioned are incorporated herein by reference in their entirety.


The use of the terms “a,” “an,” “the,” and similar referents in the context of describing the presently claimed invention (especially in the context of the claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context.


Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.


Use of the term “about” is intended to describe values either above or below the stated value in a range of approx. +/−10%; in other embodiments the values may range in value either above or below the stated value in a range of approx. +/−5%; in other embodiments the values may range in value either above or below the stated value in a range of approx. +/−2%; in other embodiments the values may range in value either above or below the stated value in a range of approx. +/−1%. The preceding ranges are intended to be made clear by context, and no further limitation is implied. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


As used herein, the terms “treat,” “treating,” “treatment” and “therapeutic use” refer to the elimination, reduction or amelioration of one or more symptoms of a disease or disorder. Specifically, the term “treatment” may refer to both treatment of an existing disease (e.g. a disease or disorder as herein referred to), or prevention of a disease (i.e. prophylaxis). It will therefore be recognized that treatment as referred to herein may, in some embodiments, be prophylactic. As used herein, a “therapeutically effective amount” refers to that amount of a therapeutic agent sufficient to mediate a clinically relevant elimination, reduction or amelioration of such symptoms. An effect is clinically relevant if its magnitude is sufficient to impact the health or prognosis of a recipient subject. A therapeutically effective amount may refer to the amount of therapeutic agent sufficient to delay or minimize the onset of disease. A therapeutically effective amount may also refer to the amount of the therapeutic agent that provides a therapeutic benefit in the treatment or management of a disease.


Oligonucleotide

The term “oligonucleotide” as used herein is defined as it is generally understood by the skilled person as a molecule comprising two or more covalently linked nucleosides. Such covalently bound nucleosides may also be referred to as nucleic acid molecules or oligomers.


Oligonucleotides are commonly made in the laboratory by solid-phase chemical synthesis followed by purification and isolation. When referring to a sequence of the oligonucleotide, reference is made to the sequence or order of nucleobase moieties, or modifications thereof, of the covalently linked nucleotides or nucleosides. The oligonucleotides of the invention are man-made, and are chemically synthesized, and are typically purified or isolated. The oligonucleotides of the invention may comprise one or more modified nucleosides such as 2′ sugar modified nucleosides. The oligonucleotides of the invention may comprise one or more modified internucleoside linkages, such as one or more phosphorothioate internucleoside linkages.

  • Antisense Oligonucleotide


The term “antisense oligonucleotide” as used herein is defined as an oligonucleotide capable of modulating expression of a target gene by hybridizing to a target nucleic acid, in particular to a contiguous sequence on a target nucleic acid. Antisense oligonucleotides are not essentially double stranded and are therefore not siRNAs or shRNAs. The antisense oligonucleotides of the present invention may be single stranded. It is understood that single stranded oligonucleotides of the present invention can form hairpins or intermolecular duplex structures (duplex between two molecules of the same oligonucleotide), as long as the degree of intra or inter self-complementarity is less than approximately 50% across of the full length of the oligonucleotide.


In certain contexts the antisense oligonucleotides of the invention may be referred to as oligonucleotides.


In some embodiments, the single stranded antisense oligonucleotides of the invention may not contain RNA nucleosides.


Advantageously, the antisense oligonucleotides of the invention comprise one or more modified nucleosides or nucleotides, such as 2′ sugar modified nucleosides. Furthermore, in some antisense oligonucleotides of the invention, it may be advantageous that the nucleosides which are not modified are DNA nucleosides.


Contiguous Nucleotide Sequence

The term “contiguous nucleotide sequence” refers to the region of the oligonucleotide which is complementary to a target nucleic acid, which may be or may comprise an oligonucleotide motif sequence. The term is used interchangeably herein with the term “contiguous nucleobase sequence”. In some embodiments all the nucleosides of the oligonucleotide constitute the contiguous nucleotide sequence. The contiguous nucleotide sequence is the sequence of nucleotides in the oligonucleotide of the invention which is complementary to, and in some instances fully complementary to, the target nucleic acid or target sequence, or target site sequence.


In some embodiments the target sequence is SEQ ID NO:276.


SEQ ID NO:276 is the sequence of exon 1, intron 1 and exon 2 of the human progranulin pre-mRNA transcript.


In some embodiments the target sequence is or comprises nucleotides 441-468 of SEQ ID NO:276.


In some embodiments the target sequence is or comprises nucleotides 441-462 of SEQ ID NO:276.


In some embodiments the target sequence is or comprises SEQ ID NO:277.


In some embodiments the target sequence is or comprises SEQ ID NO:278


In some embodiments the target sequence is or comprises SEQ ID NO:279.


In some embodiments the target sequence is or comprises SEQ ID NO:280.


In some embodiments the target sequence is or comprises nucleotides 268-283 of SEQ ID NO:276.


In some embodiments the target sequence is or comprises SEQ ID NO:281.


In some embodiments the target sequence is or comprises SEQ ID NO:291.


In some embodiments the target sequence is or comprises SEQ ID NO:292.


In some embodiments the oligonucleotide comprises the contiguous nucleotide sequence, and may optionally comprise further nucleotide(s), for example a nucleotide linker region which may be used to attach a functional group (e.g. a conjugate group) to the contiguous nucleotide sequence. The nucleotide linker region may or may not be complementary to the target nucleic acid. It is understood that the contiguous nucleotide sequence of the oligonucleotide cannot be longer than the oligonucleotide as such and that the oligonucleotide cannot be shorter than the contiguous nucleotide sequence.


Nucleotides and Nucleosides

Nucleotides and nucleosides are the building blocks of oligonucleotides and polynucleotides, and for the purposes of the present invention include both naturally occurring and non-naturally occurring nucleotides and nucleosides. In nature, nucleotides, such as DNA and RNA nucleotides comprise a ribose sugar moiety, a nucleobase moiety and one or more phosphate groups (which is absent in nucleosides). Nucleosides and nucleotides may also interchangeably be referred to as “units” or “monomers”.


Modified Nucleotide

Advantageously, the antisense oligonucleotide of the invention may comprise one or more modified nucleosides.


The term “modified nucleoside” or “nucleoside modification” as used herein refers to nucleosides modified as compared to the equivalent DNA or RNA nucleoside by the introduction of one or more modifications of the sugar moiety or the (nucleo)base moiety. Advantageously, one or more of the modified nucleosides of the antisense oligonucleotides of the invention may comprise a modified sugar moiety. The term modified nucleoside may also be used herein interchangeably with the term “nucleoside analogue” or modified “units” or modified “monomers”. Nucleosides with an unmodified DNA or RNA sugar moiety are termed DNA or RNA nucleosides herein. Nucleosides with modifications in the base region of the DNA or RNA nucleoside are still generally termed DNA or RNA if they allow Watson Crick base pairing. Exemplary modified nucleosides which may be used in the antisense oligonucleotides of the invention include LNA, 2′-O-MOE and morpholino nucleoside analogues.


Modified Internucleoside Linkage Advantageously, the antisense oligonucleotide of the invention comprises one or more modified internucleoside linkage.


The term “modified internucleoside linkage” is defined as generally understood by the skilled person as linkages other than phosphodiester (PO) linkages, that covalently couple two nucleosides together. The antisense oligonucleotides of the invention may therefore comprise one or more modified internucleoside linkages such as one or more phosphorothioate internucleoside linkages.


In some embodiments at least 50% of the internucleoside linkages in the antisense oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate, such as at least 60%, such as at least 70%, such as at least 75%, such as at least 80%, such as at least 90% or more of the internucleoside linkages in the antisense oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate. In some embodiments all of the internucleoside linkages of the antisense oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate.


Advantageously, all the internucleoside linkages of the contiguous nucleotide sequence of the antisense oligonucleotide may be phosphorothioate, or all the internucleoside linkages of the antisense oligonucleotide may be phosphorothioate linkages.


Nucleobase

The term nucleobase includes the purine (e.g. adenine and guanine) and pyrimidine (e.g. uracil, thymine and cytosine) moiety present in nucleosides and nucleotides which form hydrogen bonds in nucleic acid hybridization. In the context of the present invention the term nucleobase also encompasses modified nucleobases which may differ from naturally occurring nucleobases, but which are functional during nucleic acid hybridization. In this context “nucleobase” refers to both naturally occurring nucleobases such as adenine, guanine, cytosine, thymidine, uracil, xanthine and hypoxanthine, as well as non-naturally occurring variants. Such variants are for example described in Hirao et al. (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid Chemistry Suppl. 37 1.4.1.


In some embodiments the nucleobase moiety is modified by changing the purine or pyrimidine into a modified purine or pyrimidine, such as substituted purine or substituted pyrimidine, such as a nucleobase selected from isocytosine, pseudoisocytosine, 5-methyl cytosine, 5-thiozolo-cytosine, 5-propynyl-cytosine, 5-propynyl-uracil, 5-bromouracil 5-thiazolo-uracil, 2-thio-uracil, 2′thio-thymine, inosine, diaminopurine, 6-aminopurine, 2-aminopurine, 2,6-diaminopurine and 2-chloro-6-aminopurine.


The nucleobase moieties may be indicated by the letter code for each corresponding nucleobase, e.g. A, T, G, C or U, wherein each letter may optionally include modified nucleobases of equivalent function. For example, in the exemplified oligonucleotides, the nucleobase moieties are selected from A, T, G, C, and 5-methyl cytosine. Optionally, for LNA gapmers, 5-methyl cytosine LNA nucleosides may be used.


Modified Oligonucleotide

The antisense oligonucleotide of the invention may be a modified oligonucleotide.


The term modified oligonucleotide describes an oligonucleotide comprising one or more sugar-modified nucleosides and/or modified internucleoside linkages. The term “chimeric oligonucleotide” is a term that has been used in the literature to describe oligonucleotides comprising sugar modified nucleosides and DNA nucleosides. In some embodiments, it may be advantageous for the antisense oligonucleotide of the invention to be a chimeric oligonucleotide.


Complementarity

The term “complementarity” describes the capacity for Watson-Crick base-pairing of nucleosides/nucleotides. Watson-Crick base pairs are guanine (G)-cytosine (C) and adenine (A)-thymine (T)/uracil (U).


It will be understood that oligonucleotides may comprise nucleosides with modified nucleobases, for example 5-methyl cytosine is often used in place of cytosine, and as such the term complementarity encompasses Watson Crick base-paring between non-modified and modified nucleobases (see for example Hirao et al (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid Chemistry Suppl. 37 1.4.1).


The term “% complementary” as used herein, refers to the proportion of nucleotides (in percent) of a contiguous nucleotide sequence in a nucleic acid molecule (e.g. oligonucleotide) which across the contiguous nucleotide sequence, are complementary to a reference sequence (e.g. a target sequence or sequence motif). The percentage of complementarity is thus calculated by counting the number of aligned nucleobases that are complementary (from Watson Crick base pairs) between the two sequences (when aligned with the target sequence 5′-3′ and the oligonucleotide sequence from 3′-5′), dividing that number by the total number of nucleotides in the oligonucleotide and multiplying by 100. In such a comparison a nucleobase/nucleotide which does not align (form a base pair) is termed a mismatch. Insertions and deletions are not allowed in the calculation of % complementarity of a contiguous nucleotide sequence. It will be understood that in determining complementarity, chemical modifications of the nucleobases are disregarded as long as the functional capacity of the nucleobase to form Watson Crick base pairing is retained (e.g. 5′-methyl cytosine is considered identical to a cytosine for the purpose of calculating % identity).


Within the present invention the term “complementary” requires the antisense oligonucleotide to be at least about 80% complementary, or at least about 90% complementary, to a human progranulin pre-mRNA transcript. In some embodiments the antisense oligonucleotide may be at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% complementary to a human progranulin pre-mRNA transcript. Put another way, for some embodiments, an antisense oligonucleotide of the invention may include one, two, three or more mis-matches, wherein a mis-match is a nucleotide within the antisense oligonucleotide of the invention which does not base pair with its target.


The term “fully complementary” refers to 100% complementarity.


The antisense oligonucleotides of the invention are complementary to the human progranulin pre-mRNA. The antisense oligonucleotides of the invention are advantageously complementary to the intron 1 sequence of the human progranulin pre-mRNA transcript. The sequence of exon 1, intron 1 and exon 2 of the human progranulin pre-mRNA transcript is exemplified herein as SEQ ID NO:276. SEQ ID NO:276 is provided herein as a reference sequence and it will be understood that the target progranulin nucleic acid may be an allelic variant of SEQ ID NO:276, such as an allelic variant which comprises one or more polymorphism in the human progranulin nucleic acid sequence.


Identity

The term “identity” as used herein, refers to the proportion of nucleotides (expressed in percent) of a contiguous nucleotide sequence in a nucleic acid molecule (e.g. oligonucleotide) which across the contiguous nucleotide sequence, are identical to a reference sequence (e.g. a sequence motif).


The percentage of identity is thus calculated by counting the number of aligned nucleobases that are identical (a Match) between two sequences (in the contiguous nucleotide sequence of the compound of the invention and in the reference sequence), dividing that number by the total number of nucleotides in the oligonucleotide and multiplying by 100. Therefore, Percentage of Identity=(Matches×100)/Length of aligned region (e.g. the contiguous nucleotide sequence). Insertions and deletions are not allowed in the calculation the percentage of identity of a contiguous nucleotide sequence. It will be understood that in determining identity, chemical modifications of the nucleobases are disregarded as long as the functional capacity of the nucleobase to form Watson Crick base pairing is retained (e.g. 5-methyl cytosine is considered identical to a cytosine for the purpose of calculating % identity).


Hybridization

The terms “hybridizing” or “hybridizes” as used herein are to be understood as two nucleic acid strands (e.g. an antisense oligonucleotide and a target nucleic acid) forming hydrogen bonds between base pairs on opposite strands thereby forming a duplex. The affinity of the binding between two nucleic acid strands is the strength of the hybridization. It is often described in terms of the melting temperature (Tm) defined as the temperature at which half of the oligonucleotides are duplexed with the target nucleic acid. At physiological conditions Tm is not strictly proportional to the affinity (Mergny and Lacroix, 2003, Oligonucleotides 13:515-537). The standard state Gibbs free energy ΔG° is a more accurate representation of binding affinity and is related to the dissociation constant (Kd) of the reaction by ΔG°=-RTln(Kd), where R is the gas constant and T is the absolute temperature. Therefore, a very low ΔG° of the reaction between an oligonucleotide and the target nucleic acid reflects a strong hybridization between the oligonucleotide and target nucleic acid. ΔG° is the energy associated with a reaction where aqueous concentrations are 1M, the pH is 7, and the temperature is 37° C. The hybridization of oligonucleotides to a target nucleic acid is a spontaneous reaction and for spontaneous reactions ΔG° is less than zero. ΔG° can be measured experimentally, for example, by use of the isothermal titration calorimetry (ITC) method as described in Hansen et al., 1965, Chem. Comm. 36-38 and Holdgate et al., 2005, Drug Discov Today. The skilled person will know that commercial equipment is available for ΔG° measurements. ΔG° can also be estimated numerically by using the nearest neighbor model as described by SantaLucia, 1998, Proc Natl Acad Sci USA. 95: 1460-1465 using appropriately derived thermodynamic parameters described by Sugimoto et al., 1995, Biochemistry 34:11211-11216 and McTigue et al., 2004, Biochemistry 43:5388-5405.


In some embodiments, antisense oligonucleotides of the present invention hybridize to a target nucleic acid with estimated ΔG° values below -10 kcal for oligonucleotides that are 10-30 nucleotides in length.


In some embodiments the degree or strength of hybridization is measured by the standard state Gibbs free energy ΔG° . The oligonucleotides may hybridize to a target nucleic acid with estimated ΔG° values below the range of −10 kcal, such as below −15 kcal, such as below −20 kcal and such as below −25 kcal for oligonucleotides that are 8-30 nucleotides in length. In some embodiments the oligonucleotides hybridize to a target nucleic acid with an estimated ΔG° value of −10 to −60 kcal, such as −12 to −40, such as from −15 to −30 kcal, or −16 to −27 kcal such as —18 to −25 kcal.


High Affinity Modified Nucleosides

A high affinity modified nucleoside is a modified nucleotide which, when incorporated into the oligonucleotide enhances the affinity of the oligonucleotide for its complementary target, for example as measured by the melting temperature (Tm). A high affinity modified nucleoside of the present invention preferably results in an increase in melting temperature between +0.5 to +12° C., more preferably between +1.5 to +10° C. and most preferably between +3 to +8° C. per modified nucleoside. Numerous high affinity modified nucleosides are known in the art and include for example, many 2′ substituted nucleosides as well as locked nucleic acids (LNA) (see e.g. Freier & Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann; Curr. Opinion in Drug Development, 2000, 3(2), 293-213).


Sugar Modifications

The antisense oligonucleotides of the invention may comprise one or more nucleosides which have a modified sugar moiety, i.e. a modification of the sugar moiety when compared to the ribose sugar moiety found in DNA and RNA.


Numerous nucleosides with modification of the ribose sugar moiety have been made, primarily with the aim of improving certain properties of oligonucleotides, such as affinity and/or nuclease resistance.


Such modifications include those where the ribose ring structure is modified, e.g. by replacement with a hexose ring (HNA), or a bicyclic ring, which typically have a biradicle bridge between the C2 and C4 carbons on the ribose ring (LNA), or an unlinked ribose ring which typically lacks a bond between the C2 and C3 carbons (e.g. UNA). Other sugar modified nucleosides include, for example, bicyclohexose nucleic acids (WO2011/017521) or tricyclic nucleic acids (WO2013/154798). Modified nucleosides also include nucleosides where the sugar moiety is replaced with a non-sugar moiety, for example in the case of peptide nucleic acids (PNA), or morpholino nucleic acids.


Sugar modifications also include modifications made via altering the substituent groups on the ribose ring to groups other than hydrogen, or the 2′-OH group naturally found in DNA and RNA nucleosides. Substituents may, for example be introduced at the 2′, 3′, 4′ or 5′ positions.


2′ Sugar Modified Nucleosides

A 2′ sugar modified nucleoside is a nucleoside which has a substituent other than H or —OH at the 2′ position (2′ substituted nucleoside) or comprises a 2′ linked biradicle capable of forming a bridge between the 2′ carbon and a second carbon in the ribose ring, such as LNA (2′-4′ biradicle bridged) nucleosides.


Indeed, much focus has been given to developing 2′ sugar substituted nucleosides, and numerous 2′ substituted nucleosides have been found to have beneficial properties when incorporated into oligonucleotides. For example, the 2′ modified sugar may provide enhanced binding affinity and/or increased nuclease resistance to the oligonucleotide. Examples of 2′ substituted modified nucleosides are 2′-O-alkyl-RNA, 2′-O-methyl-RNA, 2′-alkoxy-RNA, 2′-O-methoxyethyl-RNA (MOE), 2′-amino-DNA, 2′-Fluoro-RNA, and 2′-F-ANA nucleoside. For further examples, please see e.g. Freier & Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann; Curr. Opinion in Drug Development, 2000, 3(2), 293-213, and Deleavey and Damha, Chemistry and Biology 2012, 19, 937. Below are illustrations of some 2′ substituted modified nucleosides.




embedded image


In relation to the present invention 2′ substituted sugar modified nucleosides does not include 2′ bridged nucleosides like LNA.


Locked Nucleic Acid Nucleosides (LNA Nucleoside)

A “LNA nucleoside” is a 2′- modified nucleoside which comprises a biradical linking the C2′ and C4′ of the ribose sugar ring of said nucleoside (also referred to as a “2′-4′ bridge”), which restricts or locks the conformation of the ribose ring. These nucleosides are also termed bridged nucleic acid or bicyclic nucleic acid (BNA) in the literature. The locking of the conformation of the ribose is associated with an enhanced affinity of hybridization (duplex stabilization) when the LNA is incorporated into an oligonucleotide for a complementary RNA or DNA molecule. This can be routinely determined by measuring the melting temperature of the oligonucleotide/complement duplex.


Non limiting, exemplary LNA nucleosides are disclosed in WO 99/014226, WO 00/66604, WO 98/039352 , WO 2004/046160, WO 00/047599, WO 2007/134181, WO 2010/077578, WO 2010/036698, WO 2007/090071, WO 2009/006478, WO 2011/156202, WO 2008/154401, WO 2009/067647, WO 2008/150729, Morita et al., Bioorganic & Med.Chem. Lett. 12, 73-76, Seth et al. J. Org. Chem. 2010, Vol 75(5) pp. 1569-81, and Mitsuoka et al., Nucleic Acids Research 2009, 37(4), 1225-1238, and Wan and Seth, J. Medical Chemistry 2016, 59, 9645-9667.


Further non limiting, exemplary LNA nucleosides are disclosed in Scheme 1.




embedded image


embedded image


Particular LNA nucleosides are beta-D-oxy-LNA, 6′-methyl-beta-D-oxy LNA such as (S)-6′-methyl-beta-D-oxy-LNA (ScET) and ENA.


A particularly advantageous LNA is beta-D-oxy-LNA.


Morpholino Oligonucleotides

In some embodiments, the antisense oligonucleotide of the invention comprises or consists of morpholino nucleosides (i.e. is a Morpholino oligomer and as a phosphorodiamidate Morpholino oligomer (PMO)). Splice modulating morpholino oligonucleotides have been approved for clinical use—see for example eteplirsen, a 30nt morpholino oligonucleotide targeting a frame shift mutation in DMD, used to treat Duchenne muscular dystrophy. Morpholino oligonucleotides have nucleobases attached to six membered morpholine rings rather ribose, such as methylenemorpholine rings linked through phosphorodiamidate groups, for example as illustrated by the following illustration of 4 consecutive morpholino nucleotides:




embedded image


In some embodiments, morpholino oligonucleotides of the invention may be, for example 20-40 morpholino nucleotides in length, such as morpholino 25-35 nucleotides in length.


RNase H Activity and Recruitment

The RNase H activity of an antisense oligonucleotide refers to its ability to recruit RNase H when in a duplex with a complementary RNA molecule. WO01/23613 provides in vitro methods for determining RNaseH activity, which may be used to determine the ability to recruit RNaseH. Typically an oligonucleotide is deemed capable of recruiting RNase H if it, when provided with a complementary target nucleic acid sequence, has an initial rate, as measured in pmol/l/min, of at least 5%, such as at least 10%, at least 20% or more than 20%, of the initial rate determined when using an oligonucleotide having the same base sequence as the modified oligonucleotide being tested, but containing only DNA monomers with phosphorothioate linkages between all monomers in the oligonucleotide, and using the methodology provided by Examples 91-95 of WO01/23613 (hereby incorporated by reference). For use in determining RHase H activity, recombinant RNase H1 is available from Lubio Science GmbH, Lucerne, Switzerland.


DNA oligonucleotides are known to effectively recruit RNaseH, as are gapmer oligonucleotides which comprise a region of DNA nucleosides (typically at least 5 or 6 contiguous DNA nucleosides), flanked 5′ and 3′ by regions comprising 2′ sugar modified nucleosides, typically high affinity 2′ sugar modified nucleosides, such as 2-O-MOE and/or LNA. For effective modulation of splicing, degradation of the pre-mRNA is not desirable, and as such it is preferable to avoid the RNaseH degradation of the target. Therefore, the antisense oligonucleotides of the invention are not RNaseH recruiting gapmer oligonucleotide.


RNaseH recruitment may be avoided by limiting the number of contiguous DNA nucleotides in the oligonucleotide—therefore mimxes and totalmer designs may be used. Advantageously the antisense oligonucleotides of the invention, or the contiguous nucleotide sequence thereof, do not comprise more than 3 contiguous DNA nucleosides. Further, advantageously the antisense oligonucleotides of the invention, or the contiguous nucleotide sequence thereof, do not comprise more than 4 contiguous DNA nucleosides. Further advantageously, the antisense oligonucleotides of the invention, or contiguous nucleotide sequence thereof, do not comprise more than 2 contiguous DNA nucleosides.


Mixmers and Totalmers

For splice modulation it is often advantageous to use antisense oligonucleotides which do not recruit RNAaseH. As RNaseH activity requires a contiguous sequence of DNA nucleotides, RNaseH activity of antisense oligonucleotides may be achieved by designing antisense oligonucleotides which do not comprise a region of more than 3 or more than 4 contiguous DNA nucleosides. This may be achieved by using antisense oligonucleotides or contiguous nucleoside regions thereof with a mixmer design, which comprise sugar modified nucleosides, such as 2′ sugar modified nucleosides, and short regions of DNA nucleosides, such as 1, 2 or 3 DNA nucleosides. Mixmers are exemplified herein by every second design, wherein the nucleosides alternate between 1 LNA and 1 DNA nucleoside, e.g. LDLDLDLDLDLDLDLL, with 5′ and 3′ terminal LNA nucleosides, and every third design, such as LDDLDDLDDLDDLDDL, where every third nucleoside is a LNA nucleoside.


A totalmer is an antisense oligonucleotide or a contiguous nucleotide sequence thereof which does not comprise DNA or RNA nucleosides, and may for example comprise only 2′-O-MOE nucleosides, such as a fully MOE phosphorothioate, e.g. MMMMMMMMMMMMMMMMMMMM, where M=2′-O-MOE, which are reported to be effective splice modulators for therapeutic use.


Alternatively, a mixmer may comprise a mixture of modified nucleosides, such as MLMLMLMLMLMLMLMLMLML, wherein L=LNA and M=2′-O-MOE nucleosides. Advantageously, the internucleoside nucleosides in mixmers and totalmers may be phosphorothioate, or a majority of nucleoside linkages in mixmers may be phosphorothioate. Mixmers and totalmers may comprise other internucleoside linkages, such as phosphodiester or phosphorodithioate, by way of example.


Region D′ or D″ in an Oligonucleotide

The antisense oligonucleotide of the invention may in some embodiments comprise or consist of the contiguous nucleotide sequence of the oligonucleotide which is complementary to the target nucleic acid, such as a mixmer or toalmer region, and further 5′ and/or 3′ nucleosides. The further 5′ and/or 3′ nucleosides may or may not be complementary, such as fully complementary, to the target nucleic acid. Such further 5′ and/or 3′ nucleosides may be referred to as region D′ and D″ herein.


The addition of region D′ or D″ may be used for the purpose of joining the contiguous nucleotide sequence, such as the mixmer or totoalmer, to a conjugate moiety or another functional group. When used for joining the contiguous nucleotide sequence with a conjugate moiety it can serve as a biocleavable linker. Alternatively, it may be used to provide exonucleoase protection or for ease of synthesis or manufacture.


Region D′ or D″ may independently comprise or consist of 1, 2, 3, 4 or 5 additional nucleotides, which may be complementary or non-complementary to the target nucleic acid. The nucleotide adjacent to the F or F′ region is not a sugar-modified nucleotide, such as a DNA or RNA or base modified versions of these. The D′ or D″ region may serve as a nuclease susceptible biocleavable linker (see definition of linkers). In some embodiments the additional 5′ and/or 3′ end nucleotides are linked with phosphodiester linkages, and are DNA or RNA. Nucleotide based biocleavable linkers suitable for use as region D′ or D″ are disclosed in WO2014/076195, which include by way of example a phosphodiester linked DNA dinucleotide. The use of biocleavable linkers in poly-oligonucleotide constructs is disclosed in WO2015/113922, where they are used to link multiple antisense constructs within a single oligonucleotide.


In one embodiment the antisense oligonucleotide of the invention comprises a region D′ and/or D″ in addition to the contiguous nucleotide sequence which constitutes a mixmer or a totalmer.


In some embodiments the internucleoside linkage positioned between region D′ or D″ and the mixmer or totalmer region is a phosphodiester linkage.


Conjugate

The invention encompasses an antisense oligonucleotide covalently attached to at least one conjugate moiety. In some embodiments this may be referred to as a conjugate of the invention.


The term “conjugate” as used herein refers to an antisense oligonucleotide which is covalently linked to a non-nucleotide moiety (conjugate moiety or region C or third region). The conjugate moiety may be covalently linked to the antisense oligonucleotide, optionally via a linker group, such as region D′ or D″. Oligonucleotide conjugates and their synthesis has also been reported in comprehensive reviews by Manoharan in Antisense Drug Technology, Principles, Strategies, and Applications, S. T. Crooke, ed., Ch. 16, Marcel Dekker, Inc., 2001 and Manoharan, Antisense and Nucleic Acid Drug Development, 2002, 12, 103.


In some embodiments, the non-nucleotide moiety (conjugate moiety) is selected from the group consisting of carbohydrates (e.g. GalNAc), cell surface receptor ligands, drug substances, hormones, lipophilic substances, polymers, proteins, peptides, toxins (e.g. bacterial toxins), vitamins, viral proteins (e.g. capsids) or combinations thereof.


Linkers

A linkage or linker is a connection between two atoms that links one chemical group or segment of interest to another chemical group or segment of interest via one or more covalent bonds. Conjugate moieties can be attached to the antisense oligonucleotide directly or through a linking moiety (e.g. linker or tether). Linkers serve to covalently connect a third region, e.g. a conjugate moiety (Region C), to a first region, e.g. an oligonucleotide or contiguous nucleotide sequence complementary to the target nucleic acid (region A).


In some embodiments of the invention the conjugate or antisense oligonucleotide conjugate of the invention may optionally comprise a linker region (second region or region B and/or region Y) which is positioned between the oligonucleotide or contiguous nucleotide sequence complementary to the target nucleic acid (region A or first region) and the conjugate moiety (region C or third region).


Region B refers to biocleavable linkers comprising or consisting of a physiologically labile bond that is cleavable under conditions normally encountered or analogous to those encountered within a mammalian body. Conditions under which physiologically labile linkers undergo chemical transformation (e.g., cleavage) include chemical conditions such as pH, temperature, oxidative or reductive conditions or agents, and salt concentration found in or analogous to those encountered in mammalian cells. Mammalian intracellular conditions also include the presence of enzymatic activity normally present in a mammalian cell such as from proteolytic enzymes or hydrolytic enzymes or nucleases. In one embodiment the biocleavable linker is susceptible to S1 nuclease cleavage. In some embodiments the nuclease susceptible linker comprises between 1 and 5 nucleosides, such as DNA nucleoside(s) comprising at least two consecutive phosphodiester linkages. Phosphodiester containing biocleavable linkers are described in more detail in WO 2014/076195.


Region Y refers to linkers that are not necessarily biocleavable but primarily serve to covalently connect a conjugate moiety (region C or third region), to an oligonucleotide (region A or first region). The region Y linkers may comprise a chain structure or an oligomer of repeating units such as ethylene glycol, amino acid units or amino alkyl groups. The antisense oligonucleotide conjugates of the present invention can be constructed of the following regional elements A-C, A-B-C, A-B-Y-C, A-Y-B-C or A-Y-C. In some embodiments the linker (region Y) is an amino alkyl, such as a C2-C36 amino alkyl group, including, for example C6 to C12 amino alkyl groups. In some embodiments the linker (region Y) is a C6 amino alkyl group.


Treatment

The term ‘treatment’ as used herein refers to both treatment of an existing disease (e.g. a disease or disorder as herein referred to), or prevention of a disease, i.e. prophylaxis. It will therefore be recognized that treatment as referred to herein may, in some embodiments, be prophylactic.


TDP-43 Pathologies

A TDP-43 pathology is a disease which is associated with reduced or aberrant expression of TDP-43, often associated with an increase in cytoplasmic TDP-43, particularly hyper-phosphorylated and ubiquitinated TDP-43.


Diseases associated with TDP-43 pathology include amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease, Parkinson's disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.


The inventors have identified that targeting the progranulin pre-mRNA transcript with antisense oligonucleotides can increase expression of the progranulin Exon1-Exon 2 spliced mRNA, decrease expression of the progranulin Intron1-Exon2 spliced mRNA (which retains the 271 nucleotide 5′ fragment of intron 1) and/or alter the ratio of Exon 1-Exon2 vs Intron1-Exon2 mRNA. This is particularly the case when antisense oligonucleotides which comprise high affinity sugar modified nucleosides, such as high affinity 2′ sugar modified nucleosides, such as LNA nucleosides or 2′-O-methoxyethyl (MOE) nucleosides are used.


Described herein are target sites present on the human progranulin pre-mRNA which can be targeted by antisense oligonucleotides. Also described are antisense oligonucleotides which are complementary, such as fully complementary, to these target sites.


Without wishing to be bound by theory, it is considered that the antisense oligonucleotides of the invention can increase expression of the progranulin Exon1-Exon2 spliced mRNA, decrease expression of the progranulin Intron1-Exon1 spliced mRNA and/or alter the ratio of Exon1-Exon2 vs Intron1-Exon2 mRNA by binding to these regions and affecting, such as increasing, production of the Exon1-Exon2 splice variant.


Oligonucleotides, such as RNaseH recruiting single stranded antisense oligonucleotides or siRNAs are used extensively in the art to inhibit target RNAs—i.e. are used as antagonists of their complementary nucleic acid target.


The antisense oligonucleotides of the present invention may be described as modulators, i.e. they alter the expression of a particular splice variant of their complementary target, progranulin pre-mRNA, and thereby increase the production of active progranulin protein.


Reduced expression of the progranulin Intron1-Exon2 splice variant is desirable because the inclusion of an intron, such as Intron 1, within a mature mRNA sequence leads to nonsense-mediated mRNA decay (NMD).


Enhanced expression of the progranulin Exon1-Exon2 over the splice variant which retains the 5′ part of intron 1 is desirable because the Exon1-Exon2 splice variant does not include the 271 nucleotide fragment of intron 1 with two AUG sites upstream of the canonical downstream AUG in Exon 2 (open reading frame). Translation from these two upstream AUG sites will not encode the progranulin protein and due to premature termination codons the transcript may undergo non-sense mediated mRNA decay (NMD). Changing the splicing to the Exon1-Exon2 splice variant will instead lead to translation of an active version of the progranulin protein. Progranulin is a neuroprotective protein, and increasing its production can be used to treat a range of neurological disorders, such as TDP-43 pathologies.


In certain embodiments the antisense oligonucleotides of the present invention may enhance the production of the Exon1-Exon2 progranulin splice variant.


In certain embodiments the antisense oligonucleotides of the present invention may enhance the production of the Exon1-Exon2 progranulin splice variant mRNA by at least about 10% relative to the production of the Exon1-Exon2 progranulin splice variant mRNA in the absence of an antisense oligonucleotide of the invention. In other embodiments the antisense oligonucleotides of the present invention may enhance the production of the Exon1-Exon2 progranulin splice variant mRNA by at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 200%, at least about 300%, at least about 400%, at least about 500% or more relative to the production of the Exon1-Exon2 progranulin splice variant mRNA in the absence of an antisense oligonucleotide of the invention.


In certain embodiments the antisense oligonucleotides of the present invention may reduce the production of the Intron1-Exon2 progranulin splice variant mRNA. In certain embodiments the antisense oligonucleotides of the present invention may reduce the production of the Intron1-Exon2 progranulin splice variant mRNA by at least about 10% relative to the production of the Intron1-Exon2 progranulin splice variant mRNA in the absence of an antisense oligonucleotide of the invention. In other embodiments the antisense oligonucleotides of the present invention may reduce the production of the Intron1-Exon2 progranulin splice variant mRNA by at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 200%, at least about 300%, at least about 400%, at least about 500% or more relative to the production of the Intron1-Exon2 progranulin splice variant mRNA in the absence of an antisense oligonucleotide of the invention.


Enhanced expression of the progranulin Exon1-Exon2 splice variant should lead to translation of an active version of the progranulin protein. In certain embodiments the antisense oligonucleotides of the present invention may increase production of the progranulin protein by at least about 10% relative to the production of the progranulin protein in the absence of an antisense oligonucleotide of the invention. In other embodiments the antisense oligonucleotides of the present invention may increase the production of the progranulin protein by at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 200%, at least about 300%, at least about 400%, at least about 500% or more relative to the production of the progranulin protein in the absence of an antisense oligonucleotide of the invention.


In certain embodiments, the antisense oligonucleotides of the present invention may alter the ratio of Exon1-Exon2 vs Intron-Exon2 progranulin mRNA.


In certain embodiments, the antisense oligonucleotides of the present invention may alter the ratio of Exon1-Exon2 vs Intron1-Exon2 progranulin mRNA by at least about 10% relative to the ratio of Exon1-Exon2 vs Intron1-Exon2 progranulin mRNA in the absence of an antisense oligonucleotide of the invention. In other embodiments the antisense oligonucleotides of the present invention may alter the ratio of Exon1-Exon2 vs Intron1-Exon2 progranulin mRNA by at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 100% or more, relative to the ratio of Exon1-Exon2 vs Intron1-Exon2 progranulin mRNA in the absence of an antisense oligonucleotide of the invention.


In certain embodiments, the antisense oligonucleotides of the present invention may alter the ratio of Exon1-Exon2 vs Intron1-Exon2 progranulin mRNA to at least about 1.2. In certain embodiments, the antisense oligonucleotides of the present invention may alter the ratio of Exon1-Exon2 vs Intron1-Exon2 progranulin mRNA to at least about 1.3, at least about 1.4, at least about 1.5, at least about 1.6, at least about 1.7, at least about 1.8, at least about 1.9, at least about 2.0 or more.


In some embodiments, the antisense oligonucleotides of the invention or the contiguous nucleotide sequence thereof comprises or consists of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 contiguous nucleotides in length.


In some embodiments, the entire nucleotide sequence of the antisense oligonucleotide is the contiguous nucleotide sequence.


In one embodiment the contiguous nucleotide sequence may a sequence selected from the group consisting of SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75 and SEQ ID NO:134. The invention also contemplates fragments of these contiguous nucleotide sequences, including fragments of at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, or at least 15 contiguous nucleotides thereof.


In some embodiments, the antisense oligonucleotide or contiguous nucleotide sequence comprises or consists of a sequence selected from the group consisting of SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75 and SEQ ID NO:134. It will be understood that the sequences shown in SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75 and SEQ ID NO:134 may include modified nucleobases which function as the shown nucleobase in base pairing, for example 5-methyl cytosine may be used in place of methyl cytosine. Inosine may be used as a universal base.


In some embodiments, the antisense oligonucleotide or contiguous nucleotide sequence comprises or consists of 8 to 30 or 8 to 40 nucleotides in length with at least 90% identity, preferably 100% identity, to a sequence selected from the group consisting of SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75 and SEQ ID NO:134. In some embodiments the antisense oligonucleotide may be 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 nucleotides in length.


In some embodiments, the antisense oligonucleotide or contiguous nucleotide sequence comprises or consists of 8 to 30 or 8 to 40 nucleotides in length with at least 90% identity, preferably 100% identity, to a sequence selected from the group consisting of SEQ ID NO:289 and SEQ ID NO:290. In some embodiments the antisense oligonucleotide may be 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 nucleotides in length.


It is understood that the contiguous nucleobase sequences (motif sequence) can be modified to, for example, increase nuclease resistance and/or binding affinity to the target nucleic acid.


The pattern in which the modified nucleosides (such as high affinity modified nucleosides) are incorporated into the oligonucleotide sequence is generally termed oligonucleotide design.


The antisense oligonucleotides of the invention are designed with modified nucleosides and DNA nucleosides. Advantageously, high affinity modified nucleosides are used.


In an embodiment, the antisense oligonucleotide comprises at least 1 modified nucleoside, such as at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15 or at least 16 modified nucleosides.


In an embodiment the antisense oligonucleotide comprises from 1 to 10 modified nucleosides, such as from 2 to 9 modified nucleosides, such as from 3 to 8 modified nucleosides, such as from 4 to 7 modified nucleosides, such as 6 or 7 modified nucleosides. Suitable modifications are described in the “Definitions” section under “modified nucleoside”, “high affinity modified nucleosides”, “sugar modifications”, “2′ sugar modifications” and Locked nucleic acids (LNA)”.


In an embodiment, the antisense oligonucleotide comprises one or more sugar modified nucleosides, such as 2′ sugar modified nucleosides. Preferably the antisense oligonucleotide of the invention comprises one or more 2′ sugar modified nucleoside independently selected from the group consisting of 2′-O-alkyl-RNA, 2′-O-methyl-RNA, 2′-alkoxy-RNA, 2′-O-methoxyethyl-RNA, 2′-amino-DNA, 2′-fluoro-DNA, arabino nucleic acid (ANA), 2′-fluoro-ANA and LNA nucleosides. It is advantageous if one or more of the modified nucleoside(s) is a locked nucleic acid (LNA).


In a further embodiment the antisense oligonucleotide comprises at least one modified internucleoside linkage. Suitable internucleoside modifications are described in the “Definitions” section under “Modified internucleoside linkage”. It is advantageous if at least 75%, such as all, the internucleoside linkages within the contiguous nucleotide sequence are phosphorothioate or boranophosphate internucleoside linkages. In some embodiments all the internucleotide linkages in the contiguous sequence of the oligonucleotide are phosphorothioate linkages.


In one embodiment, the invention presents an antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary to a splice regulation site of the human progranulin pre-mRNA transcript.


In another embodiment, the human progranulin pre-mRNA transcript comprises the exon 1, intron 1 and exon 2 sequence of the human progranulin pre-mRNA transcript (SEQ ID NO:276).


In another embodiment, the contiguous nucleotide sequence is of a length of at least 12 nucleotides in length.


In another embodiment, the contiguous nucleotide sequence is 12-16 nucleotides in length.


In another embodiment, the contiguous nucleotide sequence is 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 nucleotides in length.


In another embodiment, the contiguous nucleotide sequence is the same length as the antisense oligonucleotide.


In another embodiment, the contiguous nucleotide sequence is fully complementary to the human progranulin pre-mRNA transcript.


In another embodiment, the contiguous nucleotide sequence is complementary to a nucleotide sequence comprised within nucleotides 441-468 of SEQ ID NO: 276.


In another embodiment, the contiguous nucleotide sequence is complementary to a nucleotide sequence comprised within nucleotides 441-462 of SEQ ID NO: 276.


In another embodiment, the contiguous nucleotide sequence is complementary to SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279 or SEQ ID NO:280.


In another embodiment, the contiguous nucleotide sequence is fully complementary to SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279 or SEQ ID NO:280.


In another embodiment, the contiguous nucleotide sequence is selected from SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74 and SEQ ID NO:75, or at least 8 or at least 10 contiguous nucleotides thereof.


In another embodiment, the contiguous nucleotide sequence SEQ ID NO:71.


In another embodiment, the contiguous nucleotide sequence SEQ ID NO:73.


In another embodiment, the contiguous nucleotide sequence SEQ ID NO:74.


In another embodiment, the contiguous nucleotide sequence SEQ ID NO:75.


In another embodiment, the contiguous nucleotide sequence is complementary to a nucleotide sequence comprised within nucleotides 268-283 of SEQ ID NO: 276.


In another embodiment, the contiguous nucleotide sequence is complementary to SEQ ID NO:281.


In another embodiment, the contiguous nucleotide sequence is fully complementary to SEQ ID NO:281.


In another embodiment, the contiguous nucleotide sequence is SEQ ID NO:134, or at least 8 or at least 10 contiguous nucleotides thereof.


In another embodiment, the contiguous nucleotide sequence is selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252.


In some embodiments, the antisense oligonucleotide is isolated, purified or manufactured.


In other embodiments, the antisense oligonucleotide or contiguous nucleotide sequence thereof comprises one or more modified nucleotides or one or more modified nucleosides.


In another embodiment, the antisense oligonucleotide or contiguous nucleotide sequence thereof, comprises one or more modified nucleosides, such as one or more modified nucleotides independently selected from the group consisting of 2′-O-alkyl-RNA; 2′-O-methyl RNA (2′-0Me); 2′-alkoxy-RNA; 2′-O-methoxyethyl-RNA (2′-MOE); 2′-amino-DNA; 2′-fluro-RNA; 2′-fluoro-DNA; arabino nucleic acid (ANA); 2′-fluoro-ANA; bicyclic nucleoside analog (LNA); or any combination thereof.


In some embodiments, one or more of the modified nucleosides is a sugar modified nucleoside.


In another embodiment, one or more of the modified nucleosides comprises a bicyclic sugar.


In yet another embodiment, one or more of the modified nucleosides is an affinity enhancing 2′ sugar modified nucleoside.


In another embodiment, one or more of the modified nucleosides is an LNA nucleoside, such as one or more beta-D-oxy LNA nucleosides.


In another embodiment, the antisense oligonucleotide or contiguous nucleotide sequence thereof, comprises one or more 5′-methyl-cytosine nucleobases.


In another embodiment, one or more of the internucleoside linkages within the contiguous nucleotide sequence of the antisense oligonucleotide is modified. In another embodiment, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95% or about 100% of the internucleoside linkages are modified.


In another embodiment, the one or more modified internucleoside linkages comprise a phosphorothioate linkage.


In another embodiment, the antisense oligonucleotide is a morpholino modified antisense oligonucleotide.


In another embodiment, the antisense oligonucleotide is or comprises an antisense oligonucleotide mixmer or totalmer.


In another embodiment, the antisense oligonucleotide or contiguous nucleotide sequence thereof is 10-20 nucleotides in length.


In another embodiment, the antisense oligonucleotide or contiguous nucleotide sequence thereof is 16 nucleotides in length.


In some embodiments, the invention presents an antisense oligonucleotide having the structure:




embedded image


In some embodiments, the invention presents an antisense oligonucleotide having the structure:




embedded image


In some embodiments, the invention presents an antisense oligonucleotide having the structure:




embedded image


In another embodiment, the invention presents an antisense oligonucleotide having the structure:




embedded image


In another embodiment, the invention presents an antisense oligonucleotide having the structure:




embedded image


In another embodiment, the invention presents an antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound GaGctGggTcAagAAT (SEQ ID NO: 71) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.


In some embodiments, the invention presents an antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound GgtCaaGaAtgGtgTG (SEQ ID NO: 73) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.


Another embodiment presents an antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound CaGaAtGgtGtGgTC (SEQ ID NO:74) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.


Another embodiment presents an antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound GaAtGgtGtGgTccC (SEQ ID NO:75) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.


Another embodiment presents an antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound CtcAagCtcAcAtgGC (SEQ ID NO:134) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.


Some embodiments present an antisense oligonucleotide covalently attached to at least one conjugate moiety.


In some embodiments, the antisense oligonucleotide is in the form of a pharmaceutically acceptable salt.


In some embodiments, the salt is a sodium salt, a potassium salt or an ammonium salt.


In other embodiments, the invention presents a pharmaceutical composition comprising the antisense oligonucleotide and a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.


In other embodiments the pharmaceutical composition comprises an aqueous diluent or solvent, such as phosphate buffered saline.


In other embodiments, the invention presents an in vivo or in vitro method for enhancing the expression of the Exon1-Exon2 progranulin splice variant in a cell which is expressing progranulin, said method comprising administering an antisense oligonucleotide, or a pharmaceutical composition in an effective amount to said cell.


In some embodiments, the cell is either a human cell or a mammalian cell.


In yet another embodiment, the invention presents a method for treating or preventing neurological disease comprising administering a therapeutically or prophylactically effective amount of an antisense oligonucleotide or the pharmaceutical composition to a subject suffering from or susceptible to neurological disease.


In yet another embodiment, the invention presents a method for treating or preventing progranulin haploinsufficiency or a related disorder comprising administering a therapeutically or prophylactically effective amount of an antisense oligonucleotide or the pharmaceutical composition to a subject suffering from or susceptible to progranulin haploinsufficiency or a related disorder.


In some embodiments, the antisense oligonucleotide or the pharmaceutical composition are used as a medicament.


In another embodiment, the antisense oligonucleotide, or the pharmaceutical composition are used in the treatment of a neurological disease.


In another embodiment, the antisense oligonucleotide or pharmaceutical composition for use in the treatment of a neurological disease, wherein the neurological disease is a TDP-43 pathology.


In some embodiments, the antisense oligonucleotide or the pharmaceutical composition are used in the treatment of progranulin haploinsufficiency or a related disorder.


In yet another embodiment, the invention presents the use of the antisense oligonucleotide or the pharmaceutical composition for the preparation of a medicament for treatment or prevention of a neurological disease. In some embodiments, the neurological disease is a TDP-43 pathology.


Another embodiments presents the use of the antisense oligonucleotide or the pharmaceutical composition for the preparation of a medicament for treatment or prevention of progranulin haploinsufficiency or a related disorder.


EXAMPLES
Example 1: 275 Oligonucleotides Screened for Effects on Intron 1 Skipping

H4 neuroglioma cells were seeded 15000 pr well in 96-well plates the day before transfection in medium (DMEM Sigma: D0819, 15% FBS, 1 mM Sodium Pyruvate, 25 μg/ml Gentamicin).


Microglia cells were chosen for analysis because these cells produce high levels of progranulin. Reduction of progranulin in microglia cells alone is sufficient to recapitulate inflammation, lysosomal dysfunction, and hyperproliferation in a cell-autonomous manner. Therefore, targeting microglial dysfunction caused by progranulin insufficiency represents a potential therapeutic strategy to manage neurodegeneration in Frontotemporal dementia. To study effects on Progranulin in cellular systems, H4 cells (ATCC HTB-148) a commercial available glial cell line derived from a cancer patient have been used for identifying oligonucleotides capable of increasing progranulin production.


To further use Microglia that exhibit functional characteristics similar to human microglia, including phagocytosis and cytokine-mediated inflammatory responses, and express relevant microglial markers, hiP SC derived microglia iCell® Microglia from FujiFilm Cellular Dynamics Inc. (Cat. no R1131) have been used for investigating effects of selected oligonucleotides on progranulin production.


Transfection was performed using Lipofectamine 2000 (Invitrogen) using the following procedure.


Medium was removed from cells and 80 μL Optimem reduced serum medium (Gibco) containing 6.25 μg/mL Lipofectamine 2000 (Invitrogen) was added, 20 μL Optimem with compounds (125 nM) were added to each well (25 nM final). As control PBS was used instead of compound. After 5 hours, transfection solution was removed from wells and full growth medium was added. The day after transfection, RNA was extracted by adding 125 μL RLT buffer (Qiagen) and using RNeasy 97 kit and protocols from Qiagen. cDNA synthesis was performed using 4 μL input RNA was performed using IScript Advanced cDNA Synthesis Kit for RT-qPCR (Bio-Rad) and 2 μL was used as input for digital droplet PCR using ddPCR supermix for probes (no dUTP) (Bio-Rad) according to Manufactor' s protocol. The following Primers and Probes (IDT) were used:









GRN Exon1-Exon2 (FAM):


Primer 1:


(SEQ ID NO: 282)


GCTGCTGCCCAAGGACCGCGGA





Primer 2:


(SEQ ID NO: 283)


GCCCTGCTGTTAAGGCCACCCA





Probe


(SEQ ID NO: 284)


/56-FAM/GGACGCAGG/ZEN/CAGACCATGTGGACCCTG/3IABkFQ/





GRN Intron1-Exon2 (HEX):


Primer 1:


(SEQ ID NO: 285)


CCAAAGCAGGGACCACACCATTCTT





Primer 2:


(SEQ ID NO: 286)


GCCCTGCTGTTAAGGCCACCCA





Probe


(SEQ ID NO: 287)


/5HEX/CCCAGCTCC/ZEN/ACCCCTGTCGGCAGACCATG/3IABkFQ/







HPRT1: HPRT1 (FAM, PT.58v.45621572, IDT) and HPRT1 (HEX, Hs.PT.58v.45621572) IDT. Exon1-Exon2 GRN mRNA and Intron1-Exon2 GRN mRNA concentrations were quantified relative to the housekeeping gene HPRT1 using QuantaSoft Software (Bio-Rad).


The compounds were profiled and ranked according to expression of Exon 1-Exon2 mRNA splice form relative to HPRT1 and Intron1-Exon2 relative to HPRT1 and results are shown in FIGS. 1A-1E.


The following compounds relative to PBS transfected cells show an increased expression of Exon1-Exon 2 spliced mRNA, a reduced expression of Intron1-Exon 1 spliced mRNA and a more than 25% shift in ratio Exon 1-Exon2 vs Intron1-Exon2: SEQ ID NOS: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 67, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75, SEQ ID NO: 100, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 196, SEQ ID NO: 220, SEQ ID NO: 228 and SEQ ID NO: 252 as shown in FIGS. 1A-1E.









TABLE 1







All the antisense oligonucleotides are designed as 16-mers DNA-LNA mixmers


with a phosphorothioate backbone, DNA-LNA mixmers with a phosphorothioate


backbone, LNA at the very 5′ and 3′ position and e.g. LNA for every 2nd


or 3rd nucleotide (see Compound table Table 2).











Oligo



Ratio: Exon1-2/


(SEQ ID NO)
Sequence
Exon 1-Exon 2
Intron1-Exon2
Intron1-Exon2





SEQ ID NO: 1
TGCGTCCGACTCCGCG
1.43
1.30
1.11





  2
GTCCGACTCCGCGGTC
1.02
1.33
0.77





  3
CGACTCCGCGGTCCTT
1.33
1.67
0.80





  4
CTCCGCGGTCCTTGGG
1.02
1.38
0.74





  5
CGCGGTCCTTGGGCAG
0.69
1.55
0.45





  6
GGTCCTTGGGCAGCAG
0.70
1.36
0.51





  7
CCTTGGGCAGCAGCAA
0.71
0.95
0.75





  8
TGGGCAGCAGCAACCG
0.86
0.86
1.00





  9
GCAGCAGCAACCGGGT
1.25
1.31
0.95





 10
GCAGCAACCGGGTAGC
1.21
1.29
0.94





 11
GCAACCGGGTAGCGCT
0.82
0.89
0.92





 12
ACCGGGTAGCGCTCAG
0.84
0.77
1.10





 13
GGGTAGCGCTCAGACT
0.82
0.81
1.00





 14
TAGCGCTCAGACTACA
0.96
0.97
0.99





 15
CGCTCAGACTACAGAC
1.38
1.07
1.29





 16
TCAGACTACAGACCCC
1.20
1.26
0.95





 17
GACTACAGACCCCAGC
0.77
0.75
1.03





 18
TACAGACCCCAGCGCG
0.93
0.83
1.13





 19
AGTCCCTACTACCTTC
1.13
1.14
1.00





 20
CCCTACTACCTTCGAG
1.06
1.09
0.97





 21
TACTACCTTCGAGAAG
1.13
1.15
0.98





 22
TACCTTCGAGAAGCCA
1.11
1.10
1.01





 23
CTTCGAGAAGCCAAGG
1.09
1.09
1.01





 24
CGAGAAGCCAAGGTCT
1.05
1.15
0.91





 25
GAAGCCAAGGTCTCAG
1.23
1.28
0.95





 26
GCCAAGGTCTCAGGTC
1.40
1.30
1.08





 27
AAGGTCTCAGGTCTCG
1.23
1.30
0.95





 28
GTCTCAGGTCTCGTTC
1.15
1.16
0.99





 29
TCAGGTCTCGTTCCCA
1.00
0.97
1.04





 30
GGTCTCGTTCCCAGGC
1.02
0.97
1.05





 31
CTCGTTCCCAGGCCCT
1.27
1.38
0.92





 32
GTTCCCAGGCCCTCGG
1.18
1.17
1.01





 33
CCCAGGCCCTCGGAGC
0.90
0.80
1.12





 34
AGGCCCTCGGAGCTCC
1.38
1.29
1.07





 35
CCCTCGGAGCTCCCAG
1.16
1.13
1.03





 36
TCGGAGCTCCCAGCCC
0.93
0.91
1.02





 37
GAGCTCCCAGCCCAGG
0.93
0.92
1.01





 38
CTCCCAGCCCAGGGTC
0.78
0.72
1.08





 39
CCAGCCCAGGGTCGCG
0.92
0.88
1.05





 40
GCCCAGGGTCGCGCGC
0.72
0.69
1.04





 41
CAGGGTCGCGCGCCCC
1.29
1.17
1.10





 42
GGTCGCGCGCCCCTCC
1.28
1.20
1.07





 43
CGCGCGCCCCTCCGGC
1.09
1.05
1.04





 44
GCGCCCCTCCGGCTCC
1.29
1.30
0.99





 45
CCCCTCCGGCTCCAGG
1.12
1.14
0.99





 46
CTCCGGCTCCAGGCCG
1.08
1.09
0.99





 47
CGGCTCCAGGCCGCCG
1.23
1.10
1.11





 48
CTCCAGGCCGCCGCGG
1.20
1.15
1.04





 49
CAGGCCGCCGCGGGAA
1.24
1.21
1.03





 50
GCCGCGGGAACCACCC
1.15
0.95
1.21





 51
GCGGGAACCACCCACC
1.22
0.97
1.26





 52
GGAACCACCCACCACC
1.14
0.88
1.29





 53
ACCACCCACCACCACC
1.15
0.89
1.30





 54
ACCCACCACCACCAGG
1.13
0.89
1.26





 55
CACCACCACCAGGAGA
1.25
1.00
1.26





 56
CACCACCAGGAGAGGG
1.20
0.99
1.21





 57
CACCAGGAGAGGGGAA
1.23
1.16
1.06





 58
CAGGAGAGGGGAAGAA
1.35
1.27
1.07





 59
GAGAGGGGAAGAAGCC
1.17
1.17
1.00





 60
AGGGGAAGAAGCCAGC
1.06
1.10
0.96





 61
GGAAGAAGCCAGCACC
1.05
0.87
1.22





 62
AGAAGCCAGCACCTAC
1.07
0.69
1.56





 63
AGCCAGCACCTACCGA
1.08
0.75
1.44





 64
CAGCACCTACCGACAG
1.16
1.06
1.09





 65
CACCTACCGACAGGGG
1.14
0.98
1.16





 66
CTACCGACAGGGGTGG
0.88
0.90
0.98





 67
CCGACAGGGGTGGAGC
1.12
0.84
1.34





 68
ACAGGGGTGGAGCTGG
1.04
0.84
1.24





 69
GGGGTGGAGCTGGGTC
0.77
0.52
1.49





 70
GTGGAGCTGGGTCAAG
1.34
1.04
1.30





 71
GAGCTGGGTCAAGAAT
1.32
0.97
1.37





 72
CTGGGTCAAGAATGGT
1.42
1.01
1.40





 73
GGTCAAGAATGGTGTG
1.29
0.89
1.44





 74
CAAGAATGGTGTGGTC
1.03
0.75
1.37





 75
GAATGGTGTGGTCCCT
1.11
0.88
1.26





 76
TGGTGTGGTCCCTGCT
1.07
0.87
1.22





 77
TGTGGTCCCTGCTTTG
1.34
1.17
1.14





 78
GGTCCCTGCTTTGGGG
1.29
1.08
1.19





 79
CCCTGCTTTGGGGGAA
1.04
0.98
1.06





 80
TGCTTTGGGGGAATGC
1.00
1.06
0.94





 81
TTTGGGGGAATGCTGG
0.75
0.75
1.00





 82
GGGGGAATGCTGGGGA
0.94
0.91
1.04





 83
GGAATGCTGGGGAGGT
1.09
1.09
1.00





 84
ATGCTGGGGAGGTAGA
1.32
1.26
1.05





 85
CTGGGGAGGTAGAAAG
1.02
1.04
0.99





 86
GGGAGGTAGAAAGCCC
0.99
0.94
1.06





 87
AGGTAGAAAGCCCCTT
1.00
0.83
1.20





 88
TAGAAAGCCCCTTCTA
1.10
1.07
1.02





 89
AAAGCCCCTTCTAACG
1.07
0.99
1.08





 90
GCCCCTTCTAACGGGG
1.26
1.32
0.95





 91
CCTTCTAACGGGGCGT
1.13
1.12
1.01





 92
TCTAACGGGGCGTCAC
1.10
1.09
1.01





 93
AACGGGGCGTCACTGC
1.10
0.94
1.17





 94
GGGGCGTCACTGCAAT
1.04
0.91
1.15





 95
GCGTCACTGCAATTAC
1.04
0.96
1.08





 96
TCACTGCAATTACTGC
1.04
0.95
1.10





 97
CTGCAATTACTGCTTC
1.36
1.28
1.06





 98
CAATTACTGCTTCCTC
n.d.
n.d.
n.d.





 99
TTACTGCTTCCTCTTT
1.22
1.12
1.09





100
CTGCTTCCTCTTTCCC
1.24
0.98
1.26





101
CTTCCTCTTTCCCATA
1.04
0.89
1.16





102
CCTCTTTCCCATAAAA
1.15
1.14
1.01





103
CTTTCCCATAAAACTC
1.13
1.16
0.97





104
TCCCATAAAACTCCCC
1.10
1.25
0.88





105
CATAAAACTCCCCCTA
1.14
1.25
0.90





106
AAAACTCCCCCTAGTG
1.18
1.32
0.90





107
ACTCCCCCTAGTGTAT
1.31
1.47
0.89





108
CCCCCTAGTGTATCAG
1.35
1.66
0.81





109
CCTAGTGTATCAGAAC
1.23
1.36
0.91





110
AGTGTATCAGAACCCC
0.95
1.03
0.92





111
GTATCAGAACCCCCAA
1.08
1.12
0.96





112
TCAGAACCCCCAAGGA
1.40
1.33
1.06





113
GAACCCCCAAGGAGTT
0.78
0.74
1.06





114
CCCCCAAGGAGTTTCA
0.83
0.76
1.08





115
CCAAGGAGTTTCAGTA
0.88
0.77
1.13





116
AGGAGTTTCAGTAAGC
1.31
1.03
1.28





117
AGTTTCAGTAAGCGGT
1.06
0.89
1.19





118
TTCAGTAAGCGGTTCT
1.05
0.86
1.22





119
AGTAAGCGGTTCTTCT
1.06
0.86
1.23





120
AAGCGGTTCTTCTGTT
0.69
0.63
1.10





121
CGGTTCTTCTGTTGTC
0.77
0.70
1.09





122
TTCTTCTGTTGTCTCC
0.77
0.64
1.21





123
TTCTGTTGTCTCCGGC
0.94
0.76
1.24





124
TGTTGTCTCCGGCTGA
1.03
0.82
1.25





125
TGTCTCCGGCTGAGAC
0.99
0.95
1.04





126
CTCCGGCTGAGACTCC
0.77
0.76
1.02





127
CGGCTGAGACTCCAGG
0.83
0.80
1.04





128
CTGAGACTCCAGGGGA
1.18
1.09
1.09





129
AGACTCCAGGGGAACC
1.13
1.07
1.05





130
CTCCAGGGGAACCTCA
1.15
1.00
1.15





131
CAGGGGAACCTCAAGC
1.07
1.08
0.99





132
GGGAACCTCAAGCTCA
n.d.
n.d.
n.d.





133
AACCTCAAGCTCACAT
1.23
1.17
1.05





134
CTCAAGCTCACATGGC
1.26
0.95
1.32





135
AAGCTCACATGGCCCT
1.08
0.61
1.75





136
CTCACATGGCCCTGGC
1.23
1.08
1.13





137
ACATGGCCCTGGCGGG
1.35
1.15
1.18





138
TGGCCCTGGCGGGCCC
1.26
1.11
1.13





139
CCCTGGCGGGCCCCTG
1.28
1.20
1.07





140
TGGCGGGCCCCTGGGC
1.29
1.15
1.13





141
CGGGCCCCTGGGCAGG
1.14
1.20
0.95





142
GCCCCTGGGCAGGAGC
1.19
1.08
1.10





143
CCTGGGCAGGAGCAGG
1.17
1.04
1.12





144
GGGCAGGAGCAGGCGA
1.14
1.03
1.11





145
CAGGAGCAGGCGAGAG
1.15
0.93
1.24





146
GAGCAGGCGAGAGGTC
1.18
1.07
1.11





147
CAGGCGAGAGGTCTGC
1.30
1.12
1.16





148
GCGAGAGGTCTGCGCG
1.47
1.34
1.09





149
AGAGGTCTGCGCGGCC
1.23
1.29
0.96





150
GGTCTGCGCGGCCGCT
1.20
1.21
1.00





151
CTGCGCGGCCGCTCTC
1.52
1.56
0.98





152
CGCGGCCGCTCTCCTA
1.38
1.68
0.82





153
GGCCGCTCTCCTACCT
1.22
3.21
0.38





154
CGCTCTCCTACCTGCG
1.35
1.67
0.81





155
TCTCCTACCTGCGTCC
0.86
1.23
0.70





156
CCTACCTGCGTCCGAC
0.96
1.39
0.69





157
ACCTGCGTCCGACTCC
1.00
1.55
0.64





158
GGGGAAGAAGCCAGCA
1.20
1.06
1.13





159
GGGAAGAAGCCAGCAC
1.25
1.14
1.10





160
GAAGAAGCCAGCACCT
1.25
1.12
1.11





161
AAGAAGCCAGCACCTA
1.31
1.22
1.08





162
GAAGCCAGCACCTACC
0.86
0.79
1.10





163
AAGCCAGCACCTACCG
0.97
0.98
1.00





164
GCCAGCACCTACCGAC
0.97
0.91
1.06





165
CCAGCACCTACCGACA
0.74
0.65
1.15





166
AGCACCTACCGACAGG
1.22
1.21
1.01





167
GCACCTACCGACAGGG
0.93
0.60
1.55





168
ACCTACCGACAGGGGT
1.37
1.18
1.16





169
CCTACCGACAGGGGTG
0.91
1.00
0.92





170
TACCGACAGGGGTGGA
0.81
0.85
0.95





171
ACCGACAGGGGTGGAG
0.85
0.84
1.00





172
CGACAGGGGTGGAGCT
1.13
1.07
1.05





173
GACAGGGGTGGAGCTG
0.99
1.11
0.89





174
CAGGGGTGGAGCTGGG
0.81
0.88
0.93





175
AGGGGTGGAGCTGGGT
0.96
1.04
0.92





176
GGGTGGAGCTGGGTCA
1.00
1.05
0.95





177
GGTGGAGCTGGGTCAA
1.00
1.02
0.99





178
TGGAGCTGGGTCAAGA
0.94
1.00
0.94





179
GGAGCTGGGTCAAGAA
0.84
0.88
0.95





180
CAGAAGGGGACGGCAG
0.77
0.90
0.86





181
AAGGGGACGGCAGCAG
0.93
0.96
0.97





182
GGGACGGCAGCAGCTG
0.94
0.91
1.04





183
ACGGCAGCAGCTGTAG
0.98
0.86
1.14





184
GCAGCAGCTGTAGCTG
0.94
0.85
1.11





185
GCAGCTGTAGCTGGCT
0.98
0.89
1.10





186
GCTGTAGCTGGCTCCT
1.01
0.90
1.13





187
GTAGCTGGCTCCTCCG
1.09
0.94
1.17





188
GCTGGCTCCTCCGGGG
1.01
0.88
1.16





189
GGCTCCTCCGGGGTCC
0.98
0.95
1.03





190
TCCTCCGGGGTCCAGG
n.d.
n.d.
n.d.





191
TCCGGGGTCCAGGCAG
0.97
1.02
0.96





192
GGGGTCCAGGCAGCAG
0.96
0.94
1.02





193
GTCCAGGCAGCAGGCC
1.02
0.98
1.04





194
CAGGCAGCAGGCCACA
1.06
1.01
1.05





195
GCAGCAGGCCACAGGG
0.92
0.86
1.08





196
GCAGGCCACAGGGCAG
1.01
0.78
1.29





197
GGCCACAGGGCAGAAC
1.06
1.06
0.99





198
CACAGGGCAGAACTGA
n.d.
n.d.
n.d.





199
AGGGCAGAACTGACCA
1.02
1.25
0.82





200
GCAGAACTGACCATCT
0.99
1.11
0.89





201
GAACTGACCATCTGGG
1.05
1.03
1.02





202
CTGACCATCTGGGCAC
1.07
1.07
1.00





203
ACCATCTGGGCACCGC
1.08
1.11
0.98





204
ATCTGGGCACCGCGTT
1.01
0.83
1.21





205
TGGGCACCGCGTTCCA
1.11
1.15
0.97





206
GCACCGCGTTCCAGCC
1.01
0.93
1.08





207
CCGCGTTCCAGCCACC
1.02
1.32
0.77





208
CGTTCCAGCCACCAGC
1.15
1.07
1.07





209
TCCAGCCACCAGCCCT
1.06
1.00
1.06





210
AGCCACCAGCCCTGCT
1.13
1.00
1.13





211
CACCAGCCCTGCTGTT
0.98
0.90
1.08





212
CAGCCCTGCTGTTAAG
1.03
0.84
1.22





213
CCCTGCTGTTAAGGCC
0.92
1.08
0.86





214
TGCTGTTAAGGCCACC
1.02
1.02
1.00





215
TGTTAAGGCCACCCAG
1.11
1.05
1.05





216
TAAGGCCACCCAGCTC
0.92
0.89
1.03





217
GGCCACCCAGCTCACC
1.05
0.91
1.16





218
CACCCAGCTCACCAGG
1.00
0.87
1.14





219
CCAGCTCACCAGGGTC
1.05
0.89
1.18





220
GCTCACCAGGGTCCAC
1.02
0.75
1.37





221
CACCAGGGTCCACATG
0.99
0.92
1.08





222
CAGGGTCCACATGGTC
0.94
0.65
1.43





223
GGTCCACATGGTCTGC
0.96
0.88
1.09





224
CCACATGGTCTGCCTG
0.91
0.80
1.14





225
CATGGTCTGCCTGCAA
1.07
0.98
1.10





226
GGTCTGCCTGCAAAGT
1.02
0.99
1.03





227
CTGCCTGCAAAGTACC
1.06
0.89
1.18





228
CCTGCAAAGTACCAAG
1.04
0.71
1.47





229
GCAAAGTACCAAGGAA
0.99
0.89
1.10





230
AAGTACCAAGGAACGT
0.93
0.94
0.99





231
TACCAAGGAACGTCTG
1.13
1.10
1.03





232
CAAGGAACGTCTGGCA
1.03
0.94
1.10





233
GGAACGTCTGGCAACT
0.95
0.93
1.02





234
ACGTCTGGCAACTGCT
0.91
0.75
1.21





235
TCTGGCAACTGCTTAA
0.94
0.82
1.16





236
GGCAACTGCTTAAGCC
0.90
0.91
0.98





237
AACTGCTTAAGCCCAC
1.08
1.14
0.94





238
TGCTTAAGCCCACGCC
1.03
0.94
1.09





239
TTAAGCCCACGCCACC
1.02
0.83
1.23





240
AGCCCACGCCACCCTT
1.02
0.87
1.17





241
CCACGCCACCCTTGAT
0.90
0.89
1.01





242
CGCCACCCTTGATTCT
0.16
0.10
1.57





243
CACCCTTGATTCTAGG
0.94
0.90
1.05





244
CCTTGATTCTAGGGTC
0.92
0.98
0.93





245
TGATTCTAGGGTCACT
1.01
0.91
1.10





246
TTCTAGGGTCACTCAG
0.99
0.76
1.29





247
TAGGGTCACTCAGTAC
0.97
0.94
1.02





248
GGTCACTCAGTACCCT
0.89
0.94
0.95





249
CACTCAGTACCCTAGC
0.99
0.81
1.23





250
TCAGTACCCTAGCCCC
0.98
0.82
1.19





251
GTACCCTAGCCCCAGG
1.10
1.02
1.08





252
CCCTAGCCCCAGGCCA
1.01
0.77
1.32





253
TAGCCCCAGGCCAAGG
0.97
0.80
1.22





254
CCCCAGGCCAAGGTCC
0.93
0.85
1.09





255
CAGGCCAAGGTCCTGG
0.93
0.83
1.12





256
GCCAAGGTCCTGGCCC
0.92
0.82
1.12





257
AAGGTCCTGGCCCAGG
0.98
0.88
1.11





258
GTCCTGGCCCAGGACT
0.91
0.77
1.18





259
CTGGCCCAGGACTGCC
1.00
0.63
1.58





260
GCCCAGGACTGCCTGA
0.97
0.78
1.24





261
CAGGACTGCCTGAGCC
1.01
0.87
1.16





262
GACTGCCTGAGCCTTC
1.03
0.95
1.09





263
TGCCTGAGCCTTCTCA
1.22
1.20
1.02





264
CTGAGCCTTCTCAACA
0.92
0.89
1.03





265
AGCCTTCTCAACACCT
0.85
0.88
0.96





266
CTTCTCAACACCTCCC
0.95
0.95
1.00





267
CTCAACACCTCCCTGT
0.91
0.92
0.99





268
AACACCTCCCTGTCCA
0.88
0.95
0.94





269
ACCTCCCTGTCCAGGC
0.93
1.21
0.77





270
TCCCTGTCCAGGCAGG
1.08
1.16
0.93





271
CTGTCCAGGCAGGCAG
1.27
1.12
1.13





272
TCCAGGCAGGCAGAAA
1.01
1.01
1.01





273
AGGCAGGCAGAAATCT
0.97
0.85
1.15





274
CAGGCAGAAATCTGCA
0.93
1.00
0.93





275
GCAGAAATCTGCAGGG
0.78
0.84
0.93









Example 2: Oligonucleotides Tested for Effect on Progranulin Expression

H4 neuroglioma cells seeded in 96 well plates 5000 pr well, were treated with either 3 or 10 μM final concentration of oligo for 5 days in 200 μL medium. Progranulin expression levels were evaluated in media after dilution 1:8 by ELISA from Abcam (ab252364). SEQ ID NOs: 71, 73, 74, 75 and 134 induced progranulin secretion more than 1.5 fold compared to PBS as shown in FIG. 2. For comparison effects of oligonucleotides S7 and S10 from patent (WO 2020/191212A1) are shown in FIG. 3.


Example 3: Sequence Localization of Oligos

Sequence localization of SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75 and SEQ ID NO: 134 are shown in FIG. 4.


Example 4: Oligonucleotides Tested for Effect on Progranulin Expression in hiPSC Derived Microglia

hiPSC derived microglia (iCell Microglia Kit, 01279, Cat. no R1131) were seeded (n=3) in Poly-D-lysine coated 96-well plates (Greiner Catalog No. 655946) with 20000 cells pr well in 200 μL and were treated with indicated concentrations of SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75 and SEQ ID NO: 134 for 4 days. Progranulin protein expression levels were evaluated in media after dilution 1:8 using ELISA from Abcam (ab252364). SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75 and SEQ ID NO: 134 induced progranulin secretion more than 1.5 fold compared to PBS as shown in FIG. 5. For comparison effects of oligonucleotides S7, S10 and S37 from WO 2020/191212 are shown in FIG. 6.


Example 5: Oligonucleotides Tested for Effect on Progranulin Expression in 114 Neuroglioma Cells

H4 neuroglioma cells were seeded 15000 pr well in 96-well plates the day before transfection in medium (DMEM Sigma: D0819, 15% FBS, 1 mM Sodium Pyruvate, 25 μg/ml Gentamicin). Transfection was performed using Lipofectamine 2000 (Invitrogen) using the following procedure. Medium was removed from cells and 80 μL Optimem reduced serum medium (Gibco) containing 6.25 μg/mL Lipofectamine 2000 (Invitrogen) was added, 20 Optimem with compounds (125 nM) were added to each well (25 nM final). As control PBS was used instead of compound. After 5 hours, transfection solution was removed from wells and full growth medium was added. The day after transfection, RNA was extracted by adding 125 μL RLT buffer (Qiagen) and using RNeasy 97 kit and protocols from Qiagen. cDNA synthesis was performed using 4 μL input RNA was performed using IScript Advanced cDNA Synthesis Kit for RT-qPCR (Bio-Rad) and 2 μL was used as input for digital droplet PCR using ddPCR supermix for probes (no dUTP) (Bio-Rad) according to Manufactor's protocol.


The following Primers and Probes (IDT) were used









GRN Exon1-Exon2 (FAM):


Primer 1:


GCTGCTGCCCAAGGACCGCGGA,





Primer 2:


GCCCTGCTGTTAAGGCCACCCA


and





Probe


/56-FAM/GGACGCAGG/ZEN/CAGACCATGTGGACCCTG/3IABkFQ/





GRN Intron1-Exon2 (HEX):


Primer 1:


CCAAAGCAGGGACCACACCATTCTT,





Primer 2:


GCCCTGCTGTTAAGGCCACCCA


and





Probe


/5HEX/CCCAGCTCC/ZEN/ACCCCTGTCGGCAGACCATG/3IABkFQ/






HPRT1: HPRT1 (FAM, PT.58v.45621572, IDT) and HPRT1 (HEX, Hs.PT.58v.45621572) IDT.



  • Exon1-Exon2 GRN mRNA and Intron1-Exon2 GRN mRNA concentrations were quantified relative to the housekeeping gene HPRT1 using QuantaSoft Software (Bio-Rad).



The results for SEQ ID NO: 73, SEQ ID NO: 74 and SEQ ID NO: 75 are show in FIGS. 7A-7D. SEQ ID NO: 73, SEQ ID NO: 74 and SEQ ID NO: 75 show dose-dependent skipping of intron1 retention (Int1-Ex2) and an increase in Ex1-Ex2 splice-variant. The S10 compound from WO 2020/191212 showed no/limited effects on skipping of intron1 retention.


Example 6—Oligonucleotides Tested for Effect on Progranulin Expression in 114 Neuroglioma Cells

H4 neuroglioma cells were seeded 15000 pr well in 96-well plates the day before transfection in medium (DMEM Sigma: D0819, 15% FBS, 1 mM Sodium Pyruvate, 25 μg/ml Gentamicin). Transfection was performed using Lipofectamine 2000 (Invitrogen) using the following procedure. Medium was removed from cells and 80 μL Optimem reduced serum medium (Gibco) containing 6.25 μg/mL Lipofectamine 2000 (Invitrogen) was added, 20 Optimem with compounds (125 nM) were added to each well (25 nM final). As control PBS was used instead of compound. After 5 hours, transfection solution was removed from wells and full growth medium was added. The day after transfection, RNA was extracted by adding 125 μL RLT buffer (Qiagen) and using RNeasy 97 kit and protocols from Qiagen. cDNA synthesis was performed using 4 μL input RNA was performed using IScript Advanced cDNA Synthesis Kit for RT-qPCR (Bio-Rad) and 2 μL was used as input for digital droplet PCR using ddPCR supermix for probes (no dUTP) (Bio-Rad) according to Manufactor's protocol. The following Primers and Probes (IDT) were used









GRN Exon1-Exon2 (FAM):


Primer 1:


GCTGCTGCCCAAGGACCGCGGA,





Primer 2:


GCCCTGCTGTTAAGGCCACCCA


and





Probe


/56-FAM/GGACGCAGG/ZEN/CAGACCATGTGGACCCTG/3IABkFQ/





GRN Intron1-Exon2 (HEX):


Primer 1:


CCAAAGCAGGGACCACACCATTCTT,





Primer 2:


GCCCTGCTGTTAAGGCCACCCA


and





Probe


/5HEX/CCCAGCTCC/ZEN/ACCCCTGTCGGCAGACCATG/3IABkFQ/






HPRT1: HPRT1 (FAM, PT.58v.45621572, IDT) and HPRT1 (HEX, Hs.PT.58v.45621572) IDT.



  • Exon1-Exon2 GRN mRNA and Intron1-Exon2 GRN mRNA concentrations were quantified relative to the housekeeping gene HPRT1 using QuantaSoft Software (Bio-Rad).



The results for SEQ ID NO: 289 and SEQ ID NO: 290 are show in FIGS. 8A-8C. SEQ ID: 289 and 290 show dose-dependent skipping of intron1 retention (Int1-Ex2) and an increase in Ex1-Ex2 splice-variant. The S10 compound from WO 2020/191212 showed no/limited effects on skipping of intron1 retention.


Example 7- Oligonucleotides Tested for Effect on Progranulin Expression in hiPSC Derived Microglia

hiPSC derived microglia (iCell Microglia Kit, 01279, Cat. no R1131) were seeded (n=3) in Poly-D-lysine coated 96-well plates (Greiner Catalog No. 655946) with 20000 cells pr well in 200 μL and were treated with indicated concentrations of Compound S10 and SEQ ID NO: 290 for 5 days.


RNA was extracted by adding 125 μL RLT buffer (Qiagen) and using RNeasy 97 kit and protocols from Qiagen. cDNA synthesis was performed using 4 μL input RNA was performed using IScript Advanced cDNA Synthesis Kit for RT-qPCR (Bio-Rad) and 2 μL was used as input for digital droplet PCR using ddPCR supermix for probes (no dUTP) (Bio-Rad) according to Manufactor's protocol. The following Primers and Probes (IDT) were used









GRN Exon1-Exon2 (FAM):


Primer 1:


GCTGCTGCCCAAGGACCGCGGA,





Primer 2:


GCCCTGCTGTTAAGGCCACCCA


and





Probe


/56-FAM/GGACGCAGG/ZEN/CAGACCATGTGGACCCTG/3IABkFQ/





GRN Intron1-Exon2 (HEX):


Primer 1:


CCAAAGCAGGGACCACACCATTCTT,





Primer 2:


GCCCTGCTGTTAAGGCCACCCA


and





Probe


/5HEX/CCCAGCTCC/ZEN/ACCCCTGTCGGCAGACCATG/3IABkFQ/






GAPDH: GAPDH (FAM, Hs.PT.39a.22214836, IDT) and GAPDH (HEX, Hs.PT.39a.22214836, IDT).



  • Exon1-Exon2 GRN mRNA and Intron1-Exon2 GRN mRNA concentrations were quantified relative to the housekeeping gene GAPDH using QuantaSoft Software (Bio-Rad).



The results for SEQ ID NO: 290 are show in FIG. 9. SEQ ID: 290 showed dose-dependent skipping of intron1 retention (Int1-Ex2) and an increase in Ex1-Ex2 splice-variant. The S10 compound from WO 2020/191212 showed no/limited effects on skipping of intron1 retention, a gapmer was included as control showing the expected dose-dependent knockdown of both splice variants.


Example 8—Splice Switch Analysis Using SEQ ID NO: 290

H4 neuroglioma cells were seeded 15000 pr well in 96-well plates the day before transfection in medium (DMEM Sigma: D0819, 15% FBS, 1 mM Sodium Pyruvate, 25 μg/ml Gentamicin). Transfection was performed using Lipofectamine 2000 (Invitrogen) using the following procedure. Medium was removed from cells and 80 μL Optimem reduced serum medium (Gibco) containing 6.25 μg/mL Lipofectamine 2000 (Invitrogen) was added, 20


Optimem with compounds (125 nM) were added to each well (25 nM final). As control PBS was used instead of compound. After 5 hours, transfection solution was removed from wells and full growth medium was added. Two days after transfection, RNA was extracted by adding 350 Magnapure lysis buffer (Roche) and using the Magnapure system and protocols (including DNase treatment) from Roche. Total RNA was eluted in 50 μL elution buffer. KAPA mRNA HyperPrep Kits (Roche) was used to generate next generation sequencing (NGS) libraries using 100 ng of total RNA as input. Sequencing was performed on the Illumina NextSeq 550 system to obtain more than 30 million paired end reads (2x151 bp) per sample. Reads were trimmed by removal of 1 nucleotide at the 3′ end, and subsampled to 30 million reads per sample prior to RNA-Seq analysis using CLC Genomic Workbench (Qiagen). To generate the Sashimi plots (showing the number of reads spanning the exon junctions), the Bam files was exported from CLC Genomic Workbench (Qiagen) and imported into The Integrative Genomics Viewer (IGV) (version IGV_2.8.2) from Broad Institute. Sashimi plots showing the splice-switching to obtain the correct splicing from exon 1 to exon 2 with the SEQ ID NO: 290 and not with S10 compound from WO 2020/191212. This is shown in FIG. 10.









TABLE 2







Compound Table


















Start
End
chromo-
Chromo-






position
position
some
some






in
in
start
end


SEQ
Oligo

Target
SEQ ID
SEQ ID
(hg38
(hg38


ID NO
Sequence
Helm sequence
sequence
276
276
assembly)
assembly)

















  1
TGCGTCC
RNA1{[LR](T)[sP].[dR](G)[sP].
CGCGGAGT
 196
 211
44345318
44345333



GACTCCG
[dR](C)[sP].[LR](G)[sP].[dR]
CGGACGCA







CG
(T)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](G)[sP].[LR]









(A)[sP].[dR](C)[sP].[dR](T)









[sP].[LR]([5meC])[sP].[dR]









([5meC])[sP].[dR](G)[sP].[LR]









([5meC])[sP].[LR](G)}$$$$V2.0










  2
GTCCGAC
RNA1{[LR](G)[sP].[dR](T)[sP].
GACCGCGG
 193
 208
44345315
44345330



TCCGCGG
[LR]([5meC])[sP].[dR](C)[sP].
AGTCGGAC







TC
[LR](G)[sP].[dR](A)[sP].[dR]









(C)[sP].[LR](T)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](G)[sP].









[dR](C)[sP].[LR](G)[sP].[dR]









(G)[sP].[LR](T)[sP].[LR]









([5meC]}$$$$V2.0










  3
CGACTCC
RNA1{[LR]([5meC])[sP].[dR](G)
AAGGACCG
 190
 205
44345312
44345327



GCGGTCC
[sP].[LR](A)[sP].[dR](C)[sP].
CGGAGTCG







TT
[dR](T)[sP].[LR]([5meC])[sP].









[dR]([5meC]sP].[dR](G)[sP].









[LR]([5meC])[sP].[dR](G)[sP].









[dR](G)[sP].[LR](T)[sP].[dR]









(C)[sP].[dR](C)[sP].[LR](T)









[sP].[LR](T)}$$$$V2.0










  4
CTCCGCG
RNA1{[LR]([5meC])[sP].[dR](T)
CCCAAGGA
 187
 202
44345309
44345324



GTCCTTG
[sP].[dR](C)[sP].[LR]([5meC])
CCGCGGAG







GG
[sP].[dR](G)[sP].[dR](C)[sP].









[LR](G)[sP].[dR](G)[sP].[LR]









(T)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](T)[sP].[dR](T)[sP].









[dR](G)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










  5
CGCGGT
RNA1{[LR]([5meC])[sP].[dR](G)
CTGCCCAA
 184
 199
44345306
44345321



CCTTGG
[sP].[dR](C)[sP].[LR](G)[sP].
GGACCGC







GCAG
[dR](G)[sP].[dR](T)[sP].[LR]









([5meC])[sP].[dR[(C)[sP].[dR]









(T)[sP].[LR](T)[sP].[dR](G)









[sP].[dR](G)[sP].[LR](G)[sP].









[dR](C)[sP].[LR](A)[sP].[LR]









(G)}$$$$V2.0










  6
GGTCCTT
RNA1{[LR](G)[sP].[dR](G)[sP].
CTGCTGCC
 181
 196
44345303
44345318



GGGCAGC
[dR](T)[sP].[LR]([5meC])[sP].
CAAGGACC







AG
[dR](C)[sP].[dR](T)[sP].[LR]









(T)[sP].[dR](G)[sP].[c[R](G)









[sP].[LR](G)[sP].[dR](C)[sP].









[LR](A)[sP].[dR](G)[sP].[dR]









(C)[sP].[LR](A)[sP].[LR](G)}$









$$$V2.0










  7 
CCTTGGG
RNA1{[LR]([5meC])[sP].[dR](C)
TTGCTGCT
 178
 193
44345300
44345315



CAGCAGC
[sP].[dR](T)[sP].[LR](T)[sP].
GCCCAAGG







AA
[dR](G)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](C)[sP].









[LR](A)[sP].[dR](G)[sP].[dR]









(C)[sP].[LR](A)[sP].[LR](A)}









$$$$V2.0










  8
TGGGCAG
RNA1{[LR](T)[sP].[dR](G)[sP].
CGGTTGCT
 175
 190
44345297
44345312



CAGCAAC
[dR](G)[sP].[LR](G)[sP].[dR]
GCTGCCCA







CG
(C)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](A)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[LR](G)}









$$$$V2.0










  9
GCAGCAG
RNA1{[LR](G)[sP].[dR](C)[sP].
ACCCGGTT
 172
 187
44345294
44345309



CAACCGG
[LR](A)[sP].[dR](G)[sP].[dR]
GCTGCTGC







GT
(C)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](A)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](G)[sP].[LR](T)}$









$$$V2.0










 10
GCAGCAA
RNA1{[LR](G)[sP].[dR](C)[sP].
GCTACCCG
 169
 184
44345291
44345306



CCGGGTA
[LR](A)[sP].[dR](G)[sP].[dR]
GTTGCTGC







GC
(C)[sP].[LR](A)[sP].[dR](A)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](T)[sP].[dR]









(A)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










 11
GCAACCG
RNA1{[LR](G)[sP].[dR](C)[sP].
AGCGCTAC
 166
 181
44345288
44345303



GGTAGCG
[LR](A)[sP].[dR](A)[sP].[dR]
CCGGTTGC







CT
(C)[sP].[LR]([5meC])[sP].[dR]









(G)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](T)[sP].[dR](A)[sP].









[LR](G)[sP].[dR]([5meC])[sP].









[dR](G)[sP].[LR]([5meC])[sP].









[LR](T)}$$$$V2.0










 12
ACCGGGT
RNA1{[LR](A)[sP].[dR](C)[sP].
CTGAGCGC
 163
 178
44345285
44345300



AGCGCTC
[LR]([5meC])[sP].[dR](G)[sP].
TACCCGGT







AG
[dR](G)[sP].[LR](G)[sP].[dR]









(T)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](C)[sP].[LR](G)[sP].









[dR](C)[sP].[LR](T)[sP].[dR]









(C)[sP].[LR](A)[sP].[LR](G)}$









$$$V2.0










 13
GGGTAGC
RNA1{[LR](G)[sP].[dR](G)[sP].
AGTCTGAG
 160
 175
44345282
44345297



GCTCAGA
[LR](G)[sP].[dR](T)[sP].[LR]
CGCTACCC







CT
(A)[sP].[dR](G)[sP].[dR](C)









[sP].[LR](G)[sP].[dR](C)[sP].









[LR](T)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](A)









[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










 14
TAGCGCT
RNA1{[LR](T)[sP].[dR](A)[sP].
TGTAGTCT
 157
 172
44345279
44345294



CAGACTA
[dR](G)[sP].[LR]([5meC])[sP].
GAGCGCTA







CA
[dR](G)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](A)[sP].









[LR]([5meC])[sP].[dR](T)[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR](A)}$$$$V2.0










 15
CGCTCAG
RNA1{[LR]([5meC])[sP].[dR](G)
GTCTGTAG
 154
 169
44345276
44345291



ACTACAG
[sP].[dR](C)[sP].[LR](T)[sP].
TCTGAGCG







AC
[dR](C)[sP].[LR](A)[sP].[dR]









(G)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](A)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(G)[sP].[LR](A)[sP].[LR]









([5meC]}$$$$V2.0










 16
TCAGACT
RNA1{[LR](T)[sP].[dR](C)[sP].
GGGGTCTG
 151
 166
44345273
44345288



ACAGACC
[LR](A)[sP].[dR](G)[sP].[LR]
TAGTCTGA







CC
(A)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](A)[sP].[dR](C)[sP].









[LR](A)[sP].[dR](G)[sP].[LR]









(A)[sP].[dR](C)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[LR]









([5meC]}$$$$V2.0










 17
GACTACA
RNA1{[LR](G)[sP].[dR](A)[sP].
GCTGGGGT
 148
 163
44345270
44345285



GACCCCA
[dR](C)[sP].[LR](T)[sP].[dR]
CTGTAGTC







GC
(A)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[LR](A)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(A)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










 18
TACAGAC
RNA1{[LR](T)[sP].[dR](A)[sP].
CGCGCTGG
 145
 160
44345267
44345282



CCCAGCG
[dR](C)[sP].[LR](A)[sP].[dR]
GGTCTGTA







CG
(G)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](C)[sP].[LR]([5meC]









[sP].[dR](C)[sP].[dR](A)[sP].









[LR](G)[sP].[dR]([5meC])[sP].









[dR](G)[sP].[LR]([5meC])[sP].









[LR](G)}$$$$V2.0










 19
AGTTCCC
RNA1{[LR](A)[sP].[dR](G)[sP].
GAAGGTAG
 616
 631
44345738
44345753



TACTACC
[LR](T)[sP].[dR](C)[sP].[LR]
TAGGGACT







TCC
([5meC])[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](A)[sp].[dR](C)









[sP].[dR](T)[sP].[LR](A)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[dR](T)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










 20
CCCTACT
RNA1{[LR]([5meC])[sP].[dR](C)
CTCGAAGG
 613
 628
44345735
44345750



ACCTTCG
[sP].[LR]([5meC])[sP].[dR](T)
TAGTAGGG







AG
[sP].[LR](A)[sP].[dR](C)[sP].









[dR](T)[sP].[LR](A)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[dR]









(T)[sP].[LR](T)[sP].[dR]









([5meC][sP].[dR](G)[sP].[LR]









(A)[sP].[LR](G)}$$$$V2.0










 21
TACTACC
RNA1{[LR](T)[sP].[dR](A)[sP].
CTTCTCGA
 610
 625
44345732
44345747



TTCGAGA
[LR]([5meC])[sP].[dR](T)[sP].
AGGTAGTA







AG
[LR](A)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](T)[sp].[c1R](T)









[sP].[dR](C)[sP].[LR](G)[sP].









[dR](A)[sP].[dR](G)[sP].[LR]









(A)[sP].[LR](A)[sP].[LR](G)}









$$$$V2.0










 22
TACCTTC
RNA1{[LR](T)[sP].[dR](A)[sP].
TGGCTTCT
 607
 622
44345729
44345744



GAGAAGC
[LR]([5meC])[sP].[dR](C)[sP].
CGAAGGTA







CA
[dR](T)[sP].[LR](T)[sP].[dR]









(C)[sP].[LR](G)[sP].[dR](A)









[sP].[dR](G)[sP].[LR](A)[sP].









[dR](A)[sP].[LR](G)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









(A)}$$$$V2.0










 23
CTTCGAG
RNA1{[LR]([5meC])[sP].[dR](T)
CCTTGGCT
 604
 619
44345726
44345741



AAGCCAA
[sP].[LR](T)[sP].[dR](C)[sP].
TCTCGAAG







GG
[LR](G)[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](A)[sp].[dR](A)









[sP].[LR](G)[sP].[dR](C)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(A)[sP].[LR](G)[sP].[LR](G)}









$$$$V2.0










 24
CGAGAAG
RNA1{[LR]([5meC])[sP].[dR](G)
AGACCTTG
 601
 616
44345723
44345738



CCAAGGT
[sP].[dR](A)[sP].[LR](G)[sP].
GCTTCTCG







CT
[dR](A)[sP].[dR](A)[sP].[LR]









(G)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](A)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(T)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










 25
GAAGCCA
RNA1{[LR](G)[sP].[dR](A)[sP].
CTGAGACC
 598
 613
44345720
44345735



AGGTCTC
[dR](A)[sP].[LR](G)[sP].[dR]
TTGGCTTC







AG
(C)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](A)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](T)[sP].[dR]









(C)[sP].[LR](T)[sP].[dR](C)









[sP].[LR](A)[sP].[LR](G)}$$$









$V2.0










 26
GCCAAGG
RNA1{[LR](G)[sP].[dR](C)[sP].
GACCTGAG
 595
 610
44345717
44345732



TCTCAGG
[dR](C)[sP].[LR](A)[sP].[dR]
ACCTTGGC







TC
(A)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](T)[sP].[dR](C)[sP].









[LR](T)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](G)









[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










 27
AAGGTCT
RNA1{[LR](A)[sP].[dR](A)[sP].
CGAGACCT
 592
 607
44345714
44345729



CAGGTCT
[dR](G)[sP].[LR](G)[sP].[dR]
GAGACCTT







CG
(T)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](G)[sP].[LR]









(T)[sP].[dR](C)[sP].[dR](T)









[sP].[LR]([5meC])[sP].[LR]









(G)}$$$$V2.0










 28
GTCTCAG
RNA1{[LR](G)[sP].[dR](T)[sP].
GAACGAGA
 589
 604
44345711
44345726



GTCTCG
[dR](C)[sP].[LR](T)[sP].[dR]
CCTGAGAC







TTC
(C)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](G)[sP].[LR](T)[sP].









[dR](C)[sP].[dR](T)[sP].[LR]









([5meC])[sP].[dR](G)[sP].[dR]









(T)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










 29
TCAGGTC
RNA1{[LR](T)[sP].[dR](C)[sP].
TGGGAACG
 586
 601
44345708
44345723



TCGTTCC
[LR](A)[sP].[dR](G)[sP].[dR]
AGACCTGA







CA
(G)[sP].[LR](T)[sP].[dR](C)









[sP].[dR](T)[sP].[LR]([5meC])









[sP].[dR](G)[sP].[dR](T)[sP].









[LR](T)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









(A)}$$$$V2.0










 30
GGTCTCG
RNA1{[LR](G)[sP].[dR](G)[sP].
GCCTGGGA
 583
 598
44345705
44345720



TTCCCAG
[dR](T)[sP].[LR]([5meC])[sP].
ACGAGACC







GC
[dR](T)[sP].[dR](C)[sP].[LR]









(G)[sP].[dR](T)[sP].[LR](T)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](A)[sP].









[dR](G)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










 31
CTCGTTC
RNA1{[LR]([5meC])[sP].[dR](T)
AGGGCCTG
 580
 595
44345702
44345717



CCAGGCC
[sP].[dR](C)[sP].[LR](G)[sP].
GGAACGAG







CT
[dR](T)[sP].[LR](T)[sP].[dR]









(C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[LR](T)}$$$$V2.0










 32
GTTCCCA
RNA1{[LR](G)[sP].[dR](T)[sP].
CCGAGGGC
 577
 592
44345699
44345714



GGCCCTC
[LR](T)[sP].[dR](C)[sP].[dR]
CTGGGAAC







GG
(C)[sP].[LR]([5meC])[sP].[dR]









(A)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](T)[sP].









[dR](C)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










 33
CCCAGGC
RNA1{[LR]([5meC])[sP].[dR](C)
GCTCCGAG
 574
 589
44345696
44345711



CCTCGGA
[sP].[dR](C)[sP].[LR](A)[sP].
GGCCTGGG







GC
[dR](G)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](T)[sP].[dR]









([5meC])[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](A)[sP].[LR](G)









[sP].[LR]([5meC]}$$$$V2.0










 34

RNA1{[LR](A)[sP].[dR](G)[sP].
GGAGCTCC
 571
 586
44345693
44345708



AGGCCCT
[dR](G)[sP].[LR]([5meC])[sP].
GAGGGCCT







CGGAGCT
[dR](C)[sP].[dR](C)[sP].[LR]








CC
(T)[sP].[dR]([5meC])[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](A)









[sP].[LR](G)[sP].[dR](C)[sP].









[dR](T)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










 35
CCCTCGG
RNA1{[LR]([5meC])[sP].[dR](C)
CTGGGAGC
 568
 583
44345690
44345705



AGCTCCC
[sP].[dR](C)[sP].[LR](T)[sP].
TCCGAGGG







AG
[dR]([5meC])[sP].[dR](G)[sP].









[LR](G)[sP].[dR](A)[sP].[LR]









(G)[sP].[dR](C)[sP].[dR](T)









[sP].[LR]([5meC])[sP].[dR](C)









[sP].[dR](C)[sP].[LR](A)[sP].









[LR](G)}$$$$V2.0










 36

RNA1{[LR](T)[sP].[dR]([5meC])
GGGCTGGG
 565
 580
44345687
44345702



TCGGAGC
[sP].[dR](G)[sP].[LR](G)[sP].
AGCTCCGA







TCCCAGC
[dR](A)[sP].[LR](G)[sP].[dR]








CC
(C)[sP].[dR](T)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[LR]([5meC]}$$$$V2.0










 37
GAGCTCC
RNA1{[LR](G)[sP].[dR](A)[sP].
CCTGGGCT
 562
 577
44345684
44345699



CAGCCCA
[LR](G)[sP].[dR](C)[sP].[dR]
GGGAGCTC







GG
(T)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










 38
CTCCCAG
RNA1{[LR]([5meC])[sP].[dR](T)
GACCCTGG
 559
 574
44345681
44345696



CCCAGGG
[sP].[dR](C)[sP].[LR]([5meC])
GCTGGGAG







TC
[sP].[dR](C)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(A)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](G)[sP].[LR](T)[sP].









[LR]([5meC])}$$$$V2.0










 39
CCAGCCC
RNA1{[LR]([5meC][sP].[dR](C)
CGCGACCC
 556
 571
44345678
44345693



AGGGTCG
[sP].[LR](A)[sP].[dR](G)[sP].
TGGGCTGG







CG
[dR](C)[sP].[LR]([5meC])[sP].









[dR](C)[sP].[dR](A)[sP].[LR]









(G)[sP].[dR](G)[sP].[dR](G)









[sP].[LR](T)[sP].[dR]([5meC])









[sP].[dR](G)[sP].[LR]([5meC])









[sP].[LR](G)}$$$$V2.0










 40
GCCCAGG
RNA1{[LR](G)[sP].[dR](C)[sP].
GCGCGCGA
 553
 568
44345675
44345690



GTCGCGC
[LR]([5meC])[sP].[dR](C)[sP].
CCCTGGGC







GC
[LR](A)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](G)[sp].[dR](T)









[sP].[dR](C)[sP].[LR](G)[sP].









[dR](C)[sP].[LR](G)[sP].[dR]









(C)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










 41
CAGGGTC
RNA1{[LR]([5meC])[sP].[dR](A)
GGGGCGCG
 550
 565
44345672
44345687



GCGCGCC
[sP].[dR](G)[sP].[LR](G)[sP].
CGACCCTG







CC
[dR](G)[sP].[dR](T)[sP].[LR]









([5meC])[sP].[dm(G)[sP].[dR]









(C)[sP].[LR](G)[sP].[dR](C)









[sP].[LR](G)[sP].[dR](C)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










 42
GGTCGCG
RNA1{[LR](G)[sP].[dR](G)[sP].
GGAGGGGC
 547
 562
44345669
44345684



CGCCCCT
[dR](T)[sP].[LR]([5meC])[sP].
GCGCGACC







CC
[dR](G)[sP].[dR](C)[sP].[LR]









(G)[sP].[dR](C)[sP].[LR](G)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](T)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










 43
CGCGCGC
RNA1{[LR]([5meC])[sP].[dR](G)
GCCGGAGG
 544
 559
44345666
44345681



CCCTCCG
[sP].[dR](C)[sP].[LR](G)[sP].
GCGCGCG







CC
[dR](C)[sP].[LR](G)[sP].[dR]









(C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(T)[sP].[LR]([5meC])[sP].[dR]









([5meC])[sP].[dR](G)[sP].[LR]









(G)[sP].[LR]([5meC])}$$$$V2.0










 44
GCGCCCC
RNA1{[LR](G)[sP].[dR](C)[sP].
GGAGCCGG
 541
 556
44345663
44345678



TCCGGCT
[LR](G)[sP].[dR](C)[sP].[dR]
AGGGGCGC







CC
(C)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[dR](T)[sP].[LR]









([5meC])[sP].[dR]([5meC])[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(C)[sP].[dR](T)[sP].[LR]









([5meC])[sP].[LR]([5meC]}$$$$









V2.0










 45
CCCCTCC
RNA1{[LR]([5meC])[sP].[dR](C)
CCTGGAGC
 538
 553
44345660
44345675



GGCTCCA
[sP].[LR]([5meC])[sP].[dR](C)
CGGAGGGG







GG
[sP].[dR](T)[sP].[LR]([5meC])









[sP].[dR]([5meC])[sP].[dR](G)









[sP].[LR](G)[sP].[dR](C)[sP].









[dR](T)[sP].[LR]([5meC])[sP].









[dR](C)[sP].[dR](A)[sP].[LR]









(G)[sP].[LR](G)}$$$$V2.0










 46
CTCCGGC
RNA1{[LR]([5meC])[sP].[dR](T)
CGGCCTGG
 535
 550
44345657
44345672



TCCAGGC
[sP].[dR](C)[sP].[LR]([5meC])
AGCCGGAG







CG
[sP].[dR](G)[sP].[dR](G)[sP].









[LR]([5meC])[sp].[dR](T)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[dR](A)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[LR](G)}$$$$V2.0










 47
CGGCTCC
RNA1{[LR]([5meC])[sP].[dR](G)
CGGCGGCC
 532
 547
44345654
44345669



AGGCCGC
[sP].[dR](G)[sP].[LR]([5meC])
TGGAGCCG







CG
[sP].[dR](T)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](A)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(C)[sP].[dR](C)[sP].[LR](G)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[LR](G)}$$$$V2.0










 48
CTCCAGG
RNA1{[LR]([5meC])[sP].[dR](T)
CCGCGGCG
 529
 544
44345651
44345666



CCGCCGC
[sP].[dR](C)[sP].[LR]([5meC])
GCCTGGAG







GG
[sP].[dR](A)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](G)[sP].









[dR](C)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










 49
CAGGCCG
RNA1{[LR]([5meC])[sP].[dR](A)
TTCCCGCG
 526
 541
44345648
44345663



CCGCGGG
[sP].[dR](G)[sP].[LR](G)[sP].
GCGGCCTG







AA
[dR](C)[sP].[dR](C)[sP].[LR]









(G)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](G)[sP].[dR](C)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](A)[sP].[LR](A)}$









$$$V2.0










 50
GCCGCGG
RNA1{[LR](G)[sP].[dR](C)[sP].
GGGTGGTT
 520
 535
44345642
44345657



GAACCAC
[dR](C)[sP].[LR](G)[sP].[dR]
CCCGCGGC







CC
(C)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](G)[sP].[LR](A)[sP].









[dR](A)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










 51
GCGGGAA
RNA1{[LR](G)[sP].[dR]([5meC])
GGTGGGTG
 517
 532
44345639
44345654



CCACCCA
[sP].[dR](G)[sP].[LR](G)[sP].
GTTCCCGC







CC
[dR](G)[sP].[dR](A)[sP].[LR]









(A)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](C)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR]([5meC])}$$$V2.0










 52
GGAACCA
RNA1{[LR](G)[sP].[dR](G)[sP].
GGTGGTGG
 514
 529
44345636
44345651



CCCACCA
[dR](A)[sP].[LR](A)[sP].[dR]
GTGGTTCC







CC
(C)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](A)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR]([5meC])}$$$V2.0










 53
ACCACCC
RNA1{[LR](A)[sP].[dR](C)[sP].
GGTGGTGG
 511
 526
44345633
44345648



ACCACCA
[dR](C)[sP].[LR](A)[sP].[dR]
TGGGTGGT







CC
(C)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









(A)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










 54
ACCCACC
RNA1{[LR](A)[sP].[dR](C)[sP].
CCTGGTGG
 508
 523
44345630
44345645



ACCACCA
[LR]([5meC])[sP].[dR](C)[sP].
TGGTGGGT







GG
[LR](A)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](A)[sp].[dR](C)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










 55
CACCACC
RNA1{[LR]([5meC])[sP].[dR](A)
TCTCCTGG
 505
 520
44345627
44345642



ACCAGGA
[sP].[LR]([5meC])[sP].[dR](C)
TGGTGGTG







GA
[sP].[LR](A)[sP].[dR](C)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(C)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[LR](G)[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









(A)}$$$$V2.0










 56
CACCACC
RNA1{[LR]([5meC])[sP].[dR](A)
CCCTCTCC
 502
 517
44345624
44345639



AGGAGAG
[sP].[dR](C)[sP].[LR]([5meC])
TGGTGGTG







GG
[sP].[dR](A)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](A)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(A)[sP].[LR](G)[sP].[dR](A)









[sP].[dR](G)[sP].[LR](G)[sP].









[LR](G)}$$$$V2.0










 57
CACCAGG
RNA1{[LR]([5meC])[sP].[dR](A)
TTCCCCTCT
 499
 514
44345621
44345636



AGAGGGG
[sP].[dR](C)[sP].[LR]([5meC])
CTGGTG







AA
[sP].[dR](A)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](A)[sP].[LR]









(G)[sP].[dR](A)[sP].[dR](G)









[sP].[LR](G)[sP].[dR](G)[sP].









[dR](G)[sP].[LR](A)[sP].[LR]









(A)}$$$$V2.0










 58
CAGGAGA
RNA1{[LR]([5meC])[sP].[dR](A)
TTCTTCCCC
 496
 511
44345618
44345633



GGGGAAG
[sP].[dR](G)[sP].[LR](G)[sP].
TCTCCTG







AA
[dR](A)[sP].[LR](G)[sP].[dR]









(A)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](A)[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](A)[sP].[LR](A)}$









$$$V2.0










 59
GAGAGGG
RNA1{[LR](G)[sP].[dR](A)[sP].
GGCTTCTT
 493
 508
44345615
44345630



GAAGAAG
[LR](G)[sP].[dR](A)[sP].[dR]
CCCCTCTC







CC
(G)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](G)[sP].[LR](A)[sP].









[dR](A)[sP].[dR](G)[sP].[LR]









(A)[sP].[dR](A)[sP].[dR](G)









[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










 60
AGGGGAA
RNA1{[LR](A)[sP].[dR](G)[sP].
GCTGGCTT
 490
 505
44345612
44345627



GAAGCCA
[LR](G)[sP].[dR](G)[sP].[dR]
CTTCCCCT







GC
(G)[sP].[LR](A)[sP].[dR](A)









[sP].[dR](G)[sP].[LR](A)[sP].









[dR](A)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(A)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










 61
GGAAGAA
RNA1{[LR](G)[sP].[dR](G)[sP].
GGTGCTGG
 487
 502
44345609
44345624



GCCAGCA
[LR](A)[sP].[dR](A)[sP].[dR]
CTTCTTCC







CC
(G)[sP].[LR](A)[sP].[dR](A)









[sP].[dR](G)[sP].[LR]([5meC])









[sP].[dR](C)[sP].[dR](A)[sP].









[LR](G)[sP].[dR](C)[sP].[dR]









(A)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










 62
AGAAGCC
RNA1{[LR](A)[sP].[dR](G)[sP].
GTAGGTGC
 484
 499
44345606
44345621



AGCACCT
[LR](A)[sP].[dR](A)[sP].[LR]
TGGCTTCT







AC
(G)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](G)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[dR]









(T)[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










 63
AGCCAGC
RNA1{[LR](A)[sP].[dR](G)[sP].
TCGGTAGG
 481
 496
44345603
44345618



ACCTACC
[dR](C)[sP].[LR]([5meC])[sP].
TGCTGCT







GA
[dR](A)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](G)[sP].









[LR](A)}$$$$V2.0










 64
CAGCACC
RNA1{[LR]([5meC])[sP].[dR](A)
CTGTCGGT
 478
 493
44345600
44345615



TACCGAC
[sP].[dR](G)[sP].[LR]([5meC])
AGGTGCTG







AG
[sP].[dR](A)[sP].[LR]([5meC])









[sP].[dR](C)[sP].[dR](T)[sP].









[LR](A)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](G)[sP].[dR](A)









[sP].[dR](C)[sP].[LR](A)[sP].









[LR](G)}$$$$V2.0










 65
CACCTAC
RNA1{[LR]([5meC])[sP].[dR](A)
CCCCTGTC
 475
 490
44345597
44345612



CGACAGG
[sP].[LR]([5meC])[sP].[dR](C)
GGTAGGTG







GG
[sP].[dR](T)[sP].[LR](A)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









(G)[sP].[dR](A)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](G)[sP].









[dR](G)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










 66
CTACCGA
RNA1{[LR]([5meC])[sP].[dR](T)
CCACCCCT
 472
 487
44345594
44345609



CAGGGGT
[sP].[LR](A)[sP].[dR](C)[sP].
GTCGGTAG







GG
[dR](C)[sP].[LR](G)[sP].[dR]









(A)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(T)[sP].[LR](G)[sP].[LR](G)}$









$$$V2.0










 67
CCGACAG
RNA1{[LR]([5meC][sP].[dR](C)
GCTCCACC
 469
 484
44345591
44345606



GGGTGGA
[sP].[LR](G)[sP].[dR](A)[sP].
CCTGTCGG







GC
[dR](C)[sP].[LR](A)[sP].[dR]









(G)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(A)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










 68
ACAGGGG
RNA1{[LR](A)[sP].[dR](C)[sP].
CCAGCTCC
 466
 481
44345588
44345603



TGGAGCT
[LR](A)[sP].[dR](G)[sP].[dR]
ACCCCTGT







GG
(G)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](G)[sP].[dR](A)[sP].[LR]









(G)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](G)[sP].[LR](G)}$$$$









V2.0










 69
GGGGTGG
RNA1{[LR](G)[sP].[dR](G)[sP].
GACCCAGC
 463
 478
44345585
44345600



AGCTGGG
[dR](G)[sP].[LR](G)[sP].[dR]
TCCACCCC







TC
(T)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](A)[sP].[LR](G)[sP].









[dR](C)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](G)[sP].[dR](G)









[sP].[LR](T)[sP].[LR]









([5meC]}$$$$V2.0







 70
GTGGAGC
RNA1{[LR](G)[sP].[dR](T)[sP].
CTTGACCC
 460
 475
44345582
44345597



TGGGTCA
[dR](G)[sP].[LR](G)[sP].[dR]
AGCTCCAC







AG
(A)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](G)[sP].[dR](G)[sP].[LR]









(T)[sP].[dR](C)[sP].[dR](A)









[sP].[LR](A)[sP].[LR](G)}$$$$









V2.0







 71
GAGCTGG
RNA1{[LR](G)[sP].[dR](A)[sP].
ATTCTTGA
 457
 472
44345579
44345594



GTCAAGA
[LR](G)[sP].[dR](C)[sP].[dR]
CCCAGCTC







AT
(T)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](G)[sP].[LR](T)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(A)[sP].[dR](G)[sP].[LR](A)









[sP].[LR](A)[sP].[LR](T)}$$









$$V2.0










 72
CTGGGTC
RNA1{[LR]([5meC])[sP].[dR](T)
ACCATTCT
 454
 469
44345576
44345591



AAGAATG
[sP].[LR](G)[sP].[dR](G)[sP].
TGACCCAG







GT
[dR](G)[sP].[LR](T)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](A)









[sP].[dR](G)[sP].[LR](A)[sP].









[LR](A)[sP].[dR](T)[sP].[dR]









(G)[sP].[LR](G)[sP].[LR](T)}$









$$$V2.0










 73
GGTCAAG
RNA1{[LR](G)[sP].[dR](G)[sP].
CACACCAT
 451
 466
44345573
44345588



AATGGTG
[dR](T)[sP].[LR]([5meC])[sP].
TCTTGACC







TG
[dR](A)[sP].[dR](A)[sP].[LR]









(G)[sP].[dR](A)[sP].[LR](A)









[sP].[dR](T)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](T)[sP].[dR]









(G)[sP].[LR](T)[sP].[LR](G)}$









$$$V2.0










 74
CAAGAAT
RNA1{[LR]([5meC])[sP].[dR](A)
GACCACAC
 448
 463
44345570
44345585



GGTGTGG
[sP].[dR](A)[sP].[LR](G)[sP].
CATTCTTG







TC
[dR](A)[sP].[LR](A)[sP].[dR]









(T)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](T)[sP].[LR](G)[sP].[dR]









(G)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










 75
GAATGGT
RNA1{[LR](G)[sP].[dR](A)[sP].
AGGGACCA
 445
 460
44345567
44345582



GTGGTCC
[LR](A)[sP].[dR](T)[sP].[LR]
CACCATTC







CT
(G)[sP].[dR](G)[sP].[dR](T)









[sP].[LR](G)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](G)[sP].[LR]









(T)[sP].[dR](C)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










 76
TGGTGTG
RNA1{[LR](T)[sP].[dR](G)[sP].
AGCAGGGA
 442
 457
44345564
44345579



GTCCCTG
[dR](G)[sP].[LR](T)[sP].[dR]
CACACCA







CT
(G)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](G)[sP].[LR](T)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](T)[sP].[dR]









(G)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










 77
TGTGGTC
RNA1{[LR](T)[sP].[dR](G)[sP].
CAAAGCAG
 439
 454
44345561
44345576



CCTGCTT
[dR](T)[sP].[LR](G)[sP].[dR]
GACCACA







TG
(G)[sP].[LR](T)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[dR](C)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](C)[sP].[LR](T)[sP].[dR]









(T)[sP].[LR](T)[sP].[LR](G)}$









$$$V2.0










 78
GGTCCCT
RNA1{[LR](G)[sP].[dR](G)[sP].
CCCCAAAG
 436
 451
44345558
44345573



GCTTTGG
[LR](T)[sP].[dR](C)[sP].[LR]
CAGGGACC







GG
([5meC])[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](T)[sP].









[dR](T)[sP].[LR](G)[sP].[dR]









(G)[sP].[LR](G)[sP].[LR](G)}$









$$$V2.0










 79
CCCTGCT
RNA1{[LR]([5meC][sP].[dR[(C)
TTCCCCCA
 433
 448
44345555
44345570



TTGGGGG
[sP].[dR](C)[sP].[LR](T)
AAGCAGGG







AA
[sP].[dR](G)[sP].[dR](C)









[sP].[LR](T)[sP].[dR](T)









[sP].[LR](T)[sP].[dR](G)









[sP].[dR](G)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](G)









[sP].[LR](A)[sP].[LR](A)}$$$$









V2.0










 80
TGCTTTG
RNA1{[LR](T)[sP].[dR](G)[sP].
GCATTCCC
 430
 445
44345552
44345567



GGGGAAT
[dR](C)[sP].[LR](T)[sP].[dR]
CCAAAGCA







GC
(T)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(A)[sP].[LR](A)[sP].[dR](T)









[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










 81
TTTGGGG
RNA1{[LR](T)[sP].[dR](T)[sP].
CCAGCATT
 427
 442
44345549
44345564



GAATGCT
[dR](T)[sP].[LR](G)[sP].[dR]
CCCCCAAA







GG
(G)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](A)[sP].









[LR](A)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](G)[sP].[LR](G)}$$$$









V2.0










 82
GGGGGAA
RNA1{[LR](G)[sP].[dR](G)[sP].
TCCCCAGC
 424
 439
44345546
44345561



TGCTGGG
[dR](G)[sP].[LR](G)[sP].[dR]
ATTCCCCC







GA
(G)[sP].[dR](A)[sP].[LR](A)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](C)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](G)[sP].[dR](G)









[sP].[LR](G)[sP].[LR](A)}$$$$









V2.0










 83
GGAATGC
RNA1{[LR](G)[sP].[dR](G)[sP].
ACCTCCCC
 421
 436
44345543
44345558



TGGGGAG
[dR](A)[sP].[LR](A)[sP].[dR]
AGCATTCC







GT
(T)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](G)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](A)[sP].[dR](G)









[sP].[LR](G)[sP].[LR](T)}$$$$









V2.0










 84
ATGCTGG
RNA1{[LR](A)[sP].[dR](T)[sP].
TCTACCTC
 481
 433
44345540
44345555



GGAGGTA
[LR](G)[sP].[dR](C)[sP].[dR]
CCCAGCAT







GA
(T)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](G)[sP].[LR[(G)[sP].









[dR](A)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](T)[sP].[dR](A)









[sP].[LR](G)[sP].[LR](A)}$$$$









V2.0










 85
CTGGGGA
RNA1{[LR]([5meC])[sP].[dR](T)
CTTTCTACC
 415
 430
44345537
44345552



GGTAGAA
[sP].[LR](G)[sP].[dR](G)[sP].
TCCCCAG







AG
[dR](G)[sP].[LR](G)[sP].[dR]









(A)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](T)[sP].[dR](A)[sP].









[LR](G)[sP].[dR](A)[sP].[dR]









(A)[sP].[LR](A)[sP].[LR](G)}$









$$$V2.0










 86
GGGAGGT
RNA1{[LR](G)[sP].[dR](G)[sP].
GGGCTTTC
 412
 427
44345534
44345549



AGAAAGC
[LR](G)[sP].[dR](A)[sP].[dR]
TACCTCCC







CC
(G)[sP].[LR](G)[sP].[dR](T)









[sP].[dR](A)[sP].[LR](G)[sP].









[dR](A)[sP].[dR](A)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










 87
AGGTAGA
RNA1{[LR](A)[sP].[dR](G)[sP].
AAGGGGCT
 409
 424
44345531
44345546



AAGCCCC
[dR](G)[sP].[LR](T)[sP].[dR]
TTCTACCT







TT
(A)[sP].[dR](G)[sP].[LR](A)









[sP].[dR](A)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](T)[sP].[LR](T)}$









$$$V2.0










 88
TAGAAAG
RNA1{[LR](T)[sP].[dR](A)[sP].
TAGAAGGG
 406
 421
44345528
44345543



CCCCTTC
[dR](G)[sP].[LR](A)[sP].[dR]
GCTTTCTA







TA
(A)[sP].[dR](A)[sP].[LR](G)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](T)[sP].[LR](T)[sP].[dR]









(C)[sP].[LR](T)[sP].[LR](A)}$









$$$V2.0










 89
AAAGCCC
RNA1{[LR](A)[sP].[dR](A)[sP].
CGTTAGAA
 403
 418
44345525
44345540



CTTCTAA
[dR](A)[sP].[LR](G)[sP].[dR]
GGGGCTTT







CG
(C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](T)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](A)[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR](G)}$$$$V2.0










 90
GCCCCTT
RNA1{[LR](G)[sP].[dR](C)[sP].
CCCCGTTA
 400
 415
44345522
44345537



CTAACGG
[dR](C)[sP].[LR]([5meC])[sP].
GAAGGGGC







GG
[dR](C)[sP].[dR](T)[sP].[LR]









(T)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](A)[sP].[dR](A)[sP].









[LR]([5meC])[sP].[dR](G)[sP].









[dR](G)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










 91
CCTTCTA
RNA1{[LR]([5meC])[sP].[dR](C)
ACGCCCCG
 397
 412
44345519
44345534



ACGGGGC
[sP].[dR](T)[sP].[LR](T)[sP].
TTAGAAGG







GT
[dR](C)[sP].[dR](T)[sP].[LR]









(A)[sP].[dR](A)[sP].[dR](C)









[sP].[LR](G)[sP].[dR](G)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(C)[sP].[LR](G)[sP].[LR](T)}$









$$$V2.0










 92
TCTAACG
RNA1{[LR](T)[sP].[dR](C)[sP].
GTGACGCC
 394
 409
44345516
44345531



GGGCGTC
[dR](T)[sP].[LR](A)[sP].[dR]
CCGTTAGA







AC
(A)[sP].[dR](C)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](C)[sP].[LR]









(G)[sP].[dR](T)[sP].[dR](C)









[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










 93
AACGGGG
RNA1{[LR](A)[sP].[dR](A)[sP].
GCAGTGAC
 391
 406
44345513
44345528



CGTCACT
[dR](C)[sP].[LR](G)[sP].[dR]
GCCCCGTT







GC
(G)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](C)[sP].[LR](G)[sP].









[dR](T)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










 94
GGGGCGT
RNA1{[LR](G)[sP].[dR](G)[sP].
ATTGCAGT
 388
 403
44345510
44345525



CACTGCA
[dR](G)[sP].[LR](G)[sP].[dR]
GACGCCCC







AT
(C)[sP].[LR](G)[sP].[dR](T)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](C)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](C)[sP].[dR](A)









[sP].[LR](A)[sP].[LR](T)}$$$$









V2.0










 95
GCGTCAC
RNA1{[LR](G)[sP].[dR](C)[sP].
GTAATTGC
 385
 400
44345507
44345522



TGCAATT
[LR](G)[sP].[dR](T)[sP].[dR]
AGTGACGC







AC
(C)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](C)[sP].[dR](A)[sP].[LR]









(A)[sP].[dR](T)[sP].[dR](T)









[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










 96
TCACTGC
RNA1{[LR](T)[sP].[dR](C)[sP].
GCAGTAAT
 382
 397
44345504
44345519



AATTACT
[LR](A)[sP].[dR](C)[sP].[dR]
TGCAGTGA







GC
(T)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](A)[sP].[LR](A)[sP].









[dR](T)[sP].[dR](T)[sP].[LR]









(A)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










 97
CTGCAAT
RNA1{[LR]([5meC])[sP].[dR](T)
GAAGCAGT
 379
 394
44345501
44345516



TACTGCT
[sP].[LR](G)[sP].[dR](C)[sP].
AATTGCAG







TC
[dR](A)[sP].[LR](A)[sP].[dR]









(T)[sP].[dR](T)[sP].[LR](A)









[sP].[dR](C)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










 98
CAATTAC
RNA1{[LR]([5meC])[sP].[dR](A)
GAGGAAGC
 376
 391
44345498
44345513



TGCTTCC
[sP].[LR](A)[sP].[dR](T)[sP].
AGTAATTG







TC
[dR](T)[sP].[LR](A)[sP].[dR]









(C)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](C)[sP].[dR](T)[sP].









[LR](T)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










 99
TTACTGC
RNA1{[LR](T)[sP].[dR](T)[sP].
AAAGAGGA
 373
 388
44345495
44345510



TTCCTCT
[LR](A)[sP].[dR](C)[sP].[dR]
AGCAGTAA







TT
(T)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](T)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](T)[sP].[LR](T)}$$$$









V2.0










100
CTGCTTC
RNA1{[LR]([5meC])[sP].[dR](T)
GGGAAAGA
 370
 385
44345492
44345507



CTCTTTC
[sP].[LR](G)[sP].[dR](C)[sP].
GGAAGCAG







CC
[dR](T)[sP].[LR](T)[sP].[dR]









(C)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](C)[sP].[dR](T)[sP].









[LR](T)[sP].[dR](T)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










101
CTTCCTC
RNA1{[LR]([5meC])[sP].[dR](T)
TATGGGAA
 367
 382
44345489
44345504



TTTCCCA
[sP].[LR](T)[sP].[dR](C)[sP].
AGAGGAAG







TA
[dR](C)[sP].[LR](T)[sP].[dR]









(C)[sP].[dR](T)[sP].[LR](T)









[sP].[dR](T)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](A)[sP].[LR](T)[sP].[LR]









(A)}$$$$V2.0










102
CCTCTTT
RNA1{[LR]([5meC])[sP].[dR](C)
TTTTATGG
 364
 379
44345486
44345501



CCCATAA
[sP].[LR](T)[sP].[dR](C)[sP].
GAAAGAGG







AA
[dR](T)[sP].[LR](T)[sP].[dR]









(T)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](T)[sP].[LR](A)









[sP].[dR](A)[sP].[LR](A)[sP].









[LR](A)}$$$$V2.0










103
CTTTCCC
RNA1{[LR]([5meC])[sP].[dR](T)
GAGTTTTA
 361
 376
44345483
44345498



ATAAAAC
[sP].[dR](T)[sP].[LR](T)[sP].
TGGGAAAG







TC
[dR](C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(T)[sP].[LR](A)[sP].[dR](A)









[sP].[LR](A)[sP].[dR](A)[sP].









[dR](C)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










104
TCCCATA
RNA1{[LR](T)[sP].[dR](C)[sP].
GGGGAGTT
 358
 373
44345480
44345495



AAACTCC
[dR](C)[sP].[LR]([5meC])[sP].
TTATGGGA







CC
[dR](A)[sP].[dR](T)[sP].[LR]









(A)[sP].[dR](A)[sP].[LR](A)









[sP].[dR](A)[sP].[dR](C)[sP].









[LR](T)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










105
CATAAAA
RNA1{[LR]([5meC])[sP].[dR](A)
TAGGGGGA
 355
 370
44345477
44345492



CTCCCCC
[sP].[dR](T)[sP].[LR](A)[sP].
GTTTTATG







TA
[dR](A)[sP].[LR](A)[sP].[dR]









(A)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](C)[sP].[LR](T)[sP].[LR]









(A)}$$$$V2.0










106
AAAACTC
RNA1{[LR](A)[sP].[dR](A)[sP].
CACTAGGG
 352
 367
44345474
44345489



CCCCTAG
[dR](A)[sP].[LR](A)[sP].[dR]
GGAGTTTT







TG
(C)[sP].[dR](T)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[dR](T)[sP].[LR](A)









[sP].[dR](G)[sP].[LR](T)[sP].









[LR](G)}$$$$V2.0










107
ACTCCCC
RNA1{[LR](A)[sP].[dR](C)[sP].
ATACACTA
 349
 364
44345471
44345486



CTAGTGT
[dR](T)[sP].[LR]([5meC])[sP].
GGGGGAGT







AT
[dR](C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](T)[sP].[LR](A)[sP].[LR]









(T)}$$$$V2.0










108
CCCCCTA
RNA1{[LR]([5meC])[sP].[dR](C)
CTGATACA
 346
 361
44345468
44345483



GTGTATC
[sP].[dR](C)[sP].[LR]([5meC])
CTAGGGGG







AG
[sP].[dR](C)[sP].[dR](T)[sP].









[LR](A)[sP].[dR](G)[sP].[dR]









(T)[sP].[LR](G)[sP].[dR](T)









[sP].[LR](A)[sP].[dR](T)[sP]









.[dR](C)[sP].[LR](A)[sP].[LR]









(G)}$$$$V2.0










109
CCTAGTG
RNA1{[LR]([5meC])[sP].[dR](C)
GTTCTGAT
 343
 358
44345465
44345480



TATCAGA
[sP].[dR](T)[sP].[LR](A)[sP].
ACACTAGG







AC
[dR](G)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](T)[sP].[LR](A)









[sP].[dR](T)[sP].[dR](C)[sP].









[LR](A)[sP].[dR](G)[sP].[dR]









(A)[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










110
AGTGTAT
RNA1{[LR](A)[sP].[dR](G)[sP].
GGGGTTCT
 340
 355
44345462
44345477



CAGAACC
[dR](T)[sP].[LR](G)[sP].[dR]
GATACACT







CC
(T)[sP].[LR](A)[sP].[dR](T)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](A)[sP].[LR]









(A)[sP].[dR](C)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










111
GTATCAG
RNA1{[LR](G)[sP].[dR](T)[sP].
TTGGGGGT
 337
 352
44345459
44345474



AACCCCC
[LR](A)[sP].[dR](T)[sP].[dR]
TCTGATAC







AA
(C)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](A)[sP].[LR](A)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](A)[sP].[LR](A)}$









$$$V2.0










112
TCAGAAC
RNA1{[LR](T)[sP].[dR](C)[sP].
TCCTTGGG
 334
 349
44345456
44345471



CCCCAAG
[LR](A)[sP].[dR](G)[sP].[dR]
GGTTCTGA







GA
(A)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[dR](C)[sP].[dR](C)[sP].









[LR](A)[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[LR](A)}$









$$$V2.0










113
GAACCCC
RNA1{[LR](G)[sP].[dR](A)[sP].
AACTCCTT
 331
 346
44345453
44345468



CAAGGAG
[LR](A)[sP].[dR](C)[sP].[dR]
GGGGGTTC







TT
(C)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](A)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](T)[sP].[LR](T)}$









$$$V2.0










114
CCCCCAA
RNA1{[LR]([5meC][sP].[dR](C)
TGAAACTC
 328
 343
44345450
44345465



GGAGTTT
[sP].[LR]([5meC])[sP].[dR]
CTTGGGGG







CA
(C)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](A)[sP].[dR](G)









[sP].[LR](G)[sP].[dR](A)









[sP].[dR](G)[sP].[LR](T)









[sP].[dR](T)[sP].[dR](T)









[sP].[LR]([5meC])[sP].[LR]









(A)}$$$$V2.0










115
CCAAGGA
RNA1{[LR]([5meC])[sP].[dR](C)
TACTGAAA
 325
 340
44345447
44345462



GTTTCAG
[sP].[LR](A)[sP].[dR](A)[sP].
CTCCTTGG







TA
[dR](G)[sP].[LR](G)[sP].[dR]









(A)[sP].[dR](G)[sP].[LR](T)









[sP].[dR](T)[sP].[dR](T)









[sP].[LR]([5meC])[sP].[dR](A)









[sP].[dR](G)[sP].[LR](T)[sP].









[LR](A)}$$$$V2.0










116
AGGAGTT
RNA1{[LR](A)[sP].[dR](G)[sP].
GCTTACTG
 322
 337
44345444
44345459



TCAGTAA
[dR](G)[sP].[LR](A)[sP].[dR]
AAACTCCT







GC
(G)[sP].[dR](T)[sP].[LR](T)









[sP].[dR](T)[sP].[dm(C)[sP].









[LR](A)[sP].[dR](G)[sP].[dR]









(T)[sP].[LR](A)[sP].[dR](A)









[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










117
AGTTTCA
RNA1{[LR](A)[sP].[dR](G)[sP].
ACCGCTTA
 319
 334
44345441
44345456



GTAAGCG
[dR](T)[sP].[LR](T)[sP].[dR]
CTGAAACT







GT
(T)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](T)[sP].









[LR](A)[sP].[dR](A)[sP].[LR]









(G)[sP].[dR]([5meC])[sP].[dR]









(G)[sP].[LR](G)[sP].[LR](T)}$









$$$V2.0










118
TTCAGTA
RNA1{[LR](T)[sP].[dR](T)[sP].
AGAACCGC
 316
 331
44345438
44345453



AGCGGTT
[dR](C)[sP].[LR](A)[sP].[dR]
TTACTGAA







CT
(G)[sP].[dR](T)[sP].[LR](A)









[sP].[dR](A)[sP].[dR](G)[sP].









[LR]([5meC])[sP].[dR](G)[sP].









[dR](G)[sP].[LR](T)[sP].[dR]









(T)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










119
AGTAAGC
RNA1{[LR](A)[sP].[dR](G)[sP].
AGAAGAAC
 313
 328
44345435
44345450



GGTTCTT
[dR](T)[sP].[LR](A)[sP].[dR]
CGCTTACT







CT
(A)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](T)[sP].[dR](T)









[sP].[dR](C)[sP].[LR](T)[sP].









[dR](T)[sP].[LR]([5meC])[sP].









[LR](T)}$$$$V2.0










120
AAGCGGT
RNA1{[LR](A)[sP].[dR](A)[sP].
AACAGAAG
 310
 325
44345432
44345447



TCTTCTG
[dR](G)[sP].[LR]([5meC])[sP].
AACCGCTT







TT
[dR](G)[sP].[dR](G)[sP].[LR]









(T)[sP].[dR](T)[sP].[dR](C)









[sP].[LR](T)[sP].[dR](T)[sP].









[LR]([5meC])[sP].[dR](T)[sP].









[dR](G)[sP].[LR](T)[sP].[LR]









(T)}$$$$V2.0










121
CGGTTCT
RNA1{[LR]([5meC])[sP].[dR](G)
GACAACAG
 307
 322
44345429
44345444



TCTGTTG
[sP].[LR](G)[sP].[dR](T)[sP].
AAGAACCG







TC
[LR](T)[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](T)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](T)[sP].[LR](T)[sP].[dR]









(G)[sP].[LR](T)[sP].[LR]









([5meC]}$$$$V2.0










122
TTCTTCT
RNA1{[LR](T)[sP].[LR](T)[sP].
GGAGACAA
 304
 319
44345426
44345441



GTTGTCT
[dR](C)[sP].[dR](T)[sP].[LR]
CAGAAGAA







CC
(T)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](G)[sP].[dR](T)[sP].









[dR](T)[sP].[LR](G)[sP].[dR]









(T)[sP].[LR]([5meC])[sP].[dR]









(T)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










123
TTCTGTT
RNA1{[LR](T)[sP].[LR](T)[sP].
GCCGGAGA
 301
 316
44345423
44345438



GTCTCCG
[dR](C)[sP].[dR](T)[sP].[LR]
CAACAGAA







GC
(G)[sP].[dR](T)[sP].[dR](T)









[sP].[LR](G)[sP].[dR](T)[sP].









[dR](C)[sP].[LR](T)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[dR]









(G)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










124
TGTTGTC
RNA1{[LR](T)[sP].[dR](G)[sP].
TCAGCCGG
 298
 313
44345420
44345435



TCCGGCT
[LR](T)[sP].[dR](T)[sP].[dR]
AGACAACA







GA
(G)[sP].[LR](T)[sP].[dR](C)









[sP].[dR](T)[sP].[LR]([5meC]









[sP].[dR]([5meC][sP].[dR](G)









[sP].[LR](G)[sP].[dR](C)[sP].









[dR](T)[sP].[LR](G)[sP].[LR]









(A)}$$$$V2.0










125
TGTCTCC
RNA1{[LR](T)[sP].[dR](G)[sP].
GTCTCAGC
 295
 310
44345417
44345432



GGCTGAG
[LR](T)[sP].[dR](C)[sP].[dR]
CGGAGACA







AC
(T)[sP].[LR]([5meC][sP].[dR]









([5meC])[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](G)[sP].[dR](A)[sP].









[dR](G)[sP].[LR](A)[sP].[LR]









([5meC]}$$$$V2.0










126
CTCCGGC
RNA1{[LR]([5meC])[sP].[dR](T)
GGAGTCTC
 292
 307
44345414
44345429



TGAGACT
[sP].[dR](C)[sP].[LR]([5meC])
AGCCGGAG







CC
[sP].[dR](G)[sP].[LR](G)[sP].









[dR](C)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](A)[sP].[dR](G)









[sP].[LR](A)[sP].[dR](C)[sP].









[dR](T)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










127
CGGCTGA
RNA1{[LR]([5meC])[sP].[dR](G)
CCTGGAGT
 289
 304
44345411
44345426



GACTCCA
[sP].[LR](G)[sP].[dR](C)[sP].
CTCAGCCG







GG
[dR](T)[sP].[LR](G)[sP].[dR]









(A)[sP].[dR](G)[sP].[LR](A)









[sP].[dR](C)[sP].[dR](T)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










128
CTGAGAC
RNA1{[LR]([5meC])[sP].[dR](T)
TCCCCTGG
 286
 301
44345408
44345423



TCCAGGG
[sP].[LR](G)[sP].[dR](A)[sP].
AGTCTCAG







GA
[dR](G)[sP].[LR](A)[sP].[dR]









(C)[sP].[dR](T)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(A)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](G)[sP].[LR](G)[sP].









[LR](A)}$$$$V2.0










129
AGACTCC
RNA1{[LR](A)[sP].[dR](G)[sP].
GGTTCCCC
 283
 298
44345405
44345420



AGGGGAA
[dR](A)[sP].[LR]([5meC])[sP].
TGGAGTCT







CC
[dR](T)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](G)[sP].[LR](A)[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










130
CTCCAGG
RNA1{[LR]([5meC])[sP].[dR](T)
TGAGGTTC
 280
 295
44345402
44345417



GGAACCT
[sP].[dR](C)[sP].[LR]([5meC])
CCCTGGAG







CA
[sP].[dR](A)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](A)[sP].[dR](A)









[sP].[LR]([5meC])[sP].[dR](C)









[sP].[dR](T)[sP].[LR]([5meC])









[sP].[LR](A)}$$$$V2.0










131
CAGGGGA
RNA1{[LR]([5meC])[sP].[dR](A)
GCTTGAGG
 277
 292
44345399
44345414



ACCTCAA
[sP].[dR](G)[sP].[LR](G)[sP].
TTCCCCTG







GC
[dR](G)[sP].[dR[(G)[sP].[LR]









(A)[sP].[dR](A)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[dR](T)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










132
GGGAACC
RNA1{[LR](G)[sP].[dR](G)[sP].
TGAGCTTG
 274
 289
44345396
44345411



TCAAGCT
[dR](G)[sP].[LR](A)[sP].[dR]
AGGTTCCC







CA
(A)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](T)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](A)









[sP].[LR](G)[sP].[dR](C)[sP].









[dR](T)[sP].[LR]([5meC])[sP].









[LR](A)}$$$$V2.0










133
AACCTCA
RNA1{[LR](A)[sP].[dR](A)[sP].
ATGTGAGC
 271
 286
44345393
44345408



AGCTCAC
[dR](C)[sP].[LR]([5meC])[sP].
TTGAGGTT







AT
[dR[(T)[sP].[dR[(C)[sP].[LR]









(A)[sP].[dR](A)[sP].[dR](G)









[sP].[LR]([5meC])[sP].[dR](T)









[sP].[dR[(C)[sP].[LR](A)[sP].









[dR](C)[sP].[LR](A)[sP].[LR]









(T)}$$$$V2.0










134
CTCAAGC
RNA1{[LR]([5meC])[sP].[dR](T)
GCCATGTG
 268
 283
44345390
44345405



TCACATG
[sP].[dR[(C)[sP].[LR](A)[sP].
AGCTTGAG







GC
[dR](A)[sP].[dR[(G)[sP].[LR]









([5meC])[sP].[dR](T)[sP].[dR









[(C)[sP].[LR](A)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](T)[sP].









[dR](G)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










135
AAGCTCA
RNA1{[LR](A)[sP].[dR](A)[sP].
AGGGCCAT
 265
 280
44345387
44345402



CATGGCC
[dR](G)[sP].[LR]([5meC])[sP].
GTGAGCTT







CT
[dR](T)[sP].[dR[(C)[sP].[LR]









(A)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](T)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










136
CTCACAT
RNA1{[LR]([5meC])[sP].[dR](T)
GCCAGGGC
 262
 277
44345384
44345399



GGCCCTG
[sP].[dR](C)[sP].[LR](A)[sP].
CATGTGAG







GC
[dR](C)[sP].[LR](A)[sP].[dR]









(T)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](T)[sP].









[dR](G)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










137
ACATGGC
RNA1{[LR](A)[sP].[dR](C)[sP].
CCCGCCAG
 259
 274
44345381
44345396



CCTGGCG
[LR](A)[sP].[dR](T)[sP].[dR]
GGCCATGT







GG
(G)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[dR[(T)[sP].[dR](G)[sP].









[LR](G)[sP].[dR]([5meC])[sP].









[dR[(G)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










138
TGGCCCT
RNA1{[LR](T)[sP].[dR](G)[sP].
GGGCCCGC
 256
 271
44345378
44345393



GGCGGGC
[dR](G)[sP].[LR]([5meC])[sP].
CAGGGCCA







CC
[dR](C)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](G)[sp].[dR](G)









[sP].[LR]([5meC])[sP].[dR](G)









[sP].[dR](G)[sP].[LR](G)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










139
CCCTGGC
RNA1{[LR]([5meC])[sP].[dR](C)
CAGGGGCC
 253
 268
44345375
44345390



GGGCCCC
[sP].[dR](C)[sP].[LR](T)[sP].
CGCCAGGG







TG
[dR](G)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dm(G)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[dR](C)[sP].[LR](T)









[sP].[LR](G)}$$$$V2.0










140
TGGCGGG
RNA1{[LR](T)[sP].[dR](G)[sP].
GCCCAGGG
 250
 265
44345372
44345387



CCCCTGG
[dR](G)[sP].[LR]([5meC])[sP].
GCCCGCCA







GC
[dR](G)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](C)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[dR](C)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](G)[sP].[LR](G)[sP].[LR]









([5meC]}$$$$V2.0










141
CGGGCCC
RNA1{[LR]([5meC])[sP].[dR](G)
CCTGCCCA
 247
 262
44345369
44345384



CTGGGCA
[sP].[dR](G)[sP].[LR](G)[sP].
GGGGCCCG







GG
[dR](C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dm(C)[sP].[dR]









(T)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](G)[sP].[LR]([5meC])









[sP].[dR](A)[sP].[LR](G)[sP].









[LR](G)}$$$$V2.0










142
GCCCCTG
RNA1{[LR](G)[sP].[dR](C)[sP].
GCTCCTGC
 244
 259
44345366
44345381



GGCAGGA
[dR](C)[sP].[LR]([5meC])[sP].
CAGGGGC







GC
[dR](C)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](G)[sp].[dR](G)









[sP].[LR]([5meC])[sP].[dR](A)









[sP].[dR](G)[sP].[LR](G)[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










143
CCTGGGC
RNA1{[LR]([5meC][sP].[dR](C)
CCTGCTCC
 241
 256
44345363
44345378



AGGAGCA
[sP].[dR](T)[sP].[LR](G)[sP].
TGCCCAGG







GG
[dR](G)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](A)









[sP].[dR](G)[sP].[LR]([5meC])









[sP].[dR](A)[sP].[LR](G)[sP].









[LR](G)}$$$$V2.0










144
GGGCAGG
RNA1{[LR](G)[sP].[dR](G)[sP].
TCGCCTGC
 238
 253
44345360
44345375



AGCAGGC
[dR](G)[sP].[LR]([5meC])[sP].
TCCTGCCC







GA
[dR](A)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](A)[sP].[dR](G)









[sP].[LR]([5meC])[sP].[dR](A)









[sP].[dR](G)[sP].[LR](G)[sP].









[dR](C)[sP].[LR](G)[sP].[LR]









(A)}$$$$V2.0










145
CAGGAGC
RNA1{[LR]([5meC])[sP].[dR](A)
CTCTCGCC
 235
 250
44345357
44345372



AGGCGAG
[sP].[dR](G)[sP].[LR](G)[sP].
TGCTCCTG







AG
[dR](A)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](C)









[sP].[LR](G)[sP].[dR](A)[sP].









[dR](G)[sP].[LR](A)[sP].[LR]









(G)}$$$$V2.0










146
GAGCAGG
RNA1{[LR](G)[sP].[dR](A)[sP].
GACCTCTC
 232
 247
44345354
44345369



CGAGAGG
[dR](G)[sP].[LR]([5meC])[sP].
GCCTGCTC







TC
[dR](A)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](C)[sP].[LR](G)









[sP].[dR](A)[sP].[dR](G)[sP].









[LR](A)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










147
CAGGCGA
RNA1{[LR]([5meC])[sP].[dR](A)
GCAGACCT
 229
 244
44345351
44345366



GAGGTCT
[sP].[dR](G)[sP].[LR](G)[sP].
CTCGCCTG







GC
[dR](C)[sP].[LR](G)[sP].[dR]









(A)[sP].[dR](G)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](T)[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










148
GCGAGAG
RNA1{[LR](G)[sP].[dR](C)[sP].
CGCGCAGA
 226
 241





GTCTGCG
[LR](G)[sP].[dR](A)[sP].[dR]
CCTCTCGC


44345348
44345363



CG
(G)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](G)[sP].[LR](T)[sP].









[dR](C)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR]([5meC])[sP].[dR]









(G)[sP].[LR]([5meC])[sP].[LR]









(G)}$$$$V2.0










149
AGAGGTC
RNA1{[LR](A)[sP].[dR](G)[sP].
GGCCGCGC
 223
 238
44345345
44345360



TGCGCGG
[LR](A)[sP].[dR](G)[sP].[dR]
AGACCTCT







CC
(G)[sP].[LR](T)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR]([5meC])[sP].[dR](G)[sP].









[LR]([5meC])[sP].[dR](G)[sP].









[dR](G)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










150
GGTCTGC
RNA1{[LR](G)[sP].[dR](G)[sP].
AGCGGCCG
 220
 235
44345342
44345357



GCGGCCG
[LR](T)[sP].[dR](C)[sP].[dR]
CGCAGACC







CT
(T)[sP].[LR](G)[sP].[dR](C)









[sP].[LR](G)[sP].[dR](C)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[dR]









(G)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










151
CTGCGCG
RNA1{[LR]([5meC])[sP].[dR](T)
GAGAGCGG
 217
 232
44345339
44345354



GCCGCTC
[sP].[LR](G)[sP].[dR](C)[sP].
CCGCGCAG







TC
[LR](G)[sP].[dR]([5meC])[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(C)[sP].[dR](C)[sP].[LR](G)









[sP].[dR](C)[sP].[LR](T)[sP].









[dR](C)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










152
CGCGGCC
RNA1{[LR]([5meC])[sP].[dR](G)
TAGGAGAG
 214
 229
44345336
44345351



GCTCTCC
[sP].[dR](C)[sP].[LR](G)[sP].
CGGCCGCG







TA
[dR](G)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](G)[sP].[dR]









(C)[sP].[LR](T)[sP].[dR](C)









[sP].[LR](T)[sP].[dR](C)[sP].









[dR](C)[sP].[LR](T)[sP].[LR]









(A)}$$$$V2.0










153
GGCCGCT
RNA1{[LR](G)[sP].[dR](G)[sP].
AGGTAGGA
 211
 226
44345333
44345348



CTCCTAC
[dR](C)[sP].[LR]([5meC])[sP].
GAGCGGCC







CT
[dR](G)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](C)[sP].[dR](T)









[sP].[LR]([5meC])[sP].[dR](C)









[sP].[dR](T)[sP].[LR](A)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[LR](T)}$$$$V2.0










154
CGCTCTC
RNA1{[LR]([5meC])[sP].[dR](G)
CGCAGGTA
 208
 223
44345330
44345345



CTACCTG
[sP].[dR](C)[sP].[LR](T)[sP].
GGAGAGCG







CG
[dR](C)[sP].[dR](T)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](A)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[dR](T)









[sP].[dR](G)[sP].[LR]([5meC])









[sP].[LR](G)}$$$$V2.0










155
TCTCCTA
RNA1{[LR](T)[sP].[dR](C)[sP].
GGACGCAG
 205
 220
44345327
44345342



CCTGCGT
[dR](T)[sP].[LR]([5meC])[sP].
GTAGGAGA







CC
[dR](C)[sP].[dR](T)[sP].[LR]









(A)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](T)[sP].[dR](G)[sP].









[dR](C)[sP].[LR](G)[sP].[dR]









(T)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










156
CCTACCT
RNA1{[LR]([5meC])[sP].[dR](C)
GTCGGACG
 202 
 217
44345324
44345339



GCGTCCG
[sP].[dR](T)[sP].[LR](A)[sP].
CAGGTAGG







AC
[dR](C)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](G)[sP].[dR](C)









[sP].[LR](G)[sP].[dR](T)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[dR](G)[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










157
ACCTGCG
RNA1{[LR](A)[sP].[dR](C)[sP].
GGAGTCGG
 199
 214
44345321
44345336



TCCGACT
[dR](C)[sP].[LR](T)[sP].[dR]
ACGCAGGT







CC
(G)[sP].[dR](C)[sP].[LR](G)









[sP].[dR](T)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](G)[sP].









[LR](A)[sP].[dR](C)[sP].[dR]









(T)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










158
GGGGAAG
RNA1{[LR](G)[sP].[dR](G)[sP].
TGCTGGCT
 489
 504
44345611
44345626



AAGCCAG
[dR](G)[sP].[LR](G)[sP].[dR]
TCTTCCCC







CA
(A)[sP].[dR](A)[sP].[LR](G)









[sP].[dR](A)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(G)[sP].[LR]([5meC])[sP].[LR]









(A)}$$$$V2.0










159
GGGAAGA
RNA1{[LR](G)[sP].[dR](G)[sP].
GTGCTGGC
  488
  503
44345610
44345625



AGCCAGC
[dR](G)[sP].[LR](A)[sP].[dR]
TTCTTCCC







AC
(A)[sP].[dR](G)[sP].[LR](A)









[sP].[dR](A)[sP].[LR](G)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](C)









[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










160
GAAGAAG
RNA1{[LR](G)[sP].[dR](A)[sP].
AGGTGCTG
 486
 501
44345608
44345623



CCAGCAC
[dR](A)[sP].[LR](G)[sP].[dR]
GCTTCTTC







CT
(A)[sP].[dR](A)[sP].[LR](G)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR](A)[sP].[dR](G)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[LR](T)}









$$$$V2.0










161
AAGAAGC
RNA1{[LR](A)[sP].[dR](A)[sP].
TAGGTGCT
 485
 500
44345607
44345622



CAGCACC
[dR](G)[sP].[LR](A)[sP].[dR]
GGCTTCTT







TA
(A)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](T)[sP].[LR](A)} $$$









$V2.0










162
GAAGCCA
RNA1{[LR](G)[sP].[dR](A)[sP].
GGTAGGTG
 483
 498
44345605
44345620



GCACCTA
[dR](A)[sP].[LR](G)[sP].[dR]
CTGGCTTC







CC
(C)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](C)[sP].









[LR](A)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](T)[sP].[dR]









(A)[sP].[LR]([5meC])[sP].[LR]









([5meC]}$$$$V2.0










163
AAGCCAG
RNA1{[LR](A)[sP].[dR](A)[sP].
CGGTAGGT
 482
 497
44345604
44345619



CACCTAC
[LR](G)[sP].[dR](C)[sP].[dR]
GCTGGCTT







CG
(C)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](A)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[LR]









(G)}$$$$V2.0










164
GCCAGCA
RNA1{[LR](G)[sP].[dR](C)[sP].
GTCGGTAG
 480
 495
44345602
44345617



CCTACCG
[dR](C)[sP].[LR](A)[sP].[dR]
GTGCTGGC







AC
(G)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR](T)[sP].[dR](A)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[dR](









G)[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










165
CCAGCAC
RNA1{[LR]([5meC])[sP].[dR](C)
TGTCGGTA
 479
 494
44345601
44345616



CTACCGA
[sP].[LR](A)[sP].[dR](G)[sP].
GGTGCTGG







CA
[dR](C)[sP].[LR](A)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[dR]









(T)[sP].[LR](A)[sP].[A









[sP].[dR](C)[sP].[LR](G)[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR](A)}$$$$V2.0










166
AGCACCT
RNA1{[LR](A)[sP].[dR](G)[sP].
CCTGTCGG
 477
 492
44345599
44345614



ACCGACA
[dR](C)[sP].[LR](A)[sP].[dR]
TAGGTGCT







GG
(C)[sP].[LR]([5meC])[sP].[dR]









(T)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](G)[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










167
GCACCTA
RNA1{[LR](G)[sP].[dR](C)[sP].
CCCTGTCG
 476
 491
44345598
44345613



CCGACAG
[dR](A)[sP].[LR]([5meC])[sP].
GTAGGTGC







GG
[dR](C)[sP].[dR](T)[sP].[LR]









(A)[sP].[dR](C)[sp].[dR](C)









[sP].[LR](G)[sP].[dR](A)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[LR](G)}$









$$$V2.0










168
ACCTACC
RNA1{[LR](A)[sP].[dR](C)[sP].
ACCCCTGT
 474
 489
44345596
44345611



GACAGGG
[LR]([5meC])[sP].[dR](T)[sP].
CGGTAGGT







GT
[LR](A)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](G)[sp].IdR](A)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(G)[sP].[LR](G)[sP].[LR](T)}$









$$$V2.0










169
CCTACCG
RNA1{[LR]([5meC][sP].[dR[(C)
CACCCCTG
 473
 488
44345595
44345610



ACAGGGG
[sP].[dR](T)[sP].[LR](A)[sP].
TCGGTAGG







TG
[dR](C)[sP].[dR](C)[sP].[LR]









(G)[sP].[dR](A)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](T)[sP].[LR](G)}$









$$$V2.0










170
TACCGAC
RNA1{[LR](T)[sP].[dR](A)[sP].
TCCACCCC
 471
 486
44345593
44345608



AGGGGTG
[dR](C)[sP].[LR]([5meC])[sP].
TGTCGGTA







GA
[dR](G)[sP].[LR](A)[sP].[dR]









(C)[sP].[dR](A)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](T)[sP].[dR]









(G)[sP].[LR](G)[sP].[LR](A)}$









$$$V2.0










171
ACCGACA
RNA1{[LR](A)[sP].[dR](C)[sP].
CTCCACCC
 470
 485
44345592
44345607



GGGGTGG
[dR](C)[sP].[LR](G)[sP].[dR]
CTGTCGGT







AG
(A)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(T)[sP].[LR](G)[sP].[dR](G)









[sP].[LR](A)[sP].[LR](G)}$$$$









V2.0










172
CGACAGG
RNA1{[LR]([5meC])[sP].[dR](G)
AGCTCCAC
 468
 483
44345590
44345605



GGTGGAG
[sP].[LR](A)[sP].[dR](C)[sP].
CCCTGTCG







CT
[dR](A)[sP].[LR](G)[sP].[dR]









(G)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](T)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](A)[sP].[dR]









(G)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










173
GACAGGG
RNA1{[LR](G)[sP].[dR](A)[sP].
CAGCTCCA
 467
 482
44345589
44345604



GTGGAGC
[dR](C)[sP].[LR](A)[sP].[dR]
CCCCTGTC







TG
(G)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(A)[sP].[LR](G)[sP].[dR](C)









[sP].[LR](T)[sP].[LR](G)}$$$$









V2.0










174
CAGGGGT
RNA1{[LR]([5meC])[sP].[dR](A)
CCCAGCTC
 465
 480
44345587
44345602



GGAGCTG
[sP].[LR](G)[sP].[dR](G)[sP].
CACCCCTG







GG
[dR](G)[sP].[LR](G)[sP].[dR]









(T)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](A)[sP].[dR](G)[sP].









[LR]([5meC])[sP].[dR](T)[sP].









[dR](G)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










175
AGGGGTG
RNA1{[LR](A)[sP].[dR](G)[sP].
ACCCAGCT
 464
 479
44345586
44345601



GAGCTGG
[dR](G)[sP].[LR](G)[sP].[dR]
CCACCCCT







GT
(G)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](A)[sP].









[LR](G)[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](G)[sP].[dR](G)









[sP].[LR](G)[sP].[LR](T)}$$$$









V2.0










176
GGGTGGA
RNA1{[LR](G)[sP].[dR](G)[sP].
TGACCCAG
 462
 477
44345584
44345599



GCTGGGT
[dR](G)[sP].[LR](T)[sP].[dR]
CTCCACCC







CA
(G)[sP].[dR](G)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](C)[sP].









[LR](T)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](T)









[sP].[LR]([5meC])[sP].[LR]









(A)}$$$$V2.0










177
GGTGGAG
RNA1{[LR](G)[sP].[dR](G)[sP].
TTGACCCA
 461
 476
44345583
44345598



CTGGGTC
[dR](T)[sP].[LR](G)[sP].[dR]
GCTCCACC







AA
(G)[sP].[dR](A)[sP].[LR](G)









[sP].[dR](C)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](T)[sP].[dR](C)









[sP].[LR](A)[sP].[LR](A)}$$$$









V2.0










178
TGGAGCT
RNA1{[LR](T)[sP].[dR](G)[sP].
TCTTGACC
 459
 474
44345581
44345596



GGGTCAA
[dR](G)[sP].[LR](A)[sP].[dR]
CAGCTCCA







GA
(G)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](T)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](A)









[sP1.[LR](G)[sP].[LR](A)} $$$









$V2.0










179
GGAGCTG
RNA1{[LR](G)[sP].[dR](G)[sP].
TTCTTGAC
 458
 473
44345580
44345595



GGTCAAG
[dR](A)[sP].[LR](G)[sP].[dR]
CCAGCTCC







AA
(C)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](T)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](A)[sP].[dR](G)









[sP].[LR](A)[sP].[LR](A)} $$$









$V2.0










180
CAGAAGG
RNA1{[LR]([5meC][sP].[dR](A)
CTGCCGTC
4165
4180
44349287
44349302



GGACGGC
[sP].[dR](G)[sP].[LR](A)[sP].
CCCTTCTG







AG
[dR](A)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](G)[sP].[dR](G)









[sP].[LR](A)[sP].[dR](C)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(C)[sP].[LR](A)[sP].[LR](G)}$









$$$V2.0










181
AAGGGGA
RNA1{[LR](A)[sP].[dR](A)[sP].
CTGCTGCC
4162
4177
44349284
44349299



CGGCAGC
[dR](G)[sP].[LR](G)[sP].[dR]
GTCCCCTT







AG
(G)[sP].[dR](G)[sP].[LR](A)









[sP].[dR](C)[sP].[LR](G)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](C)









[sP].[LR](A)[sP].[LR](G)}$$$$









V2.0










182
GGGACGG
RNA1{[LR](G)[sP].[dR](G)[sP].
CAGCTGCT
4159
4174
44349281
44349296



CAGCAGC
[dR](G)[sP].[LR](A)[sP].[dR]
GCCGTCCC







TG
(C)[sP].[LR](G)[sP].[dR](G)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](C)









[sP].[LR](T)[sP].[LR](G)}$$$$









V2.0










183
ACGGCAG
RNA1{[LR](A)[sP].[dR](C)[sP].
CTACAGCT
4156
4171
44349278
44349293



CAGCTGT
[LR](G)[sP].[dR](G)[sP].[dR]
GCTGCCGT







AG
(C)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](G)[sP].[dR](T)









[sP].[LR](A)[sP].[LR](G)}$$$$









V2.0










184
GCAGCAG
RNA1{[LR](G)[sP].[dR](C)[sP].
CAGCTACA
4153
4168
44349275
44349290



CTGTAGC
[LR](A)[sP].[dR](G)[sP].[dR]
GCTGCTGC







TG
(C)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](C)[sP].[LR](T)[sP].









[dR](G)[sP].[dR](T)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](C)









[sP].[LR](T)[sP].[LR](G)}$$$$









V2.0










185
GCAGCTG
RNA1{[LR](G)[sP].[dR](C)[sP].
AGCCAGCT
4150
4165
44349272
44349287



TAGCTGG
[dR](A)[sP].[LR](G)[sP].[dR]
ACAGCTGC







CT
(C)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](T)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](G)[sP].[dR](G)









[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










186
GCTGTAG
RNA1{[LR](G)[sP].[dR](C)[sP].
AGGAGCCA
4147
4162
44349269
44349284



CTGGCTC
[dR](T)[sP].[LR](G)[sP].[dR]
GCTACAGC







CT
(T)[sP].[dR](A)[sP].[LR](G)









[sP].[dR](C)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(C)[sP].[LR](T)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










187
GTAGCTG
RNA1{[LR](G)[sP].[dR](T)[sP].
CGGAGGAG
4144
4159
44349266
44349281



GCTCCTC
[dR](A)[sP].[LR](G)[sP].[dR]
CCAGCTAC







CG
(C)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](C)[sP].









[LR](T)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](T)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[LR]









(G)}$$$$V2.0










188
GCTGGCT
RNA1{[LR](G)[sP].[dR](C)[sP].
CCCCGGAG
4141
4156
44349263
44349278



CCTCCGG
[dR](T)[sP].[LR](G)[sP].[dR]
GAGCCAGC







GG
(G)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR](T)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](G)[sP].[LR](G)}$









$$$V2.0










189
GGCTCCT
RNA1{[LR](G)[sP].[dR](G)[sP].
GGACCCCG
4138
4153
44349260
44349275



CCGGGGT
[dR](C)[sP].[LR](T)[sP].[dR]
GAGGAGCC







CC
(C)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](T)









[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










190
TCCTCCG
RNA1{[LR](T)[sP].[dR](C)[sP].
CCTGGACC
4135
4150
44349257
44349272



GGGTCCA
[dR](C)[sP].[LR](T)[sP].[dR]
CCGGAGGA







GG
(C)[sP].[dR](C)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](T)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[dR]









(A)[sP].[LR](G)[sP].[LR](G)}$









$$$V2.0










191
TCCGGGG
RNA1{[LR](T)[sP].[dR](C)[sP].
CTGCCTGG
4132
4147
44349254
44349269



TCCAGGC
[dR](C)[sP].[LR](G)[sP].[dR]
ACCCCGGA







AG
(G)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](T)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](A)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(C)[sP].[LR](A)[sP].[LR](G)}$









$$$V2.0










192
GGGGTCC
RNA1{[LR](G)[sP].[dR](G)[sP].
CTGCTGCC
4129
4144
44349251
44349266



AGGCAGC
[dR](G)[sP].[LR](G)[sP].[dR]
TGGACCCC







AG
(T)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](G)[sP].









[dR](C)[sP].[LR](A)[sP].[LR]









(G)}$$$$V2.0










193
GTCCAGG
RNA1{[LR](G)[sP].[dR](T)[sP].
GGCCTGCT
4126
4141
44349248
44349263



CAGCAGG
[dR](C)[sP].[LR]([5meC])[sP].
GCCTGGAC







CC
[dR](A)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](C)[sP].









[LR](A)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










194
CAGGCAG
RNA1{[LR]([5meC])[sP].[dR](A)
TGTGGCCT
4123
4138
44349245
44349260



CAGGCCA
[sP].[dR](G)[sP].[LR](G)[sP].
GCTGCCTG







CA
[dR](C)[sP].[LR](A)[sP].[dR]









(G)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR](A)}$$$$V2.0










195
GCAGCAG
RNA1{[LR](G)[sP].[dR](C)[sP].
CCCTGTGG
4120
4135
44349242
44349257



GCCACAG
[LR](A)[sP].[dR](G)[sP].[dR]
CCTGCTGC







GG
(C)[sP].[LR](A)[sP].[dR](G)









[sP].[LR](G)[sP].[dR](C)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](G)









[sP].[LR](G)[sP].[LR](G)}$$$$









V2.0










196
GCAGGCC
RNA1{[LR](G)[sP].[dR](C)[sP].
CTGCCCTG
4117
4132
44349239
44349254



ACAGGGC
[LR](A)[sP].[dR](G)[sP].[LR]
TGGCCTGC







AG
(G)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](C)[sP].









[LR](A)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](C)









[sP].[LR](A)[sP].[LR](G)}$$$$









V2.0










197
GGCCACA
RNA1{[LR](G)[sP].[dR](G)[sP].
GTTCTGCC
4114
4129
44349236
44349251



GGGCAGA
[dR](C)[sP].[LR]([5meC])[sP].
CTGTGGCC







AC
[dR](A)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](G)









[sP].[LR](G)[sP].[dR](C)[sP].









[LR](A)[sP].[dR](G)[sP].[dR]









(A)[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










198
CACAGGG
RNA1{[LR]([5meC])[sP].[dR](A)
TCAGTTCT
4111
4126
44349233
44349248



CAGAACT
[sP].[dR](C)[sP].[LR](A)[sP].
GCCCTGTG







GA
[dR](G)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](A)[sP].









[LR](A)[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](G)[sP].[LR](A)}$









$$$V2.0










199
AGGGCAG
RNA1{[LR](A)[sP].[dR](G)[sP].
TGGTCAGT
4108
4123
44349230
44349245



AACTGAC
[dR](G)[sP].[LR](G)[sP].[dR]
TCTGCCCT







CA
(C)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](A)[sP].[LR](A)[sP].









[dR](C)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](A)[sP].[dR](C)









[sP1.[LR]([5meC])[sP].[LRKA)}









$$$$V2.0










200
GCAGAAC
RNA1{[LR](G)[sP].[dR](C)[sP].
AGATGGTC
4105
4120
44349227
44349242



TGACCAT
[LR](A)[sP].[dR](G)[sP].[dR]
AGTTCTGC







CT
(A)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](A)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(T)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










201
GAACTGA
RNA1{[LR](G)[sP].[dR](A)[sP].
CCCAGATG
4102
4117
44349224
44349239



CCATCTG
[LR](A)[sP].[dR](C)[sP].[dR]
GTCAGTTC







GG
(T)[sP].[LR](G)[sP].[dR](A)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[dR](A)[sP].[dR](T)[sP].









[LR]([5meC])[sP].[dR](T)[sP].









[dR](G)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










202
CTGACCA
RNA1{[LR]([5meC])[sP].[dR](T)
GTGCCCAG
4099
4114
44349221
44349236



TCTGGGC
[sP].[dR](G)[sP].[LR](A)[sP].
ATGGTCAG







AC
[dR](C)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](T)[sP].[dR](C)









[sP].[LR](T)[sP].[dR](G)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(C)[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










203
ACCATCT
RNA1{[LR](A)[sP].[dR](C)[sP].
GCGGTGCC
4096
4111
44349218
44349233



GGGCACC
[dR](C)[sP].[LR](A)[sP].[dR]
CAGATGGT







GC
(T)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](G)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










204
ATCTGGG
RNA1{[LR](A)[sP].[dR](T)[sP].
AACGCGGT
4093
4108
44349215
44349230



CACCGCG
[dR](C)[sP].[LR](T)[sP].[dR]
GCCCAGAT







TT
(G)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









(G)[sP].[dR]([5meC])[sP].[dR]









(G)[sP].[LR](T)[sP].[LR](T)}$









$$$V2.0










205
TGGGCAC
RNA1{[LR](T)[sP].[dR](G)[sP].
TGGAACGC
4090
4105
44349212
44349227



CGCGTTC
[dR](G)[sP].[LR](G)[sP].[dR]
GGTGCCCA







CA
(C)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](G)[sP].









[dR]([5(meC])[sP].[dR](G)









[sP].[LR](T)[sP].[dR](T)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[LR](A)}$$$$V2.0










206
GCACCGC
RNA1{[LR](G)[sP].[dR](C)[sP].
GGCTGGAA
4087
4102
44349209
44349224



GTTCCAG
[LR](A)[sP].[dR](C)[sP].[dR]
CGCGGTGC







CC
(C)[sP].[LR](G)[sP].[dR](C)









[sP].[LR](G)[sP].[dR](T)[sP].









[LR](T)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](G)









[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










207
CCGCGTT
RNA1{[LR]([5meC])[sP].[dR](C)
GGTGGCTG
4084
4099
44349206
44349221



CCAGCCA
[sP].[LR](G)[sP].[dR](C)[sP].
GAACGCGG







CC
[LR](G)[sP].[dR](T)[sP].[LR]









(T)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](G)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










208
CGTTCCA
RNA1{[LR]([5meC])[sP].[dR](G)
GCTGGTGG
4081
4096
44349203
44349218



GCCACCA
[sP].[dR](T)[sP].[LR](T)[sP].
CTGGAACG







GC
[dR](C)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[dR](A)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[dR](A)[sP].[LR](G)[sP].









[LR]([5meC]}$$$$V2.0










209
TCCAGCC
RNA1{[LR](T)[sP].[dR](C)[sP].
AGGGCTGG
4078
4093
44349200
44349215



ACCAGCC
[dR](C)[sP].[LR](A)[sP].[dR]
TGGCTGGA







CT
(G)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sp].[dR]









(C)[sP].[LR]([5meC])[sP].[dR]









(A)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[LR](T)}$$$$V2.0










210
AGCCACC
RNA1{[LR](A)[sP].[dR](G)[sP].
AGCAGGGC
4075
4090
44349197
44349212



AGCCCTG
[dR](C)[sP].[LR]([5meC])[sP].
TGGTGGCT







CT
[dR](A)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[LR]









(G)[sP].[dR](C)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[dR](T)









[sP].[dR](G)[sP].[LR]([5meC])









[sP].[LR](T)}$$$$V2.0










211
CACCAGC
RNA1{[LR]([5meC])[sP].[dR](A)
AACAGCAG
4072
4087
44349194
44349209



CCTGCTG
[sP].[LR]([5meC])[sP].[dR](C)
GGCTGGTG







TT
[sP].[LR](A)[sP].[dR](G)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[dR](C)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](G)[sP].[LR](T)[sP].









[LR](T)}$$$$V2.0










212
CAGCCCT
RNA1{[LR]([5meC])[sP].[dR](A)
CTTAACAG
4069
4084
44349191
44349206



GCTGTTA
[sP].[LR](G)[sP].[dR](C)[sP].
CAGGGCTG







AG
[LR]([5meC])[sP].[dR](C)[sP].









[dR](T)[sP].[LR](G)[sP].[dR]









(C)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](T)[sP].[dR](T)[sP]









.[LR](A)[sP].[LR](A)[sP].









[LR](G)}$$$$V2.0













213
CCCTGCT
RNA1{[LR]([5meC][sP].[dR[(C)
GGCCTTAA
4066
4081
44349188
44349203



GTTAAGG
[sP].[LR]([5meC])[sP].[dR](T)
CAGCAGGG







CC
[sP].[LR](G)[sP].[dR](C)[sP].









[dR](T)[sP].[LR](G)[sP].[dR]









(T)[sP].[dR](T)[sP].[LR](A)









[sP].[LR](A)[sP].[dR](G)[sP].









[dR](G)[sP].[LR]([5meC])[sP].









[LR]([5meC])}$$$V2.0










214
TGCTGTT
RNA1{[LR](T)[sP].[dR](G)[sP].
GGTGGCCT
4063
4078
44349185
44349200



AAGGCCA
[LR]([5meC])[sP].[dR](T)[sP].
TAACAGCA







CC
[LR](G)[sP].[dR](T)[sP].[dR]









(T)[sP].[LR](A)[sP].[dR](A)









[sP].[dR](G)[sP].[LR](G)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









(A)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










215
TGTTAAG
RNA1{[LR](T)[sP].[dR](G)[sP].
CTGGGTGG
4060
4075
44349182
44349197



GCCACCC
[LR](T)[sP].[dR](T)[sP].[LR]
CCTTAACA







AG
(A)[sP].[dR](A)[sP].[dR](G)









[sP].[LR](G)[sP].[dR](C)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[LR](A)[sP].[LR](G)}$









$$$V2.0










216
TAAGGCC
RNA1{[LR](T)[sP].[dR](A)[sP].
GAGCTGGG
4057
4072
44349179
44349194



ACCCAGC
[LR](A)[sP].[dR](G)[sP].[dR]
TGGCCTTA







TC
(G)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[dR](A)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](C)[sP].[LR](T)[sP].









[LR]([5meC])}$$$$V2.0










217
GGCCACC
RNA1{[LR](G)[sP].[dR](G)[sP].
GGTGAGCT
4054
4069
44349176
44349191



CAGCTCA
[dR](C)[sP].[LR]([5meC])[sP].
GGGTGGCC







CC
[dR](A)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](C)









[sP].[LR](T)[sP].[dR](C)[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR]([5meC])}$$$$V2.0










218
CACCCAG
RNA1{[LR]([5meC])[sP].[dR](A)
CCTGGTGA
4051
4066
44349173
44349188



CTCACCA
[sP].[dR](C)[sP].[LR]([5meC])
GCTGGGTG







GG
[sP].[dR](C)[sP].[LR](A)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[dR](A)[sP].[LR](G)[sP].









[LR](G)}$$$$V2.0










219
CCAGCTC
RNA1{[LR]([5meC][sP].[dR](C)
GACCCTGG
4048
4063
44349170
44349185



ACCAGGG
[sP].[LR](A)[sP].[dR](G)[sP].
TGAGCTGG







TC
[dR](C)[sP].[LR](T)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(G)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










220
GCTCACC
RNA1{[LR](G)[sP].[dR](C)[sP].
GTGGACCC
4045
4060
44349167
44349182



AGGGTCC
[LR](T)[sP].[dR](C)[sP].[LR]
TGGTGAGC







AC
(A)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](G)[sr)].









[dR](G)[sP].[LR](G)[sP].[dR]









(T)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










221
CACCAGG
RNA1{[LR]([5meC])[sP].[dR](A)
CATGTGGA
4042
4057
44349164
44349179



GTCCACA
[sP].[dR](C)[sP].[LR]([5meC])
CCCTGGTG







TG
[sP].[dR](A)[sP].[LR](G)[sP].









[dR](G)[sP].[dR](G)[sP].[LR]









(T)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](C)[sP].









[dR](A)[sP].[LR](T)[sP].[LR]









(G)}$$$$V2.0










222
CAGGGTC
RNA1{[LR]([5meC])[sP].[dR](A)
GACCATGT
4039
4054
44349161
44349176



CACATGG
[sP].[LR](G)[sP].[dR](G)[sP].
GGACCCTG







TC
[dR](G)[sP].[LR](T)[sP].[dR]









(C)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](T)[sP].[LR](G)[sP].[dR]









(G)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










223
GGTCCAC
RNA1{[LR](G)[sP].[dR](G)[sP].
GCAGACCA
4036
4051
44349158
44349173



ATGGTCT
[LR](T)[sP].[dR](C)[sP].[dR]
TGTGGACC







GC
(C)[sP].[LR](A)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](G)[sP].[LR]









(T)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](G)[sP].[LR]([5meC])









}$$$$V2.0










224
CCACATG
RNA1{[LR]([5meC])[sP].[dR](C)
CAGGCAGA
4033
4048
44349155
44349170



GTCTGCC
[sP].[LR](A)[sP].[dR](C)[sP].
CCATGTGG







TG
[LR](A)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](G)[sP].[LR](T)









[sP].[dR](C)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](T)[sP].[LR](G)}$









$$$V2.0










225
CATGGTC
RNA1{[LR]([5meC])[sP].[dR](A)
TTGCAGGC
4030
4045
44349152
44349167



TGCCTGC
[sP].[dR](T)[sP].[LR](G)[sP].
AGACCATG







AA
[dR](G)[sP].[LR](T)[sP].[dR]









(C)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR](T)[sP].[dR](G)[sP].[dR]









(C)[sP].[LR](A)[sP].[LR](A)}$









$$$V2.0










226
GGTCTGC
RNA1{[LR](G)[sP].[dR](G)[sP].
ACTTTGCA
4027
4042
44349149
44349164



CTGCAAA
[LR](T)[sP].[dR](C)[sP].[dR]
GGCAGACC







GT
(T)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](T)[sP].









[dR](G)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](A)[sP].[dR](A)









[sP].[LR](G)[sP].[LR](T)}$$$$









V2.0










227
CTGCCTG
RNA1{[LR]([5meC])[sP].[dR](T)
GGTACTTT
4024
4039
44349146
44349161



CAAAGTA
[sP].[dR](G)[sP].[LR]([5meC])
GCAGGCAG







CC
[sP].[dR](C)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](A)[sP].[dR](A)









[sP].[LR](G)[sP].[dR](T)[sP].









[](A)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










228
CCTGCAA
RNA1{[LR]([5meC])[sP].[dR](C)
CTTGGTAC
4021
4036
44349143
44349158



AGTACCA
[sP].[dR](T)[sP].[LR](G)[sP].
TTTGCAGG







AG
[dR](C)[sP].[LR](A)[sP].[dR]









(A)[sP].[LR](A)[sP].[dR](G)









[sP].[dR](T)[sP].[LR](A)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









(A)[sP].[LR](A)[sP].[LR](G)}$









$$$V2.0










229
GCAAAGT
RNA1{[LR](G)[sP].[dR](C)[sP].
TTCCTTGG
4018
4033
44349140
44349155



ACCAAGG
[LR](A)[sP].[dR](A)[sP].[LR]
TACTTTGC







AA
(A)[sP].[dR](G)[sP].[dR](T)









[sP].[LR](A)[sP].[dR](C)[sP].









[dR](C)[sP].[LR](A)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](G)









[sP].[LR](A)[sP].[LR](A)}$$$$









V2.0










230
AAGTACC
RNA1{[LR](A)[sP].[dR](A)[sP].
ACGTTCCT
4015
4030
44349137
44349152



AAGGAAC
[LR](G)[sP].[dR](T)[sP].[LR]
TGGTACTT







GT
(A)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](A)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(A)[sP].[LR](A)[sP].[dR](C)









[sP].[LR](G)[sP].[LR](T)}$$$$









V2.0










231
TACCAAG
RNA1{[LR](T)[sP].[dR](A)[sP].
CAGACGTT
4012
4027
44349134
44349149



GAACGTC
[dR](C)[sP].[LR]([5meC])[sP].
CCTTGGTA







TG
[dR](A)[sP].[LR](A)[sP].[dR]









(G)[sP].[dR](G)[sP].[LR](A)









[sP].[dR](A)[sP].[dR](c)[sP].









[LR](G)[sP].[dR](T)[sP].[dR]









(C)[sP].[LR](T)[sP].[LR](G)}$









$$$V2.0










232
CAAGGAA
RNA1{[LR]([5meC])[sP].[dR](A)
TGCCAGAC
4009
4024
44349131
44349146



CGTCTGG
[sP].[LR](A)[sP].[dR](G)[sP].
GTTCCTTG







CA
[dR](G)[sP].[LR](A)[sP].[dR]









(A)[sP].[dR](C)[sP].[LR](G)









[sP].[dR](T)[sP].[dR](C)[sP].









[LR](T)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR]([5meC])[sP].[LR]









(A)}$$$$V2.0










233
GGAACGT
RNA1{[LR](G)[sP].[dR](G)[sP].
AGTTGCCA
4006
4021
44349128
44349143



CTGGCAA
[dR](A)[sP].[LR](A)[sP].[dR]
GACGTTCC







CT
([5meC])[sP].[dR](G)[sP].[LR]









(T)[sP].[dR](C)[sp].[dR](T)









[sP].[LR](G)[sP].[dR](G)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(A)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










234
ACGTCTG
RNA1{[LR](A)[sP].[dR]([5meC])
AGCAGTTG
4003
4018
44349125
44349140



GCAACTG
[sP].[dR](G)[sP].[LR](T)[sP].
CCAGACGT







CT
[dR](C)[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](G)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](A)[sP].









[LR]([5meC])[sP].[dR](T)[sP].









[dR](G)[sP].[LR]([5meC])[sP].









[LR](T)}$$$$V2.0










235
TCTGGCA
RNA1{[LR](T)[sP].[dR](C)[sP].
TTAAGCAG
4000
4015
44349122
44349137



ACTGCTT
[dR](T)[sP].[LR](G)[sP].[dR]
TTGCCAGA







AA
(G)[sP].[dR](C)[sP].[LR](A)









[sP].[LR](A)[sP].[dR](C)[sP].









[dR](T)[sP].[LR](G)[sP].[dR]









(C)[sP].[LR](T)[sP].[dR](T)









[sP].[LR](A)[sP].[LR](A)}$$$$









V2.0










236
GGCAACT
RNA1{[LR](G)[sP].[dR](G)[sP].
GGCTTAAG
3997
4012
44349119
44349134



GCTTAAG
[dR](C)[sP].[LR](A)[sP].[LR]
CAGTTGCC







CC
(A)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](G)[sP].[dR](C)[sP].









[LR](T)[sP].[dR](T)[sP].[LR]









(A)[sP].[dR](A)[sP].[dR](G)









[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










237
AACTGCT
RNA1{[LR](A)[sP].[LR](A)[sP].
GTGGGCTT
3994
4009
44349116
44349131



TAAGCCC
[dR](C)[sP].[dR](T)[sP].[LR]
AAGCAGTT







AC
(G)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](T)[sP].[LR](A)[sP].









[dR](A)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










238
TGCTTAA
RNA1{[LR](T)[sP].[dR](G)[sP].
GGCGTGGG
3991
4006
44349113
44349128



GCCCACG
[dR](C)[sP].[LR](T)[sP].[dR]
CTTAAGCA







CC
(T)[sP].[LR](A)[sP].[dR](A)









[sP].[dR](G)[sP].[LR]([5meC])









[sP].[dR](C)[sP].[dR](C)[sP].









[LR](A)[sP].[dR]([5meC])[sP].









[dR](G)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










239
TTAAGCC
RNA1{[LR](T)[sP].[dR](T)[sP].
GGTGGCGT
3988
4003
44349110
44349125



CACGCCA
[LR](A)[sP].[dR](A)[sP].[dR]
GGGCTTAA







CC
(G)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](C)[sP].[LR](G)[sP].









[dR](C)[sP].[dR](C)[sP].[LR]









(A)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










240
AGCCCAC
RNA1{[LR](A)[sP].[dR](G)[sP].
AAGGGTGG
3985
4000
44349107
44349122



GCCACCC
[dR](C)[sP].[LR]([5meC])[sP].
CGTGGGCT







TT
[dR](C)[sP].[LR](A)[sP].[dR]









(C)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[dR](C)[sP].[LR](T)[sP].[LR]









(T)}$$$$V2.0










241
CCACGCC
RNA1{[LR]([5meC])[sP].[dR](C)
ATCAAGGG
3982
3997
44349104
44349119



ACCCTTG
[sP].[LR](A)[sP].[dR](C)[sP].
TGGCGTGG







AT
[LR](G)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[dR](C)









[sP].[LR](T)[sP].[dR](T)[sP].









[dR](G)[sP].[LR](A)[sP].[LR]









(T)}$$$$V2.0










242
CGCCACC
RNA1{[LR]([5meC])[sP].[dR](G)
AGAATCAA
3979
3994
44349101
44349116



CTTGATT
[sP].[dR](C)[sP].[LR]([5meC])
GGGTGGCG







CT
[sP].[dR](A)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[LR](T)[sP].[dR](T)[sP].[dR]









(G)[sP].[LR](A)[sP].[dR](T)









[sP].[dR](T)[sP].[LR]([5meC])









[sP].[LR](T)}$$$$V2.0










243
CACCCTT
RNA1{[LR]([5meC])[sP].[dR](A)
CCTAGAAT
3976
3991
44349098
44349113



GATTCTA
[sP].[dR](C)[sP].[LR]([5meC])
CAAGGGTG







GG
[sP].[dR](C)[sP].[LR](T)[sP].









[dR](T)[sP].[LR](G)[sP].[dR]









(A)[sP].[dR](T)[sP].[LR](T)









[sP].[dR](C)[sP].[LR](T)[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










244
CCTTGAT
RNA1{[LR]([5meC])[sP].[dR](C)
GACCCTAG
3973
3988
44349095
44349110



TCTAGGG
[sP].[LR](T)[sP].[dR](T)[sP].
AATCAAGG







TC
[LR](G)[sP].[dR](A)[sP].[dR]









(T)[sP].[LR](T)[sP].[dR](C)









[sP].[dR](T)[sP].[LR](A)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(G)[sP].[LR](T)[sP].[LR]









([5meC])}$$$$V2.0










245
TGATTCT
RNA1{[LR](T)[sP].[dR](G)[sP].
AGTGACCC
3970
3985
44349092
44349107



AGGGTCA
[LR](A)[sP].[dR](T)[sP].[LR]
TAGAATCA







CT
(T)[sP].[dR](C)[sP].[dR](T)









[sP].[LR](A)[sP].[dR](G)[sP].









[dR](G)[sP].[LR](G)[sP].[dR]









(T)[sP].[dR](C)[sP].[LR](A)









[sP].[LR]([5meC])[sP].[LR](T)









}$$$$V2.0










246
TTCTAGG
RNA1{[LR](T)[sP].[LR](T)[sP].
CTGAGTGA
3967
3982
44349089
44349104



GTCACTC
[dR](C)[sP].[dR](T)[sP].[LR]
CCCTAGAA







AG
(A)[sP].[dR](G)[sP].[dR](G)









[sP].[LR](G)[sP].[dR](T)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(C)[sP].[LR](T)[sP].[dR](C)









[sP].[LR](A)[sP].[LR](G)}$$$$









V2.0










247
TAGGGTC
RNA1{[LR](T)[sP].[dR](A)[sP].
GTACTGAG
3964
3979
44349086
44349101



ACTCAGT
[dR](G)[sP].[LR](G)[sP].[dR]
TGACCCTA







AC
(G)[sP].[dR](T)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(C)[sP].[LR](T)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](G)[sP].









[dR](T)[sP].[LR](A)[sP].[LR]









([5meC])}$$$$V2.0










248
GGTCACT
RNA1{[LR](G)[sP].[dR](G)[sP].
AGGGTACT
3961
3976
44349083
44349098



CAGTACC
[dR](T)[sP].[LR]([5meC])[sP].
GAGTGACC







CT
[dR](A)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](T)[sP].









[LR](A)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










249
CACTCAG
RNA1{[LR]([5meC])[sP].[dR](A)
GCTAGGGT
3958
3973
44349080
44349095



TACCCTA
[sP].[dR](C)[sP].[LR](T)[sP].
ACTGAGTG







GC
[dR](C)[sP].[LR](A)[sP].[dR]









(G)[sP].[dR](T)[sP].[LR](A)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](T)[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










250
TCAGTAC
RNA1{[LR](T)[sP].[dR](C)[sP].
GGGGCTAG
3955
3970
44349077
44349092



CCTAGCC
[LR](A)[sP].[dR](G)[sP].[dR]
GGTACTGA







CC
(T)[sP].[LR](A)[sP].[dR](C)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[dR](T)[sP].[dR](A)[sP].









[LR](G)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










251
GTACCCT
RNA1{[LR](G)[sP].[dR](T)[sP].
CCTGGGGC
3952
3967
44349074
44349089



AGCCCCA
[LR](A)[sP].[dR](C)[sP].[dR]
TAGGGTAC







GG
(C)[sP].[LR]([5meC])[sP].[dR]









(T)[sP].[dR](A)[sP].[LR](G)









[sP].[dR](C)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










252
CCCTAGC
RNA1{[LR]([5meC])[sP].[dR](C)
TGGCCTGG
3949
3964
44349071
44349086



CCCAGGC
[sP].[dR](C)[sP].[LR](T)[sP].
GGCTAGGG







CA
[dR](A)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[dR]









(A)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[LR](A)}$$$$V2.0










253
TAGCCCC
RNA1{[LR](T)[sP].[dR](A)[sP].
CCTTGGCC
3946
3961
44349068
44349083



AGGCCAA
[dR](G)[sP].[LR]([5meC])[sP].
TGGGGCTA







GG
[dR](C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










254
CCCCAGG
RNA1{[LR]([5meC])[sP].[dR](C)
GGACCTTG
3943
3958
44349065
44349080



CCAAGGT
[sP].[dR](C)[sP].[LR]([5meC])
GCCTGGGG







CC
[sP].[dR](A)[sP].[dR](G)[sP].









[LR](G)[sP].[dR](C)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](A)









[sP].[dR](G)[sP].[LR](G)[sP].









[dR](T)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










255
CAGGCCA
RNA1{[LR]([5meC])[sP].[dR](A)
CCAGGACC
3940
3955
44349062
44349077



AGGTCCT
[sP].[dR](G)[sP].[LR](G)[sP].
TTGGCCTG







GG
[dR](C)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](A)[sP].[dR](G)









[sP].[LR](G)[sP].[dR](T)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](T)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










256
GCCAAGG
RNA1{[LR](G)[sP].[dR](C)[sP].
GGGCCAGG
3937
3952
44349059
44349074



TCCTGGC
[dR](C)[sP].[LR](A)[sP].[dR]
ACCTTGGC







CC
(A)[sP].[dR](G)[sP].[LR](G)









[sP].[dR](T)[sP].[LR]([5meC])









[sP].[dR](C)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](G)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










257
AAGGTCC
RNA1{[LR](A)[sP].[dR](A)[sP].
CCTGGGCC
3934
3949
44349056
44349071



TGGCCCA
[dR](G)[sP].[LR](G)[sP].[dR]
AGGACCTT







GG
(T)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](G)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](A)[sP].[LR](G)[sP].[LR]









(G)}$$$$V2.0










258
GTCCTGG
RNA1{[LR](G)[sP].[dR](T)[sP].
AGTCCTGG
3931
3946
44349053
44349068



CCCAGGA
[dR](C)[sP].[LR]([5meC])[sP].
GCCAGGAC







CT
[dR](T)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](C)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[dR](A)









[sP].[dR](G)[sP].[LR](G)[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR](T)}$$$$V2.0










259
CTGGCCC
RNA1{[LR]([5meC])[sP].[dR](T)
GGCAGTCC
3928
3943
44349050
44349065



AGGACTG
[sP].[dR](G)[sP].[LR](G)[sP].
TGGGCCAG







CC
[dR](C)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](A)









[sP].[LR]([5meC])[sP].[dR]









(T)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[LR]([5meC])}$$$









$V2.0










260
GCCCAGG
RNA1{[LR](G)[sP].[dR](C)[sP].
TCAGGCAG
3925
3940
44349047
44349062



ACTGCCT
[LR]([5meC])[sP].[dR](C)[sP].
TCCTGGGC







GA
[LR](A)[sP].[dR](G)[sP].[dR]









(G)[sP].[LR](A)[sp].[dR](C)









[sP].[dR](T)[sP].[LR](G)[sP].









[dR](C)[sP].[LR]([5meC])[sP].









[dR](T)[sP].[LR](G)[sP].[LR]









(A)}$$$$V2.0










261
CAGGACT
RNA1{[LR]([5meC])[sP].[dR](A)
GGCTCAGG
3922
3937
44349044
44349059



GCCTGAG
[sP].[dR](G)[sP].[LR](G)[sP].
CAGTCCTG







CC
[dR](A)[sP].[dR](C)[sP].[LR]









(T)[sP].[dR](G)[sP].[dR](C)









[sP].[LR]([5meC])[sP].[dR](T)









[sP].[LR](G)[sP].[dR](A)[sP].









[dR](G)[sP].[LR]([5meC])[sP].









[LR]([5meC]}$$$$V2.0










262
GACTGCC
RNA1{[LR](G)[sP].[dR](A)[sP].
GAAGGCTC
3919
3934
44349041
44349056



TGAGCCT
[dR](C)[sP].[LR](T)[sP].[dR]
AGGCAGTC







TC
(G)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](T)[sP].[LR]









(G)[sP].[dR](A)[sP].[dR](G)









[sP].[LR]([5meC])[sP].[dR](C)









[sP].[dR](T)[sP].[LR](T)[sP].









[LR]([5meC])}$$$$V2.0










263
TGCCTGA
RNA1{[LR](T)[sP].[dR](G)[sP].
TGAGAAGG
3916
3931
44349038
44349053



GCCTTCT
[dR](C)[sP].[LR]([5meC])[sP].
CTCAGGCA







CA
[dR](T)[sP].[LR](G)[sP].[dR]









(A)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dR](C)[sP].[dR]









(T)[sP].[LR](T)[sP].[dR](C)









[sP].[dR](T)[sP].[LR]([5meC])









[sP].[LR](A)}$$$$V2.0










264
CTGAGCC
RNA1{[LR]([5meC])[sP].[dR](T)
TGTTGAGA
3913
3928
44349035
44349050



TTCTCAA
[sP].[LR](G)[sP].[dR](A)[sP].
AGGCTCAG







CA
[dR](G)[sP].[LR]([5meC])[sP].









[dR](C)[sP].[dR](T)[sP].[LR]









(T)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](C)[sP].[LR](A)[sP].









[dR](A)[sP].[LR]([5meC])[sP].









[LR](A)}$$$$V2.0










265
AGCCTTC
RNA1{[LR](A)[sP].[dR](G)[sP].
AGGTGTTG
3910
3925
44349032
44349047



TCAACAC
[dR](C)[sP].[LR]([5meC])[sP].
AGAAGGCT







CT
[dR](T)[sP].[LR](T)[sP].[dR]









(C)[sP].[LR](T)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](A)[sP].









[dR](C)[sP].[LR](A)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










266
CTTCTCA
RNA1{[LR]([5meC])[sP].[dR](T)
GGGAGGTG
3907
3922
44349029
44349044



ACACCTC
[sP].[LR](T)[sP].[dR](C)[sP].
TTGAGAAG







CC
[LR](T)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](A)[sp].RJR](C)









[sP].[LR](A)[sP].[dR](C)[sP].









[dR](C)[sP].[LR](T)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









([5meC])}$$$$V2.0










267
CTCAACA
RNA1{[LR]([5meC])[sP].[dR](T)
ACAGGGAG
3904
3919
44349026
44349041



CCTCCCT
[sP].[dR](C)[sP].[LR](A)[sP].
GTGTTGAG







GT
[dR](A)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](C)[sP].[dR](C)









[sP].[LR](T)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](C)[sP].









[dR](T)[sP].[LR](G)[sP].[LR]









(T)}$$$$V2.0










268
AACACCT
RNA1{[LR](A)[sP].[dR](A)[sP].
TGGACAGG
3901
3916
44349023
44349038



CCCTGTC
[dR](C)[sP].[LR](A)[sP].[dR]
GAGGTGTT







CA
(C)[sP].[dR](C)[sP].[LR](T)









[sP].[dR](C)[sP].[LR]([5meC])









[sP].[dR](C)[sP].[dR](T)[sP].









[LR](G)[sP].[dR](T)[sP].[dR]









(C)[sP].[LR]([5meC])[sP].[LR]









(A)}$$$$V2.0










269
ACCTCCC
RNA1{[LR](A)[sP].[dR](C)[sP].
GCCTGGAC
3898
3913
44349020
44349035



TGTCCAG
[dR](C)[sP].[LR](T)[sP].[dR]
AGGGAGGT







GC
(C)[sP].[LR]([5meC])[sP].[dR]









(C)[sP].[dR](T)[sP].[LR](G)









[sP].[dR](T)[sP].[dR](C)[sP].









[LR]([5meC])[sP].[dR](A)[sP].









[dR](G)[sP].[LR](G)[sP].[LR]









([5meC])}$$$$V2.0










270
TCCCTGT
RNA1{[LR](T)[sP].[dR](C)[sP].
CCTGCCTG
3895
3910
44349017
44349032



CCAGGCA
[LR]([5meC])[sP].[dR](C)[sP].
GACAGGGA







GG
[dR](T)[sP].[LR](G)[sP].[dR]









(T)[sP].[dR](C)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](C)









[sP].[dR](A)[sP].[LR](G)[sP].









[LR](G)}$$$$V2.0










271
CTGTCCA
RNA1l[LR]([5meC])[sP].[dR](T)
CTGCCTGC
3892
3907
44349014
44349029



GGCAGGC
[sP].[dR](G)[sP].[LR](T)[sP].
CTGGACAG







AG
[dR](C)[sP].[dR](C)[sP].[LR]









(A)[sP].[dR](G)[sP].[dR](G)









[sP].[LR]([5meC])[sP].[dR](A)









[sP].[dR](G)[sP].[LR](G)[sP].









[dR](C)[sP].[LR](A)[sP].[LR]









(G)}$$$$V2.0










272
TCCAGGC
RNA1{[LR](T)[sP].[dR](C)[sP].
TTTCTGCCT
3889
3904
44349011
44349026



AGGCAGA
[dR](C)[sP].[LR](A)[sP].[dR]
GCCTGGA







AA
(G)[sP].[dR](G)[sP].[LR]









([5meC])[sP].[dR](A)[sP].[dR]









(G)[sP].[LR](G)[sP].[dR](C)









[sP].[LR](A)[sP].[dR](G)[sP].









[dR](A)[sP].[LR](A)[sP].[LR]









(A)}$$$$V2.0










273
AGGCAGG
RNA1{[LR](A)[sP].[dR](G)[sP].
AGATTTCT
3886
3901
44349008
44349023



CAGAAAT
[dR](G)[sP].[LR]([5meC])[sP].
GCCTGCCT







CT
[dR](A)[sP].[dR](G)[sP].[LR]









(G)[sP].[dR](C)[sP].[LR](A)









[sP].[dR](G)[sP].[dR](A)[sP].









[LR](A)[sP].[dR](A)[sP].[dR]









(T)[sP].[LR]([5meC])[sP].[LR]









(T)}$$$$V2.0










274
CAGGCAG
RNA1{[LR]([5meC])[sP].[dR](A)
TGCAGATT
3883
3898
44349005
44349020



AAATCTG
[sP].[dR](G)[sP].[LR](G)[sP].
TCTGCCTG







CA
[dR](C)[sP].[LR](A)[sP].[dR]









(G)[sP].[dR](A)[sP].[LR](A)









[sP].[dR](A)[sP].[dR](T)[sP].









[LR]([5meC])[sP].[dR](T)[sP].









[dR](G)[sP].[LR]([5meC])[sP].









[LR](A)}$$$$V2.0










275
GCAGAAA
RNA1{[LR](G)[sP].[dR](C)[sP].
CCCTGCAG
3880
3895
44349002
44349017



TCTGCAG
[LR](A)[sP].[dR](G)[sP].[dR]
ATTTCTGC







GG
(A)[sP].[LR](A)[sP].[dR](A)









[sP].[LR](T)[sP].[dR](C)[sP].









[dR](T)[sP].[LR](G)[sP].[dR]









(C)[sP].[LR](A)[sP].[dR](G)









[sP].[LR](G)[sP].[LR](G)}$$$$









V2.0










289
TCAAGAA
RNA1{[MOE](T)[sP].[MOE]([5me
GGACCACA
 447
 464
44345569
44345586



TGGTGTG
C])[sP].[MOE](A)[sP].[MOE](A)
CCATTCTT







GTCC
[sP].[MOE](G)[sP].[MOE](A)
GA








[sP].[MOE](A)[sP].[MOE](T)









[sP].[MOE](G)[sP].[MOE](G)









[sP].[MOE](T)[sP].[MOE](G)









[sP].[MOE](T)[sP].[MOE](G)









[sP].[MOE](G)[sP].[MOE](T)









[sP].[MOE]([5meC])[sP].









[MOE]([5meC])}$$$$V2.0










290
GGTCAAG
RNA1{[MOE](G)[sP].[MOE](G)[sP
ACCACACC
 449
 466
44345571
44345588



AATGGTG
].[MOE](T)[sP].[MOE]([5meC])
ATTCTTGA







TGGT
[sP].[MOE](A)[sP].[MOE](A)
CC








[sP].[MOE](G)[sP].[MOE](A)









[sP].[MOE](A)[sP].[MOE](T)









[sP].[MOE](G)[sP].[MOE](G)









[sP].[MOE](T)[sP].[MOE](G)









[sP].[MOE](T)[sP].[MOE](G)









[sP].[MOE](G)[sP].[MOE](T)}









$$$$V2.0










Helm Annotation Key:


[LR](G) is a beta-D-oxy-LNA guanine nucleoside,


[LR](T) is a beta-D-oxy-LNA thymine nucleoside,


[LR](A) is a beta-D-oxy-LNA adenine nucleoside,


[LR]([5meC] is a beta-D-oxy-LNA 5-methyl cytosine nucleoside,


[dR](G) is a DNA guanine nucleoside,


[dR](T) is a DNA thymine nucleoside,


[dR](A) is a DNA adenine nucleoside,


[dR]([C] is a DNA cytosine nucleoside,


[mR](G) is a 2′-O-methyl RNA guanine nucleoside,


[mR](U) is a 2′-O-methyl RNA DNA uracil nucleoside,


[mR](A) is a 2′-O-methyl RNA DNA adenine nucleoside,


[mR]([C] is a 2′-O-methyl RNA DNA cytosine nucleoside,


[MOE](G) is a 2′-MOE RNA guanine nucleoside,


[MOE](T) is a 2′-MOE RNA DNA thymine nucleoside,


[MOE](A) is a 2′-MOE thyl RNA DNA adenine nucleoside,


[MOE]([C] is a 2′-MOE RNA DNA cytosine nucleoside.





Claims
  • 1. An antisense oligonucleotide, wherein the antisense oligonucleotide is 8-40 nucleotides in length and comprises a contiguous nucleotide sequence of 8-40 nucleotides in length which is complementary to a splice regulation site of the human progranulin pre-mRNA transcript.
  • 2. The antisense oligonucleotide according to claim 1, wherein the human progranulin pre-mRNA transcript comprises the exon 1, intron 1 and exon 2 sequence of the human progranulin pre-mRNA transcript (SEQ ID NO:276).
  • 3. The antisense oligonucleotide according to claim 1, wherein the contiguous nucleotide sequence is complementary to SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279 or SEQ ID NO:280.
  • 4. The antisense oligonucleotide according to claim 1, wherein the contiguous nucleotide sequence is selected from SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74 and SEQ ID NO:75, or at least 8 or at least 10 contiguous nucleotides thereof.
  • 5. The antisense oligonucleotide according to claim 1, wherein the contiguous nucleotide sequence is complementary to SEQ ID NO:281.
  • 6. The antisense oligonucleotide according to claim 5, wherein the contiguous nucleotide sequence is SEQ ID NO:134, or at least 8 or at least 10 contiguous nucleotides thereof.
  • 7. The antisense oligonucleotide according to claim 1, wherein the contiguous nucleotide sequence is selected from the group consisting of SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:100, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:196, SEQ ID NO:220, SEQ ID NO:228 and SEQ ID NO:252.
  • 8. The antisense oligonucleotide according to claim 1, wherein the antisense oligonucleotide or contiguous nucleotide sequence thereof comprises one or more modified nucleotides or one or more modified nucleosides.
  • 9. The antisense oligonucleotide according to claim 1, wherein the antisense oligonucleotide is or comprises an antisense oligonucleotide mixmer or totalmer.
  • 10. An antisense oligonucleotide having the structure:
  • 11. An antisense oligonucleotide wherein the oligonucleotide is the oligonucleotide compound GaGctGggTcAagAAT (SEQ ID NO: 71), GgtCaaGaAtgGtgTG (SEQ ID NO: 73), CaGaAtGgtGtGgTC (SEQ ID NO:74), GaAtGgtGtGgTccC (SEQ ID NO:75) or CtcAagCtcAcAtgGC (SEQ ID NO:134) wherein capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, and all internucleoside linkages are phosphorothioate internucleoside linkages.
  • 12. A pharmaceutical composition comprising the antisense oligonucleotide according to claim 1 and a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.
  • 13. An in vivo or in vitro method for enhancing the expression of the Exon1-Exon2 progranulin splice variant in a cell which is expressing progranulin, said method comprising administering an antisense oligonucleotide according to claim 1 in an effective amount to said cell.
  • 14. An in vivo or in vitro method for enhancing the expression of the Exon1-Exon2 progranulin splice variant in a cell which is expressing progranulin, said method comprising administering a pharmaceutical composition according to claim 12 in an effective amount to said cell.
  • 15. The antisense oligonucleotide according to claim 1, for use in the treatment of a neurological disease.
  • 16. The antisense oligonucleotide according to claim 1, for use in the treatment of progranulin haploinsufficiency or a related disorder.
  • 17. The pharmaceutical composition according to claim 14 for use in the treatment of a neurological disease.
  • 18. The pharmaceutical composition according to claim 14 for use in the treatment of progranulin haploinsufficiency or a related disorder.
Priority Claims (1)
Number Date Country Kind
20215791.3 Dec 2020 EP regional