Antisense Oligonucleotides Targeting ATXN3

Abstract
The present invention relates to antisense LNA oligonucleotides (oligomers) complementary to ATXN3 pre-mRNA sequences, which are capable of inhibiting the expression of ATXN3 protein. Inhibition of ATXN3 expression is beneficial for the treatment of spinocerebellar ataxia
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims benefit of and priority to the European Patent Application EP 20211612.5 filed on Dec. 3, 2020, all of which are incorporated by reference in their entireties where permissible.


TECHNICAL FIELD OF THE INVENTION

The present invention relates to antisense LNA oligonucleotides (oligomers) complementary to ATXN3 pre-mRNA sequences, which are capable of inhibiting the expression of ATXN3. Inhibition of ATXN3 expression is beneficial for the treatment of spinocerebellar ataxia, such as spinocerebellar ataxia 3 (Machado-Joseph disease (MJD)).


REFERENCE TO SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Dec. 3, 2020, is named 067211_013US1_SL.txt and is 613,139 bytes in size.


BACKGROUND OF THE INVENTION

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is one of nine polyglutamine expansion diseases and the most common dominantly inherited ataxia in the world. While certain symptoms in SCA3 may respond to symptomatic therapy, there is still no effective treatment for this relentlessly progressive and fatal neurodegenerative disease. The disease is caused by a CAG repeat expansion in the ATXN3 gene that encodes an abnormally long polyglutamine tract in the disease protein, ATXN3 (Ataxin 3). The toxic ataxin-3 protein is associated with aggregates which are frequently observed in the brain tissue of SCA3 patients.


Moore et al. reported that antisense oligonucleotides (ASOs) targeting ATXN3 were capable of reducing levels of the pathogenic ATXN3 protein both in human disease fibroblasts and in a mouse model expressing the full-length human mutant ATXN3 gene (Moore et al., Mol Ther Nucleic Acids. 2017; 7:200-210). Therefore, ASO-mediated targeting of ATXN3 was suggested as therapeutic approach for SCA3.


Swayze et al. (Nucleic Acids Res. 2007; 35(2):687-700. Epub 2006 Dec. 19), reports that antisense oligonucleotides containing locked nucleic acid have the potential to improve potency but cause significant toxicity in animals (hepatotoxicity).


Toonen et al. used antisense oligonucleotides to mask predicted exonic splicing signals of ATXN3, resulting in exon 10 skipping from ATXN3 pre-mRNA. The skipping of exon 10 led to formation of a truncated ataxin-3 protein lacking the toxic polyglutamine expansion, but retaining its ubiquitin binding and cleavage function (Toonen et al., Molecular Therapy—Nucleic Acids, 2017, Volume 8: 232-242).


WO2013/138353, WO2015/017675, WO2018/089805, WO2019/217708 and WO2020/172559 disclose antisense oligonucleotides targeting human ATXN3 mRNA for use in the treatment of SCA3.


SUMMARY OF THE INVENTION

The present invention identifies regions of the ATXN3 transcript (ATXN3) for antisense inhibition in vitro or in vivo, and provides for antisense oligonucleotides, including LNA gapmer oligonucleotides, which target these regions of the ATXN3 pre-mRNA or mature mRNA. Particularly, the present invention identifies antisense oligonucleotides which target human ATXN3 pre-mRNA or mature mRNA more effectively than they target the human Potassium Voltage-Gated Channel Subfamily B Member 2 (KCNB2) pre-mRNA or mature mRNA. The present invention identifies oligonucleotides which inhibit human ATXN3 which are useful in the treatment of spinocerebellar ataxia.


The invention provides for an antisense oligonucleotide, 10-30 nucleotides in length, targeting a mammalian ATXN3 (Ataxin 3) target nucleic acid, wherein the antisense oligonucleotide is capable of inhibiting the expression of mammalian ATXN3 in a cell which is expressing mammalian ATXN3. The mammalian ATXN3 target nucleic acid may be, e.g., a human, monkey or mouse ATXN3 target nucleic acid.


The invention also provides for an LNA gapmer antisense oligonucleotide, 10-30 nucleotides in length, wherein said antisense oligonucleotide comprises a contiguous nucleotide sequence 10-30 nucleotides in length, wherein the contiguous nucleotide sequence is at least 90% complementary, such as fully complementary, to SEQ ID NO:1, wherein the antisense oligonucleotide is capable of inhibiting the expression of human ATXN3 in a cell which is expressing human ATXN3.


In one aspect, the invention provides for an antisense oligonucleotide comprising a contiguous nucleotide sequence comprising the contiguous nucleotides present in SEQ ID NO:1122 except for one or more modified nucleosides and/or one or more modified internucleoside linkages, wherein the antisense oligonucleotide is capable of inhibiting the expression of human ATXN3 in a cell which is expressing human ATXN3; or a pharmaceutically acceptable salt thereof. In some embodiments, the antisense oligonucleotide is more capable of inhibiting the expression of human ATXN3 than human KCNB2 in a cell which is expressing human ATXN3 and human KCNB2. In some embodiments, the one or more modified nucleosides and/or one or more modified internucleoside linkages are, for each residue in SEQ ID NO:1122, independently selected from the options for that residue as shown in Table 15.


In some embodiments, the antisense oligonucleotide comprises a contiguous nucleotide sequence comprising at least 10, such as at least 12, such as at least 14, such as at least 16 contiguous nucleotides present in SEQ ID NO:1122. In some embodiments, the antisense oligonucleotide comprises the contiguous nucleotide sequence of SEQ ID NO: 1122.


In some embodiments, the antisense oligonucleotide comprises a contiguous nucleotide sequence comprising the base sequence of an antisense oligonucleotide selected from the group consisting of Compound ID Nos. 1122_82 to 1122_406, shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises a contiguous nucleotide sequence comprising the nucleoside base sequence and, optionally, the sugar moiety modifications, of an antisense oligonucleotide selected from the group consisting of Compound ID Nos. 1122_91, 1122_107, 1122_154, 1122_155, 1122_156, 1122_157, 1122_158, 1122_167, 1122_172, 1122_175, 1122_294, 1122_296, 1122_359, 1122_384 and 1122_385, shown in Table 14.


In some embodiments, the antisense oligonucleotide is an LNA gapmer antisense oligonucleotide; or a pharmaceutically acceptable salt thereof. Typically, each LNA cytosine is an LNA 5-methyl cytosine.


In some embodiments, substantially all, or all, internucleoside linkages between the nucleosides are phosphorothioate internucleoside linkages. In some particular embodiments, one or more of the phosphothioate internucleoside linkages are stereodefined.


In some embodiments, one or more nucleosides are also or alternatively modified to a 2′-sugar-modified nucleoside.


In some embodiments, one or more cytosine nucleosides are also or alternatively modified to a 5-methyl cytosine nucleoside.


In some embodiments, one or more thymine nucleosides are modified to a uracil nucleoside.


In one aspect, the invention provides for an antisense oligonucleotide comprising a contiguous nucleotide sequence comprising the contiguous nucleotides present in SEQ ID NO:1816 except for one or more modified nucleosides and/or one or more modified internucleoside linkages, wherein the antisense oligonucleotide is capable of inhibiting the expression of human ATXN3 in a cell which is expressing human ATXN3; or a pharmaceutically acceptable salt thereof. In some embodiments, the antisense oligonucleotide is more capable of inhibiting the expression of human ATXN3 than human KCNB2 in a cell which is expressing human ATXN3 and human KCNB2. In some embodiments, the one or more modified nucleosides and/or one or more modified internucleoside linkages are, for each residue in SEQ ID NO:1816, independently selected from the options for that residue as shown in Table 16.


In some embodiments, the antisense oligonucleotide comprises a contiguous nucleotide sequence comprising at least 10, such as at least 12, such as at least 14, such as at least 16 contiguous nucleotides present in SEQ ID NO:1816. In some embodiments, the antisense oligonucleotide comprises the contiguous nucleotide sequence of SEQ ID NO: 1816.


In some embodiments, the antisense oligonucleotide comprises a contiguous nucleotide sequence comprising the base sequence of an antisense oligonucleotide selected from the group consisting of Compound ID Nos. 1816_2 to 1816_92, shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises the nucleoside base sequence and, optionally, the sugar moiety modifications, of an antisense oligonucleotide selected from the group consisting of Compound ID Nos. 1816_13, 1816_15, 1816_28, 1816_41, 1816_42, 1816_43, 1816_60, 1816_61, 1816_64, 1816_65, 1816_68, and 1816_92, as shown in Table 14.


In some embodiments, the antisense oligonucleotide is an LNA gapmer antisense oligonucleotide; or a pharmaceutically acceptable salt thereof. Typically, each LNA cytosine is an LNA 5-methyl cytosine.


In some embodiments, substantially all, or all, internucleoside linkages between the nucleosides are phosphorothioate internucleoside linkages. In some particular embodiments, one or more of the phosphothioate internucleoside linkages are stereodefined.


In some embodiments, one or more nucleosides are also or alternatively modified to a 2′-sugar-modified nucleoside.


In some embodiments, one or more cytosine nucleosides are also or alternatively modified to a 5-methyl cytosine nucleoside.


In some embodiments, one or more thymine nucleosides are modified to a uracil nucleoside.


More details on these or other nucleoside modifications and/or internucleoside linkage modifications are provided in the present disclosure.


In one aspect, the invention provides for the antisense oligonucleotides disclosed herein, for example an antisense oligonucleotide selected from the group consisting of the compounds shown in the table in Example 13; or a pharmaceutically acceptable salt thereof.


In one aspect, the invention provides for the antisense oligonucleotide disclosed herein, for example an antisense oligonucleotide selected from the group consisting of the compounds shown in Table 11; or a pharmaceutically acceptable salt thereof.


In some embodiments, the antisense oligonucleotide is selected from the group consisting of the compounds shown in the table in Example 16.


In some embodiments, the antisense oligonucleotide is selected from the group consisting of the compounds shown in Table 14.


In one aspect, the invention particularly provides for an antisense oligonucleotide selected from the group consisting of Compound ID Nos. 1122_91, 1122_107, 1122_154, 1122_155, 1122_156, 1122_157, 1122_158, 1122_167, 1122_172, 1122_175, 1122_294, 1122_296, 1122_359, 1122_384, 1122_385, 1816_13, 1816_15, 1816_28, 1816_41, 1816_42, 1816_43, 1816_60, 1816_61, 1816_64, 1816_65, 1816_68, and 1816_92; or a pharmaceutically acceptable salt thereof.


In separate and specific aspects, the invention provides for an antisense oligonucleotide as shown in FIG. 12A, 12B, 12C, 12D, 12E, 12F, 12G, 12H, 12I, 12J, 12K, 12L, 12M, 12N, 12O, 12P, 12Q, 12R, 12S, 12T, 12U, 12V, 12W, 12X, 12Y, 12Z or 12AA; or a pharmaceutically acceptable salt thereof.


An oligonucleotide of the invention as referred to or claimed herein may be in the form of a pharmaceutically acceptable salt, such as a sodium or potassium salt.


In one aspect, the invention provides for a conjugate comprising an oligonucleotide according to the invention, and at least one conjugate moiety covalently attached to said oligonucleotide.


In one aspect, the invention provides for a pharmaceutical composition comprising the oligonucleotide or conjugate of the invention and a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.


In one aspect, the invention provides for an in vivo or in vitro method for modulating ATXN3 expression in a target cell which is expressing ATXN3, said method comprising administering an oligonucleotide or conjugate or pharmaceutical composition of the invention in an effective amount to said cell.


In one aspect, the invention provides for a method for treating or preventing a disease comprising administering a therapeutically or prophylactically effective amount of an oligonucleotide, conjugate or the pharmaceutical composition of the invention to a subject suffering from or susceptible to the disease.


In some embodiments, the disease is spinocerebellar ataxia, such as spinocerebellar ataxia 3, such as Machado-Joseph disease (MJD).


In one aspect, the invention provides for the oligonucleotide, conjugate or the pharmaceutical composition of the invention for use in medicine.


In one aspect, the invention provides for the oligonucleotide, conjugate or the pharmaceutical composition of the invention for use in the treatment or prevention of spinocerebellar ataxia, such as spinocerebellar ataxia 3, such as Machado-Joseph disease (MJD).


In one aspect, the invention provides for the use of the oligonucleotide, conjugate or the pharmaceutical composition of the invention, for the preparation of a medicament for treatment or prevention of spinocerebellar ataxia, such as spinocerebellar ataxia 3 such as Machado-Joseph disease (MJD).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 displays a drawing of the compound 1122_67 (SEQ ID NO:1122).



FIG. 2 displays a drawing of the compound 1813_1 (SEQ ID NO:1813).



FIG. 3 displays a drawing of the compound 1856_1 (SEQ ID NO:1856).



FIG. 4 displays a drawing of the compound 1812_1 (SEQ ID NO:1812).



FIG. 5 displays a drawing of the compound 1809_2 (SEQ ID NO:1809).



FIG. 6 displays a drawing of the compound 1607_1 (SEQ ID NO:1607).



FIG. 7 displays a drawing of the compound 1122_62 (SEQ ID NO:1122).



FIG. 8 displays a drawing of the compound 1122_33 (SEQ ID NO:1122).



FIG. 9 portrays the stability of the compounds 1122_67 and 18131, and 5 reference compounds (i.e. compounds 1100673, 1101657, 1102130, 1103014, and 1102987) in a 24 hour SVPD assay.



FIG. 10A displays a WES analysis of GM06153 cells treated with different ASOs to obtain reduction of wild type Ataxin 3 (55 kDa) and polyQ extended Ataxin 3 (77 kDa). FIG. 10B displays an analysis of band intensity normalized to HPRT. Wild type Ataxin 3 is represented by the band at 55 kDa, and the polyQ extended Ataxin 3 is represented by the band at 77 kDa. Cells have been treated with 10 uM of ASO for 4 days prior to protein analysis. Data represents cells treated with ASOs in triplicates as mean+−SD. SC, scrambled control oligo.



FIG. 11 displays a drawing of the compound 1816_12.



FIGS. 12A-12AA display drawings of the compounds in Table 14 (Example 16). FIG. 12A displays a drawing of the compound 1122_91. FIG. 12B displays a drawing of the compound 1122_107. FIG. 12C displays a drawing of the compound 1122_154. FIG. 12D displays a drawing of the compound 1122_155. FIG. 12E displays a drawing of the compound 1122_156. FIG. 12F displays a drawing of the compound 1122_157. FIG. 12G displays a drawing of the compound 1122_158. FIG. 12H displays a drawing of the compound 1122_167. FIG. 12I displays a drawing of the compound 1122_172. FIG. 12J displays a drawing of the compound 1122_175. FIG. 12K displays a drawing of the compound 1122_294. FIG. 12L displays a drawing of the compound 1122_296. FIG. 12M displays a drawing of the compound 1122_359. FIG. 12N displays a drawing of the compound 1122_384. FIG. 12O displays a drawing of the compound 1122_385. FIG. 12P displays a drawing of the compound 1816_13. FIG. 12Q displays a drawing of the compound 1816_15. FIG. 12R displays a drawing of the compound 1816_28. FIG. 12S displays a drawing of the compound 1816_41. FIG. 12T displays a drawing of the compound 1816_42. FIG. 12U displays a drawing of the compound 1816_43. FIG. 12V displays a drawing of the compound 1816_60. FIG. 12W displays a drawing of the compound 1816_61. FIG. 12X displays a drawing of the compound 1816_64. FIG. 12Y displays a drawing of the compound 1816_65. FIG. 12Z displays a drawing of the compound 1816_68. FIG. 12AA displays a drawing of the compound 1816_92.





The chemical drawings show the protonated form of the antisense oligonucleotide, and it will be understood that each hydrogen on the sulphur atom in the phosphorothioate internucleoside linkage may independently be present or absent. In a salt form, one or more more of the hydrogens may for example be replaced with a cation, such as a metal cation, such as a sodium cation or a potassium cation.


DETAILED DESCRIPTION OF THE INVENTION
I. Definitions

It should be appreciated that this disclosure is not limited to the compositions and methods described herein as well as the experimental conditions described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing certain embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any compositions, methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention. All publications mentioned are incorporated herein by reference in their entirety.


The use of the terms “a,” “an,” “the,” and similar referents in the context of describing the presently claimed invention (especially in the context of the claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context.


Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.


Use of the term “about” is intended to describe values either above or below the stated value in a range of approx. +/−10%; in other embodiments the values may range in value either above or below the stated value in a range of approx. +/−5%; in other embodiments the values may range in value either above or below the stated value in a range of approx. +/−2%; in other embodiments the values may range in value either above or below the stated value in a range of approx. +/−1%. The preceding ranges are intended to be made clear by context, and no further limitation is implied. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


As used herein, the terms “treat,” “treating,” “treatment” and “therapeutic use” refer to the elimination, reduction or amelioration of one or more symptoms of a disease or disorder. Specifically, the term “treatment” may refer to both treatment of an existing disease (e.g. a disease or disorder as herein referred to), or prevention of a disease (i.e. prophylaxis). It will therefore be recognized that treatment as referred to herein may, in some embodiments, be prophylactic. As used herein, a “therapeutically effective amount” refers to that amount of a therapeutic agent sufficient to mediate a clinically relevant elimination, reduction or amelioration of such symptoms. An effect is clinically relevant if its magnitude is sufficient to impact the health or prognosis of a recipient subject. A therapeutically effective amount may refer to the amount of therapeutic agent sufficient to delay or minimize the onset of disease. A therapeutically effective amount may also refer to the amount of the therapeutic agent that provides a therapeutic benefit in the treatment or management of a disease.


The term “oligonucleotide” as used herein is defined as it is generally understood by the skilled person as a molecule comprising two or more covalently linked nucleosides. Such covalently bound nucleosides may also be referred to as nucleic acid molecules or oligomers. Oligonucleotides are commonly made in the laboratory by solid-phase chemical synthesis followed by purification. When referring to a sequence of the oligonucleotide, reference is made to the sequence or order of nucleobase moieties, or modifications thereof, of the covalently linked nucleotides or nucleosides. The oligonucleotide of the invention is man-made, and is chemically synthesized, and is typically purified or isolated. The oligonucleotide of the invention may comprise one or more modified nucleosides or nucleotides.


The term “Antisense oligonucleotide” as used herein is defined as oligonucleotides capable of modulating expression of a target gene by hybridizing to a target nucleic acid, in particular to a contiguous sequence on a target nucleic acid. The antisense oligonucleotides are not essentially double stranded and are therefore not siRNAs or shRNAs. Preferably, the antisense oligonucleotides of the present invention are single stranded. It is understood that single stranded oligonucleotides of the present invention can form hairpins or intermolecular duplex structures (duplex between two molecules of the same oligonucleotide), as long as the degree of intra or inter self-complementarity is less than 50% across of the full length of the oligonucleotide.


The term “contiguous nucleotide sequence” refers to the region of the oligonucleotide which is complementary to the target nucleic acid. The term is used interchangeably herein with the term “contiguous nucleobase sequence” and the term “oligonucleotide motif sequence” also referred to as “motif sequence”. The “motif sequence” may also be referred to as the “Oligonucleotide Base Sequence”. In some embodiments all the nucleotides of the oligonucleotide constitute the contiguous nucleotide sequence. In some embodiments the oligonucleotide comprises the contiguous nucleotide sequence, such as a F-G-F′ gapmer region, and may optionally comprise further nucleotide(s), for example a nucleotide linker region which may be used to attach a functional group to the contiguous nucleotide sequence. The nucleotide linker region may or may not be complementary to the target nucleic acid. Advantageously, the contiguous nucleotide sequence is 100% complementary to the target nucleic acid.


The term “modified oligonucleotide” describes an oligonucleotide comprising one or more modified nucleosides and/or modified internucleoside linkages. The term chimeric” oligonucleotide is a term that has been used in the literature to describe oligonucleotides with modified nucleosides.


The term “nucleotides” refers to the building blocks of oligonucleotides and polynucleotides, and for the purposes of the present invention include both naturally occurring and non-naturally occurring nucleotides. In nature, nucleotides, such as DNA and RNA nucleotides comprise a ribose sugar moiety, a nucleobase moiety and one or more phosphate groups (which is absent in nucleosides). Nucleosides and nucleotides may also interchangeably be referred to as “units” or “monomers”.


The term “nucleobase” refers to the purine (e.g. adenine and guanine) and pyrimidine (e.g. uracil, thymine and cytosine) moieties present in nucleosides and nucleotides which form hydrogen bonds in nucleic acid hybridization. In the context of the present invention the term nucleobase also encompasses modified nucleobases which may differ from naturally occurring nucleobases, but are functional during nucleic acid hybridization. In this context “nucleobase” refers to both naturally occurring nucleobases such as adenine, guanine, cytosine, thymidine, uracil, xanthine and hypoxanthine, as well as non-naturally occurring variants. Such variants are for example described in Hirao et al (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid Chemistry Suppl. 37 1.4.1.


In some embodiments, the “nucleobase moiety” is modified by changing the purine or pyrimidine into a modified purine or pyrimidine, such as substituted purine or substituted pyrimidine, such as a nucleobased selected from isocytosine, pseudoisocytosine, 5-methyl cytosine, 5-thiozolo-cytosine, 5-propynyl-cytosine, 5-propynyl-uracil, 5-bromouracil 5-thiazolo-uracil, 2-thio-uracil, 2′thio-thymine, inosine, diaminopurine, 6-aminopurine, 2-aminopurine, 2,6-diaminopurine and 2-chloro-6-aminopurine.


The nucleobase moieties may be indicated by the letter code for each corresponding nucleobase, e.g. A, T, G, C or U, wherein each letter may optionally include modified nucleobases of equivalent function. For example, in the exemplified oligonucleotides, the nucleobase moieties are selected from A, T, G, C, and 5-methyl cytosine. Optionally, for LNA gapmers, 5-methyl cytosine LNA nucleosides may be used.


The term “modified nucleoside” or “nucleoside modification” as used herein refers to nucleosides modified as compared to the equivalent DNA or RNA nucleoside by the introduction of one or more modifications of the sugar moiety or the (nucleo)base moiety. In a preferred embodiment, the modified nucleoside comprises a modified sugar moiety. The term modified nucleoside may also be used herein interchangeably with the term “nucleoside analogue” or modified “units” or modified “monomers”. Nucleosides with an unmodified DNA or RNA sugar moiety are termed DNA or RNA nucleosides herein. Nucleosides with modifications in the base region of the DNA or RNA nucleoside are still generally termed DNA or RNA if they allow Watson Crick base pairing.


The oligomer of the invention may comprise one or more nucleosides which have a modified sugar moiety, i.e. a modification of the sugar moiety when compared to the ribose sugar moiety found in DNA and RNA.


Numerous nucleosides with modification of the ribose sugar moiety have been made, primarily with the aim of improving certain properties of oligonucleotides, such as affinity and/or nuclease resistance.


Such modifications include those where the ribose ring structure is modified, e.g. by replacement with a hexose ring (HNA), or a bicyclic ring, which typically have a biradicle bridge between the C2 and C4 carbons on the ribose ring (LNA), or an unlinked ribose ring which typically lacks a bond between the C2 and C3 carbons (e.g. UNA). Other sugar modified nucleosides include, for example, bicyclohexose nucleic acids (WO2011/017521) or tricyclic nucleic acids (WO2013/154798). Modified nucleosides also include nucleosides where the sugar moiety is replaced with a non-sugar moiety, for example in the case of peptide nucleic acids (PNA), or morpholino nucleic acids.


As used herein, “sugar modifications” also include modifications made via altering the substituent groups on the ribose ring to groups other than hydrogen, or the 2′—OH group naturally found in DNA and RNA nucleosides. Substituents may, for example be introduced at the 2′, 3′, 4′ or 5′ positions.


As used herein, a “2′ sugar modified nucleoside” refers to a nucleoside which has a substituent other than H or —OH at the 2′ position (2′ substituted nucleoside) or comprises a 2′ linked biradicle capable of forming a bridge between the 2′ carbon and a second carbon in the ribose ring, such as LNA (2′-4′ biradicle bridged) nucleosides.


Indeed, much focus has been spent on developing 2′ substituted nucleosides, and numerous 2′ substituted nucleosides have been found to have beneficial properties when incorporated into oligonucleotides. For example, the 2′ modified sugar may provide enhanced binding affinity and/or increased nuclease resistance to the oligonucleotide. Examples of 2′ substituted modified nucleosides are 2′-O-alkyl-RNA, 2′-O-methyl-RNA, 2′-alkoxy-RNA, 2′-O-methoxyethyl-RNA (MOE), 2′-amino-DNA, 2′-Fluoro-RNA, and 2′-F-ANA nucleoside. For further examples, please see e.g. Freier & Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann; Curr. Opinion in Drug Development, 2000, 3(2), 293-213, and Deleavey and Damha, Chemistry and Biology 2012, 19, 937. Below are illustrations of some 2′ substituted modified nucleosides.




embedded image


In relation to the present invention 2′ substituted does not include 2′ bridged molecules like LNA.


As used herein, a “Locked Nucleic Acid (LNA) nucleoside” is a 2′-modified nucleoside which comprises a biradical linking the C2′ and C4′ of the ribose sugar ring of said nucleoside (also referred to as a “2′-4′ bridge”), which restricts or locks the conformation of the ribose ring. These nucleosides are also termed bridged nucleic acid or bicyclic nucleic acid (BNA) in the literature. The locking of the conformation of the ribose is associated with an enhanced affinity of hybridization (duplex stabilization) when the LNA is incorporated into an oligonucleotide for a complementary RNA or DNA molecule. This can be routinely determined by measuring the melting temperature of the oligonucleotide/complement duplex.


Non limiting, exemplary LNA nucleosides are disclosed in WO 99/014226, WO 00/66604, WO 98/039352, WO 2004/046160, WO 00/047599, WO 2007/134181, WO 2010/077578, WO 2010/036698, WO 2007/090071, WO 2009/006478, WO 2011/156202, WO 2008/154401, WO 2009/067647, WO 2008/150729, Morita et al., Bioorganic & Med. Chem. Lett. 12, 73-76, Seth et al. J. Org. Chem. 2010, Vol 75(5) pp. 1569-81, and Mitsuoka et al., Nucleic Acids Research 2009, 37(4), 1225-1238, and Wan and Seth, J. Medical Chemistry 2016, 59, 9645-9667.


Further non limiting, exemplary LNA nucleosides are disclosed in Scheme 1:




text missing or illegible when filed


text missing or illegible when filed


Particular LNA nucleosides are beta-D-oxy-LNA, 6′-methyl-beta-D-oxy LNA such as (S)-6′-methyl-beta-D-oxy-LNA (ScET) and ENA. A particularly advantageous LNA is beta-D-oxy-LNA.


As used herein, the term “modified internucleoside linkage” is defined as generally understood by the skilled person as linkages other than phosphodiester (PO) linkages, that covalently couples two nucleosides together. The oligonucleotides of the invention may therefore comprise modified internucleoside linkages. In some embodiments, the modified internucleoside linkage increases the nuclease resistance of the oligonucleotide compared to a phosphodiester linkage. For naturally occurring oligonucleotides, the internucleoside linkage includes phosphate groups creating a phosphodiester bond between adjacent nucleosides. Modified internucleoside linkages are particularly useful in stabilizing oligonucleotides for in vivo use, and may serve to protect against nuclease cleavage at regions of DNA or RNA nucleosides in the oligonucleotide of the invention, for example within the gap region of a gapmer oligonucleotide, as well as in regions of modified nucleosides, such as region F and F′.


In an embodiment, the oligonucleotide comprises one or more internucleoside linkages modified from the natural phosphodiester, such one or more modified internucleoside linkages that is for example more resistant to nuclease attack. Nuclease resistance may be determined by incubating the oligonucleotide in blood serum or by using a nuclease resistance assay (e.g. snake venom phosphodiesterase (SVPD)), both are well known in the art. Internucleoside linkages which are capable of enhancing the nuclease resistance of an oligonucleotide are referred to as nuclease resistant internucleoside linkages. In some embodiments at least 50% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are modified, such as at least 60%, such as at least 70%, such as at least 80 or such as at least 90% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are nuclease resistant internucleoside linkages. In some embodiments all of the internucleoside linkages of the oligonucleotide, or contiguous nucleotide sequence thereof, are nuclease resistant internucleoside linkages. It will be recognized that, in some embodiments the nucleosides which link the oligonucleotide of the invention to a non-nucleotide functional group, such as a conjugate, may be phosphodiester.


Particular examples of modified internucleoside linkages include phosphorothioate internucleoside linkages, stereodefined phosphorothioate linkages, 3-methoxypropylphosphonothioate (MOPS) internucleoside linkages and 3-methoxypropylphosphonate (MOPO) internucleoside linkages. MOPS and MOPO internucleoside linkages are illustrated below, where “B” represents the nucleobase. R1 may represent the linkage to a 3′—OH group, unless it is placed at the 3′-end of an oligonucleotide. R2 and R3 represent other optional sugar modifications described herein, and may, e.g., form the bridge in an LNA nucleoside or represent cET or hydrogen (H). For further details on MOPS and MOPO linkages, see Migawa et al., Nucleic Acids Research, Volume 47, Issue 11, 20 Jun. 2019, Pages 5465-5479.




embedded image


A preferred modified internucleoside linkage is phosphorothioate. Phosphorothioate internucleoside linkages are particularly useful due to nuclease resistance, beneficial pharmacokinetics and ease of manufacture. In some embodiments at least 50% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate, such as at least 60%, such as at least 70%, such as at least 80% or such as at least 90% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate. In some embodiments all of the internucleoside linkages of the oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate.


Nuclease resistant linkages, such as phosphorothioate linkages, are particularly useful in oligonucleotide regions capable of recruiting nuclease when forming a duplex with the target nucleic acid, such as region G for gapmers. Phosphorothioate linkages may, however, also be useful in non-nuclease recruiting regions and/or affinity enhancing regions such as regions F and F′ for gapmers. Gapmer oligonucleotides may, in some embodiments comprise one or more phosphodiester linkages in region F or F′, or both region F and F′, which the internucleoside linkage in region G may be fully phosphorothioate.


Advantageously, all the internucleoside linkages in the contiguous nucleotide sequence of the oligonucleotide are phosphorothioate linkages.


It is recognized that, as disclosed in EP2 742 135, antisense oligonucleotide may comprise other internucleoside linkages (other than phosphodiester and phosphorothioate), for example alkyl phosphonate/methyl phosphonate internucleosides, which according to EP2 742 135 may for example be tolerated in an otherwise DNA phosphorothioate gap region.


As used herein, “phosphorothioate linkages” refer to internucleoside phosphate linkages where one of the non-bridging oxygens has been substituted with a sulfur. The substitution of one of the non-bridging oxygens with a sulfur introduces a chiral center, and as such within a single phosphorothioate oligonucleotide, each phosphorothioate internucleoside linkage will be either in the S (Sp) or R (Rp) stereoisoforms. Such internucleoside linkages are referred to as “chiral internucleoside linkages”. By comparison, phosphodiester internucleoside linkages are non-chiral as they have two non-terminal oxygen atoms.


The designation of the chirality of a stereocenter is determined by standard Cahn-Ingold-Prelog rules (CIP priority rules) first published in Cahn, R. S.; Ingold, C. K.; Prelog, V. (1966). “Specification of Molecular Chirality”. Angewandte Chemie International Edition. 5 (4): 385-415. doi:10.1002/anie.196603851.


During standard oligonucleotide synthesis, the stereoselectivity of the coupling and the following sulfurization is not controlled. For this reason, when producing an oligonucleotide by standard oligonucleotide synthetic methods, the stereoconfiguration of any specific phosphorothioate internucleoside linkage introduced may become either Sp or Rp. The resulting preparation of such an oligonucleotide may therefore contain as many as 2X different individual phosphorothioate diastereoisomers, where X is the number of phosphorothioate internucleoside linkages. Such oligonucleotides are referred to as “stereorandom phosphorothioate oligonucleotides” herein, and do not contain any stereodefined internucleoside linkages. Stereorandom phosphorothioate oligonucleotides are therefore mixtures of individual diastereoisomers originating from the non-stereodefined synthesis. In this context the mixture is defined as up to 2X different phosphorothioate diastereoisomers. A stereorandom phosphorothioate internucleoside linkage may also be referred to as a stereo-undefined phosphorothioate internucleoside linkage or, using HELM-annotations, [sP] or (abbreviated) “X”, herein (see Examples 13 and 16).


As used herein, a “stereodefined internucleoside linkage” refers to an internucleoside linkage which introduces a specific chiral center into the oligonucleotide, which exists in predominantly one stereoisomeric form, either R or S within a population of individual oligonucleotide molecules.


It should be recognized that stereoselective oligonucleotide synthesis methods used in the art typically provide at least about 90% or at least about 95% stereoselectivity at each internucleoside linkage stereocenter, and as such up to about 10%, such as about 5% of oligonucleotide molecules may have the alternative stereo isomeric form.


In some embodiments the stereoselectivity of each stereodefined phosphorothioate stereocenter is at least about 90%. In some embodiments the stereoselectivity of each stereodefined phosphorothioate stereocenter is at least about 95%.


As used herein, “stereodefined phosphorothioate linkages” refer to phosphorothioate linkages which have been chemically synthesized in either the Rp or Sp configuration within a population of individual oligonucleotide molecules, such as at least about 90% or at least about 95% stereoselectivity at each stereocenter (either Rp or Sp), and as such up to about 10%, such as about 5% of oligonucleotide molecules may have the alternative stereo isomeric form. The stereo configurations of the phosphorothioate internucleoside linkages are presented below




embedded image


where the 3′ R group represents the 3′ position of the adjacent nucleoside (a 5′ nucleoside), and the 5′ R group represents the 5′ position of the adjacent nucleoside (a 3′ nucleoside).


Rp internucleoside linkages may also be represented as srP, and Sp internucleoside linkages may be represented as ssP herein. Using HELM annotations, a stereodefined Sp phosphorothioate internucleoside linkage may also be referred to as [ssP] or abbreviated as “S” herein (see Examples 13 and 16).


In some embodiments the stereoselectivity of each stereodefined phosphorothioate stereocenter is at least about 97%. In some embodiments the stereoselectivity of each stereodefined phosphorothioate stereocenter is at least about 98%. In some embodiments the stereoselectivity of each stereodefined phosphorothioate stereocenter is at least about 99%.


In some embodiments a stereoselective internucleoside linkage is in the same stereoisomeric form in at least 97%, such as at least 98%, such as at least 99%, or (essentially) all of the oligonucleotide molecules present in a population of the oligonucleotide molecule.


Stereoselectivity can be measured in a model system only having an achiral backbone (i.e. phosphodiesters) it is possible to measure the stereoselectivity of each monomer by e.g. coupling a stereodefined monomer to the following model-system “5′ t-po-t-po-t-po 3”. The result of this will then give: 5′ DMTr-t-srp-t-po-t-po-t-po 3′ or 5′ DMTr-t-ssp-t-po-t-po-t-po 3′ which can be separated using HPLC. The stereoselectivity is determined by integrating the UV signal from the two possible compounds and giving a ratio of these e.g. 98:2, 99:1 or >99:1.


It will be understood that the stereo % purity of a specific single diastereoisomer (a single stereodefined oligonucleotide molecule) will be a function of the coupling selectivity for the defined stereocenter at each internucleoside position, and the number of stereodefined internucleoside linkages to be introduced. By way of example, if the coupling selectivity at each position is 97%, the resulting purity of the stereodefined oligonucleotide with 15 stereodefined internucleoside linkages will be 0.9715, i.e. 63% of the desired diastereoisomer as compared to 37% of the other diastereoisomers. The purity of the defined diastereoisomer may after synthesis be improved by purification, for example by HPLC, such as ion exchange chromatography or reverse phase chromatography.


In some embodiments, a stereodefined oligonucleotide refers to a population of an oligonucleotide wherein at least about 40%, such as at least about 50% of the population is of the desired diastereoisomer.


Alternatively stated, in some embodiments, a stereodefined oligonucleotide refers to a population of oligonucleotides wherein at least about 40%, such as at least about 50%, of the population consists of the desired (specific) stereodefined internucleoside linkage motif (also termed stereodefined motif).


For stereodefined oligonucleotides which comprise both stereorandom and stereodefined internucleoside stereocenters, the purity of the stereodefined oligonucleotide is determined with reference to the % of the population of the oligonucleotide which retains the defined stereodefined internucleoside linkage motif(s), the stereorandom linkages are disregarded in the calculation.


As used herein, a “stereodefined oligonucleotide” refers to an oligonucleotide wherein at least one of the internucleoside linkages is a stereodefined internucleoside linkage.


As used herein, a “stereodefined phosphorothioate oligonucleotide” refers to an oligonucleotide wherein at least one of the internucleoside linkages is a stereodefined phosphorothioate internucleoside linkage.


As used herein, the term “complementarity” describes the capacity for Watson-Crick base-pairing of nucleosides/nucleotides. Watson-Crick base pairs are guanine (G)-cytosine (C) and adenine (A)—thymine (T)/uracil (U). It will be understood that oligonucleotides may comprise nucleosides with modified nucleobases, for example 5-methyl cytosine is often used in place of cytosine, and as such the term complementarity encompasses Watson Crick base-paring between non-modified and modified nucleobases (see for example Hirao et al (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid Chemistry Suppl. 37 1.4.1).


As used herein, the term “% complementary” refers to the number of nucleotides in percent of a contiguous nucleotide sequence in a nucleic acid molecule (e.g. oligonucleotide) which, at a given position, are complementary to (i.e. form Watson Crick base pairs with) a contiguous sequence of nucleotides, at a given position of a separate nucleic acid molecule (e.g. the target nucleic acid or target sequence). The percentage is calculated by counting the number of aligned bases that form pairs between the two sequences (when aligned with the target sequence 5′-3′ and the oligonucleotide sequence from 3′-5′), dividing by the total number of nucleotides in the oligonucleotide and multiplying by 100. In such a comparison a nucleobase/nucleotide which does not align (form a base pair) is termed a mismatch. Preferably, insertions and deletions are not allowed in the calculation of % complementarity of a contiguous nucleotide sequence.


As used herein, the term “fully complementary” refers to 100% complementarity.


As used herein, the term “identity” refers to the proportion of nucleotides (expressed in percent) of a contiguous nucleotide sequence in a nucleic acid molecule (e.g. oligonucleotide) which across the contiguous nucleotide sequence, are identical to a reference sequence (e.g. a sequence motif). The percentage of identity is thus calculated by counting the number of aligned bases that are identical (a match) between two sequences (e.g. in the contiguous nucleotide sequence of the compound of the invention and in the reference sequence), dividing that number by the total number of nucleotides in the aligned region and multiplying by 100. Therefore, Percentage of Identity=(Matches×100)/Length of aligned region (e.g. the contiguous nucleotide sequence). Insertions and deletions are not allowed in the calculation the percentage of identity of a contiguous nucleotide sequence. It will be understood that in determining identity, chemical modifications of the nucleobases are disregarded as long as the functional capacity of the nucleobase to form Watson Crick base pairing is retained (e.g. 5-methyl cytosine is considered identical to a cytosine for the purpose of calculating % identity).


As used herein, the term “hybridizing” or “hybridizes” refers to two nucleic acid strands (e.g. an oligonucleotide and a target nucleic acid) forming hydrogen bonds between base pairs on opposite strands thereby forming a duplex. The affinity of the binding between two nucleic acid strands is the strength of the hybridization. It is often described in terms of the melting temperature (Tm) defined as the temperature at which half of the oligonucleotides are duplexed with the target nucleic acid. At physiological conditions Tm is not strictly proportional to the affinity (Mergny and Lacroix, 2003, Oligonucleotides 13:515-537). The standard state Gibbs free energy ΔG° is a more accurate representation of binding affinity and is related to the dissociation constant (Kd) of the reaction by ΔG°=−RTln(Kd), where R is the gas constant and T is the absolute temperature. Therefore, a very low ΔG° of the reaction between an oligonucleotide and the target nucleic acid reflects a strong hybridization between the oligonucleotide and target nucleic acid. ΔG° is the energy associated with a reaction where aqueous concentrations are 1M, the pH is 7, and the temperature is 37° C. The hybridization of oligonucleotides to a target nucleic acid is a spontaneous reaction and for spontaneous reactions ΔG° is less than zero. ΔG° can be measured experimentally, for example, by use of the isothermal titration calorimetry (ITC) method as described in Hansen et al., 1965, Chem. Comm. 36-38 and Holdgate et al., 2005, Drug Discov Today. The skilled person will know that commercial equipment is available for ΔG° measurements. ΔG° can also be estimated numerically by using the nearest neighbor model as described by SantaLucia, 1998, Proc Natl Acad Sci USA. 95: 1460-1465 using appropriately derived thermodynamic parameters described by Sugimoto et al., 1995, Biochemistry 34:11211-11216 and McTigue et al., 2004, Biochemistry 43:5388-5405. In order to have the possibility of modulating its intended nucleic acid target by hybridization, oligonucleotides of the present invention hybridize to a target nucleic acid with estimated ΔG° values below −10 kcal for oligonucleotides that are 10-30 nucleotides in length. In some embodiments the degree or strength of hybridization is measured by the standard state Gibbs free energy ΔG°. The oligonucleotides may hybridize to a target nucleic acid with estimated ΔG° values below the range of −10 kcal, such as below −15 kcal, such as below −20 kcal and such as below −25 kcal for oligonucleotides that are 8-30 nucleotides in length. In some embodiments the oligonucleotides hybridize to a target nucleic acid with an estimated ΔG° value of −10 to −60 kcal, such as −12 to −40, such as from −15 to −30 kcal or −16 to −27 kcal such as −18 to −25 kcal.


As used herein, the term “target nucleic acid” refers to the nucleic acid which encodes a mammalian ATXN3 protein and may for example be a gene, a ATXN3 RNA, a mRNA, a pre-mRNA, a mature mRNA or a cDNA sequence. The target may therefore be referred to as an “ATXN3 target nucleic acid”.


In some embodiments, the target nucleic acid encodes a human ATXN3 protein, such as the human ATXN3 gene encoding the pre-mRNA sequence provided herein as SEQ ID NO:1. Thus, the target nucleic acid may be SEQ ID NO:1.


In some embodiments, the target nucleic acid encodes a mouse ATXN3 protein. Suitably, the target nucleic acid encoding a mouse ATXN3 protein comprises a sequence as shown in SEQ ID NO: 3.


In some embodiments, the target nucleic acid encodes a cynomolgus monkey ATXN3 protein. Suitably, the target nucleic acid encoding a cynomolgus monkey ATXN3 protein comprises a sequence as shown in SEQ ID NO: 2.


If employing the oligonucleotide of the invention in research or diagnostics the target nucleic acid may be a cDNA or a synthetic nucleic acid derived from DNA or RNA.


For in vivo or in vitro application, the oligonucleotide of the invention is typically capable of inhibiting the expression of the ATXN3 target nucleic acid in a cell which is expressing the ATXN3 target nucleic acid. The contiguous sequence of nucleobases of the oligonucleotide of the invention is typically complementary to the ATXN3 target nucleic acid, as measured across the length of the oligonucleotide, optionally with the exception of one or two mismatches, and optionally excluding nucleotide based linker regions which may link the oligonucleotide to an optional functional group such as a conjugate, or other non-complementary terminal nucleotides (e.g. region D′ or D″). The target nucleic acid is a messenger RNA, such as a mature mRNA or a pre-mRNA which encodes mammalian ATXN3 protein, such as human ATXN3, e.g. the human ATXN3 pre-mRNA sequence, such as that disclosed as SEQ ID NO:1, or ATXN3 mature mRNA. Further, the target nucleic acid may be a cynomolgus monkey ATXN3 pre-mRNA sequence, such as that disclosed as SEQ ID NO:1, or a cynomolgus monkey ATXN3 mature mRNA. Further, the target nucleic acid may be a mouse ATXN3 pre-mRNA sequence, such as that disclosed as SEQ ID NO:3, or mouse ATXN3 mature mRNA. SEQ ID NOS:1-3 are DNA sequences—it will be understood that target RNA sequences have uracil (U) bases in place of the thymidine bases (T).









TABLE 1







Target nucleic acids










Target Nucleic Acid
Sequence ID







ATXN3 Homo sapiens pre-mRNA
SEQ ID NO: 1



ATXN3 Macaca fascicularis pre-mRNA
SEQ ID NO: 2



ATXN3 Mus musculus mRNA
SEQ ID NO: 3










In some embodiments, the oligonucleotide of the invention targets SEQ ID NO: 1.


In some embodiments, the oligonucleotide of the invention targets SEQ ID NO:2.


In some embodiments, the oligonucleotide of the invention targets SEQ ID NO: 3.


In some embodiments, the oligonucleotide of the invention targets SEQ ID NO:1 and SEQ ID NO:2.


In some embodiments, the oligonucleotide of the invention targets SEQ ID NO:1 and SEQ ID NO:3.


In some embodiments, the oligonucleotide of the invention targets SEQ ID NO:1, SEQ ID NO:2 and SEQ ID NO:3.


As used herein, the term “target sequence” refers to a sequence of nucleotides present in the target nucleic acid which comprises the nucleobase sequence which is complementary to the oligonucleotide of the invention. In some embodiments, the target sequence consists of a region on the target nucleic acid which is complementary to the contiguous nucleotide sequence of the oligonucleotide of the invention.


Herein are provided numerous target sequence regions, as defined by regions of the human ATXN3 pre-mRNA (using SEQ ID NO:1 as a reference) which may be targeted by the oligonucleotides of the invention.


In some embodiments the target sequence is longer than the complementary sequence of a single oligonucleotide, and may, for example represent a preferred region of the target nucleic acid which may be targeted by several oligonucleotides of the invention.


The oligonucleotide of the invention comprises a contiguous nucleotide sequence which is complementary to or hybridizes to the target nucleic acid, such as a sub-sequence of the target nucleic acid, such as a target sequence described herein.


The oligonucleotide comprises a contiguous nucleotide sequence which are complementary to a target sequence present in the target nucleic acid molecule. The contiguous nucleotide sequence (and therefore the target sequence) comprises at least 10 contiguous nucleotides, such as 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 contiguous nucleotides, such as from 12-25, such as from 14-18 contiguous nucleotides.


As used herein, the term “target sequence region” refers to an antisense oligonucleotide, 10-30 nucleotides in length, wherein said antisense oligonucleotide comprises a contiguous nucleotide sequence 10-30 nucleotides in length, wherein the contiguous nucleotide sequence is at least 90% complementary to a region of SEQ ID NO:1. The region of SEQ ID NO:1 to which the antisense oligonucleotide of the invention is complementary to is referred to as the target sequence region.


In some embodiments the target sequence region is AAGAGTAAAATATGGGT (SEQ ID NO:1093).


In some embodiments the target sequence region is GAATGTAAAAGTGTACAG (SEQ ID NO:1094).


In some embodiments the target sequence region is GGAATGTAAAAGTGTACA (SEQ ID NO:1095).


In some embodiments the target sequence region is GGGAATGTAAAAGTGTAC (SEQ ID NO:1096).


In some embodiments the target sequence region is TTGATGGTATAATGAAGAA (SEQ ID NO:1097).


In some embodiments the target sequence region is GGAAGATGTAAATAAGATT (SEQ ID NO:1098).


In some embodiments, the target sequence region is AAGATGTAAATAAGATTC (SEQ ID NO:1992).


It is to be understood that target RNA sequences have uracil (U) bases in place of any thymidine (T) bases.


As used herein, the term “off-target sequence” refers to a sequence of nucleotides comprising a nucleobase sequence which may be partially complementary to an oligonucleotide of the invention but which is present in another nucleic acid than the target (ATXN3) nucleic acid.


As used herein, the term “target cell” refers to a cell which is expressing the target nucleic acid. In some embodiments the target cell may be in vivo or in vitro. In some embodiments the target cell is a mammalian cell such as a rodent cell, such as a mouse cell or a rat cell, or a primate cell such as a monkey cell (e.g. a cynomolgus monkey cell) or a human cell.


In preferred embodiments the target cell expresses human ATXN3 mRNA, such as the ATXN3 pre-mRNA, e.g. SEQ ID NO:1, or ATXN3 mature mRNA. In some embodiments the target cell expresses monkey ATXN3 mRNA, such as the ATXN3 pre-mRNA, e.g. SEQ ID NO:2, or ATXN3 mature mRNA. In some embodiments the target cell expresses mouse ATXN3 mRNA, such as the ATXN3 pre-mRNA, e.g. SEQ ID NO:3, or ATXN3 mature mRNA. The poly A tail of ATXN3 mRNA is typically disregarded for antisense oligonucleotide targeting.


As used herein, the term “naturally occurring variant” refers to variants of ATXN3 gene or transcripts which originate from the same genetic loci as the target nucleic acid, but may differ for example, by virtue of degeneracy of the genetic code causing a multiplicity of codons encoding the same amino acid, or due to alternative splicing of pre-mRNA, or the presence of polymorphisms, such as single nucleotide polymorphisms (SNPs), and allelic variants. Based on the presence of the sufficient complementary sequence to the oligonucleotide, the oligonucleotide of the invention may therefore target the target nucleic acid and naturally occurring variants thereof.


The Homo sapiens ATXN3 gene is located at chromosome 14, 92058552..92106621, complement (NC_000014.9, Gene ID 4287).


In some embodiments, the naturally occurring variants have at least 95% such as at least 98% or at least 99% homology to a mammalian ATXN3 target nucleic acid, such as a target nucleic acid selected form the group consisting of SEQ ID NOS: 1, 2 and 3. In some embodiments the naturally occurring variants have at least 99% homology to the human ATXN3 target nucleic acid of SEQ ID NO:1.


As used herein, the term “modulation of expression” refers to an overall term for an oligonucleotide's ability to alter the amount of ATXN3 protein or ATXN3 mRNA when compared to the amount of ATXN3 or ATXN3 mRNA prior to administration of the oligonucleotide. Alternatively modulation of expression may be determined by reference to a control experiment. It is generally understood that the control is an individual or target cell treated with a saline composition or an individual or target cell treated with a non-targeting oligonucleotide (mock).


One type of modulation is an oligonucleotide's ability to inhibit, down-regulate, reduce, suppress, remove, stop, block, prevent, lessen, lower, avoid or terminate expression of ATXN3, e.g. by degradation of ATXN3 mRNA.


As used herein, a “high affinity modified nucleoside” refers to a modified nucleoside which, when incorporated into the oligonucleotide enhances the affinity of the oligonucleotide for its complementary target, for example as measured by the melting temperature (Tm). A high affinity modified nucleoside of the present invention preferably result in an increase in melting temperature between +0.5 to +12° C., more preferably between +1.5 to +10° C. and most preferably between +3 to +8° C. per modified nucleoside. Numerous high affinity modified nucleosides are known in the art and include for example, many 2′ substituted nucleosides as well as locked nucleic acids (LNA) (see e.g. Freier & Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann; Curr. Opinion in Drug Development, 2000, 3(2), 293-213).


As used herein, the term “RNase H activity” refers to the ability of an antisense oligonucleotide to recruit RNase H when in a duplex with a complementary RNA molecule. WO 01/23613 provides in vitro methods for determining RNaseH activity, which may be used to determine the ability to recruit RNaseH. Typically an oligonucleotide is deemed capable of recruiting RNase H if it, when provided with a complementary target nucleic acid sequence, has an initial rate, as measured in pmol/l/min, of at least 5%, such as at least 10% or more than 20% of the of the initial rate determined when using a oligonucleotide having the same base sequence as the modified oligonucleotide being tested, but containing only DNA monomers with phosphorothioate linkages between all monomers in the oligonucleotide, and using the methodology provided by Example 91-95 of WO01/23613 (hereby incorporated by reference). For use in determining RHase H activity, recombinant human RNase H1 is available from Lubio Science GmbH, Lucerne, Switzerland.


The antisense oligonucleotide of the invention, or contiguous nucleotide sequence thereof may be a gapmer. The antisense gapmers are commonly used to inhibit a target nucleic acid via RNase H mediated degradation.


As used herein, the term “gapmer oligonucleotide” refers to an oligonucleotide that comprises at least three distinct structural regions—a 5′-flank, a gap and a 3′-flank (F-G-F′)—in the ′5→3′ orientation. The “gap” region (G) comprises a stretch of contiguous DNA nucleotides which enable the oligonucleotide to recruit RNase H. The gap region is flanked by a 5′ flanking region (F) comprising one or more sugar modified nucleosides, advantageously high affinity sugar modified nucleosides, and by a 3′ flanking region (F′) comprising one or more sugar modified nucleosides, advantageously high affinity sugar modified nucleosides. The one or more sugar modified nucleosides in region F and F′ enhance the affinity of the oligonucleotide for the target nucleic acid (i.e. are affinity enhancing sugar modified nucleosides). In some embodiments, the one or more sugar modified nucleosides in region F and F′ are 2′ sugar modified nucleosides, such as high affinity 2′ sugar modifications, such as independently selected from LNA and 2′-MOE.


In a gapmer design, the 5′ and 3′ most nucleosides of the gap region are DNA nucleosides, and are positioned adjacent to a sugar modified nucleoside of the 5′ (F) or 3′ (F′) region respectively. The flanks may further defined by having at least one sugar modified nucleoside at the end most distant from the gap region, i.e. at the 5′ end of the 5′ flank and at the 3′ end of the 3′ flank.


Regions F-G-F′ form a contiguous nucleotide sequence. Antisense oligonucleotides of the invention, or the contiguous nucleotide sequence thereof, may comprise a gapmer region of formula F-G-F′.


The overall length of the gapmer design F-G-F′ may be, for example 12 to 32 nucleosides, such as 13 to 24, such as 14 to 22 nucleosides, Such as from 14 to17, such as 16 to 18 nucleosides.


By way of example, the gapmer oligonucleotide of the present invention can be represented by the following formulae:





F1-8-G5-16-F′1-8, such as





F1-8-G7-16-F′2-8


with the proviso that the overall length of the gapmer regions F-G-F′ is at least 12, such as at least 14 nucleotides in length. Regions F, G and F′ are further defined below and can be incorporated into the F-G-F′ formula.


As used herein, “region G (gap region)” of the gapmer refers to a region of nucleosides which enables the oligonucleotide to recruit RNaseH, such as human RNase H1, typically DNA nucleosides. RNaseH is a cellular enzyme which recognizes the duplex between DNA and RNA, and enzymatically cleaves the RNA molecule. Suitably gapmers may have a gap region (G) of at least 5 or 6 contiguous DNA nucleosides, such as 5-16 contiguous DNA nucleosides, such as 6-15 contiguous DNA nucleosides, such as 7-14 contiguous DNA nucleosides, such as 8-12 contiguous DNA nucleotides, such as 8-12 contiguous DNA nucleotides in length. The gap region G may, in some embodiments consist of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 contiguous DNA nucleosides. One or more cytosine (C) DNA in the gap region may in some instances be methylated (e.g. when a DNA c is followed by a DNA g) such residues are either annotated as 5-methyl-cytosine (meC). In some embodiments the gap region G may consist of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 contiguous phosphorothioate linked DNA nucleosides. In some embodiments, all internucleoside linkages in the gap are phosphorothioate linkages. Whilst traditional gapmers have a DNA gap region, there are numerous examples of modified nucleosides which allow for RNaseH recruitment when they are used within the gap region. Modified nucleosides which have been reported as being capable of recruiting RNaseH when included within a gap region include, for example, alpha-L-LNA, C4′ alkylated DNA (as described in PCT/EP2009/050349 and Vester et al., Bioorg. Med. Chem. Lett. 18 (2008) 2296-2300, both incorporated herein by reference), arabinose derived nucleosides like ANA and 2′F-ANA (Mangos et al. 2003 J. AM. CHEM. SOC. 125, 654-661), UNA (unlocked nucleic acid) (as described in Fluiter et al., Mol. Biosyst., 2009, 10, 1039 incorporated herein by reference). UNA is unlocked nucleic acid, typically where the bond between C2 and C3 of the ribose has been removed, forming an unlocked “sugar” residue. The modified nucleosides used in such gapmers may be nucleosides which adopt a 2′ endo (DNA like) structure when introduced into the gap region, i.e. modifications which allow for RNaseH recruitment). In some embodiments the DNA Gap region (G) described herein may optionally contain 1 to 3 sugar modified nucleosides which adopt a 2′ endo (DNA like) structure when introduced into the gap region.


Alternatively, there are numerous reports of the insertion of a modified nucleoside which confers a 3′ endo conformation into the gap region of gapmers, whilst retaining some RNaseH activity. Such gapmers with a gap region comprising one or more 3′endo modified nucleosides are referred to as “gap-breaker” or “gap-disrupted” gapmers, see for example WO2013/022984.


As used herein, the term “gap-breaker” or “gap-disrupted” refers to oligonucleotides that retain sufficient region of DNA nucleosides within the gap region to allow for RNaseH recruitment. The ability of “gap-breaker” oligonucleotide design to recruit RNaseH is typically sequence or even compound specific—see Rukov et al. 2015 Nucl. Acids Res. Vol. 43 pp. 8476-8487, which discloses “gap-breaker” oligonucleotides which recruit RNaseH which in some instances provide a more specific cleavage of the target RNA. Modified nucleosides used within the gap region of gap-breaker oligonucleotides may for example be modified nucleosides which confer a 3′endo confirmation, such 2′-O-methyl (OMe) or 2′-O-MOE (MOE) nucleosides, or beta-D LNA nucleosides (the bridge between C2′ and C4′ of the ribose sugar ring of a nucleoside is in the beta conformation), such as beta-D-oxy LNA or ScET nucleosides.


As with gapmers containing region G described above, the gap region of “gap-breaker” or “gap-disrupted” gapmers, have a DNA nucleosides at the 5′ end of the gap (adjacent to the 3′ nucleoside of region F), and a DNA nucleoside at the 3′ end of the gap (adjacent to the 5′ nucleoside of region F′). Gapmers which comprise a disrupted gap typically retain a region of at least 3 or 4 contiguous DNA nucleosides at either the 5′ end or 3′ end of the gap region.


Exemplary designs for gap-breaker oligonucleotides include:





F1-8-[D3-4-E1-D3-4]-F′1-8





F1-8-[D1-4-E1-D3-4]-F′1-8





F1-8-[D3-4-E1-D1-4]-F′1-8


wherein region G is within the brackets [Dn-Er-Dm], D is a contiguous sequence of DNA nucleosides, E is a modified nucleoside (the gap-breaker or gap-disrupting nucleoside), and F and F′ are the flanking regions as defined herein, and with the proviso that the overall length of the gapmer regions F-G-F′ is at least 12, such as at least 14 nucleotides in length.


In some embodiments, region G of a gap disrupted gapmer comprises at least 6 DNA nucleosides, such as 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 DNA nucleosides. As described above, the DNA nucleosides may be contiguous or may optionally be interspersed with one or more modified nucleosides, with the proviso that the gap region G is capable of mediating RNaseH recruitment.


As used herein, “region F (flanking region)” of the gapmer refers to a region of nucleosides that is positioned immediately adjacent to the 5′ DNA nucleoside of region G. The 3′ most nucleoside of region F is a sugar modified nucleoside, such as a high affinity sugar modified nucleoside, for example a 2′ substituted nucleoside, such as a MOE nucleoside, or an LNA nucleoside.


As used herein, “region F′ (flanking region)” of the gapmer refers to a region of nucleosides that is positioned immediately adjacent to the 3′ DNA nucleoside of region G. The 5′ most nucleoside of region F′ is a sugar modified nucleoside, such as a high affinity sugar modified nucleoside, for example a 2′ substituted nucleoside, such as a MOE nucleoside, or an LNA nucleoside.


Region F is 1-8 contiguous nucleotides in length, such as 2-6, such as 3-4 contiguous nucleotides in length. Advantageously the 5′ most nucleoside of region F is a sugar modified nucleoside. In some embodiments the two 5′ most nucleoside of region F are sugar modified nucleoside. In some embodiments the 5′ most nucleoside of region F is an LNA nucleoside. In some embodiments the two 5′ most nucleoside of region F are LNA nucleosides. In some embodiments the two 5′ most nucleoside of region F are 2′ substituted nucleoside nucleosides, such as two 3′ MOE nucleosides. In some embodiments the 5′ most nucleoside of region F is a 2′ substituted nucleoside, such as a MOE nucleoside.


Region F′ is 2-8 contiguous nucleotides in length, such as 3-6, such as 4-5 contiguous nucleotides in length. Advantageously, embodiments the 3′ most nucleoside of region F′ is a sugar modified nucleoside. In some embodiments the two 3′ most nucleoside of region F′ are sugar modified nucleoside. In some embodiments the two 3′ most nucleoside of region F′ are LNA nucleosides. In some embodiments the 3′ most nucleoside of region F′ is an LNA nucleoside. In some embodiments the two 3′ most nucleoside of region F′ are 2′ substituted nucleoside nucleosides, such as two 3′ MOE nucleosides. In some embodiments the 3′ most nucleoside of region F′ is a 2′ substituted nucleoside, such as a MOE nucleoside.


It should be noted that when the length of region F or F′ is one, it is advantageously an LNA nucleoside.


In some embodiments, region F and F′ independently consists of or comprises a contiguous sequence of sugar modified nucleosides. In some embodiments, the sugar modified nucleosides of region F may be independently selected from 2′-O-alkyl-RNA units, 2′-O-methyl-RNA, 2′-amino-DNA units, 2′-fluoro-DNA units, 2′-alkoxy-RNA, MOE units, LNA units, arabino nucleic acid (ANA) units and 2′-fluoro-ANA units.


In some embodiments, region F and F′ independently comprises both LNA and a 2′ substituted modified nucleosides (mixed wing design).


In some embodiments, region F and F′ consists of only one type of sugar modified nucleosides, such as only MOE or only beta-D-oxy LNA or only ScET. Such designs are also termed uniform flanks or uniform gapmer design.


In some embodiments, all the nucleosides of region F or F′, or F and F′ are LNA nucleosides, such as independently selected from beta-D-oxy LNA, ENA or ScET nucleosides. In some embodiments, all the nucleosides of region F or F′, or F and F′ are 2′ substituted nucleosides, such as OMe or MOE nucleosides. In some embodiments region F consists of 1, 2, 3, 4, 5, 6, 7, or 8 contiguous OMe or MOE nucleosides. In some embodiments only one of the flanking regions can consist of 2′ substituted nucleosides, such as OMe or MOE nucleosides. In some embodiments it is the 5′ (F) flanking region that consists 2′ substituted nucleosides, such as OMe or MOE nucleosides whereas the 3′ (F′) flanking region comprises at least one LNA nucleoside, such as beta-D-oxy LNA nucleosides or cET nucleosides. In some embodiments it is the 3′ (F′) flanking region that consists 2′ substituted nucleosides, such as OMe or MOE nucleosides whereas the 5′ (F) flanking region comprises at least one LNA nucleoside, such as beta-D-oxy LNA nucleosides or cET nucleosides.


In some embodiments, all the modified nucleosides of region F and F′ are LNA nucleosides, such as independently selected from beta-D-oxy LNA, ENA or ScET nucleosides, wherein region F or F′, or F and F′ may optionally comprise DNA nucleosides (an alternating flank, see definition of these for more details). In some embodiments, all the modified nucleosides of region F and F′ are beta-D-oxy LNA nucleosides, wherein region F or F′, or F and F′ may optionally comprise DNA nucleosides (an alternating flank, see definition of these for more details).


In some embodiments the 5′ most and the 3′ most nucleosides of region F and F′ are LNA nucleosides, such as beta-D-oxy LNA nucleosides or ScET nucleosides.


In some embodiments, the internucleoside linkage between region F and region G is a phosphorothioate internucleoside linkage. In some embodiments, the internucleoside linkage between region F′ and region G is a phosphorothioate internucleoside linkage. In some embodiments, the internucleoside linkages between the nucleosides of region F or F′, F and F′ are phosphorothioate internucleoside linkages.


As used herein, the term “LNA gapmer” refers to a gapmer wherein either one or both of region F and F′ comprises or consists of LNA nucleosides. A beta-D-oxy gapmer is a gapmer wherein either one or both of region F and F′ comprises or consists of beta-D-oxy LNA nucleosides.


In some embodiments the LNA gapmer is of formula: [LNA]1-5-[region G]-[LNA]1-5, wherein region G is as defined in the Gapmer region G definition.


As used herein, the term “MOE gapmer” refers to a gapmer wherein regions F and F′ consist of MOE nucleosides. In some embodiments the MOE gapmer is of design [MOE]1-8-[Region G]-[MOE]1-8, such as [MOE]2-7-[Region G]5-16-[MOE]2-7, such as [MOE]3-6-[Region G]-[MOE]3-6, wherein region G is as defined in the Gapmer definition. MOE gapmers with a 5-10-5 design (MOE-DNA-MOE) have been widely used in the art.


As used herein, the term “mixed wing gapmer” refers to an LNA gapmer wherein one or both of region F and F′ comprise a 2′ substituted nucleoside, such as a 2′ substituted nucleoside independently selected from the group consisting of 2′-O-alkyl-RNA units, 2′-O-methyl-RNA, 2′-amino-DNA units, 2′-fluoro-DNA units, 2′-alkoxy-RNA, MOE units, arabino nucleic acid (ANA) units and 2′-fluoro-ANA units, such as a MOE nucleosides. In some embodiments wherein at least one of region F and F′, or both region F and F′ comprise at least one LNA nucleoside, the remaining nucleosides of region F and F′ are independently selected from the group consisting of MOE and LNA. In some embodiments wherein at least one of region F and F′, or both region F and F′ comprise at least two LNA nucleosides, the remaining nucleosides of region F and F′ are independently selected from the group consisting of MOE and LNA. In some mixed wing embodiments, one or both of region F and F′ may further comprise one or more DNA nucleosides.


Mixed wing gapmer designs are disclosed in WO2008/049085 and WO2012/109395, both of which are hereby incorporated by reference.


As used herein, the term “Alternating Flank Gapmer” refers to LNA gapmer oligonucleotides where at least one of the flanks (F or F′) comprises DNA in addition to the LNA nucleoside(s). In some embodiments at least one of region F or F′, or both region F and F′, comprise both LNA nucleosides and DNA nucleosides. In such embodiments, the flanking region F or F′, or both F and F′ comprise at least three nucleosides, wherein the 5′ and 3′ most nucleosides of the F and/or F′ region are LNA nucleosides.


In some embodiments at least one of region F or F′, or both region F and F′, comprise both LNA nucleosides and DNA nucleosides. In such embodiments, the flanking region F or F′, or both F and F′ comprise at least three nucleosides, wherein the 5′ and 3′ most nucleosides of the F or F′ region are LNA nucleosides, and there is at least one DNA nucleoside positioned between the 5′ and 3′ most LNA nucleosides of region F or F′ (or both region F and F′).


The oligonucleotide of the invention may in some embodiments comprise or consist of the contiguous nucleotide sequence of the oligonucleotide which is complementary to the target nucleic acid, such as the gapmer F-G-F′, and further 5′ and/or 3′ nucleosides. The further 5′ and/or 3′ nucleosides may or may not be fully complementary to the target nucleic acid. Such further 5′ and/or 3′ nucleosides may be referred to as “region D′” and “region D″” herein.


The addition of “region D′” or “region D″” may be used for the purpose of joining the contiguous nucleotide sequence, such as the gapmer, to a conjugate moiety or another functional group. When used for joining the contiguous nucleotide sequence with a conjugate moiety is can serve as a biocleavable linker. Alternatively it may be used to provide exonuclease protection or for ease of synthesis or manufacture.


“Region D′” and “Region D″” can be attached to the 5′ end of region F or the 3′ end of region F′, respectively to generate designs of the following formulas D′-F-G-F′, F-G-F′-D″ or D′-F-G-F′-D″. In this instance the F-G-F′ is the gapmer portion of the oligonucleotide and region D′ or D″ constitute a separate part of the oligonucleotide.


“Region D′” or “Region D″” may independently comprise or consist of 1, 2, 3, 4 or 5 additional nucleotides, which may be complementary or non-complementary to the target nucleic acid. The nucleotide adjacent to the F or F′ region is not a sugar-modified nucleotide, such as a DNA or RNA or base modified versions of these. The D′ or D′ region may serve as a nuclease susceptible biocleavable linker (see definition of linkers). In some embodiments the additional 5′ and/or 3′ end nucleotides are linked with phosphodiester linkages, and are DNA or RNA. Nucleotide based biocleavable linkers suitable for use as region D′ or D″ are disclosed in WO2014/076195, which include by way of example a phosphodiester linked DNA dinucleotide. The use of biocleavable linkers in poly-oligonucleotide constructs is disclosed in WO2015/113922, where they are used to link multiple antisense constructs (e.g. gapmer regions) within a single oligonucleotide.


In one embodiment the oligonucleotide of the invention comprises a region D′ and/or D″ in addition to the contiguous nucleotide sequence which constitutes the gapmer.


In some embodiments, the oligonucleotide of the present invention can be represented by the following formulae:





F-G-F′; in particular F1-8-G5-16-F′2-8





D′-F-G-F′, in particular D′1-3-F1-8-G5-16-F′2-8





F-G-F′-D″, in particular F1-8-G5-16-F′2-8-D″1-3





D′-F-G-F′-D″, in particular D′1-3-F1-8-G5-16-F′2-8-D″1-3


In some embodiments the internucleoside linkage positioned between region D′ and region F is a phosphodiester linkage. In some embodiments the internucleoside linkage positioned between region F′ and region D″ is a phosphodiester linkage.


As used herein, the term “conjugate” refers to an oligonucleotide which is covalently linked to a non-nucleotide moiety (conjugate moiety or region C or third region).


Conjugation of the oligonucleotide of the invention to one or more non-nucleotide moieties may improve the pharmacology of the oligonucleotide, e.g. by affecting the activity, cellular distribution, cellular uptake or stability of the oligonucleotide. In some embodiments the conjugate moiety modify or enhance the pharmacokinetic properties of the oligonucleotide by improving cellular distribution, bioavailability, metabolism, excretion, permeability, and/or cellular uptake of the oligonucleotide. In particular the conjugate may target the oligonucleotide to a specific organ, tissue or cell type and thereby enhance the effectiveness of the oligonucleotide in that organ, tissue or cell type. At the same time the conjugate may serve to reduce activity of the oligonucleotide in non-target cell types, tissues or organs, e.g. off target activity or activity in non-target cell types, tissues or organs.


In an embodiment, the non-nucleotide moiety (conjugate moiety) is selected from the group consisting of carbohydrates, cell surface receptor ligands, drug substances, hormones, lipophilic substances, polymers, proteins, peptides, toxins (e.g. bacterial toxins), vitamins, viral proteins (e.g. capsids) or combinations thereof.


As used herein, the term “linkage” or “linker” refers to a connection between two atoms that links one chemical group or segment of interest to another chemical group or segment of interest via one or more covalent bonds. Conjugate moieties can be attached to the oligonucleotide directly or through a linking moiety (e.g. linker or tether). Linkers serve to covalently connect a third region, e.g. a conjugate moiety (Region C), to a first region, e.g. an oligonucleotide or contiguous nucleotide sequence or gapmer region F-G-F′ (region A).


In some embodiments of the invention the conjugate or oligonucleotide conjugate of the invention may optionally, comprise a linker region (second region or region B and/or region Y) which is positioned between the oligonucleotide or contiguous nucleotide sequence complementary to the target nucleic acid (region A or first region) and the conjugate moiety (region C or third region).


As used herein, the term “Region B” refers to biocleavable linkers comprising or consisting of a physiologically labile bond that is cleavable under conditions normally encountered or analogous to those encountered within a mammalian body. Conditions under which physiologically labile linkers undergo chemical transformation (e.g., cleavage) include chemical conditions such as pH, temperature, oxidative or reductive conditions or agents, and salt concentration found in or analogous to those encountered in mammalian cells. Mammalian intracellular conditions also include the presence of enzymatic activity normally present in a mammalian cell such as from proteolytic enzymes or hydrolytic enzymes or nucleases. In one embodiment the biocleavable linker is susceptible to Si nuclease cleavage. DNA phosphodiester containing biocleavable linkers are described in more detail in WO 2014/076195 (hereby incorporated by reference)—see also region D′ or D″ herein.


As used herein, the term “Region Y” refers to linkers that are not necessarily biocleavable but primarily serve to covalently connect a conjugate moiety (region C or third region), to an oligonucleotide (region A or first region). The region Y linkers may comprise a chain structure or an oligomer of repeating units such as ethylene glycol, amino acid units or amino alkyl groups. The oligonucleotide conjugates of the present invention can be constructed of the following regional elements A-C, A-B-C, A-B-Y-C, A-Y-B-C or A-Y-C. In some embodiments the linker (region Y) is an amino alkyl, such as a C2 to C36 amino alkyl group, including, for example C6 to Cu amino alkyl groups. In a preferred embodiment the linker (region Y) is a C6 amino alkyl group.


II. Oligonucleotides for Inhibiting ATXN3

The invention relates to oligonucleotides, such as antisense oligonucleotides, targeting ATXN3 expression.


The oligonucleotides of the invention targeting ATXN3 are capable of hybridizing to and inhibiting the expression of a ATXN3 target nucleic acid in a cell which is expressing the ATXN3 target nucleic acid.


The ATXN3 target nucleic acid may be a mammalian ATXN3 mRNA or premRNA, such as a human, mouse or monkey ATXN3 mRNA or premRNA. In some embodiments, the ATXN3 target nucleic acid is ATXN3 mRNA or premRNA for example a premRNA or mRNA originating from the Homo sapiens Ataxin 3 (ATXN3), RefSeqGene on chromosome 14, exemplified by NCBI Reference Sequence NM_004993.5 (SEQ ID NO:1).


The human ATXN3 pre-mRNA is encoded on Homo sapiens Chromosome 14, NC_000014.9 (92058552..92106621, complement). GENE ID=4287 (ATX3).


The oligonucleotides of the invention are capable of inhibiting the expression of ATXN3 target nucleic acid, such as the ATXN3 mRNA, in a cell which is expressing the target nucleic acid, such as the ATXN3 mRNA (e.g. a human, monkey or mouse cell).


In some embodiments, the oligonucleotides of the invention are capable of inhibiting the expression of ATXN3 target nucleic acid in a cell which is expressing the target nucleic acid, so to reduce the level of ATXN3 target nucleic acid (e.g. the mRNA) by at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% inhibition compared to the expression level of the ATXN3 target nucleic acid (e.g. the mRNA) in the cell. Suitably the cell is selected from the group consisting of a human cell, a monkey cell and a mouse cell. In some embodiments, the cell is a SK—N-AS, A431, NCI-H23 or ARPE19 cell (for more information on these cells, see Examples). Example 1 provides a suitable assay for evaluating the ability of the oligonucleotides of the invention to inhibit the expression of the target nucleic acid. Suitably the evaluation of a compounds ability to inhibit the expression of the target nucleic acid is performed in vitro, such a gymnotic in vitro assay, for example as according to Example 1.


In some embodiments, an oligonucleotide of the invention is more capable in inhibiting the expression of ATXN3 target nucleic acid in a cell which is expressing the target nucleic acid than in inhibiting the expression of KCNB2 nucleic acid in a cell which is expressing the KCNB2 nucleic acid, providing for a higher selectivity in targeting the ATXN3 target nucleic acid. KCNB2 (Potassium Voltage-Gated Channel Subfamily B Member 2) nucleic acid was identified as containing a potential off-target sequence which may be annealed to certain oligonucleotides targeting SEQ ID NO:1098 and/or SEQ ID NO:1992. Information, including sequence information, about the KCNB2 gene and transcripts can be found in the public database Ensembl (release 101) at gene id ENSG00000182674.


Suitably, the capability of an oligonucleotide to inhibit the expression of ATXN3 and KCNB2 nucleic acids is tested in a cell expressing both nucleic acids. In some embodiments, an oligonucleotide of the invention is capable of inhibiting the expression of ATXN3 target nucleic acid so as to reduce the level of ATXN3 target nucleic acid (e.g. the mRNA) by a fraction which is at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% inhibition compared to the expression level of the ATXN3 target nucleic acid (e.g. the mRNA) in the cell, but reduces the level of KCNB2 off-target nucleic acid (e.g., the mRNA) as compared to the expression level of the KCNB2 target nucleic acid (e.g. the mRNA) in the cell by a smaller fraction. The cell, may, for example, be selected from the group consisting of a human cell, a monkey cell and a mouse cell. In some embodiments, the cell is a neuronal cell, such as an iCell® Glutaneuron cell (for more information on these cells, see Table 2). Examples 5 and 14 provides suitable assays for evaluating the ability of the oligonucleotides of the invention to inhibit the expression of the target nucleic acid as compared to the off-target nucleic acid. Suitably the evaluation of the ability of an oligonucleotide to inhibit the expression of the target nucleic acid and the off-target nucleic acid is performed in vitro, such a gymnotic in vitro assay, for example as according to Example 14.


Advantageously, an oligonucleotide according to the invention has a low EC50 in inhibiting the expression of ATXN3 target nucleic acid in a cell which is expressing the target nucleic acid, providing for a high efficacy and/or potency in targeting the ATXN3 target nucleic acid. In some embodiments, the EC50 for inhibiting the expression of ATXN3 target nucleic acid is no more than about 1 μM, such as no more than about 500 nM, such as no more than about 300 nM, such as no more than about 200 nM, such as no more than about 180 nM, such as no more than about 170 nM, such as no more than about 160 nM, such as no more than about 150 nM, such as no more than about 140 nM, such as no more than about 130 nM, such as no more than about 120 nM, such as no more than about 110 nM, such as no more than about 100 nM, such as no more than about 90 nM, such as no more than about 80 nM, such as no more than about 70 nM, such as no more than about 60 nM, such as no more than about 50 nM. The cell, may, for example, be selected from the group consisting of a human cell, a monkey cell and a mouse cell. In some embodiments, the cell is a neuronal cell, such as a human neuronal cell, such as an iCell® GlutaNeuron cell (for more information on these cells, see Table 2). A particularly suitable assay is described in Example 16.


Preferably, an oligonucleotide according to the invention also or alternatively has a lower EC50 for inhibiting the expression of ATXN3 target nucleic acid (e.g., mRNA) in a cell than for inhibiting the expression of KCNB2 off-target nucleic acid (e.g., mRNA) in the cell, indicating that 50% inhibition of the expression of the nucleic acid is, for ATXN3 target nucleic acid, achieved at a lower oligonucleotide concentration, thereby providing for a higher selectivity. In some embodiments, the ratio between the EC50 for inhibiting the expression of KCNB2 off-target nucleic acid (e.g., mRNA) and the EC50 for inhibiting the expression of ATXN3 target nucleic acid is at least about 2, such as at least about 2.1, such as at least about 2.2, such as at least about 2.5, such as at least about 3, such as at least about 4, such as at least about 5, such as at least about 6, such as at least about 7, such as at least about 8, such as at least about 9, such as at least about 10, such as at least about 12, such as at least about 15, such as at least about 20, such as at least about 50, such as at least about 100, such as at least about 200, such as at least about 400, such as at least about 600, such as at least about 1000. The cell, may, for example, be selected from the group consisting of a human cell, a monkey cell and a mouse cell. In some embodiments, the cell is a neuronal cell, such as a human neuronal cell, such as an iCell® GlutaNeuron cell (for more information on these cells, see Table 2). Particularly suitable assays are described in Examples 14 and 16.


Typically, an oligonucleotide according to the invention also or alternatively has a low toxicity. Suitably, this can be tested in an in vitro assay, such as, e.g., in any one or more of the assays described in Example 7.


An aspect of the present invention relates to an antisense oligonucleotide, such as an LNA antisense oligonucleotide gapmer which comprises a contiguous nucleotide sequence of 10 to 30 nucleotides in length with at least 90% complementarity, such as is fully complementary to SEQ ID NO:1, 2 or 3.


In some embodiments, the oligonucleotide comprises a contiguous sequence of 10-30 nucleotides, which is at least 90% complementary, such as at least 91%, such as at least 92%, such as at least 93%, such as at least 94%, such as at least 95%, such as at least 96%, such as at least 97%, such as at least 98%, or 100% complementary with a region of the target nucleic acid or a target sequence. The sequences of suitable target nucleic acids are described herein above.


In some embodiments, the oligonucleotide of the invention comprises a contiguous nucleotides sequence of 12-24, such as 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, or 23, contiguous nucleotides in length, wherein the contiguous nucleotide sequence is fully complementary to a target nucleic acid having a sequence as provided in the section “Taget sequence regions” above.


In some embodiments, the antisense oligonucleotide of the invention comprises a contiguous nucleotides sequence of 12-15, such as 13, or 14, 15 contiguous nucleotides in length, wherein the contiguous nucleotide sequence is fully complementary to a target nucleic acid having a sequence as provided in the section “Target sequence regions” above.


Typically, the antisense oligonucleotide of the invention or the contiguous nucleotide sequence thereof is a gapmer, such as an LNA gapmer, a mixed wing gapmer, or an alternating flank gapmer.


In some embodiments, the antisense oligonucleotide according to the invention, comprises a contiguous nucleotide sequence of at least 10 contiguous nucleotides, such as at least 12 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, which is fully complementary to a target sequence comprised in a sequence selected from SEQ ID NO:1098, SEQ ID NO:1992, or both.


In some embodiments, the target sequence region of an antisense oligonucleotide according to the invention comprises or consists of SEQ ID NO:1098.


In some embodiments, the target sequence region of an antisense oligonucleotide according to the invention comprises or consists of SEQ ID NO:1992.


In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is less than 20 nucleotides in length. In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is 12-24 nucleotides in length. In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is 12-22 nucleotides in length. In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is 12-20 nucleotides in length. In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is 12-18 nucleotides in length. In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is 12-16 nucleotides in length.


Advantageously, in some embodiments all of the internucleoside linkages between the nucleosides of the contiguous nucleotide sequence are phosphorothioate internucleoside linkages.


In some embodiments, the contiguous nucleotide sequence is fully complementary to a target nucleic acid.


The oligonucleotide compounds represent specific designs of a motif sequence.


Typically, capital letters or the HELM-designation [LR] represent beta-D-oxy LNA nucleosides, lowercase letters or [dR] represent DNA nucleosides, all LNA C are 5-methyl cytosine, and 5-methyl DNA cytosines are presented by “e” or mc or [5meC], and all internucleoside linkages are, unless otherwise indicated, stereoundefined phosphorothioate internucleoside linkages [sP].


Design refers to the gapmer design, F-G-F′, where each number represents the number of consecutive modified nucleosides, e.g. 2′ modified nucleosides (first number=5′ flank), followed by the number of DNA nucleosides (second number=gap region), followed by the number of modified nucleosides, e.g. 2′ modified nucleosides (third number=3′ flank), optionally preceded by or followed by further repeated regions of DNA and LNA, which are not necessarily part of the contiguous nucleotide sequence that is complementary to the target nucleic acid.


Motif sequences represent the contiguous sequence of nucleobases present in the oligonucleotide, also referred to as the Oligonucleotide Base Sequence.


Typically, the antisense oligonucleotides is 12-24, such as 12-18, nucleosides in length wherein the antisense oligonucleotide comprises a contiguous nucleotide sequence comprising at least 12, such as at least 14, such as at least 15 contiguous nucleotides present in a sequence selected from SEQ ID NO:1122 and SEQ ID NO:1816, with one or more of the further modifications described herein.


In some embodiments, the antisense oligonucleotide is a gapmer oligonucleotide comprising a contiguous nucleotide sequence of formula 5′-F-G-F′-3′, where region F and F′ independently comprise 1-8 sugar modified nucleosides, and G is a region between 5 and 16 nucleosides which are capable of recruiting RNaseH.


In some embodiments, the sugar-modified nucleosides of region F and F′ are independently selected from the group consisting of 2′-O-alkyl-RNA, 2′-O-methyl-RNA, 2′-O-alkoxy-RNA, 2′-O-methoxyethyl-RNA, 2′-amino-DNA, 2′-fluoro-DNA, arabino nucleic acid (ANA), 2′-fluoro-ANA and LNA nucleosides.


In some embodiments, region G comprises 5-16 contiguous DNA nucleosides.


In some embodiments, the antisense oligonucleotide is an LNA gapmer oligonucleotide comprising LNA nucleosides.


In some embodiments, the LNA nucleosides are beta-D-oxy LNA nucleosides.


In some embodiments, substantially all, or all of the internucleoside linkages between the contiguous nucleosides are phosphorothioate internucleoside linkages.


In some embodiments, substantially all, or all phosphorothioate internucleoside linkages between the contiguous nucleosides are stereo-undefined phosphorothioate internucleoside linkages.


In some embodiments, one or more internucleoside linkages between the contiguous nucleosides are stereodefined phosphorothioate internucleoside linkages.


In some embodiments, one or more internucleoside linkages between the contiguous nucleosides are MOPS linkages.


In some embodiments, one or more internucleoside linkages between the contiguous nucleosides are MOPO linkages.


Particular sequence motifs and antisense oligonucleotides of the present invention are shown in Table 11 of Example 13, wherein each compound represents a separate specific embodiment according to the invention.


In some embodiments, the antisense oligonucleotide comprises a contiguous nucleotide sequence comprising the base sequence of an antisense oligonucleotide selected from the group consisting of Compound ID Nos. 1122_82 to 1122_406, shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of an antisense oligonucleotide selected from the group consisting of Compound ID Nos. 1122_82 to 1122_406, shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises a contiguous nucleotide sequence comprising the nucleoside base sequence and, optionally, the sugar moiety modifications, of an antisense oligonucleotide selected from the group consisting of Compound ID Nos. 1122_91, 1122_107, 1122_54, 1122_155, 1122_156, 1122_157, 1122_158, 1122_167, 1122_172, 1122_175, 1122_294, 1122_296, 1122_359, 1122_384 and 1122_385, shown in Table 14.


In one aspect, the antisense oligonucleotide is an LNA gapmer antisense oligonucleotide comprising a contiguous nucleotide sequence comprising the contiguous nucleotides present in SEQ ID NO:1122 except for the modified nucleosides and modified internucleoside linkages indicated in Table 15 for each residue in SEQ ID NO: 1122. In a specific embodiment, the antisense oligonucleotide is more capable of inhibiting the expression of human ATXN3 than human KCNB2 in a cell which is expressing human ATXN3 and human KCNB2.


In one embodiment, the LNA gapmer antisense oligonucleotide comprises the contiguous nucleotides present in SEQ ID NO:1122, wherein all internucleoside linkages are stereo-undefined phosphorothioate internucleoside linkages, wherein 2, 3 or 4 of the nucleosides in each of region F and region F′ are beta-D-oxy LNA nucleosides [LR], typically wherein each beta-D-oxy LNA cytosine is 5-methyl cytosine [LR](5meC), except for:

    • (a) residue 10 being a 2′-O-methyl uracil nucleoside [mR](U) (e.g., Compound ID No. 1122_91);
    • (b) residue 3 being a 2′-O-methyl uracil nucleoside [mR](U) (e.g., Compound ID No. 1122_107);
    • (c) the internucleoside linkage between residues 11 and 12 being a stereodefined phosphorothioate internucleoside linkage [ssP] (e.g., Compound ID No. 1122_154);
    • (d) the internucleoside linkage between residues 12 and 13 being a stereodefined phosphorothioate internucleoside linkage [ssP] (e.g., Compound ID No. 1122_155);
    • (e) the internucleoside linkage between residues 13 and 14 being a stereodefined phosphorothioate internucleoside linkage [ssP] (e.g., Compound ID No. 1122_156);
    • (f) the internucleoside linkage between residues 14 and 15 being a stereodefined phosphorothioate internucleoside linkage [ssP] (e.g., Compound ID No. 1122_157);
    • (g) the internucleoside linkage between residues 15 and 16 being a stereodefined phosphorothioate internucleoside linkage [ssP] (e.g., Compound ID No. 1122_158);
    • (h) residue 7 being a 2′-O-methoxyethyl adenine nucleoside [MOE](A) (e.g., Compound ID No. 1122_167);
    • (i) residue 15 being a 2′-O-methyl cytosine nucleoside [mR](C) (e.g., Compound ID NO. 1122_172);
    • (j) residue 11 being a 2′-O-methyl adenine nucleoside [mR](A) (e.g., Compound ID No. 1122_175);
    • (k) residue 18 being a 2′-fluoro cytosine nucleoside [fR](C) (e.g., Compound ID No. 1122_294);
    • (l) residue 4 being a 2′-O-methyl cytosine nucleoside [mR](C) (e.g., Compound ID No. 1122_296);
    • (m) the internucleoside linkage between residues 15 and 16 being a 3-methoxypropyiphosphonothioate internucleoside linkage [MOPS] (e.g., Compound ID No. 1122_359);
    • (n) the internucleoside linkage between residues 16 and 17 being a 3-methoxypropylphosphoriothioate internucleoside linkage [MOPS] (e.g., Compound ID No. 1122_384);
    • (o) the internucleoside linkage between residues 6 and 7 being a 3-methoxypropylphosphonothioate internucleoside linkage [MOPS] (e.g., Compound ID No. 1122_385); or
    • (p) a combination of any two or more of (a) to (o).


In some embodiments, the one or more modified nucleosides and/or one or more modified internucleoside linkages are, for each residue in SEQ ID NO:1122, independently selected from the options for that residue as shown in Table 15.


In one aspect, the antisense oligonucleotide is an LNA gapmer antisense oligonucleotide comprising a contiguous nucleotide sequence comprising the contiguous nucleotides present in SEQ ID NO:1816 except for the modified nucleosides and modified internucleoside linkages indicated in Table 16 for each residue in SEQ ID NO:1816. In a specific embodiment, the antisense oligonucleotide is more capable of inhibiting the expression of human ATXN3 than human KCNB2 in a cell which is expressing human ATXN3 and human KCNB2.


In one embodiment, the LNA gapmer antisense oligonucleotide comprises the contiguous nucleotides present in SEQ ID NO:1816, wherein all internucleoside linkages are stereo-undefined phosphorothioate internucleoside linkages, wherein 4, 5 or 6 of the nucleosides in the F-region and 2 or 3 of the nucleosides in the F′-region are beta-D-oxy LNA nucleosides [LR], typically wherein each beta-D-oxy LNA cytosine is 5-methyl cytosine [LR](5meC), except for:

    • (a) the internucleoside linkage between residues 12 and 13 being a stereodefined phosphorothioate internucleoside linkage [ssP] (e.g., Compound ID No. 1816_13);
    • (b) the internucleoside linkage between residues 14 and 15 being a stereodefined phosphorothioate internucleoside linkage [ssP] (e.g., Compound ID No. 1816_15);
    • (c) residue 8 being a 2′-fluoro adenine nucleoside [fR](A) (e.g., Compound ID No. 1816_28);
    • (d) residues 1, 2, 3, 5, 7, 8, 16, 17 and 18 being LNA beta-D-oxy LNA nucleosides [LR], wherein each beta-D-oxy LNA cytosine is 5-methyl cytosine [LR](5meC) (e.g, Compound ID No. 181641);
    • (e) residue 17 being a 2′-O-methoxyethyl thymine nucleoside [MOE](T) (e.g., Compound ID No. 1816_42);
    • (f) residue 16 being a 2′-O-methoxyethyl cytosine nucleoside [MOE](5meC) (e.g., Compound ID No. 1816_43);
    • (g) residue 8 being a 2′-O-methyl adenine nucleoside [mR](A) (e.g., Compound ID No. 1816_60);
    • (h) residue 3 being a 2′-O-methyl adenine nucleoside [mR](A) (e.g., Compound ID No. 1816_61);
    • (i) residue 16 being a 2′-O-fluoro cytosine nucleoside [fR](C) (e.g., Compound ID No. 1816_64);
    • (j) residue 16 being a 2′-O-methyl cytosine nucleoside [mR](C) (e.g., Compound ID No. 1816_65);
    • (k) residue 17 being a 2′-fluoro uracil nucleoside [fR](U) (e.g., Compound ID No. 1816_68);
    • (l) the internucleoside linkage between residues 16 and 17 being a 3-methoxypropylphosphonothioate internucleoside linkage [MOPS] (e.g., Compound ID No. 1816_92); or
    • (m) a combination of any two or more of (a) to (1).


In some embodiments, the one or more modified nucleosides and/or one or more modified internucleoside linkages are, for each residue in SEQ ID NO:1816, independently selected from the options for that residue as shown in Table 16.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_91, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_107, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_154, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_155, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_156, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_157, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_158, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_167, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_172, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_175, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_294, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_296, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_359, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_384, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1122_385, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_13, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_15, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_28, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_41, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_42, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_43, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_60, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_61, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_64, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_65, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_68, as shown in Table 11.


In some embodiments, the antisense oligonucleotide comprises or consists of Compound ID No. 1816_92, as shown in Table 11.


In some embodiments, the antisense oligonucleotide is an antisense oligonucleotide according to the following chemical annotation:

    • (a) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[m R]U[sP].[dR](A)[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C)[sP].[LR][5me]C (SEQ ID NO:1122, wherein residue 10 is U) (Compound ID No. 1122_91);
    • (b) [LR]A[sP].[LR]A[sP].[mR]U[sP].[LR][5me]C[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[d R]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[LR]T[sP].[dR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122, wherein residue 3 is U) (Compound ID No. 1122_107);
    • (c) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[d R]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_154);
    • (d) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dr]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[d R]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[dR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_155);
    • (e) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5meC][sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[L R][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_156);
    • (f) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5meC][sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[L R][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_157);
    • (g) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[d R]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_158);
    • (h) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[MOE]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_167);
    • (i) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5meC][sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[L R][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_172);
    • (j) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[d R]T[sP].[mR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_175);
    • (k) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[d R]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[fR]C[sP].[LR][5me]C (SEQ ID NO: 1122) (Compound ID No. 1122_294);
    • (l) [LR]A[sP].[dR]A[sP].[dR]T[sP].[mR]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[s P].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_296);
    • (m) [LR]A[sP].[LR]A[sP].[LR]T[sP].[LR][5me]C[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[d R]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[MOPS].[LR]T[sP].[dR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122359);
    • (n) [LR]A[sP].[LR]A[sP].[LR]T[sP].[LR][5me]C[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[d R]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[LR]T[MOPS].[dR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122384);
    • (o) [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[MOPS].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[L R][5me]C (SEQ ID NO:1122) (Compound ID No. 1122385);
    • (p) [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[d R]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_13);
    • (q) [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[d R]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_15);
    • (r) [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[fR]A[sP].[dR]T[sP].[d R]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_28);
    • (s) [LR]G[sP].[LR]A[sP].[LR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[d R]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_41);
    • (t) [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[d R]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[MOE]T[sP].[LR]T (SEQ ID NO: 1816) (Compound ID No. 1816_42);
    • (u) [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[d R]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP]. [MOE][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO: 1816) (Compound ID No. 1816_43);
    • (v) [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[mR]A[sP].[dR]T[sP].[d R]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_60);
    • (w) [LR]G[sP].[LR]A[sP].[mR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_61);
    • (x) [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[d R]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[fR]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_64);
    • (y) [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[d R]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_65);
    • (z) [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[d R]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[fR]U[sP].[LR]T (SEQ ID NO:1816, wherein residue 17 is U) (Compound ID No. 1816_68); or
    • (aa) [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[d R]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dRC[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[MOPS].[LR]T[sP].LR]T (SEQ ID NO:1816) (Compound ID No. 1816_92);


or is a pharmaceutically acceptable salt thereof, wherein


[LR] is a beta-D-oxy-LNA nucleoside,


[LR][5me]C is a beta-D-oxy-LNA 5-methyl cytosine nucleoside,


[dR] is a DNA nucleoside,


[sP] is a phosphorothioate internucleoside linkage (stereo undefined)


[ssP] is a stereodefined Sp phosphorothioate internucleoside linkage


[MOPS] is a 3-methoxypropylphosphonothioate internucleoside linkage


[MOPO] is a 3-methoxypropylphosphonate internucleoside linkage


[mR] is a 2′-O-methyl nucleoside,


[MOE] is a 2′-O-methoxyethyl nucleoside, and


[fR] is a 2′-fluoro nucleoside.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12A (Compound ID No. 1122_91); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12B (Compound ID No. 1122_107); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12C (Compound ID No. 1122_154); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12D (Compound ID No. 1122_155); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12E (Compound ID No. 1122_156); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12F (Compound ID No. 1122_157); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12G (Compound ID No. 1122_158); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12H (Compound ID No. 1122_167); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12I (Compound ID No. 1122_172); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12J (Compound ID No. 1122_175); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12K (Compound ID No. 1122_294); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12L (Compound ID No. 1122_296); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12M (Compound ID No. 1122_359); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12N (Compound ID No. 1122_384); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12O (Compound ID No. 1122_385); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12P (Compound ID No. 1816_13); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12Q (Compound ID No. 1816_15); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12R (Compound ID No. 1816_28); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12S (Compound ID No. 1816_41); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12T (Compound ID No. 1816_42); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12U (Compound ID No. 1816_43); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12V (Compound ID No. 1816_60); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12W (Compound ID No. 1816_61); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12X (Compound ID No. 1816_64); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12Y (Compound ID No. 1816_65); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12Z (Compound ID No. 1816_68); or a pharmaceutically acceptable salt thereof.


In one embodiment, the antisense oligonucleotide is the antisense oligonucleotide shown in FIG. 12AA (Compound ID No. 1816_92); or a pharmaceutically acceptable salt thereof.


III. Compositions, Methods, and Applications for Inhibition of ATXN3 Expression

A. Method of Manufacture


In a further aspect, the invention provides methods for manufacturing the oligonucleotides of the invention comprising reacting nucleotide units and thereby forming covalently linked contiguous nucleotide units comprised in the oligonucleotide. Preferably, the method uses phophoramidite chemistry (see for example Caruthers et al, 1987, Methods in Enzymology vol. 154, pages 287-313). In a further embodiment the method further comprises reacting the contiguous nucleotide sequence with a conjugating moiety (ligand) to covalently attach the conjugate moiety to the oligonucleotide. In a further aspect a method is provided for manufacturing the composition of the invention, comprising mixing the oligonucleotide or conjugated oligonucleotide of the invention with a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.


B. Pharmaceutical Composition


In a further aspect, the invention provides pharmaceutical compositions comprising any of the aforementioned oligonucleotides and/or oligonucleotide conjugates or salts thereof and a pharmaceutically acceptable diluent, carrier, salt and/or adjuvant.


In a further aspect, the invention provides pharmaceutical compositions comprising any of the aforementioned oligonucleotides and/or oligonucleotide conjugates or salts thereof and a pharmaceutically acceptable diluent, carrier, salt or adjuvant.


A pharmaceutically acceptable diluent includes phosphate-buffered saline (PBS) and pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts. In some embodiments the pharmaceutically acceptable diluent is sterile phosphate buffered saline. In some embodiments the oligonucleotide is used in the pharmaceutically acceptable diluent at a concentration of 50-300 μM solution.


The compounds according to the present invention may exist in the form of their pharmaceutically acceptable salts. The term “pharmaceutically acceptable salt” refers to conventional acid-addition salts or base-addition salts that retain the biological effectiveness and properties of the compounds of the present invention and are formed from suitable non-toxic organic or inorganic acids or organic or inorganic bases. Acid-addition salts include for example those derived from inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid and nitric acid, and those derived from organic acids such as p-toluenesulfonic acid, salicylic acid, methanesulfonic acid, oxalic acid, succinic acid, citric acid, malic acid, lactic acid, fumaric acid, and the like. Base-addition salts include those derived from ammonium, potassium, sodium and, quaternary ammonium hydroxides, such as for example, tetramethyl ammonium hydroxide. The chemical modification of a pharmaceutical compound into a salt is a technique well known to pharmaceutical chemists in order to obtain improved physical and chemical stability, hygroscopicity, flowability and solubility of compounds. It is for example described in Bastin, Organic Process Research & Development 2000, 4, 427-435 or in Ansel, In: Pharmaceutical Dosage Forms and Drug Delivery Systems, 6th ed. (1995), pp. 196 and 1456-1457. For example, the pharmaceutically acceptable salt of the compounds provided herein may be a sodium salt.


Suitable formulations for use in the present invention are found in Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, Pa., 17th ed., 1985. For a brief review of methods for drug delivery, see, e.g., Langer (Science 249:1527-1533, 1990). WO 2007/031091 provides further suitable and preferred examples of pharmaceutically acceptable diluents, carriers and adjuvants (hereby incorporated by reference). Suitable dosages, formulations, administration routes, compositions, dosage forms, combinations with other therapeutic agents, pro-drug formulations are also provided in WO2007/031091.


Oligonucleotides or oligonucleotide conjugates of the invention may be mixed with pharmaceutically acceptable active or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions are dependent upon a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


These compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration. The pH of the preparations typically will be between 3 and 11, more preferably between 5 and 9 or between 6 and 8, and most preferably between 7 and 8, such as 7 to 7.5. The resulting compositions in solid form may be packaged in multiple single dose units, each containing a fixed amount of the above-mentioned agent or agents, such as in a sealed package of tablets or capsules. The composition in solid form can also be packaged in a container for a flexible quantity, such as in a squeezable tube designed for a topically applicable cream or ointment.


In some embodiments, the oligonucleotide or oligonucleotide conjugate of the invention is a prodrug. In particular with respect to oligonucleotide conjugates the conjugate moiety is cleaved of the oligonucleotide once the prodrug is delivered to the site of action, e.g. the target cell.


C. Applications


The oligonucleotides of the invention may be utilized as research reagents for, for example, diagnostics, therapeutics and prophylaxis.


In research, such oligonucleotides may be used to specifically modulate the synthesis of ATXN3 protein in cells (e.g. in vitro cell cultures) and experimental animals thereby facilitating functional analysis of the target or an appraisal of its usefulness as a target for therapeutic intervention. Typically the target modulation is achieved by degrading or inhibiting the mRNA producing the protein, thereby prevent protein formation or by degrading or inhibiting a modulator of the gene or mRNA producing the protein.


If employing the oligonucleotide of the invention in research or diagnostics the target nucleic acid may be a cDNA or a synthetic nucleic acid derived from DNA or RNA.


The present invention provides an in vivo or in vitro method for modulating ATXN3 expression in a target cell which is expressing ATXN3, said method comprising administering an oligonucleotide of the invention in an effective amount to said cell.


In some embodiments, the target cell, is a mammalian cell in particular a human cell. The target cell may be an in vitro cell culture or an in vivo cell forming part of a tissue in a mammal.


In diagnostics the oligonucleotides may be used to detect and quantitate ATXN3 expression in cell and tissues by northern blotting, in-situ hybridisation or similar techniques.


For therapeutics, an animal or a human, suspected of having a disease or disorder, which can be treated by modulating the expression of ATXN3


The invention provides methods for treating or preventing a disease, comprising administering a therapeutically or prophylactically effective amount of an oligonucleotide, an oligonucleotide conjugate or a pharmaceutical composition of the invention to a subject suffering from or susceptible to the disease.


The invention also relates to an oligonucleotide, a composition or a conjugate as defined herein for use as a medicament.


The oligonucleotide, oligonucleotide conjugate or a pharmaceutical composition according to the invention is typically administered in an effective amount.


The invention also provides for the use of the oligonucleotide or oligonucleotide conjugate of the invention as described for the manufacture of a medicament for the treatment of a disorder as referred to herein, or for a method of the treatment of as a disorder as referred to herein.


The disease or disorder, as referred to herein, is associated with expression of ATXN3. In some embodiments disease or disorder may be associated with a mutation in the ATXN3 gene. Therefore, in some embodiments, the target nucleic acid is a mutated form of the ATXN3 sequence.


The methods of the invention are preferably employed for treatment or prophylaxis against diseases caused by abnormal levels and/or activity of ATXN3.


The invention further relates to use of an oligonucleotide, oligonucleotide conjugate or a pharmaceutical composition as defined herein for the manufacture of a medicament for the treatment of abnormal levels and/or activity of ATXN3.


In one embodiment, the invention relates to oligonucleotides, oligonucleotide conjugates or pharmaceutical compositions for use in the treatment of spinocerebellar ataxia.


D. Administration


In some embodiments, the oligonucleotides or pharmaceutical compositions of the present invention may be administered oral. In further embodiments, the oligonucleotides or pharmaceutical compositions of the present invention may be administered topical or enteral or parenteral (such as, intravenous, subcutaneous, intra-muscular, intracerebral, intracerebroventricular or intrathecal).


In a preferred embodiment the oligonucleotide or pharmaceutical compositions of the present invention are administered by a parenteral route including intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion, intrathecal or intracranial, e.g. intracerebral or intraventricular, intravitreal administration. In one embodiment the active oligonucleotide or oligonucleotide conjugate is administered intravenously. In another embodiment the active oligonucleotide or oligonucleotide conjugate is administered subcutaneously.


In some embodiments, the oligonucleotide, oligonucleotide conjugate or pharmaceutical composition of the invention is administered at a dose of 0.1-15 mg/kg, such as from 0.2-10 mg/kg, such as from 0.25-5 mg/kg. The administration can be once a week, every 2nd week, every third week or even once a month.


E. Combination therapies


In some embodiments the oligonucleotide, oligonucleotide conjugate or pharmaceutical composition of the invention is for use in a combination treatment with another therapeutic agent. The therapeutic agent can for example be the standard of care for the diseases or disorders described above.


EXAMPLES

Materials and Methods:


Oligonucleotide Synthesis:


Oligonucleotide synthesis is generally known in the art. Below is a protocol which may be applied. The oligonucleotides of the present invention may have been produced by slightly varying methods in terms of apparatus, support and concentrations used.


Oligonucleotides are synthesized on uridine universal supports using the phosphoramidite approach on an MermMade 192 oligonucleotide synthesizer at 1 μmol scale. At the end of the synthesis, the oligonucleotides are cleaved from the solid support using aqueous ammonia for 5-16 hours at 60° C. For any MOPS and MOPO modifications, the oligonucleotides are deprotected at room temperature for −16 hours. The oligonucleotides are purified by reverse phase HPLC (RP-HPLC) or by solid phase extractions and characterized by UPLC, and the molecular mass is further confirmed by ESI-MS.


Elongation of The Oligonucleotide:


The coupling of 5′DMTr protected nucleoside O-cyanoethyl-phosphoramidites, including DNA-A(Bz), DNA-G(iBu), DNA-C(Bz), DNA-T, LNA-5-methyl-C(Bz), LNA-A(Bz), LNA-G(dmf), LNA-T, MOE-A(Bz), MOE-G(iBu), MOE-(T), MOE-(U), MOE-5-methyl-C(Bz), 2′F-A(Bz), 2′F(T), 2′F(U), 2′F—C(Ac), 2′F-G(iBu), 2′OMe-A(Bz), 2′OMe(U), 2′OMe(T), 2′OMe-C(Ac), 2′OMe-G(iBu), 2′OMe-G(dmf), MOP-dA(Bz), MOP-dT, MOP-dC(Ac), MOP-dG(iBu), MOP-LNA-A(Bz), MOP-LNA-T, MOP-LNA-C(Bz), MOP-LNA-G(iBu), MOP-LNA-G(dmf) is performed by using a solution of 0.1 M of the 5′-O-DMT-protected amidite in acetonitrile and DCI (4,5-dicyanoimidazole) in acetonitrile (0.25 M) as activator.


Purification by RP-HPLC:


The crude compounds are purified by preparative RP-HPLC on a Phenomenex Jupiter C18 10μ150×10 mm column. 0.1 M ammonium acetate pH 8 and acetonitrile is used as buffers at a flow rate of 5 mL/min. The collected fractions are lyophilized to give the purified compound typically as a white solid.


Abbreviations

DCI 4,5-Dicyanoimidazole


DCM: Dichloromethane


DMF: Dimethylformamidine


DMT: 4,4′-Dimethoxytrityl


THF: Tetrahydrofurane


Bz: Benzoyl


Ibu: Isobutyryl


RP-HPLC: Reverse phase high performance liquid chromatography


Tm Assay:


Oligonucleotide and RNA target (phosphate linked, PO) duplexes are diluted to 3 mM in 500 ml RNase-free water and mixed with 500 ml 2×Tm-buffer (200 mM NaCl, 0.2 mM EDTA, 20 mM Naphosphate, pH 7.0). The solution is heated to 95° C. for 3 min and then allowed to anneal in room temperature for 30 min. The duplex melting temperatures (Tm) is measured on a Lambda 40 UV/VIS Spectrophotometer equipped with a Peltier temperature programmer PTP6 using PE Templab software (Perkin Elmer). The temperature is ramped up from 20° C. to 95° C. and then down to 25° C., recording absorption at 260 nm. First derivative and the local maximums of both the melting and annealing are used to assess the duplex Tm.


Cell Lines:









TABLE 2







Details in relation to the cell lines for assaying the compounds:












Hours of




Cells/well
cell incubation










Cell lines
(96 well
prior to
Days of













Name
Vendor
Cat. no.
Cell medium
plate)
treatment
treatment
















A431
ECACC
85090402
EMEM (Cat. no.
8000
24
3





M2279), 10% FBS





(Cat. no. F7524),





2 mM Glutamine





(Cat. no. G8541),





0.1 mM NEAA





(Cat. no. M7145),





25 μg/ml Gentamicin





(Cat. no. G1397)


NCI-H23
ATCC
CRL-5800
RPMI 1640
10000
24
3





(Cat. no. R2405),





10% FBS (Cat. no.





F7524), 10 mM





Hepes (Cat. no.





H0887), 1 mM





Sodium Pyruvate





(Cat. no. S8636),





25 μg/ml Gentamicin





(Cat. no. G1397)


ARPE19
ATCC
CRL-2302
DMEM/F-12 HAM
2000
0
4





(Cat. no. D8437),





10% FBS (Cat. no.





F7524), 25 μg/ml





Gentamicin





(Cat. no. G1397)


U251
ECACC
9063001
EMEM (Cat. no.
2000
0
4





M2279), 10% FBS





(Cat. no. F7524),





2 mM Glutamine





(Cat. no. G8541),





0.1 mM NEAA





(Cat. no. M7145),





1 mM Sodium Pyruvate





(Cat. no. S8636),





25 μg/ml Gentamicin





(Cat. no. G1397)


U2-OS
ATCC
HTB-96
MCCoy 5A medium
7000
24
3





(Cat. no. M8403),





10% FBS (Cat. no.





F7524), 1.5 mM





Glutamine (Cat. no.





G8541), 25 μg/ml





Gentamicin





(Cat. no. G1397)


SK-N-AS
ATCC
CRL-2137
Dulbecco's Modified
9300
24
4





Eagle's Medium,





supplemented with





0.1 mM Non-Essential





Amino Acids (NEAA)





and fetal bovine





serum to a final





concentration of 10%


iCell ®
Stemcell
R1034
BrainPhys Neuronal
50.000-80.000
168
4


GlutaNeurons
Technologies

Medium (Cat. no.





5790) supplemented





with iCell ®





GlutaNeurons Kit





(Stemcell Technologies.





no. R1034) according





to vendor), N-2





(Thermo Fisher),





1 μg/ml Laminin 512





(BioLamina, no. LN521)





* All medium and additives are purchased from Sigma Aldrich unless otherweise stated.






Example 1: Testing In Vitro Efficacy of LNA Oligonucleotides in SK—N-AS, A431, NCI-H23 and ARPE19 Cell Lines at 25 and 5 μM

Materials and Methods:


An oligonucleotide screen is performed in human cell lines using the LNA oligonucleotides in Table 3 (CMP ID NO: 4_1-1089_1, see column “oligonucleotide compounds”) targeting SEQ ID NO: 1. The human cell lines SK-N-AS, A341, NCI-H23 and ARPE19 are purchased from the vendors listed in Table 2, and are maintained as recommended by the supplier in a humidified incubator at 37° C. with 5% CO2. For the screening assays, cells are seeded in 96 multi well plates in media recommended by the supplier (see Table 2 in the Materials and Methods section). The number of cells/well is optimized for each cell line (see Table 2 in the Materials and Methods section).


Cells are incubated between 0 and 24 hours before addition of the oligonucleotide in a concentration of 5 or 25 μM (dissolved in PBS). 3-4 days after addition of the oligonucleotide, the cells are harvested (The incubation times for each cell line are indicated in Table 2 in the Materials and Methods section).


RNA is extracted using the Qiagen RNeasy 96 kit (74182), according to the manufacturer's instructions). cDNA synthesis and qPCR is performed using qScript XLT one-step RT-qPCR ToughMix Low ROX, 95134-100 (Quanta Biosciences). Target transcript levels are quantified using FAM labeled TaqMan assays from Thermo Fisher Scientific in a multiplex reaction with a VIC labelled GUSB control. TaqMan primer assays for the target transcript of interest ATXN3 (see below) and a house keeping gene GUSB (4326320E VIC-MGB probe).


ATXN3 primer assay (Assay ID: N/A Item Name Hs.PT.58.39355049):











Forward primer:



(SEQ ID NO: 1128)



GTTTCTAAAGACATGGTCACAGC







Reverse:



(SEQ ID NO: 1129)



CTATCAGGACAGAGTTCACATCC







Probe:



(SEQ ID NO: 1130)



56-FAM/AAAGGCCAG/ZEN/CCACCAGTTCAGG/3IABkFQ/






Results:

The relative ATXN3 mRNA expression levels are determined as % of control (PBS-treated cells) i.e. the lower the value the larger the inhibition.









TABLE 3







Sequence Motifs and Compounds of Exemplary Compounds of the Invention













SEQ




CMP ID
Oligonucteotide


ID NO
motif sequence
start
end
design
NO
compound
















4
aagaaaccaaaccc
743
756
2-10-2
4_1
AAgaaaccaaacCC





5
aaagaaaccaaacc
744
757
2-10-2
5_1
AAagaaaccaaaCC





6
aaaagaaaccaaac
745
758
2-10-2
6_1
AAaagaaaccaaA








C





7
caaaagaaaccaaa
746
759
2-10-2
7_1
CAaaagaaaccaA








A





8
ccaaaagaaaccaa
747
760
2-10-2
8_1
CCaaaagaaaccAA





9
tccactcctaatac
803
816
2-10-2
9_1
TCcactcctaatAC





10
gtccactcctaata
804
817
2-10-2
10_1
GTccactcctaaTA





11
agtccactcctaat
805
818
2-10-2
11_1
AGtccactcctaAT





12
cagtccactcctaa
806
819
2-10-2
12_1
CAgtccactcctAA





13
ccagtccactccta
807
820
2-10-2
13_1
CCagtccactccTA





14
actctttccaaaca
1012
1025
2-10-2
14_1
ACtctttccaaaCA





15
aactctttccaaac
1013
1026
2-10-2
15_1
AActctttccaaAC





16
caactctttccaaa
1014
1027
2-10-2
16_1
CAactctttccaAA





17
gcaactctttccaa
1015
1028
2-10-2
17_1
GCaactctttccAA





18
agcaactctttcca
1016
1029
2-10-2
18_1
AGcaactctttcCA





19
cagcaactctttcc
1017
1030
2-10-2
19_1
CAgcaactctttCC





20
ccagcaactctttc
1018
1031
2-10-2
20_1
CCagcaactcttTC





21
accagcaactcttt
1019
1032
2-10-2
21_1
ACcagcaactctTT





22
ctcctattaaataa
1040
1053
2-10-2
22_1
CTcctattaaatAA





23
cctcctattaaata
1041
1054
2-10-2
23_1
CCtcctattaaaTA





24
tcctcctattaaat
1042
1055
2-10-2
24_1
TCctcctattaaAT





25
ctcctcctattaaa
1043
1056
2-10-2
25_1
CTcctcctattaAA





26
gctcctcctattaa
1044
1057
2-10-2
26_1
GCtcctcctattAA





27
tgctcctcctatta
1045
1058
2-10-2
27_1
TGctcctcctatTA





28
ttgctcctcctatt
1046
1059
2-10-2
28_1
TTgctcctcctaTT





29
tttgctcctcctat
1047
1060
2-10-2
29_1
TTtgctcctcctAT





30
ctttgctcctccta
1048
1061
2-10-2
30_1
CTttgctcctccTA





31
cctttgctcctcct
1049
1062
2-10-2
31_1
CetttgctcctcCT





32
ccctttgctcctcc
1050
1063
2-10-2
32_1
CCctttgctcctCC





33
accctttgctcctc
1051
1064
2-10-2
33_1
ACcctttgctccTC





34
aaccctttgctcct
1052
1065
2-10-2
34_1
AAccctttgctcCT





35
aaaccctttgctcc
1053
1066
2-10-2
35_1
AAaccctttgctCC





36
aaaaccctttgctc
1054
1067
2-10-2
36_1
AAaaccctttgcTC





37
aaaaaccctttgct
1055
1068
2-10-2
37_1
AAaaaccctttgCT





38
caaaaaccctttgc
1056
1069
2-10-2
38_1
CAaaaaccctttGC





39
acaaaaaccctttg
1057
1070
2-10-2
39_1
ACaaaaacccttTG





40
aacaaaaacccttt
1058
1071
2-10-2
40_1
AAcaaaaaccctTT





41
aaacaaaaaccctt
1059
1072
2-10-2
41_1
AAacaaaaacccTT





42
aaaacaaaaaccct
1060
1073
2-10-2
42_1
AAaacaaaaaccCT





43
taaaacaaaaaccc
1061
1074
2-10-2
43_1
TAaaacaaaaacCC





44
ataaaacaaaaacc
1062
1075
2-10-2
44_1
ATaaaacaaaaaCC





45
aataaaacaaaaac
1063
1076
2-10-2
45_1
AAtaaaacaaaaAC





46
taataaaacaaaaa
1064
1077
2-10-2
46_1
TAataaaacaaaAA





47
ttaataaaacaaaa
1065
1078
2-10-2
47_1
TTaataaaacaaAA





48
tttaataaaacaaa
1066
1079
2-10-2
48_1
TTtaataaaacaAA





49
atttaataaaacaa
1067
1080
2-10-2
49_1
ATttaataaaacAA





50
ttaaaataaaaatt
1194
1207
2-10-2
50_1
TTaaaataaaaaTT





51
tttaaaataaaaat
1195
1208
2-10-2
51_1
TTtaaaataaaaAT





52
ctttaaaataaaaa
1196
1209
2-10-2
52_1
CTttaaaataaaAA





53
tctttaaaataaaa
1197
1210
2-10-2
53_1
TCtttaaaataaAA





54
atctttaaaataaa
1198
1211
2-10-2
54_1
ATctttaaaataAA





55
catctttaaaataa
1199
1212
2-10-2
55_1
CAtctttaaaatAA





56
ccatctttaaaata
1200
1213
2-10-2
56_1
CCatctttaaaaTA





57
tctaacttaataaa
2886
2899
2-10-2
57_1
TCtaacttaataAA





58
ttctaacttaataa
2887
2900
2-10-2
58_1
TTctaacttaatAA





59
attctaacttaata
2888
2901
2-10-2
59_1
ATtctaacttaaTA





60
cattctaacttaat
2889
2902
2-10-2
60_1
CAttctaacttaAT





61
acattctaacttaa
2890
2903
2-10-2
61_1
ACattctaacttAA





62
tacattctaactta
2891
2904
2-10-2
62_1
TAcattctaactTA





63
ttacattctaactt
2892
2905
2-10-2
63_1
TTacattctaacTT





64
tttacattctaact
2893
2906
2-10-2
64_1
TTtacattctaaCT





65
ttttacattctaac
2894
2907
2-10-2
65_1
TTttacattctaAC





66
tttttacattctaa
2895
2908
2-10-2
66_1
TTtttacattctAA





67
gtttttacattcta
2896
2909
2-10-2
67_1
GTttttacattcTA





68
tgtttttacattct
2897
2910
2-10-2
68_1
TGtttttacattCT





69
ctgtttttacattc
2898
2911
2-10-2
69_1
CTgtttttacatTC





70
ttcaaatatttatt
2969
2982
2-10-2
70_1
TTcaaatatttaTT





71
attcaaatatttat
2970
2983
2-10-2
71_1
ATtcaaatatttAT





72
cattcaaatattta
2971
2984
2-10-2
72_1
CAttcaaatattTA





73
ccattcaaatattt
2972
2985
2-10-2
73_1
CCattcaaatatTT





74
cccattcaaatatt
2973
2986
2-10-2
74_1
CCcattcaaataTT





75
ccccattcaaatat
2974
2987
2-10-2
75_1
CCccattcaaatAT





76
gccccattcaaata
2975
2988
2-10-2
76_1
GCcccattcaaaTA





77
tatacatttttttc
3173
3186
2-10-2
77_1
TAtacattttttTC





78
atatacattttttt
3174
3187
2-10-2
78_1
ATatacatttttTT





79
tatatacatttttt
3175
3188
2-10-2
79_1
TAtatacattttTT





80
atatatacattttt
3176
3189
2-10-2
80_1
ATatatacatttTT





81
aatatatacatttt
3177
3190
2-10-2
81_1
AAtatatacattTT





82
aaatatatacattt
3178
3191
2-10-2
82_1
AAatatatacatTT





83
caaatatatacatt
3179
3192
2-10-2
83_1
CAaatatatacaTT





84
tcaaatatatacat
3180
3193
2-10-2
84_1
TCaaatatatacAT





85
ttcaaatatataca
3181
3194
2-10-2
85_1
TTcaaatatataCA





86
attcaaatatatac
3182
3195
2-10-2
86_1
ATtcaaatatatAC





87
cattcaaatatata
3183
3196
2-10-2
87_1
CAttcaaatataTA





88
ccattcaaatatat
3184
3197
2-10-2
88_1
CCattcaaatatAT





89
tccattcaaatata
3185
3198
2-10-2
89_1
TCcattcaaataTA





90
atccattcaaatat
3186
3199
2-10-2
90_1
ATccattcaaatAT





91
tatccattcaaata
3187
3200
2-10-2
91_1
TAtccattcaaaTA





92
ttatccattcaaat
3188
3201
2-10-2
92_1
TTatccattcaaAT





93
tttatccattcaaa
3189
3202
2-10-2
931
TTtatccattcaAA





94
ctttatccattcaa
3190
3203
2-10-2
941
CTttatccattcAA





95
tctttatccattca
3191
3204
2-10-2
951
TCtttatccattCA





96
ctctttatccattc
3192
3205
2-10-2
96_1
CTctttatccatTC





97
tctctttatccatt
3193
3206
2-10-2
971
TCtctttatccaTT





98
ccatatatatctca
3221
3234
2-10-2
98_1
CCatatatatctCA





99
accatatatatctc
3222
3235
2-10-2
991
ACcatatatatcTC





100
caccatatatatct
3223
3236
2-10-2
100_1
CAccatatatatCT





101
gcaccatatatatc
3224
3237
2-10-2
101_1
GCaccatatataTC





102
agcaccatatatat
3225
3238
2-10-2
102_1
AGcaccatatatAT





103
cagcaccatatata
3226
3239
2-10-2
103_1
CAgcaccatataTA





104
acagcaccatatat
3227
3240
2-10-2
104_1
ACagcaccatatAT





105
aacagcaccatata
3228
3241
2-10-2
105_1
AAcagcaccataTA





106
aaaacaaacaacaa
3462
3475
2-10-2
106_1
AAaacaaacaacA








A





107
taaaacaaacaaca
3463
3476
2-10-2
107_1
TAaaacaaacaaCA





108
ctaaaacaaacaac
3464
3477
2-10-2
108_1
CTaaaacaaacaAC





109
actaaaacaaacaa
3465
3478
2-10-2
109_1
ACtaaaacaaacAA





110
aactaaaacaaaca
3466
3479
2-10-2
110_1
AActaaaacaaaCA





111
gaactaaaacaaac
3467
3480
2-10-2
111_1
GAactaaaacaaAC





112
agaactaaaacaaa
3468
3481
2-10-2
112_1
AGaactaaaacaAA





113
cagaactaaaacaa
3469
3482
2-10-2
113_1
CAgaactaaaacAA





114
ccagaactaaaaca
3470
3483
2-10-2
114_1
CCagaactaaaaCA





115
accagaactaaaac
3471
3484
2-10-2
115_1
ACcagaactaaaAC





116
atgttattatcccc
3882
3895
2-10-2
116_1
ATgttattatccCC





117
tatgttattatccc
3883
3896
2-10-2
117_1
TAtgttattatcCC





118
ctatgttattatcc
3884
3897
2-10-2
118_1
CTatgttattatCC





119
tctatgttattatc
3885
3898
2-10-2
119_1
TCtatgttattaTC





120
tacactctaactct
3908
3921
2-10-2
120_1
TAcactctaactCT





121
ctacactctaactc
3909
3922
2-10-2
121_1
CTacactctaacTC





122
tctacactctaact
3910
3923
2-10-2
122_1
TCtacactctaaCT





123
ctctacactctaac
3911
3924
2-10-2
123_1
CTctacactctaAC





124
tctctacactctaa
3912
3925
2-10-2
124_1
TCtctacactctAA





125
ttctctacactcta
3913
3926
2-10-2
125_1
TTctctacactcTA





126
cttctctacactct
3914
3927
2-10-2
126_1
CTtctctacactCT





127
ccttctctacactc
3915
3928
2-10-2
127_1
CCttctctacacTC





128
tacaacacaaatca
4102
4115
2-10-2
128_1
TAcaacacaaatCA





129
ctacaacacaaatc
4103
4116
2-10-2
129_1
CTacaacacaaaTC





130
actacaacacaaat
4104
4117
2-10-2
130_1
ACtacaacacaaAT





131
aactacaacacaaa
4105
4118
2-10-2
131_1
AActacaacacaAA





132
taactacaacacaa
4106
4119
2-10-2
132_1
TAactacaacacAA





133
ctaactacaacaca
4107
4120
2-10-2
133_1
CTaactacaacaCA





134
actaactacaacac
4108
4121
2-10-2
134_1
ACtaactacaacAC





135
tactaactacaaca
4109
4122
2-10-2
135_1
TActaactacaaCA





136
ctactaactacaac
4110
4123
2-10-2
136_1
CTactaactacaAC





137
actactaactacaa
4111
4124
2-10-2
137_1
ACtactaactacAA





138
cactactaactaca
4112
4125
2-10-2
138_1
CActactaactaCA





139
acactactaactac
4113
4126
2-10-2
139_1
ACactactaactAC





140
gacactactaacta
4114
4127
2-10-2
140_1
GAcactactaacTA





141
agacactactaact
4115
4128
2-10-2
141_1
AGacactactaaCT





142
tttacccccaacct
4173
4186
2-10-2
142_1
TTtacccccaacCT





143
atttacccccaacc
4174
4187
2-10-2
143_1
ATttacccccaaCC





144
catttacccccaac
4175
4188
2-10-2
144_1
CAtttacccccaAC





145
tcatttacccccaa
4176
4189
2-10-2
145_1
TCatttacccccAA





146
atcatttaccccca
4177
4190
2-10-2
146_1
ATcatttaccccCA





147
aatcatttaccccc
4178
4191
2-10-2
147_1
AAtcatttacccCC





148
aaatcatttacccc
4179
4192
2-10-2
148_1
AAatcatttaccCC





149
caaatcatttaccc
4180
4193
2-10-2
149_1
CAaatcatttacCC





150
ccaaatcatttacc
4181
4194
2-10-2
150_1
CCaaatcatttaCC





151
accaaatcatttac
4182
4195
2-10-2
151_1
ACcaaatcatttAC





152
taccaaatcattta
4183
4196
2-10-2
152_1
TAccaaatcattTA





153
ctaccaaatcattt
4184
4197
2-10-2
153_1
CTaccaaatcatTT





154
gctaccaaatcatt
4185
4198
2-10-2
154_1
GCtaccaaatcaTT





155
tgctaccaaatcat
4186
4199
2-10-2
155_1
TGctaccaaatcAT





156
ctgctaccaaatca
4187
4200
2-10-2
156_1
CTgctaccaaatCA





157
actgctaccaaatc
4188
4201
2-10-2
157_1
ACtgctaccaaaTC





158
aactgctaccaaat
4189
4202
2-10-2
158_1
AActgctaccaaAT





159
aagctttaatcaaa
5102
5115
2-10-2
159_1
AAgctttaatcaAA





160
caagctttaatcaa
5103
5116
2-10-2
160_1
CAagctttaatcAA





161
tcaagctttaatca
5104
5117
2-10-2
161_1
TCaagctttaatCA





162
atcaagctttaatc
5105
5118
2-10-2
162_1
ATcaagctttaaTC





163
catcaagctttaat
5106
5119
2-10-2
163_1
CAtcaagctttaAT





164
tcaaactatcccca
5131
5144
2-10-2
164_1
TCaaactatcccCA





165
ctcaaactatcccc
5132
5145
2-10-2
165_1
CTcaaactatccCC





166
tctcaaactatccc
5133
5146
2-10-2
166_1
TCtcaaactatcCC





167
atctcaaactatcc
5134
5147
2-10-2
167_1
ATctcaaactatCC





168
tatctcaaactatc
5135
5148
2-10-2
168_1
TAtctcaaactaTC





169
ttatctcaaactat
5136
5149
2-10-2
169_1
TTatctcaaactAT





170
cttatctcaaacta
5137
5150
2-10-2
170_1
CTtatctcaaacTA





171
ccttatctcaaact
5138
5151
2-10-2
171_1
CCttatctcaaaCT





172
cccttatctcaaac
5139
5152
2-10-2
172_1
CCcttatctcaaAC





173
gcccttatctcaaa
5140
5153
2-10-2
173_1
GCccttatctcaAA





174
tgcccttatctcaa
5141
5154
2-10-2
174_1
TGcccttatctcAA





175
caaacttcatcaaa
5540
5553
2-10-2
175_1
CAaacttcatcaAA





176
tcaaacttcatcaa
5541
5554
2-10-2
176_1
TCaaacttcatcAA





177
atcaaacttcatca
5542
5555
2-10-2
177_1
ATcaaacttcatCA





178
aatcaaacttcatc
5543
5556
2-10-2
178_1
AAtcaaacttcaTC





179
aaatcaaacttcat
5544
5557
2-10-2
179_1
AAatcaaacttcAT





180
gaaatcaaacttca
5545
5558
2-10-2
180_1
GAaatcaaacttCA





181
tgaaatcaaacttc
5546
5559
2-10-2
181_1
TGaaatcaaactTC





182
ttgaaatcaaactt
5547
5560
2-10-2
182_1
TTgaaatcaaacTT





183
aacacaaatttcct
5693
5706
2-10-2
183_1
AAcacaaatttcCT





184
taacacaaatttcc
5694
5707
2-10-2
184_1
TAacacaaatttCC





185
ctaacacaaatttc
5695
5708
2-10-2
185_1
CTaacacaaattTC





186
gctaacacaaattt
5696
5709
2-10-2
186_1
GCtaacacaaatTT





187
tgctaacacaaatt
5697
5710
2-10-2
187_1
TGctaacacaaaTT





188
ttgctaacacaaat
5698
5711
2-10-2
188_1
TTgctaacacaaAT





189
tttgctaacacaaa
5699
5712
2-10-2
189_1
TTtgctaacacaAA





190
ctttgctaacacaa
5700
5713
2-10-2
190_1
CTttgctaacacAA





191
cctttgctaacaca
5701
5714
2-10-2
191_1
CetttgctaacaCA





192
taactaataattat
6417
6430
2-10-2
192_1
TAactaataattAT





193
ataactaataatta
6418
6431
2-10-2
193_1
ATaactaataatTA





194
aataactaataatt
6419
6432
2-10-2
194_1
AAtaactaataaTT





195
taataactaataat
6420
6433
2-10-2
195_1
TAataactaataAT





196
ataataactaataa
6421
6434
2-10-2
196_1
ATaataactaatAA





197
aataataactaata
6422
6435
2-10-2
197_1
AAtaataactaaTA





198
caataataactaat
6423
6436
2-10-2
198_1
CAataataactaAT





199
ccaataataactaa
6424
6437
2-10-2
199_1
CCaataataactAA





200
accaataataacta
6425
6438
2-10-2
200_1
ACcaataataacTA





201
aaccaataataact
6426
6439
2-10-2
201_1
AAccaataataaCT





202
taaccaataataac
6427
6440
2-10-2
202_1
TAaccaataataAC





203
ataaccaataataa
6428
6441
2-10-2
203_1
ATaaccaataatAA





204
tataaccaataata
6429
6442
2-10-2
204_1
TAtaaccaataaTA





205
gtataaccaataat
6430
6443
2-10-2
205_1
GTataaccaataAT





206
acatcacacaattt
7415
7428
2-10-2
206_1
ACatcacacaatTT





207
gacatcacacaatt
7416
7429
2-10-2
207_1
GAcatcacacaaTT





208
tgacatcacacaat
7417
7430
2-10-2
208_1
TGacatcacacaAT





209
ctgacatcacacaa
7418
7431
2-10-2
209_1
CTgacatcacacAA





210
tctgacatcacaca
7419
7432
2-10-2
210_1
TCtgacatcacaCA





211
atctgacatcacac
7420
7433
2-10-2
211_1
ATctgacatcacAC





212
ttccttaacccaac
7436
7449
2-10-2
212_1
TTccttaacccaAC





213
attccttaacccaa
7437
7450
2-10-2
213_1
ATtccttaacccAA





214
tattccttaaccca
7438
7451
2-10-2
214_1
TAttccttaaccCA





215
ctattccttaaccc
7439
7452
2-10-2
215_1
CTattccttaacCC





216
tctattccttaacc
7440
7453
2-10-2
216_1
TCtattccttaaCC





217
gtctattccttaac
7441
7454
2-10-2
217_1
GTctattccttaAC





218
catcaaatctcata
8609
8622
2-10-2
218_1
CAtcaaatctcaTA





219
gcatcaaatctcat
8610
8623
2-10-2
219_1
GCatcaaatctcAT





220
tgcatcaaatctca
8611
8624
2-10-2
220_1
TGcatcaaatctCA





221
atgcatcaaatctc
8612
8625
2-10-2
221_1
ATgcatcaaatcTC





222
aatgcatcaaatct
8613
8626
2-10-2
222_1
AAtgcatcaaatCT





223
attttaaacaaaca
8637
8650
2-10-2
223_1
ATtttaaacaaaCA





224
tattttaaacaaac
8638
8651
2-10-2
224_1
TAttttaaacaaAC





225
ttattttaaacaaa
8639
8652
2-10-2
225_1
TTattttaaacaAA





226
attattttaaacaa
8640
8653
2-10-2
226_1
ATtattttaaacAA





227
aattattttaaaca
8641
8654
2-10-2
227_1
AAttattttaaaCA





228
gaattattttaaac
8642
8655
2-10-2
228_1
GAattattttaaAC





229
ttttacaaatctac
8693
8706
2-10-2
229_1
TTttacaaatctAC





230
attttacaaatcta
8694
8707
2-10-2
230_1
ATtttacaaatcTA





231
tattttacaaatct
8695
8708
2-10-2
231_1
TAttttacaaatCT





232
ttattttacaaatc
8696
8709
2-10-2
232_1
TTattttacaaaTC





233
tttattttacaaat
8697
8710
2-10-2
233_1
TTtattttacaaAT





234
atttattttacaaa
8698
8711
2-10-2
234_1
ATttattttacaAA





235
catttattttacaa
8699
8712
2-10-2
235_1
CAtttattttacAA





236
acatttattttaca
8700
8713
2-10-2
236_1
ACatttattttaCA





237
aacatttattttac
8701
8714
2-10-2
237_1
AAcatttattttAC





238
taacatttatttta
8702
8715
2-10-2
238_1
TAacatttatttTA





239
aatttaatcattaa
9391
9404
2-10-2
239_1
AAtttaatcattAA





240
taatttaatcatta
9392
9405
2-10-2
240_1
TAatttaatcatTA





241
ataatttaatcatt
9393
9406
2-10-2
241_1
ATaatttaatcaTT





242
aataatttaatcat
9394
9407
2-10-2
242_1
AAtaatttaatcAT





243
aaataatttaatca
9395
9408
2-10-2
243_1
AAataatttaatCA





244
taaataatttaatc
9396
9409
2-10-2
244_1
TAaataatttaaTC





245
ctaaataatttaat
9397
9410
2-10-2
245_1
CTaaataatttaAT





246
cctaaataatttaa
9398
9411
2-10-2
246_1
CCtaaataatttAA





247
ccctaaataattta
9399
9412
2-10-2
247_1
CCctaaataattTA





248
cccctaaataattt
9400
9413
2-10-2
248_1
CCcctaaataatTT





249
tcccctaaataatt
9401
9414
2-10-2
249_1
TCccctaaataaTT





250
tatataaaaatcta
10958
10971
2-10-2
250_1
TAtataaaaatcTA





251
ctatataaaaatct
10959
10972
2-10-2
251_1
CTatataaaaatCT





252
tctatataaaaatc
10960
10973
2-10-2
252_1
TCtatataaaaaTC





253
atctatataaaaat
10961
10974
2-10-2
253_1
ATctatataaaaAT





254
tatctatataaaaa
10962
10975
2-10-2
254_1
TAtctatataaaAA





255
ttatctatataaaa
10963
10976
2-10-2
255_1
TTatctatataaAA





256
tttatctatataaa
10964
10977
2-10-2
256_1
TTtatctatataAA





257
ccccactctaatat
11001
11014
2-10-2
257_1
CCccactctaatAT





258
gccccactctaata
11002
11015
2-10-2
258_1
GCcccactctaaTA





259
tgccccactctaat
11003
11016
2-10-2
259_1
TGccccactctaAT





260
atgccccactctaa
11004
11017
2-10-2
260_1
ATgccccactctAA





261
aatgccccactcta
11005
11018
2-10-2
261_1
AAtgccccactcTA





262
aaatgccccactct
11006
11019
2-10-2
262_1
AAatgccccactCT





263
taaatgccccactc
11007
11020
2-10-2
263_1
TAaatgccccacTC





264
ttaaatgccccact
11008
11021
2-10-2
264_1
TTaaatgccccaCT





265
atataaccaccaaa
11546
11559
2-10-2
265_1
ATataaccaccaAA





266
tatataaccaccaa
11547
11560
2-10-2
266_1
TAtataaccaccAA





267
atatataaccacca
11548
11561
2-10-2
267_1
ATatataaccacCA





268
tatatataaccacc
11549
11562
2-10-2
268_1
TAtatataaccaCC





269
atatatataaccac
11550
11563
2-10-2
269_1
ATatatataaccAC





270
aaaattcactatct
11942
11955
2-10-2
270_1
AAaattcactatCT





271
gaaaattcactatc
11943
11956
2-10-2
271_1
GAaaattcactaTC





272
tgaaaattcactat
11944
11957
2-10-2
272_1
TGaaaattcactAT





273
ctgaaaattcacta
11945
11958
2-10-2
273_1
CTgaaaattcacTA





274
tctgaaaattcact
11946
11959
2-10-2
274_1
TCtgaaaattcaCT





275
tactatatacatct
12176
12189
2-10-2
275_1
TActatatacatCT





276
ctactatatacatc
12177
12190
2-10-2
276_1
CTactatatacaTC





277
tctactatatacat
12178
12191
2-10-2
277_1
TCtactatatacAT





278
gtctactatataca
12179
12192
2-10-2
278_1
GTctactatataCA





279
agtctactatatac
12180
12193
2-10-2
279_1
AGtctactatatAC





280
tagtctactatata
12181
12194
2-10-2
280_1
TAgtctactataTA





281
ctagtctactatat
12182
12195
2-10-2
281_1
CTagtctactatAT





282
actagtctactata
12183
12196
2-10-2
282_1
ACtagtctactaTA





283
aactagtctactat
12184
12197
2-10-2
283_1
AActagtctactAT





284
tattctacccataa
12211
12224
2-10-2
284_1
TAttctacccatAA





285
atattctacccata
12212
12225
2-10-2
285_1
ATattctacccaTA





286
tatattctacccat
12213
12226
2-10-2
286_1
TAtattctacccAT





287
gtatattctaccca
12214
12227
2-10-2
287_1
GTatattctaccCA





288
tgtatattctaccc
12215
12228
2-10-2
288_1
TGtatattctacCC





289
atgtatattctacc
12216
12229
2-10-2
289_1
ATgtatattctaCC





290
ccacacaattccta
12254
12267
2-10-2
290_1
CCacacaattccTA





291
accacacaattcct
12255
12268
2-10-2
291_1
ACcacacaattcCT





292
aaccacacaattcc
12256
12269
2-10-2
292_1
AAccacacaattCC





293
aaaccacacaattc
12257
12270
2-10-2
293_1
AAaccacacaatTC





294
aaaaccacacaatt
12258
12271
2-10-2
294_1
AAaaccacacaaTT





295
gaaaaccacacaat
12259
12272
2-10-2
295_1
GAaaaccacacaAT





296
agaaaaccacacaa
12260
12273
2-10-2
296_1
AGaaaaccacacA








A





297
cagaaaaccacaca
12261
12274
2-10-2
297_1
CAgaaaaccacaCA





298
ccagaaaaccacac
12262
12275
2-10-2
298_1
CCagaaaaccacAC





299
tccagaaaaccaca
12263
12276
2-10-2
299_1
TCcagaaaaccaCA





300
aaatccataaaaaa
12327
12340
2-10-2
300_1
AAatccataaaaAA





301
taaatccataaaaa
12328
12341
2-10-2
301_1
TAaatccataaaAA





302
ctaaatccataaaa
12329
12342
2-10-2
302_1
CTaaatccataaAA





303
actaaatccataaa
12330
12343
2-10-2
303_1
ACtaaatccataAA





304
cactaaatccataa
12331
12344
2-10-2
304_1
CActaaatccatAA





305
tcactaaatccata
12332
12345
2-10-2
305_1
TCactaaatccaTA





306
atcactaaatccat
12333
12346
2-10-2
306_1
ATcactaaatccAT





307
tatcactaaatcca
12334
12347
2-10-2
307_1
TAtcactaaatcCA





308
atatcactaaatcc
12335
12348
2-10-2
308_1
ATatcactaaatCC





309
tatatcactaaatc
12336
12349
2-10-2
309_1
TAtatcactaaaTC





310
atatatcactaaat
12337
12350
2-10-2
310_1
ATatatcactaaAT





311
gatatatcactaaa
12338
12351
2-10-2
311_1
GAtatatcactaAA





312
agatatatcactaa
12339
12352
2-10-2
312_1
AGatatatcactAA





313
tagatatatcacta
12340
12353
2-10-2
313_1
TAgatatatcacTA





314
tataaatttctcta
12690
12703
2-10-2
314_1
TAtaaatttctcTA





315
atataaatttctct
12691
12704
2-10-2
315_1
ATataaatttctCT





316
tatataaatttctc
12692
12705
2-10-2
316_1
TAtataaatttcTC





317
atatataaatttct
12693
12706
2-10-2
317_1
ATatataaatttCT





318
catatataaatttc
12694
12707
2-10-2
318_1
CAtatataaattTC





319
tcatatataaattt
12695
12708
2-10-2
319_1
TCatatataaatTT





320
ctccattccaaatt
12739
12752
2-10-2
320_1
CTccattccaaaTT





321
actccattccaaat
12740
12753
2-10-2
321_1
ACtccattccaaAT





322
cactccattccaaa
12741
12754
2-10-2
322_1
CActccattccaAA





323
ccactccattccaa
12742
12755
2-10-2
323_1
CCactccattccAA





324
accactccattcca
12743
12756
2-10-2
324_1
ACcactccattcCA





325
aaccactccattcc
12744
12757
2-10-2
325_1
AAccactccattCC





326
aaaccactccattc
12745
12758
2-10-2
326_1
AAaccactccatTC





327
tcacacaaccatat
13155
13168
2-10-2
327_1
TCacacaaccatAT





328
atcacacaaccata
13156
13169
2-10-2
328_1
ATcacacaaccaTA





329
gatcacacaaccat
13157
13170
2-10-2
329_1
GAtcacacaaccAT





330
agatcacacaacca
13158
13171
2-10-2
330_1
AGatcacacaacCA





331
aagatcacacaacc
13159
13172
2-10-2
331_1
AAgatcacacaaCC





332
aaagatcacacaac
13160
13173
2-10-2
332_1
AAagatcacacaAC





333
aaaagatcacacaa
13161
13174
2-10-2
333_1
AAaagatcacacAA





334
taaaagatcacaca
13162
13175
2-10-2
334_1
TAaaagatcacaCA





335
ttcatttctaaaaa
13297
13310
2-10-2
335_1
TTcatttctaaaAA





336
tttcatttctaaaa
13298
13311
2-10-2
336_1
TTtcatttctaaAA





337
ctttcatttctaaa
13299
13312
2-10-2
337_1
CTttcatttctaAA





338
tctttcatttctaa
13300
13313
2-10-2
338_1
TCtttcatttctAA





339
atctttcatttcta
13301
13314
2-10-2
339_1
ATctttcatttcTA





340
gatctttcatttct
13302
13315
2-10-2
340_1
GAtctttcatttCT





341
tgatctttcatttc
13303
13316
2-10-2
341_1
TGatctttcattTC





342
atgatctttcattt
13304
13317
2-10-2
342_1
ATgatctttcatTT





343
ataaaaacccactt
13990
14003
2-10-2
343_1
ATaaaaacccacTT





344
cataaaaacccact
13991
14004
2-10-2
344_1
CAtaaaaacccaCT





345
acataaaaacccac
13992
14005
2-10-2
345_1
ACataaaaacccAC





346
cacataaaaaccca
13993
14006
2-10-2
346_1
CAcataaaaaccCA





347
tcacataaaaaccc
13994
14007
2-10-2
347_1
TCacataaaaacCC





348
atcacataaaaacc
13995
14008
2-10-2
348_1
ATcacataaaaaCC





349
catcacataaaaac
13996
14009
2-10-2
349_1
CAtcacataaaaAC





350
tcatcacataaaaa
13997
14010
2-10-2
350_1
TCatcacataaaAA





351
gtcatcacataaaa
13998
14011
2-10-2
351_1
GTcatcacataaAA





352
agtcatcacataaa
13999
14012
2-10-2
352_1
AGtcatcacataAA





353
tagtcatcacataa
14000
14013
2-10-2
353_1
TAgtcatcacatAA





354
atagtcatcacata
14001
14014
2-10-2
354_1
ATagtcatcacaTA





355
catagtcatcacat
14002
14015
2-10-2
355_1
CAtagtcatcacAT





356
taaatacaaatcta
14041
14054
2-10-2
356_1
TAaatacaaatcTA





357
ctaaatacaaatct
14042
14055
2-10-2
357_1
CTaaatacaaatCT





358
gctaaatacaaatc
14043
14056
2-10-2
358_1
GCtaaatacaaaTC





359
tgctaaatacaaat
14044
14057
2-10-2
359_1
TGctaaatacaaAT





360
atgctaaatacaaa
14045
14058
2-10-2
360_1
ATgctaaatacaAA





361
tatgctaaatacaa
14046
14059
2-10-2
361_1
TAtgctaaatacAA





362
aatcttacactaaa
14119
14132
2-10-2
362_1
AAtcttacactaAA





363
taatcttacactaa
14120
14133
2-10-2
363_1
TAatcttacactAA





364
ataatcttacacta
14121
14134
2-10-2
364_1
ATaatcttacacTA





365
aataatcttacact
14122
14135
2-10-2
365_1
AAtaatcttacaCT





366
gaataatcttacac
14123
14136
2-10-2
366_1
GAataatcttacAC





367
tgaataatcttaca
14124
14137
2-10-2
367_1
TGaataatcttaCA





368
atgaataatcttac
14125
14138
2-10-2
368_1
ATgaataatcttAC





369
caaaattctaataa
14257
14270
2-10-2
369_1
CAaaattctaatAA





370
tcaaaattctaata
14258
14271
2-10-2
370_1
TCaaaattctaaTA





371
ttcaaaattctaat
14259
14272
2-10-2
371_1
TTcaaaattctaAT





372
attcaaaattctaa
14260
14273
2-10-2
372_1
ATtcaaaattctAA





373
gattcaaaattcta
14261
14274
2-10-2
373_1
GAttcaaaattcTA





374
agattcaaaattct
14262
14275
2-10-2
374_1
AGattcaaaattCT





375
attactacaaccaa
14570
14583
2-10-2
375_1
ATtactacaaccAA





376
cattactacaacca
14571
14584
2-10-2
376_1
CAttactacaacCA





377
ccattactacaacc
14572
14585
2-10-2
377_1
CCattactacaaCC





378
accattactacaac
14573
14586
2-10-2
378_1
ACcattactacaAC





379
aaccattactacaa
14574
14587
2-10-2
379_1
AAccattactacAA





380
aaaccattactaca
14575
14588
2-10-2
380_1
AAaccattactaCA





381
gaaaccattactac
14576
14589
2-10-2
381_1
GAaaccattactAC





382
tgaaaccattacta
14577
14590
2-10-2
382_1
TGaaaccattacTA





383
atgaaaccattact
14578
14591
2-10-2
383_1
ATgaaaccattaCT





384
atttttaaaaacac
15778
15791
2-10-2
384_1
ATttttaaaaacAC





385
aatttttaaaaaca
15779
15792
2-10-2
385_1
AAtttttaaaaaCA





386
taatttttaaaaac
15780
15793
2-10-2
386_1
TAatttttaaaaAC





387
ataatttttaaaaa
15781
15794
2-10-2
387_1
ATaatttttaaaAA





388
cataatttttaaaa
15782
15795
2-10-2
388_1
CAtaatttttaaAA





389
tcataatttttaaa
15783
15796
2-10-2
389_1
TCataatttttaAA





390
atcataatttttaa
15784
15797
2-10-2
390_1
ATcataatttttAA





391
ctttatacaaaaaa
15814
15827
2-10-2
391_1
CTttatacaaaaAA





392
actttatacaaaaa
15815
15828
2-10-2
392_1
ACtttatacaaaAA





393
tactttatacaaaa
15816
15829
2-10-2
393_1
TActttatacaaAA





394
ttactttatacaaa
15817
15830
2-10-2
394_1
TTactttatacaAA





395
cttactttatacaa
15818
15831
2-10-2
395_1
CTtactttatacAA





396
gcttactttataca
15819
15832
2-10-2
396_1
GCttactttataCA





397
tgcttactttatac
15820
15833
2-10-2
397_1
TGcttactttatAC





398
tctcaaaataataa
15877
15890
2-10-2
398_1
TCtcaaaataatAA





399
ctctcaaaataata
15878
15891
2-10-2
399_1
CTctcaaaataaTA





400
tctctcaaaataat
15879
15892
2-10-2
400_1
TCtctcaaaataAT





401
atctctcaaaataa
15880
15893
2-10-2
401_1
ATctctcaaaatAA





402
aatctctcaaaata
15881
15894
2-10-2
402_1
AAtctctcaaaaTA





403
aaatctctcaaaat
15882
15895
2-10-2
403_1
AAatctctcaaaAT





404
taaatctctcaaaa
15883
15896
2-10-2
404_1
TAaatctctcaaAA





405
ttaaatctctcaaa
15884
15897
2-10-2
405_1
TTaaatctctcaAA





406
tttaaatctctcaa
15885
15898
2-10-2
406_1
TTtaaatctctcAA





407
ttttaaatctctca
15886
15899
2-10-2
407_1
TTttaaatctctCA





408
taatactttttcca
16080
16093
2-10-2
408_1
TAatactttttcCA





409
ttaatactttttcc
16081
16094
2-10-2
409_1
TTaatactttttCC





410
gttaatactttttc
16082
16095
2-10-2
410_1
GTtaatacttttTC





411
tgttaatacttttt
16083
16096
2-10-2
411_1
TGttaatactttTT





412
atgttaatactttt
16084
16097
2-10-2
412_1
ATgttaatacttTT





413
ttatcactaccaca
16187
16200
2-10-2
413_1
TTatcactaccaCA





414
tttatcactaccac
16188
16201
2-10-2
414_1
TTtatcactaccAC





415
atttatcactacca
16189
16202
2-10-2
415_1
ATttatcactacCA





416
catttatcactacc
16190
16203
2-10-2
416_1
CAtttatcactaCC





417
tcatttatcactac
16191
16204
2-10-2
417_1
TCatttatcactAC





418
atcatttatcacta
16192
16205
2-10-2
418_1
ATcatttatcacTA





419
catcatttatcact
16193
16206
2-10-2
419_1
CAtcatttatcaCT





420
acatcatttatcac
16194
16207
2-10-2
420_1
ACatcatttatcAC





421
aacatcatttatca
16195
16208
2-10-2
421_1
AAcatcatttatCA





422
taacatcatttatc
16196
16209
2-10-2
422_1
TAacatcatttaTC





423
ttaacatcatttat
16197
16210
2-10-2
423_1
TTaacatcatttAT





424
attaacatcattta
16198
16211
2-10-2
424_1
ATtaacatcattTA





425
aattaacatcattt
16199
16212
2-10-2
425_1
AAttaacatcatTT





426
taattaacatcatt
16200
16213
2-10-2
426_1
TAattaacatcaTT





427
ctaattaacatcat
16201
16214
2-10-2
427_1
CTaattaacatcAT





428
cctaattaacatca
16202
16215
2-10-2
428_1
CCtaattaacatCA





429
ccctaattaacatc
16203
16216
2-10-2
429_1
CCctaattaacaTC





430
gccctaattaacat
16204
16217
2-10-2
430_1
GCcctaattaacAT





431
ggccctaattaaca
16205
16218
2-10-2
431_1
GGccctaattaaCA





432
cggccctaattaac
16206
16219
2-10-2
432_1
CGgccctaattaAC





433
aaacacattttttt
16494
16507
2-10-2
433_1
AAacacatttttTT





434
taaacacatttttt
16495
16508
2-10-2
434_1
TAaacacattttTT





435
ataaacacattttt
16496
16509
2-10-2
435_1
ATaaacacatttTT





436
tataaacacatttt
16497
16510
2-10-2
436_1
TAtaaacacattTT





437
atataaacacattt
16498
16511
2-10-2
437_1
ATataaacacatTT





438
catataaacacatt
16499
16512
2-10-2
438_1
CAtataaacacaTT





439
acatataaacacat
16500
16513
2-10-2
439_1
ACatataaacacAT





440
aacatataaacaca
16501
16514
2-10-2
440_1
AAcatataaacaCA





441
taacatataaacac
16502
16515
2-10-2
441_1
TAacatataaacAC





442
ataacatataaaca
16503
16516
2-10-2
442_1
ATaacatataaaCA





443
tataacatataaac
16504
16517
2-10-2
443_1
TAtaacatataaAC





444
atataacatataaa
16505
16518
2-10-2
444_1
ATataacatataAA





445
catataacatataa
16506
16519
2-10-2
445_1
CAtataacatatAA





446
acatataacatata
16507
16520
2-10-2
446_1
ACatataacataTA





447
cacatataacatat
16508
16521
2-10-2
447_1
CAcatataacatAT





448
tcacatataacata
16509
16522
2-10-2
448_1
TCacatataacaTA





449
atcacatataacat
16510
16523
2-10-2
449_1
ATcacatataacAT





450
tatcacatataaca
16511
16524
2-10-2
450_1
TAtcacatataaCA





451
ctatcacatataac
16512
16525
2-10-2
451_1
CTatcacatataAC





452
actatcacatataa
16513
16526
2-10-2
452_1
ACtatcacatatAA





453
cactatcacatata
16514
16527
2-10-2
453_1
CActatcacataTA





454
gtccaacataactc
16834
16847
2-10-2
454_1
GTccaacataacTC





455
agtccaacataact
16835
16848
2-10-2
455_1
AGtccaacataaCT





456
cagtccaacataac
16836
16849
2-10-2
456_1
CAgtccaacataAC





457
tcagtccaacataa
16837
16850
2-10-2
457_1
TCagtccaacatAA





458
atcagtccaacata
16838
16851
2-10-2
458_1
ATcagtccaacaTA





459
tatcagtccaacat
16839
16852
2-10-2
459_1
TAtcagtccaacAT





460
aaaccctcccaaaa
16921
16934
2-10-2
460_1
AAaccctcccaaAA





461
taaaccctcccaaa
16922
16935
2-10-2
461_1
TAaaccctcccaAA





462
ttaaaccctcccaa
16923
16936
2-10-2
462_1
TTaaaccctcccAA





463
attaaaccctccca
16924
16937
2-10-2
463_1
ATtaaaccctccCA





464
cattaaaccctccc
16925
16938
2-10-2
464_1
CAttaaaccctcCC





465
acattaaaccctcc
16926
16939
2-10-2
465_1
ACattaaaccctCC





466
aacattaaaccctc
16927
16940
2-10-2
466_1
AAcattaaacccTC





467
aaacattaaaccct
16928
16941
2-10-2
467_1
AAacattaaaccCT





468
taaacattaaaccc
16929
16942
2-10-2
468_1
TAaacattaaacCC





469
ataaacattaaacc
16930
16943
2-10-2
469_1
ATaaacattaaaCC





470
tataaacattaaac
16931
16944
2-10-2
470_1
TAtaaacattaaAC





471
ctataaacattaaa
16932
16945
2-10-2
471_1
CTataaacattaAA





472
actataaacattaa
16933
16946
2-10-2
472_1
ACtataaacattAA





473
aactataaacatta
16934
16947
2-10-2
473_1
AActataaacatTA





474
aaactataaacatt
16935
16948
2-10-2
474_1
AAactataaacaTT





475
taaactataaacat
16936
16949
2-10-2
475_1
TAaactataaacAT





476
ttaaactataaaca
16937
16950
2-10-2
476_1
TTaaactataaaCA





477
tttaaactataaac
16938
16951
2-10-2
477_1
TTtaaactataaAC





478
ctttaaactataaa
16939
16952
2-10-2
478_1
CTttaaactataAA





479
gctttaaactataa
16940
16953
2-10-2
479_1
GCtttaaactatAA





480
tgctttaaactata
16941
16954
2-10-2
480_1
TGctttaaactaTA





481
cagcctatcaccac
18018
18031
2-10-2
481_1
CAgcctatcaccAC





482
acagcctatcacca
18019
18032
2-10-2
482_1
ACagcctatcacCA





483
cacagcctatcacc
18020
18033
2-10-2
483_1
CAcagcctatcaCC





484
tcacagcctatcac
18021
18034
2-10-2
484_1
TCacagcctatcAC





485
atcacagcctatca
18022
18035
2-10-2
485_1
ATcacagcctatCA





486
aatcacagcctatc
18023
18036
2-10-2
486_1
AAtcacagcctaTC





487
aaatcacagcctat
18024
18037
2-10-2
487_1
AAatcacagcctAT





488
caaatcacagccta
18025
18038
2-10-2
488_1
CAaatcacagccTA





489
ccaaatcacagcct
18026
18039
2-10-2
489_1
CCaaatcacagcCT





490
cccaaatcacagcc
18027
18040
2-10-2
490_1
CCcaaatcacagCC





491
acccaaatcacagc
18028
18041
2-10-2
491_1
ACccaaatcacaGC





492
cacccaaatcacag
18029
18042
2-10-2
492_1
CAcccaaatcacAG





493
tcacccaaatcaca
18030
18043
2-10-2
493_1
TCacccaaatcaCA





494
gtcacccaaatcac
18031
18044
2-10-2
494_1
GTcacccaaatcAC





495
cgtcacccaaatca
18032
18045
2-10-2
495_1
CGtcacccaaatCA





496
gcgtcacccaaatc
18033
18046
2-10-2
496_1
GCgtcacccaaaTC





497
agcgtcacccaaat
18034
18047
2-10-2
497_1
AGcgtcacccaaAT





498
atcctaaaatcact
18630
18643
2-10-2
498_1
ATcctaaaatcaCT





499
gatcctaaaatcac
18631
18644
2-10-2
499_1
GAtcctaaaatcAC





500
agatcctaaaatca
18632
18645
2-10-2
500_1
AGatcctaaaatCA





501
cagatcctaaaatc
18633
18646
2-10-2
501_1
CAgatcctaaaaTC





502
tcagatcctaaaat
18634
18647
2-10-2
502_1
TCagatcctaaaAT





503
aaaccaatcatcat
19107
19120
2-10-2
503_1
AAaccaatcatcAT





504
aaaaccaatcatca
19108
19121
2-10-2
504_1
AAaaccaatcatCA





505
taaaaccaatcatc
19109
19122
2-10-2
505_1
TAaaaccaatcaTC





506
gtaaaaccaatcat
19110
19123
2-10-2
506_1
GTaaaaccaatcAT





507
agtaaaaccaatca
19111
19124
2-10-2
507_1
AGtaaaaccaatCA





508
aagtaaaaccaatc
19112
19125
2-10-2
508_1
AAgtaaaaccaaTC





509
aaagtaaaaccaat
19113
19126
2-10-2
509_1
AAagtaaaaccaAT





510
catctctactaaaa
20214
20227
2-10-2
510_1
CAtctctactaaAA





511
ccatctctactaaa
20215
20228
2-10-2
511_1
CCatctctactaAA





512
tccatctctactaa
20216
20229
2-10-2
512_1
TCcatctctactAA





513
ttccatctctacta
20217
20230
2-10-2
513_1
TTccatctctacTA





514
cttccatctctact
20218
20231
2-10-2
514_1
CTtccatctctaCT





515
ccttccatctctac
20219
20232
2-10-2
515_1
CCttccatctctAC





516
cccttccatctcta
20220
20233
2-10-2
516_1
CCcttccatctcTA





517
acataacaaaccca
20555
20568
2-10-2
517_1
ACataacaaaccCA





518
tacataacaaaccc
20556
20569
2-10-2
518_1
TAcataacaaacCC





519
ctacataacaaacc
20557
20570
2-10-2
519_1
CTacataacaaaCC





520
actacataacaaac
20558
20571
2-10-2
520_1
ACtacataacaaAC





521
aactacataacaaa
20559
20572
2-10-2
521_1
AActacataacaAA





522
taactacataacaa
20560
20573
2-10-2
522_1
TAactacataacAA





523
ataactacataaca
20561
20574
2-10-2
523_1
ATaactacataaCA





524
aataactacataac
20562
20575
2-10-2
524_1
AAtaactacataAC





525
caataactacataa
20563
20576
2-10-2
525_1
CAataactacatAA





526
acaataactacata
20564
20577
2-10-2
526_1
ACaataactacaTA





527
cacaataactacat
20565
20578
2-10-2
527_1
CAcaataactacAT





528
tcacaataactaca
20566
20579
2-10-2
528_1
TCacaataactaCA





529
ttcacaataactac
20567
20580
2-10-2
529_1
TTcacaataactAC





530
attcacaataacta
20568
20581
2-10-2
530_1
ATtcacaataacTA





531
aattcacaataact
20569
20582
2-10-2
531_1
AAttcacaataaCT





532
gaattcacaataac
20570
20583
2-10-2
532_1
GAattcacaataAC





533
tgaattcacaataa
20571
20584
2-10-2
533_1
TGaattcacaatAA





534
ctaaaacaatctaa
22073
22086
2-10-2
534_1
CTaaaacaatctAA





535
cctaaaacaatcta
22074
22087
2-10-2
535_1
CCtaaaacaatcTA





536
acctaaaacaatct
22075
22088
2-10-2
536_1
ACctaaaacaatCT





537
tacctaaaacaatc
22076
22089
2-10-2
537_1
TAcctaaaacaaTC





538
atacctaaaacaat
22077
22090
2-10-2
538_1
ATacctaaaacaAT





539
tatacctaaaacaa
22078
22091
2-10-2
539_1
TAtacctaaaacAA





540
ctatacctaaaaca
22079
22092
2-10-2
540_1
CTatacctaaaaCA





541
gctatacctaaaac
22080
22093
2-10-2
541_1
GCtatacctaaaAC





542
ttgtaactaaaaat
22254
22267
2-10-2
542_1
TTgtaactaaaaAT





543
cttgtaactaaaaa
22255
22268
2-10-2
543_1
CTtgtaactaaaAA





544
ccttgtaactaaaa
22256
22269
2-10-2
544_1
CCttgtaactaaAA





545
cccttgtaactaaa
22257
22270
2-10-2
545_1
CCcttgtaactaAA





546
ccccttgtaactaa
22258
22271
2-10-2
546_1
CCccttgtaactAA





547
accccttgtaacta
22259
22272
2-10-2
547_1
ACcccttgtaacTA





548
caccccttgtaact
22260
22273
2-10-2
548_1
CAccccttgtaaCT





549
acaccccttgtaac
22261
22274
2-10-2
549_1
ACaccccttgtaAC





550
ttcatatatacatc
22424
22437
2-10-2
550_1
TTcatatatacaTC





551
cttcatatatacat
22425
22438
2-10-2
551_1
CTtcatatatacAT





552
ccttcatatataca
22426
22439
2-10-2
552_1
CCttcatatataCA





553
cccttcatatatac
22427
22440
2-10-2
553_1
CCcttcatatatAC





554
acccttcatatata
22428
22441
2-10-2
554_1
ACccttcatataTA





555
tacccttcatatat
22429
22442
2-10-2
555_1
TAcccttcatatAT





556
ttacccttcatata
22430
22443
2-10-2
556_1
TTacccttcataTA





557
attacccttcatat
22431
22444
2-10-2
557_1
ATtacccttcatAT





558
cattacccttcata
22432
22445
2-10-2
558_1
CAttacccttcaTA





559
acattacccttcat
22433
22446
2-10-2
559_1
ACattacccttcAT





560
tacattacccttca
22434
22447
2-10-2
560_1
TAcattacccttCA





561
tcttatacttacta
23204
23217
2-10-2
561_1
TCttatacttacTA





562
ttcttatacttact
23205
23218
2-10-2
562_1
TTcttatacttaCT





563
attcttatacttac
23206
23219
2-10-2
563_1
ATtcttatacttAC





564
gattcttatactta
23207
23220
2-10-2
564_1
GAttcttatactTA





565
tgattcttatactt
23208
23221
2-10-2
565_1
TGattcttatacTT





566
atgattcttatact
23209
23222
2-10-2
566_1
ATgattcttataCT





567
aacttcactaaaat
23616
23629
2-10-2
567_1
AActtcactaaaAT





568
aaacttcactaaaa
23617
23630
2-10-2
568_1
AAacttcactaaAA





569
taaacttcactaaa
23618
23631
2-10-2
569_1
TAaacttcactaAA





570
ataaacttcactaa
23619
23632
2-10-2
570_1
ATaaacttcactAA





571
aataaacttcacta
23620
23633
2-10-2
571_1
AAtaaacttcacTA





572
taataaacttcact
23621
23634
2-10-2
572_1
TAataaacttcaCT





573
ctaataaacttcac
23622
23635
2-10-2
573_1
CTaataaacttcAC





574
actaataaacttca
23623
23636
2-10-2
574_1
ACtaataaacttCA





575
aactaataaacttc
23624
23637
2-10-2
575_1
AActaataaactTC





576
aatcttctatttta
24108
24121
2-10-2
576_1
AAtcttctatttTA





577
caatcttctatttt
24109
24122
2-10-2
577_1
CAatcttctattTT





578
ccaatcttctattt
24110
24123
2-10-2
578_1
CCaatcttctatTT





579
accaatcttctatt
24111
24124
2-10-2
579_1
ACcaatcttctaTT





580
aaccaatcttctat
24112
24125
2-10-2
580_1
AAccaatcttctAT





581
caaccaatcttcta
24113
24126
2-10-2
581_1
CAaccaatcttcTA





582
gcaaccaatcttct
24114
24127
2-10-2
582_1
GCaaccaatcttCT





583
tgcaaccaatcttc
24115
24128
2-10-2
583_1
TGcaaccaatctTC





584
ctgcaaccaatctt
24116
24129
2-10-2
584_1
CTgcaaccaatcTT





585
actgcaaccaatct
24117
24130
2-10-2
585_1
ACtgcaaccaatCT





586
aactgcaaccaatc
24118
24131
2-10-2
586_1
AActgcaaccaaTC





587
taactgcaaccaat
24119
24132
2-10-2
587_1
TAactgcaaccaAT





588
tacaacacacatca
24335
24348
2-10-2
588_1
TAcaacacacatCA





589
atacaacacacatc
24336
24349
2-10-2
589_1
ATacaacacacaTC





590
aatacaacacacat
24337
24350
2-10-2
590_1
AAtacaacacacAT





591
gaatacaacacaca
24338
24351
2-10-2
591_1
GAatacaacacaCA





592
tgaatacaacacac
24339
24352
2-10-2
592_1
TGaatacaacacAC





593
atgaatacaacaca
24340
24353
2-10-2
593_1
ATgaatacaacaCA





594
cctaataaaatata
24499
24512
2-10-2
594_1
CCtaataaaataTA





595
tcctaataaaatat
24500
24513
2-10-2
595_1
TCctaataaaatAT





596
ctcctaataaaata
24501
24514
2-10-2
596_1
CTcctaataaaaTA





597
actcctaataaaat
24502
24515
2-10-2
597_1
ACtcctaataaaAT





598
tactcctaataaaa
24503
24516
2-10-2
598_1
TActcctaataaAA





599
ctactcctaataaa
24504
24517
2-10-2
599_1
CTactcctaataAA





600
actactcctaataa
24505
24518
2-10-2
600_1
ACtactcctaatAA





601
aactactcctaata
24506
24519
2-10-2
601_1
AActactcctaaTA





602
taactactcctaat
24507
24520
2-10-2
602_1
TAactactcctaAT





603
ataactactcctaa
24508
24521
2-10-2
603_1
ATaactactcctAA





604
tataactactccta
24509
24522
2-10-2
604_1
TAtaactactccTA





605
atataactactcct
24510
24523
2-10-2
605_1
ATataactactcCT





606
aatataactactcc
24511
24524
2-10-2
606_1
AAtataactactCC





607
aaatataactactc
24512
24525
2-10-2
607_1
AAatataactacTC





608
aaaatataactact
24513
24526
2-10-2
608_1
AAaatataactaCT





609
aaaaatataactac
24514
24527
2-10-2
609_1
AAaaatataactAC





610
taaaaatataacta
24515
24528
2-10-2
610_1
TAaaaatataacTA





611
gtaaaaatataact
24516
24529
2-10-2
611_1
GTaaaaatataaCT





612
agtaaaaatataac
24517
24530
2-10-2
612_1
AGtaaaaatataAC





613
actgatacccacaa
24593
24606
2-10-2
613_1
ACtgatacccacAA





614
aactgatacccaca
24594
24607
2-10-2
614_1
AActgatacccaCA





615
caactgatacccac
24595
24608
2-10-2
615_1
CAactgatacccAC





616
tcaactgataccca
24596
24609
2-10-2
616_1
TCaactgataccCA





617
atcactaaaaaact
24752
24765
2-10-2
617_1
ATcactaaaaaaCT





618
tatcactaaaaaac
24753
24766
2-10-2
618_1
TAtcactaaaaaAC





619
atatcactaaaaaa
24754
24767
2-10-2
619_1
ATatcactaaaaAA





620
tatatcactaaaaa
24755
24768
2-10-2
620_1
TAtatcactaaaAA





621
ttatatcactaaaa
24756
24769
2-10-2
621_1
TTatatcactaaAA





622
tttatatcactaaa
24757
24770
2-10-2
622_1
TTtatatcactaAA





623
gtttatatcactaa
24758
24771
2-10-2
623_1
GTttatatcactAA





624
aaacttttaattaa
24850
24863
2-10-2
624_1
AAacttttaattAA





625
caaacttttaatta
24851
24864
2-10-2
625_1
CAaacttttaatTA





626
tcaaacttttaatt
24852
24865
2-10-2
626_1
TCaaacttttaaTT





627
ttcaaacttttaat
24853
24866
2-10-2
627_1
TTcaaacttttaAT





628
cttcaaacttttaa
24854
24867
2-10-2
628_1
CTtcaaacttttAA





629
acttcaaactttta
24855
24868
2-10-2
629_1
ACttcaaactttTA





630
cacttcaaactttt
24856
24869
2-10-2
630_1
CActtcaaacttTT





631
ccacttcaaacttt
24857
24870
2-10-2
631_1
CCacttcaaactTT





632
cccacttcaaactt
24858
24871
2-10-2
632_1
CCcacttcaaacTT





633
acccacttcaaact
24859
24872
2-10-2
633_1
ACccacttcaaaCT





634
aacccacttcaaac
24860
24873
2-10-2
634_1
AAcccacttcaaAC





635
aaacccacttcaaa
24861
24874
2-10-2
635_1
AAacccacttcaAA





636
aaaacccacttcaa
24862
24875
2-10-2
636_1
AAaacccacttcAA





637
aaaaacccacttca
24863
24876
2-10-2
637_1
AAaaacccacttCA





638
aaaaaacccacttc
24864
24877
2-10-2
638_1
AAaaaacccactTC





639
caaaaaacccactt
24865
24878
2-10-2
639_1
CAaaaaacccacTT





640
acaaaaaacccact
24866
24879
2-10-2
640_1
ACaaaaaacccaCT





641
aacaaaaaacccac
24867
24880
2-10-2
641_1
AAcaaaaaacccAC





642
aaacaaaaaaccca
24868
24881
2-10-2
642_1
AAacaaaaaaccCA





643
aaaacaaaaaaccc
24869
24882
2-10-2
643_1
AAaacaaaaaacCC





644
atcttcccattaat
24976
24989
2-10-2
644_1
ATcttcccattaAT





645
aatcttcccattaa
24977
24990
2-10-2
645_1
AAtcttcccattAA





646
taatcttcccatta
24978
24991
2-10-2
646_1
TAatcttcccatTA





647
ataatcttcccatt
24979
24992
2-10-2
647_1
ATaatcttcccaTT





648
aataatcttcccat
24980
24993
2-10-2
648_1
AAtaatcttcccAT





649
aaataatcttccca
24981
24994
2-10-2
649_1
AAataatcttccCA





650
aaaataatcttccc
24982
24995
2-10-2
650_1
AAaataatcttcCC





651
tattaatcaaaaat
25057
25070
2-10-2
651_1
TAttaatcaaaaAT





652
ctattaatcaaaaa
25058
25071
2-10-2
652_1
CTattaatcaaaAA





653
tctattaatcaaaa
25059
25072
2-10-2
653_1
TCtattaatcaaAA





654
ctctattaatcaaa
25060
25073
2-10-2
654_1
CTctattaatcaAA





655
actctattaatcaa
25061
25074
2-10-2
655_1
ACtctattaatcAA





656
gactctattaatca
25062
25075
2-10-2
656_1
GActctattaatCA





657
tattctactcttct
25433
25446
2-10-2
657_1
TAttctactcttCT





658
atattctactcttc
25434
25447
2-10-2
658_1
ATattctactctTC





659
aatattctactctt
25435
25448
2-10-2
659_1
AAtattctactcTT





660
gaatattctactct
25436
25449
2-10-2
660_1
GAatattctactCT





661
agaatattctactc
25437
25450
2-10-2
661_1
AGaatattctacTC





662
atttaccaattcaa
25508
25521
2-10-2
662_1
ATttaccaattcAA





663
tatttaccaattca
25509
25522
2-10-2
663_1
TAtttaccaattCA





664
gtatttaccaattc
25510
25523
2-10-2
664_1
GTatttaccaatTC





665
tgtatttaccaatt
25511
25524
2-10-2
665_1
TGtatttaccaaTT





666
ctgtatttaccaat
25512
25525
2-10-2
666_1
CTgtatttaccaAT





667
actgtatttaccaa
25513
25526
2-10-2
667_1
ACtgtatttaccAA





668
ttataccatcaaat
27100
27113
2-10-2
668_1
TTataccatcaaAT





669
attataccatcaaa
27101
27114
2-10-2
669_1
ATtataccatcaAA





670
cattataccatcaa
27102
27115
2-10-2
670_1
CAttataccatcAA





671
tcattataccatca
27103
27116
2-10-2
671_1
TCattataccatCA





672
ttcattataccatc
27104
27117
2-10-2
672_1
TTcattataccaTC





673
cttcattataccat
27105
27118
2-10-2
673_1
CTtcattataccAT





674
tcttcattatacca
27106
27119
2-10-2
674_1
TCttcattatacCA





675
ttcttcattatacc
27107
27120
2-10-2
675_1
TTcttcattataCC





676
tttcttcattatac
27108
27121
2-10-2
676_1
TTtcttcattatAC





677
ttttcttcattata
27109
27122
2-10-2
677_1
TTttcttcattaTA





678
attttcttcattat
27110
27123
2-10-2
678_1
ATtttcttcattAT





679
tattttcttcatta
27111
27124
2-10-2
679_1
TAttttcttcatTA





680
atattttcttcatt
27112
27125
2-10-2
680_1
ATattttcttcaTT





681
aatattttcttcat
27113
27126
2-10-2
681_1
AAtattttcttcAT





682
aaatattttcttca
27114
27127
2-10-2
682_1
AAatattttcttCA





683
taaatattttcttc
27115
27128
2-10-2
683_1
TAaatattttctTC





684
aataatccaaactt
27772
27785
2-10-2
684_1
AAtaatccaaacTT





685
aaataatccaaact
27773
27786
2-10-2
685_1
AAataatccaaaCT





686
aaaataatccaaac
27774
27787
2-10-2
686_1
AAaataatccaaAC





687
caaaataatccaaa
27775
27788
2-10-2
687_1
CAaaataatccaAA





688
acaaaataatccaa
27776
27789
2-10-2
688_1
ACaaaataatccAA





689
tacaaaataatcca
27777
27790
2-10-2
689_1
TAcaaaataatcCA





690
ttacaaaataatcc
27778
27791
2-10-2
690_1
TTacaaaataatCC





691
gttacaaaataatc
27779
27792
2-10-2
691_1
GTtacaaaataaTC





692
tgttacaaaataat
27780
27793
2-10-2
692_1
TGttacaaaataAT





693
ttttacattaacta
27935
27948
2-10-2
693_1
TTttacattaacTA





694
tttttacattaact
27936
27949
2-10-2
694_1
TTIttacattaaCT





695
ttttttacattaac
27937
27950
2-10-2
695_1
TTttttacattaAC





696
attttttacattaa
27938
27951
2-10-2
696_1
ATtttttacattAA





697
tattttttacatta
27939
27952
2-10-2
697_1
TAttttttacatTA





698
ttattttttacatt
27940
27953
2-10-2
698_1
TTattttttacaTT





699
aaatactaacatca
29299
29312
2-10-2
699_1
AAatactaacatCA





700
aaaatactaacatc
29300
29313
2-10-2
700_1
AAaatactaacaTC





701
caaaatactaacat
29301
29314
2-10-2
701_1
CAaaatactaacAT





702
ccaaaatactaaca
29302
29315
2-10-2
702_1
CCaaaatactaaCA





703
gccaaaatactaac
29303
29316
2-10-2
703_1
GCcaaaatactaAC





704
tgccaaaatactaa
29304
29317
2-10-2
704_1
TGccaaaatactAA





705
tccattcattttat
29415
29428
2-10-2
705_1
TCcattcattttAT





706
atccattcatttta
29416
29429
2-10-2
706_1
ATccattcatttTA





707
catccattcatttt
29417
29430
2-10-2
707_1
CAtccattcattTT





708
acatccattcattt
29418
29431
2-10-2
708_1
ACatccattcatTT





709
cacatccattcatt
29419
29432
2-10-2
709_1
CAcatccattcaTT





710
ccacatccattcat
29420
29433
2-10-2
710_1
CCacatccattcAT





711
gccacatccattca
29421
29434
2-10-2
711_1
GCcacatccattCA





712
tgccacatccattc
29422
29435
2-10-2
712_1
TGccacatccatTC





713
atgccacatccatt
29423
29436
2-10-2
713_1
ATgccacatccaTT





714
tatgccacatccat
29424
29437
2-10-2
714_1
TAtgccacatccAT





715
ttatgccacatcca
29425
29438
2-10-2
715_1
TTatgccacatcCA





716
attatgccacatcc
29426
29439
2-10-2
716_1
ATtatgccacatCC





717
tcttaactcttctc
30753
30766
2-10-2
717_1
TCttaactcttcTC





718
ttcttaactcttct
30754
30767
2-10-2
718_1
TTcttaactcttCT





719
gttcttaactcttc
30755
30768
2-10-2
719_1
GTtcttaactctTC





720
agttcttaactctt
30756
30769
2-10-2
720_1
AGttcttaactcTT





721
tagttcttaactct
30757
30770
2-10-2
721_1
TAgttcttaactCT





722
caaatactcaaaaa
31029
31042
2-10-2
722_1
CAaatactcaaaAA





723
tcaaatactcaaaa
31030
31043
2-10-2
723_1
TCaaatactcaaAA





724
ttcaaatactcaaa
31031
31044
2-10-2
724_1
TTcaaatactcaAA





725
cttcaaatactcaa
31032
31045
2-10-2
725_1
CTtcaaatactcAA





726
gcttcaaatactca
31033
31046
2-10-2
726_1
GCttcaaatactCA





727
agcttcaaatactc
31034
31047
2-10-2
727_1
AGcttcaaatacTC





728
aagcttcaaatact
31035
31048
2-10-2
728_1
AAgcttcaaataCT





729
cctcattacccatt
32059
32072
2-10-2
729_1
CCtcattacccaTT





730
tcctcattacccat
32060
32073
2-10-2
730_1
TCctcattacccAT





731
atcctcattaccca
32061
32074
2-10-2
731_1
ATcctcattaccCA





732
tatcctcattaccc
32062
32075
2-10-2
732_1
TAtcctcattacCC





733
atatcctcattacc
32063
32076
2-10-2
733_1
ATatcctcattaCC





734
aatatcctcattac
32064
32077
2-10-2
734_1
AAtatcctcattAC





735
taatatcctcatta
32065
32078
2-10-2
735_1
TAatatcctcatTA





736
ttaatatcctcatt
32066
32079
2-10-2
736_1
TTaatatcctcaTT





737
tttaatatcctcat
32067
32080
2-10-2
737_1
TTtaatatcctcAT





738
atttaatatcctca
32068
32081
2-10-2
738_1
ATttaatatcctCA





739
aatttaatatcctc
32069
32082
2-10-2
739_1
AAtttaatatccTC





740
aaatttaatatcct
32070
32083
2-10-2
740_1
AAatttaatatcCT





741
taaatttaatatcc
32071
32084
2-10-2
741_1
TAaatttaatatCC





742
ttaaatttaatatc
32072
32085
2-10-2
742_1
TTaaatttaataTC





743
cttaaatttaatat
32073
32086
2-10-2
743_1
CTtaaatttaatAT





744
tcttaaatttaata
32074
32087
2-10-2
744_1
TCttaaatttaaTA





745
ttcttaaatttaat
32075
32088
2-10-2
745_1
TTcttaaatttaAT





746
gttcttaaatttaa
32076
32089
2-10-2
746_1
GTtcttaaatttAA





747
ttattctactttta
33431
33444
2-10-2
747_1
TTattctactttTA





748
tttattctactttt
33432
33445
2-10-2
748_1
TTtattctacttTT





749
ctttattctacttt
33433
33446
2-10-2
749_1
CTttattctactTT





750
cctttattctactt
33434
33447
2-10-2
750_1
CCtttattctacTT





751
gcctttattctact
33435
33448
2-10-2
751_1
GCctttattctaCT





752
aacaattattaata
33797
33810
2-10-2
752_1
AAcaattattaaTA





753
caacaattattaat
33798
33811
2-10-2
753_1
CAacaattattaAT





754
gcaacaattattaa
33799
33812
2-10-2
754_1
GCaacaattattAA





755
agcaacaattatta
33800
33813
2-10-2
755_1
AGcaacaattatTA





756
cagcaacaattatt
33801
33814
2-10-2
756_1
CAgcaacaattaTT





757
ccagcaacaattat
33802
33815
2-10-2
757_1
CCagcaacaattAT





758
accagcaacaatta
33803
33816
2-10-2
758_1
ACcagcaacaatTA





759
aaaccaaaacttac
33963
33976
2-10-2
759_1
AAaccaaaacttAC





760
aaaaccaaaactta
33964
33977
2-10-2
760_1
AAaaccaaaactTA





761
aaaaaccaaaactt
33965
33978
2-10-2
761_1
AAaaaccaaaacTT





762
caaaaaccaaaact
33966
33979
2-10-2
762_1
CAaaaaccaaaaCT





763
ccaaaaaccaaaac
33967
33980
2-10-2
763_1
CCaaaaaccaaaAC





764
accaaaaaccaaaa
33968
33981
2-10-2
764_1
ACcaaaaaccaaAA





765
aaccaaaaaccaaa
33969
33982
2-10-2
765_1
AAccaaaaaccaA








A





766
aaaccaaaaaccaa
33970
33983
2-10-2
766_1
AAaccaaaaaccA








A





767
atctaaaacacttc
34050
34063
2-10-2
767_1
ATctaaaacactTC





768
aatctaaaacactt
34051
34064
2-10-2
768_1
AAtctaaaacacTT





769
aaatctaaaacact
34052
34065
2-10-2
769_1
AAatctaaaacaCT





770
caaatctaaaacac
34053
34066
2-10-2
770_1
CAaatctaaaacAC





771
ccaaatctaaaaca
34054
34067
2-10-2
771_1
CCaaatctaaaaCA





772
cccaaatctaaaac
34055
34068
2-10-2
772_1
CCcaaatctaaaAC





773
ccccaaatctaaaa
34056
34069
2-10-2
773_1
CCccaaatctaaAA





774
accccaaatctaaa
34057
34070
2-10-2
774_1
ACcccaaatctaAA





775
aaccccaaatctaa
34058
34071
2-10-2
775_1
AAccccaaatctAA





776
aaaccccaaatcta
34059
34072
2-10-2
776_1
AAaccccaaatcTA





777
attcacaaatccta
34075
34088
2-10-2
777_1
ATtcacaaatccTA





778
tattcacaaatcct
34076
34089
2-10-2
778_1
TAttcacaaatcCT





779
atattcacaaatcc
34077
34090
2-10-2
779_1
ATattcacaaatCC





780
aatattcacaaatc
34078
34091
2-10-2
780_1
AAtattcacaaaTC





781
aaatattcacaaat
34079
34092
2-10-2
781_1
AAatattcacaaAT





782
caaatattcacaaa
34080
34093
2-10-2
782_1
CAaatattcacaAA





783
gcaaatattcacaa
34081
34094
2-10-2
783_1
GCaaatattcacAA





784
aacacacattatca
34537
34550
2-10-2
784_1
AAcacacattatCA





785
taacacacattatc
34538
34551
2-10-2
785_1
TAacacacattaTC





786
ttaacacacattat
34539
34552
2-10-2
786_1
TTaacacacattAT





787
tttaacacacatta
34540
34553
2-10-2
787_1
TTtaacacacatTA





788
atttaacacacatt
34541
34554
2-10-2
788_1
ATttaacacacaTT





789
tatttaacacacat
34542
34555
2-10-2
789_1
TAtttaacacacAT





790
ctatttaacacaca
34543
34556
2-10-2
790_1
CTatttaacacaCA





791
actatttaacacac
34544
34557
2-10-2
791_1
ACtatttaacacAC





792
tactatttaacaca
34545
34558
2-10-2
792_1
TActatttaacaCA





793
ctactatttaacac
34546
34559
2-10-2
793_1
CTactatttaacAC





794
actactatttaaca
34547
34560
2-10-2
794_1
ACtactatttaaCA





795
aactactatttaac
34548
34561
2-10-2
795_1
AActactatttaAC





796
aaactactatttaa
34549
34562
2-10-2
796_1
AAactactatttAA





797
aaaactactattta
34550
34563
2-10-2
797_1
AAaactactattTA





798
gaaaactactattt
34551
34564
2-10-2
798_1
GAaaactactatTT





799
tgaaaactactatt
34552
34565
2-10-2
799_1
TGaaaactactaTT





800
aaataacctatcat
35309
35322
2-10-2
800_1
AAataacctatcAT





801
aaaataacctatca
35310
35323
2-10-2
801_1
AAaataacctatCA





802
caaaataacctatc
35311
35324
2-10-2
802_1
CAaaataacctaTC





803
acaaaataacctat
35312
35325
2-10-2
803_1
ACaaaataacctAT





804
cacaaaataaccta
35313
35326
2-10-2
804_1
CAcaaaataaccTA





805
tcacaaaataacct
35314
35327
2-10-2
805_1
TCacaaaataacCT





806
atcacaaaataacc
35315
35328
2-10-2
806_1
ATcacaaaataaCC





807
catcacaaaataac
35316
35329
2-10-2
807_1
CAtcacaaaataAC





808
tcatcacaaaataa
35317
35330
2-10-2
808_1
TCatcacaaaatAA





809
ttcatcacaaaata
35318
35331
2-10-2
809_1
TTcatcacaaaaTA





810
tttcatcacaaaat
35319
35332
2-10-2
810_1
TTtcatcacaaaAT





811
ttttcatcacaaaa
35320
35333
2-10-2
811_1
TTttcatcacaaAA





812
attttcatcacaaa
35321
35334
2-10-2
812_1
ATtttcatcacaAA





813
tattttcatcacaa
35322
35335
2-10-2
813_1
TAttttcatcacAA





814
gtattttcatcaca
35323
35336
2-10-2
814_1
GTattttcatcaCA





815
atttaaatttatca
35354
35367
2-10-2
815_1
ATttaaatttatCA





816
aatttaaatttatc
35355
35368
2-10-2
816_1
AAtttaaatttaTC





817
aaatttaaatttat
35356
35369
2-10-2
817_1
AAatttaaatttAT





818
aaaatttaaattta
35357
35370
2-10-2
818_1
AAaatttaaattTA





819
taaaatttaaattt
35358
35371
2-10-2
819_1
TAaaatttaaatTT





820
ataaaatttaaatt
35359
35372
2-10-2
820_1
ATaaaatttaaaTT





821
cataaaatttaaat
35360
35373
2-10-2
821_1
CAtaaaatttaaAT





822
acataaaatttaaa
35361
35374
2-10-2
822_1
ACataaaatttaAA





823
ctactaatattcat
36332
36345
2-10-2
823_1
CTactaatattcAT





824
cctactaatattca
36333
36346
2-10-2
824_1
CCtactaatattCA





825
acctactaatattc
36334
36347
2-10-2
825_1
ACctactaatatTC





826
cacctactaatatt
36335
36348
2-10-2
826_1
CAcctactaataTT





827
tcacctactaatat
36336
36349
2-10-2
827_1
TCacctactaatAT





828
ttcacctactaata
36337
36350
2-10-2
828_1
TTcacctactaaTA





829
tttcacctactaat
36338
36351
2-10-2
829_1
TTtcacctactaAT





830
ttttcacctactaa
36339
36352
2-10-2
830_1
TTttcacctactAA





831
tttttcacctacta
36340
36353
2-10-2
831_1
TTtttcacctacTA





832
atttttcacctact
36341
36354
2-10-2
832_1
ATttttcacctaCT





833
tatttttcacctac
36342
36355
2-10-2
833_1
TAtttttcacctAC





834
ttatttttcaccta
36343
36356
2-10-2
834_1
TTatttttcaccTA





835
tttatttttcacct
36344
36357
2-10-2
835_1
TTtatttttcacCT





836
ttctactactaatt
36468
36481
2-10-2
836_1
TTctactactaaTT





837
cttctactactaat
36469
36482
2-10-2
837_1
CTtctactactaAT





838
acttctactactaa
36470
36483
2-10-2
838_1
ACttctactactAA





839
aacttctactacta
36471
36484
2-10-2
839_1
AActtctactacTA





840
caacttctactact
36472
36485
2-10-2
840_1
CAacttctactaCT





841
tcaacttctactac
36473
36486
2-10-2
841_1
TCaacttctactAC





842
ctcaacttctacta
36474
36487
2-10-2
842_1
CTcaacttctacTA





843
tctcaacttctact
36475
36488
2-10-2
843_1
TCtcaacttctaCT





844
ctctcaacttctac
36476
36489
2-10-2
844_1
CTctcaacttctAC





845
tctctcaacttcta
36477
36490
2-10-2
845_1
TCtctcaacttcTA





846
ttctctcaacttct
36478
36491
2-10-2
846_1
TTctctcaacttCT





847
tttctctcaacttc
36479
36492
2-10-2
847_1
TTtctctcaactTC





848
ttttctctcaactt
36480
36493
2-10-2
848_1
TTttctctcaacTT





849
tttttctctcaact
36481
36494
2-10-2
849_1
TTtttctctcaaCT





850
ctttttctctcaac
36482
36495
2-10-2
850_1
CTttttctctcaAC





851
actttttctctcaa
36483
36496
2-10-2
851_1
ACtttttctctcAA





852
tactttttctctca
36484
36497
2-10-2
852_1
TActttttctctCA





853
ttactttttctctc
36485
36498
2-10-2
853_1
TTactttttctcTC





854
gttactttttctct
36486
36499
2-10-2
854_1
GTtactttttctCT





855
agttactttttctc
36487
36500
2-10-2
855_1
AGttactttttcTC





856
cattcccattaaca
36788
36801
2-10-2
856_1
CAttcccattaaCA





857
acattcccattaac
36789
36802
2-10-2
857_1
ACattcccattaAC





858
tacattcccattaa
36790
36803
2-10-2
858_1
TAcattcccattAA





859
ttacattcccatta
36791
36804
2-10-2
859_1
TTacattcccatTA





860
tttacattcccatt
36792
36805
2-10-2
860_1
TTtacattcccaTT





861
ttttacattcccat
36793
36806
2-10-2
861_1
TTttacattcccAT





862
cttttacattccca
36794
36807
2-10-2
862_1
CTtttacattccCA





863
acttttacattccc
36795
36808
2-10-2
863_1
ACttttacattcCC





864
cacttttacattcc
36796
36809
2-10-2
864_1
CActtttacattCC





865
acacttttacattc
36797
36810
2-10-2
865_1
ACacttttacatTC





866
tacacttttacatt
36798
36811
2-10-2
866_1
TAcacttttacaTT





867
gtacacttttacat
36799
36812
2-10-2
867_1
GTacacttttacAT





868
tgtacacttttaca
36800
36813
2-10-2
868_1
TGtacacttttaCA





869
tttatcaaaaaaat
36834
36847
2-10-2
869_1
TTtatcaaaaaaAT





870
atttatcaaaaaaa
36835
36848
2-10-2
870_1
ATttatcaaaaaAA





871
catttatcaaaaaa
36836
36849
2-10-2
871_1
CAtttatcaaaaAA





872
acatttatcaaaaa
36837
36850
2-10-2
872_1
ACatttatcaaaAA





873
tacatttatcaaaa
36838
36851
2-10-2
873_1
TAcatttatcaaAA





874
atacatttatcaaa
36839
36852
2-10-2
874_1
ATacatttatcaAA





875
tatacatttatcaa
36840
36853
2-10-2
875_1
TAtacatttatcAA





876
acatcttccaattt
38848
38861
2-10-2
876_1
ACatcttccaatTT





877
tacatcttccaatt
38849
38862
2-10-2
877_1
TAcatcttccaaTT





878
ttacatcttccaat
38850
38863
2-10-2
878_1
TTacatcttccaAT





879
tttacatcttccaa
38851
38864
2-10-2
879_1
TTtacatcttccAA





880
atttacatcttcca
38852
38865
2-10-2
880_1
ATttacatcttcCA





881
tatttacatcttcc
38853
38866
2-10-2
881_1
TAtttacatcttCC





882
ttatttacatcttc
38854
38867
2-10-2
882_1
TTatttacatctTC





883
cttatttacatctt
38855
38868
2-10-2
883_1
CTtatttacatcTT





884
tcttatttacatct
38856
38869
2-10-2
884_1
TCttatttacatCT





885
atcttatttacatc
38857
38870
2-10-2
885_1
ATcttatttacaTC





886
aatcttatttacat
38858
38871
2-10-2
886_1
AAtcttatttacAT





887
gaatcttatttaca
38859
38872
2-10-2
887_1
GAatcttatttaCA





888
tgaatcttatttac
38860
38873
2-10-2
888_1
TGaatcttatttAC





889
ttcccttcactcct
40071
40084
2-10-2
889_1
TTcccttcactcCT





890
tttcccttcactcc
40072
40085
2-10-2
890_1
TTtcccttcactCC





891
ttttcccttcactc
40073
40086
2-10-2
891_1
TTttcccttcacTC





892
attttcccttcact
40074
40087
2-10-2
892_1
ATtttcccttcaCT





893
aattttcccttcac
40075
40088
2-10-2
893_1
AAttttcccttcAC





894
taattttcccttca
40076
40089
2-10-2
894_1
TAattttcccttCA





895
ttaattttcccttc
40077
40090
2-10-2
895_1
TTaattttccctTC





896
gttaattttccctt
40078
40091
2-10-2
896_1
GTtaattttcccTT





897
tttatcatttcttt
40150
40163
2-10-2
897_1
TTtatcatttctTT





898
ttttatcatttctt
40151
40164
2-10-2
898_1
TTttatcatttcTT





899
cttttatcatttct
40152
40165
2-10-2
899_1
CTtttatcatttCT





900
tcttttatcatttc
40153
40166
2-10-2
900_1
TCttttatcattTC





901
ttcttttatcattt
40154
40167
2-10-2
901_1
TTcttttatcatTT





902
cttcttttatcatt
40155
40168
2-10-2
902_1
CTtcttttatcaTT





903
acttcttttatcat
40156
40169
2-10-2
903_1
ACttcttttatcAT





904
tacttcttttatca
40157
40170
2-10-2
904_1
TActtcttttatCA





905
ttacttcttttatc
40158
40171
2-10-2
905_1
TTacttcttttaTC





906
attacttcttttat
40159
40172
2-10-2
906_1
ATtacttcttttAT





907
aattacttctttta
40160
40173
2-10-2
907_1
AAttacttctttTA





908
aaattacttctttt
40161
40174
2-10-2
908_1
AAattacttcttTT





909
aaaattacttcttt
40162
40175
2-10-2
909_1
AAaattacttctTT





910
caaaattacttctt
40163
40176
2-10-2
910_1
CAaaattacttcTT





911
ccaaaattacttct
40164
40177
2-10-2
911_1
CCaaaattacttCT





912
tccaaaattacttc
40165
40178
2-10-2
912_1
TCcaaaattactTC





913
ttccaaaattactt
40166
40179
2-10-2
913_1
TTccaaaattacTT





914
gttccaaaattact
40167
40180
2-10-2
914_1
GTtccaaaattaCT





915
tgttccaaaattac
40168
40181
2-10-2
915_1
TGttccaaaattAC





916
atgttccaaaatta
40169
40182
2-10-2
916_1
ATgttccaaaatTA





917
ttactctttttatt
40201
40214
2-10-2
917_1
TTactctttttaTT





918
tttactctttttat
40202
40215
2-10-2
918_1
TTtactctttttAT





919
ttttactcttttta
40203
40216
2-10-2
919_1
TTttactcttttTA





920
attttactcttttt
40204
40217
2-10-2
920_1
ATtttactctttTT





921
tattttactctttt
40205
40218
2-10-2
921_1
TAttttactcttTT





922
atattttactcttt
40206
40219
2-10-2
922_1
ATattttactctTT





923
catattttactctt
40207
40220
2-10-2
923_1
CAtattttactcTT





924
ccatattttactct
40208
40221
2-10-2
924_1
CCatattttactCT





925
cccatattttactc
40209
40222
2-10-2
925_1
CCcatattttacTC





926
acccatattttact
40210
40223
2-10-2
926_1
ACccatattttaCT





927
tacccatattttac
40211
40224
2-10-2
927_1
TAcccatattttAC





928
ttacccatatttta
40212
40225
2-10-2
928_1
TTacccatatttTA





929
tttacccatatttt
40213
40226
2-10-2
929_1
TTtacccatattTT





930
gtttacccatattt
40214
40227
2-10-2
930_1
GTttacccatatTT





931
tgtttacccatatt
40215
40228
2-10-2
931_1
TGtttacccataTT





932
gttacctcccttta
40368
40381
2-10-2
932_1
GTtacctcccttTA





933
ggttacctcccttt
40369
40382
2-10-2
933_1
GGttacctccctTT





934
aggttacctccctt
40370
40383
2-10-2
934_1
AGgttacctcccTT





935
caaactaaaaccta
41659
41672
2-10-2
935_1
CAaactaaaaccTA





936
tcaaactaaaacct
41660
41673
2-10-2
936_1
TCaaactaaaacCT





937
atcaaactaaaacc
41661
41674
2-10-2
937_1
ATcaaactaaaaCC





938
gatcaaactaaaac
41662
41675
2-10-2
938_1
GAtcaaactaaaAC





939
agatcaaactaaaa
41663
41676
2-10-2
939_1
AGatcaaactaaAA





940
aagatcaaactaaa
41664
41677
2-10-2
940_1
AAgatcaaactaAA





941
ccaatttcacccaa
41699
41712
2-10-2
941_1
CCaatttcacccAA





942
cccaatttcaccca
41700
41713
2-10-2
942_1
CCcaatttcaccCA





943
gcccaatttcaccc
41701
41714
2-10-2
943_1
GCccaatttcacCC





944
tgcccaatttcacc
41702
41715
2-10-2
944_1
TGcccaatttcaCC





945
ttgcccaatttcac
41703
41716
2-10-2
945_1
TTgcccaatttcAC





946
caactttctatttt
41777
41790
2-10-2
946_1
CAactttctattTT





947
ccaactttctattt
41778
41791
2-10-2
947_1
CCaactttctatTT





948
cccaactttctatt
41779
41792
2-10-2
948_1
CCcaactttctaTT





949
acccaactttctat
41780
41793
2-10-2
949_1
ACccaactttctAT





950
aacccaactttcta
41781
41794
2-10-2
950_1
AAcccaactttcTA





951
aaacccaactttct
41782
41795
2-10-2
951_1
AAacccaactttCT





952
aaaacccaactttc
41783
41796
2-10-2
952_1
AAaacccaacttTC





953
aaaaacccaacttt
41784
41797
2-10-2
953_1
AAaaacccaactTT





954
caaaaacccaactt
41785
41798
2-10-2
954_1
CAaaaacccaacTT





955
acaaaaacccaact
41786
41799
2-10-2
955_1
ACaaaaacccaaCT





956
ctttaaaatttcca
42170
42183
2-10-2
956_1
CTttaaaatttcCA





957
tctttaaaatttcc
42171
42184
2-10-2
957_1
TCtttaaaatttCC





958
ttctttaaaatttc
42172
42185
2-10-2
958_1
TTctttaaaattTC





959
tttctttaaaattt
42173
42186
2-10-2
959_1
TTtctttaaaatTT





960
atttctttaaaatt
42174
42187
2-10-2
960_1
ATttctttaaaaTT





961
catttctttaaaat
42175
42188
2-10-2
961_1
CAtttctttaaaAT





962
acatttctttaaaa
42176
42189
2-10-2
962_1
ACatttctttaaAA





963
cacatttctttaaa
42177
42190
2-10-2
963_1
CAcatttctttaAA





964
ccacatttctttaa
42178
42191
2-10-2
964_1
CCacatttctttAA





965
accacatttcttta
42179
42192
2-10-2
965_1
ACcacatttcttTA





966
aaccacatttcttt
42180
42193
2-10-2
966_1
AAccacatttctTT





967
aaaccacatttctt
42181
42194
2-10-2
967_1
AAaccacatttcTT





968
aaaaccacatttct
42182
42195
2-10-2
968_1
AAaaccacatttCT





969
caaaaccacatttc
42183
42196
2-10-2
969_1
CAaaaccacattTC





970
ttcttctcttttca
43831
43844
2-10-2
970_1
TTcttctcttttCA





971
tttcttctcttttc
43832
43845
2-10-2
971_1
TTtcttctctttTC





972
ttttcttctctttt
43833
43846
2-10-2
972_1
TTttcttctcttTT





973
tttttcttctcttt
43834
43847
2-10-2
973_1
TTtttcttctctTT





974
ttttttcttctctt
43835
43848
2-10-2
974_1
TTttttcttctcTT





975
attttttcttctct
43836
43849
2-10-2
975_1
AT11111cttctCT





976
tattttttcttctc
43837
43850
2-10-2
976_1
TAIIIIIIcttcTC





977
aacttaatattaaa
45488
45501
2-10-2
977_1
AActtaatattaAA





978
caacttaatattaa
45489
45502
2-10-2
978_1
CAacttaatattAA





979
tcaacttaatatta
45490
45503
2-10-2
979_1
TCaacttaatatTA





980
ttcaacttaatatt
45491
45504
2-10-2
980_1
TTcaacttaataTT





981
attcaacttaatat
45492
45505
2-10-2
981_1
ATtcaacttaatAT





982
tattcaacttaata
45493
45506
2-10-2
982_1
TAttcaacttaaTA





983
ttattcaacttaat
45494
45507
2-10-2
983_1
TTattcaacttaAT





984
tttattcaacttaa
45495
45508
2-10-2
984_1
TTtattcaacttAA





985
caaattaaaaaaca
47397
47410
2-10-2
985_1
CAaattaaaaaaCA





986
tcaaattaaaaaac
47398
47411
2-10-2
986_1
TCaaattaaaaaAC





987
ttcaaattaaaaaa
47399
47412
2-10-2
987_1
TTcaaattaaaaAA





988
cttcaaattaaaaa
47400
47413
2-10-2
988_1
CTtcaaattaaaAA





989
tcttcaaattaaaa
47401
47414
2-10-2
989_1
TCttcaaattaaAA





990
ttcttcaaattaaa
47402
47415
2-10-2
990_1
TTcttcaaattaAA





991
tttcttcaaattaa
47403
47416
2-10-2
991_1
TTtcttcaaattAA





992
aacacaaattcaaa
48077
48090
2-10-2
992_1
AAcacaaattcaAA





993
aaacacaaattcaa
48078
48091
2-10-2
993_1
AAacacaaattcAA





994
taaacacaaattca
48079
48092
2-10-2
994_1
TAaacacaaattCA





995
ataaacacaaattc
48080
48093
2-10-2
995_1
ATaaacacaaatTC





996
aataaacacaaatt
48081
48094
2-10-2
996_1
AAtaaacacaaaTT





997
caataaacacaaat
48082
48095
2-10-2
997_1
CAataaacacaaAT





998
acaataaacacaaa
48083
48096
2-10-2
998_1
ACaataaacacaAA





999
aacaataaacacaa
48084
48097
2-10-2
999_1
AAcaataaacacAA





1000
taacaataaacaca
48085
48098
2-10-2
1000_1
TAacaataaacaCA





1001
ttaacaataaacac
48086
48099
2-10-2
1001_1
TTaacaataaacAC





1002
attaacaataaaca
48087
48100
2-10-2
1002_1
ATtaacaataaaCA





1003
aattaacaataaac
48088
48101
2-10-2
1003_1
AAttaacaataaAC





1004
gaattaacaataaa
48089
48102
2-10-2
1004_1
GAattaacaataAA





1005
tgaattaacaataa
48090
48103
2-10-2
1005_1
TGaattaacaatAA





1006
atattcctcaatca
48905
48918
2-10-2
1006_1
ATattcctcaatCA





1007
tatattcctcaatc
48906
48919
2-10-2
1007_1
TAtattcctcaaTC





1008
atatattcctcaat
48907
48920
2-10-2
1008_1
ATatattcctcaAT





1009
aatatattcctcaa
48908
48921
2-10-2
1009_1
AAtatattcctcAA





1010
caatatattcctca
48909
48922
2-10-2
1010_1
CAatatattcctCA





1011
acaatatattcctc
48910
48923
2-10-2
1011_1
ACaatatattccTC





1012
gacaatatattcct
48911
48924
2-10-2
1012_1
GAcaatatattcCT





1013
caatcctaattaaa
48960
48973
2-10-2
1013_1
CAatcctaattaAA





1014
ccaatcctaattaa
48961
48974
2-10-2
1014_1
CCaatcctaattAA





1015
cccaatcctaatta
48962
48975
2-10-2
1015_1
CCcaatcctaatTA





1016
gcccaatcctaatt
48963
48976
2-10-2
1016_1
GCccaatcctaaTT





1017
tgcccaatcctaat
48964
48977
2-10-2
1017_1
TGcccaatcctaAT





1018
accctacaaatact
50093
50106
2-10-2
1018_1
ACcctacaaataCT





1019
aaccctacaaatac
50094
50107
2-10-2
1019_1
AAccctacaaatAC





1020
aaaccctacaaata
50095
50108
2-10-2
1020_1
AAaccctacaaaTA





1021
aaaaccctacaaat
50096
50109
2-10-2
1021_1
AAaaccctacaaAT





1022
aaaaaccctacaaa
50097
50110
2-10-2
1022_1
AAaaaccctacaAA





1023
aaaaaaccctacaa
50098
50111
2-10-2
1023_1
AAaaaaccctacAA





1024
aaaaaaaccctaca
50099
50112
2-10-2
1024_1
AAaaaaaccctaCA





1025
tatacactattaat
51008
51021
2-10-2
1025_1
TAtacactattaAT





1026
ttatacactattaa
51009
51022
2-10-2
1026_1
TTatacactattAA





1027
attatacactatta
51010
51023
2-10-2
1027_1
ATtatacactatTA





1028
aattatacactatt
51011
51024
2-10-2
1028_1
AAttatacactaTT





1029
gaattatacactat
51012
51025
2-10-2
1029_1
GAattatacactAT





1030
gtaacaattataca
51866
51879
2-10-2
1030_1
GTaacaattataCA





1031
tgtaacaattatac
51867
51880
2-10-2
1031_1
TGtaacaattatAC





1032
ctgtaacaattata
51868
51881
2-10-2
1032_1
CTgtaacaattaTA





1033
cctgtaacaattat
51869
51882
2-10-2
1033_1
CCtgtaacaattAT





1034
tcctgtaacaatta
51870
51883
2-10-2
1034_1
TCctgtaacaatTA





1035
ataaaaaccacctt
53263
53276
2-10-2
1035_1
ATaaaaaccaccTT





1036
aataaaaaccacct
53264
53277
2-10-2
1036_1
AAtaaaaaccacCT





1037
gaataaaaaccacc
53265
53278
2-10-2
1037_1
GAataaaaaccaCC





1038
agaataaaaaccac
53266
53279
2-10-2
1038_1
AGaataaaaaccAC





1039
cagaataaaaacca
53267
53280
2-10-2
1039_1
CAgaataaaaacCA





1040
ccagaataaaaacc
53268
53281
2-10-2
1040_1
CCagaataaaaaCC





1041
cccagaataaaaac
53269
53282
2-10-2
1041_1
CCcagaataaaaAC





1042
acccagaataaaaa
53270
53283
2-10-2
1042_1
ACccagaataaaAA





1043
tttcttactcccct
53699
53712
2-10-2
1043_1
TTtcttactcccCT





1044
ctttcttactcccc
53700
53713
2-10-2
1044_1
CTttcttactccCC





1045
actttcttactccc
53701
53714
2-10-2
1045_1
ACtttcttactcCC





1046
cactttcttactcc
53702
53715
2-10-2
1046_1
CActttcttactCC





1047
ccactttcttactc
53703
53716
2-10-2
1047_1
CCactttcttacTC





1048
cctttaccactttt
53948
53961
2-10-2
1048_1
CCtttaccacttTT





1049
ccctttaccacttt
53949
53962
2-10-2
1049_1
CCctttaccactTT





1050
tccctttaccactt
53950
53963
2-10-2
1050_1
TCcctttaccacTT





1051
atccctttaccact
53951
53964
2-10-2
1051_1
ATccctttaccaCT





1052
catccctttaccac
53952
53965
2-10-2
1052_1
CAtccctttaccAC





1053
ctacatctaacccc
54550
54563
2-10-2
1053_1
CTacatcttaccCC





1054
tctacatctaaccc
54551
54564
2-10-2
1054_1
TCtacatctaacCC





1055
gtctacatctaacc
54552
54565
2-10-2
1055_1
GTctacatctaaCC





1056
agtctacatctaac
54553
54566
2-10-2
1056_1
AGtctacatctaAC





1057
cagtctacatctaa
54554
54567
2-10-2
1057_1
CAgtctacatctAA





1058
tcagtctacatcta
54555
54568
2-10-2
1058_1
TCagtctacatcTA





1059
ttcagtctacatct
54556
54569
2-10-2
1059_1
TTcagtctacatCT





1060
taaccacacctcct
54573
54586
2-10-2
1060_1
TAaccacacctcCT





1061
ttaaccacacctcc
54574
54587
2-10-2
1061_1
TTaaccacacctCC





1062
tttaaccacacctc
54575
54588
2-10-2
1062_1
TTtaaccacaccTC





1063
ttttaaccacacct
54576
54589
2-10-2
1063_1
TTttaaccacacCT





1064
gttttaaccacacc
54577
54590
2-10-2
1064_1
GTtttaaccacaCC





1065
agttttaaccacac
54578
54591
2-10-2
1065_1
AGttttaaccacAC





1066
caacaaaacatcaa
55228
55241
2-10-2
1066_1
CAacaaaacatcAA





1067
tcaacaaaacatca
55229
55242
2-10-2
1067_1
TCaacaaaacatCA





1068
ttcaacaaaacatc
55230
55243
2-10-2
1068_1
TTcaacaaaacaTC





1069
tttcaacaaaacat
55231
55244
2-10-2
1069_1
TTtcaacaaaacAT





1070
ttttcaacaaaaca
55232
55245
2-10-2
1070_1
TTttcaacaaaaCA





1071
gttttcaacaaaac
55233
55246
2-10-2
1071_1
GTtttcaacaaaAC





1072
tgttttcaacaaaa
55234
55247
2-10-2
1072_1
TGttttcaacaaAA





1073
ttctaaaacttacc
55269
55282
2-10-2
1073_1
TTctaaaacttaCC





1074
tttctaaaacttac
55270
55283
2-10-2
1074_1
TTtctaaaacttAC





1075
ctttctaaaactta
55271
55284
2-10-2
1075_1
CTttctaaaactTA





1076
tctttctaaaactt
55272
55285
2-10-2
1076_1
TCtttctaaaacTT





1077
atctttctaaaact
55273
55286
2-10-2
1077_1
ATctttctaaaaCT





1078
aatctttctaaaac
55274
55287
2-10-2
1078_1
AAtctttctaaaAC





1079
gaatctttctaaaa
55275
55288
2-10-2
1079_1
GAatctttctaaAA





1080
agaatctttctaaa
55276
55289
2-10-2
1080_1
AGaatctttctaAA





1081
cagaatctttctaa
55277
55290
2-10-2
1081_1
CAgaatctttctAA





1082
cctttatttccctt
55494
55507
2-10-2
1082_1
CCtttatttcccTT





1083
ccctttatttccct
55495
55508
2-10-2
1083_1
CCctttatttccCT





1084
tccctttatttccc
55496
55509
2-10-2
1084_1
TCcctttatttcCC





1085
ttccctttatttcc
55497
55510
2-10-2
1085_1
TTccctttatttCC





1086
tttccctttatttc
55498
55511
2-10-2
1086_1
TTtccctttattTC





1087
atttccctttattt
55499
55512
2-10-2
1087_1
ATttccctttatTT





1088
tatttccctttatt
55500
55513
2-10-2
1088_1
TAtttccctttaTT





1089
gtatttccctttat
55501
55514
2-10-2
1089_1
GTatttccctttAT









Example 2: In Vitro Reduction of ATXN3 in SK—N-AS Human Cell Line Using Further LNA Gapmer Oligonucleotides Targeting ATNX3
Materials and Methods:

LNA modified oligonucleotides targeting human ATXN3 were tested for their ability to reduce ATXN3 mRNA expression in human SK—N-AS neuroblastoma cells acquired from ECACC Cat: 94092302. The cells were cultured according to the vendor guidelines in Dulbecco's Modified Eagle's Medium, supplemented with 0.1 mM Non-Essential Amino Acids (NEAA) and fetal bovine serum to a final concentration of 10%. Cells were cultured at 37° C., 5% CO2 and 95% humidity in an active evaporation incubator (Thermo C10). Cells were seeded at a density of 9000 cells per well (96-well plate) in 190 ul of SK—N-AS cell culture medium. The cells were hereafter added 10 μl of oligo suspension or PBS (controls) to a final concentration of 5 μM from pre-made 96-well dilution plates. The cell culture plates were incubated for 72 hours in the incubator.


After incubation, cells were harvested by removal of media followed by cell lysis and RNA purification using QIAGEN RNeasy 96 Kit (cat 74181), following manufacturers protocol. RNA was diluted 2 fold in water prior to the one-step qPCR reaction. For one-step qPCR reaction qPCR-mix (qScript™ XLT One-Step RT-qPCR ToughMix® Low ROX from QuantaBio, cat. no 95134-500) and QPCR was run as duplex QPCR using assays from Integrated DNA technologies for ATXN3 (Hs.PT.58.39355049) and TBP (Hs.PT.58v.39858774)









Hs.PT.58.39355049-Primer Sequences


Probe:


(SEQ ID NO: 1130)


5′-/56-FAM/AAAGGCCAG/ZEN/CCACCAGTTCAGG/3IABkFQ/-3′





Primer 1:


(SEQ ID NO: 1129)


5′-CTATCAGGACAGAGTTCACATCC-3′





Primer 2:


(SEQ ID NO: 1128)


5′-GTTTCTAAAGACATGGTCACAGC-3′





Hs.PT.58v.39858774-Primer Sequences


Probe:


(SEQ ID NO: 1131)


5′-/5HEX/TGA TCT TTG/ZEN/CAG TGA CCC AGC ATC A/


3IABkFQ/-3′





Primer 1:


(SEQ ID NO: 1132)


5′-GCT GTT TAA CTT CGC TTC CG-3′ 





Primer 2:


(SEQ ID NO: 1133)


5′-CAG CAA CTT CCT CAA TTC CTT G-3′






The reactions were then mixed in a qPCR plate (MICROAMP® optical 384 well, 4309849). After sealing, the plate was given a quick spin, 1000 g for 1 minute at RT, and transferred to a Viia™ 7 system (Applied Biosystems, Thermo), and the following PCR conditions used: 50° C. for 15 minutes; 95° C. for 3 minutes; 40 cycles of: 95° C. for 5 sec followed by a temperature decrease of 1.6° C./sec followed by 60° C. for 45 sec. The data was analyzed using the QuantStudio™ Real_time PCR Software and quantity calculated by the delta delta Ct method (Quantity=2{circumflex over ( )}(−Ct)*1000000000). Quantity is normalized to the calculated quantity for the housekeeping gene assay (TBP) run in the same well. Relative Target Quantity=QUANTITY_target/QUANTITY_housekeeping (RNA knockdown) was calculated for each well by division with the mean of all PBS-treated wells on the same plate. Normalised Target Quantity=(Relative Target Quantity/[mean] Relative Target Quantity]_pbs_wells)*100.


Compounds targeting selected target sequence regions of SEQ ID NO:1 were evaluated in the above assay.


Results:

The target knock-down data is presented in the following Compound and Data Table: In the Compound table, motif sequences represent the contiguous sequence of nucleobases present in the oligonucleotide.


Oligonucleotide compound represent specific designs of a motif sequence. Capital letters represent beta-D-oxy LNA nucleosides, lowercase letters represent DNA nucleosides, all LNA C are 5-methyl cytosine, all internucleoside linkages are phosphorothioate internucleoside linkages.









TABLE 4







Compound and Data Table















% of






ATXN3


SEQ
CMP
Oligonucleotide
Oligonucleotide
mRNA


ID
ID
Base Sequence
compound
remaining





1099
1099_1
CCAAAAGAAACCAAACCC
CCAAaagaaaccaaacCC
90.6





1100
1100_1
CCCCATTCAAATATTTATT
CCccattcaaatatttATT
90.5





1101
1101_1
AATCATTTACCCCCAAC
AAtcatttaccccCAAC
92





1102
1102_1
TATCTCAAACTATCCCCA
TAtctcaaactatcccCA
93





1103
1103_1
TCTATTCCTTAACCCAAC
TCTattccttaacccAAC
76.6





1104
1104_1
TCCCCTAAATAATTTAATCA
TCccctaaataatttaATCA
79.3





1105
1105 1
AAACCACTCCATTCCAA
AaaccactccattCCAA
57.7





1106
1106_1
TCTAAACCCCAAACTTTCA
TCtaaaccccaaactttCA
74.3





1107
1107_1
TTCTAAACCCCAAACTTTC
TTCtaaaccccaaacttTC
61.8





1108
1108_1
AGTTCTAAACCCCAAACT
AGttctaaaccccaaACT
73.7





1109
1109_1
TGAAACCATTACTACAACC
TGaaaccattactacAACC
24.9





1110
1110_1
ACATCATTTATCACTACCAC
ACAtcatttatcactaccAC
71.9





1111
1111_1
AACATTAAACCCTCCCA
AacattaaaccctcCCA
80.2





1112
1112_1
TCAGATCCTAAAATCACT
TCAgatcctaaaatcACT
79.5





1113
1113_1
CTATACCTAAAACAATCTA
CTAtacctaaaacaatCTA
99.1





1114
1114_1
TGATTCTTATACTTACTA
TGAttcttatacttaCTA
72.1





1115
1115 1
TAAAAATATAACTACTCCT
TAaaaatataactactCCTA
93.7




A







1116
1116_1
TCTTCATTATACCATCAAAT
TCTtcattataccatcaAAT
51.5





1117
1117_1
GTTTCATATTTTTAATCC
GTTtcatatttttaaTCC
37.7





1118
1118_1
TAATATCCTCATTACCCATT
TAatatcctcattacccaTT
84





1119
1119_1
CAAATATTCACAAATCCTA
CAaatattcacaaatCCTA
73.3





1120
1120_1
CATCACAAAATAACCTATC
CATcacaaaataacctaTC
79.9




A
A






1121
1121_1
CTCTCAACTTCTACTACTAA
CTCtcaacttctactactAA
59.6





1122
1122_1
AATCTTATTTACATCTTCC
AATcttatttacatctTCC
20.7





1123
1123_1
CCAAAATTACTTCTTTTATC
CCAaaattacttcttttATC
56.5





1124
1124_1
AACCCAACTTTCTATTTT
AACCcaactttctattTT
52.7





1125
1125_1
ACAATATATTCCTCAATCA
ACAatatattcctcaaTCA
86.8





1126
1126_1
CCTGTAACAATTATACA
CCTgtaacaattatACA
92.3





1127
1127_1
CATCCCTTTACCACTTT
CAtccctttaccactTT
94.5









In the oligonucleotide compound column, capital letters represent beta-D-oxy LNA nucleosides, LNA cytosines are 5-methyl cytosine, lower case letters are DNA nucleosides, and all internucleoside linkages are phosphorothioate.


As can be seen, most of the above compounds targeting the listed target sequence regions are capable of inhibiting the expression of the human ataxin 3 transcript and that compounds targeting the target sequence region complementary to SEQ ID NOS:1122 and 1109 are particularly effective in inhibiting the human ataxin 3 transcript. Other effective target sites for ATXN3 can be determined from the above table.


Example 3
Materials and Methods:

The screening assay described in Example 2 was performed using a series of further oligonucleotide targeting human ATXN3 pre-mRNA using the qpCR: (ATXN3_exon_8-9(1) PrimeTime® XL qPCR Assay (IDT).











qPCR probe and primers set 2:



Probe:



(SEQ ID NO: 1134)



5′-/56-FAM/CTCCGCAGG/ZEN/GCT ATTCAGCT AAGT/



3IABkFQ/-3′







Primer 1:



(SEQ ID NO: 1135)



5′-AGT AAGATTTGT ACCTGATGTCTGT-3′







Primer 2:



(SEQ ID NO: 1136)



5′-CATGGAAGATGAGGAAGCAGAT-3′






Results:

The results are shown in the following table:













TABLE 5









% of






ATXN3


SEQ
CMP
Oligonucleotide
Oligonucleotide
mRNA


ID
ID
Base Sequence
compound
remaining



















1137
1137_1
CCTACTTCACTTCCTAA
CctacttcacttcCTAA
68.9





1138
1138_1
TTTCCTACTTCACTTCCTA
TttcctacttcacttccTA
95.1





1139
1139_1
TTCCTACTTCACTTCCTA
TtcctacttcacttcCTA
85





1140
1140_1
TTTCCTACTTCACTTCCT
TTtcctacttcacttcCT
88.1





1141
1141_1
TTTCCTACTTCACTTCC
TttcctacttcactTCC
83.1





1142
1142_1
GTTTCCTACTTCACTTC
GTTtcctacttcactTC
60.2





1143
1143_1
ACCAAACCCAAACATCCC
AccaaacccaaacatcCC
88





1144
1144_1
AGAAACCAAACCCAAACATC
AgaaaccaaacccaaaCATC
91.3





1145
1145_1
AGAAACCAAACCCAAACAT
AGaaaccaaacccaaACAT
93.5





1146
1146_1
CTCCTAATACCTAAAAACAA
CTCCtaatacctaaaaacaAA
100




A







1147
1147_1
CTCCTAATACCTAAAAACA
CTCCtaatacctaaaaaCA
94.2





1148
1148_1
ACTCCTAATACCTAAAAACA
ACTCctaatacctaaaaaCA
81





1149
1149_1
CACTCCTAATACCTAAAAAC
CACtcctaatacctaaaaACA
90.4




A







1150
1150_1
CCACTCCTAATACCTAAAAA
CCACtcctaatacctaaaAA
63





1151
1151_1
TCCACTCCTAATACCTAAAAA
TCCactcctaatacctaaaAA
54





1152
1152_1
CCACTCCTAATACCTAAAA
CCACtcctaatacctaaAA
73.7





1153
1153_1
TCCACTCCTAATACCTAAAA
TCCactcctaatacctaAAA
59





1154
1154_1
CCACTCCTAATACCTAAA
CCACtcctaatacctaAA
65.2





1155
1155_1
GTCCACTCCTAATACCTAAA
GtccactcctaataccTAAA
86.8





1156
1156_1
CCACTCCTAATACCTAA
CCactcctaatacCTAA
52.3





1157
1157_1
TCCACTCCTAATACCTAA
TCcactcctaatacCTAA
64.3





1157
1157_2
TCCACTCCTAATACCTAA
TCCActcctaatacctAA
66





1158
1158_1
GTCCACTCCTAATACCTAA
GtccactcctaataccTAA
85.5





1159
1159_1
AGTCCACTCCTAATACCTA
AgtccactcctaataccTA
87.4





1160
1160_1
TCCACTCCTAATACCTA
TCcactcctaatacCTA
70.1





1161
1161_1
AGTCCACTCCTAATACCT
AgtccactcctaatacCT
84.2





1162
1162_1
GTCCACTCCTAATACC
GTCcactcctaataCC
57.8





1163
1163_1
AGTCCACTCCTAATACC
AGtccactcctaataCC
77.1





1164
1164_1
CAGTCCACTCCTAATACC
CagtccactcctaatACC
86.7





1162
1162_2
GTCCACTCCTAATACC
GTCcactcctaatACC
67.8





1165
1165_1
CCAGTCCACTCCTAATAC
CcagtccactcctaaTAC
85.4





1166
1166_1
CAGTCCACTCCTAATAC
CAgtccactcctaaTAC
60.7





1167
1167_1
AGTCCACTCCTAATAC
AGTCcactcctaatAC
78.9





1168
1168_1
CAGTCCACTCCTAATA
CAGtccactcctaaTA
44.5





1169
1169_1
CCAGTCCACTCCTAATA
CCagtccactcctaaTA
33.8





1170
1170_1
GCAACTCTTTCCAAACA
GCAActctttccaaaCA
36





1171
1171_1
AGCAACTCTTTCCAAACA
AGCaactctttccaaaCA
35.3





1172
1172_1
CAGCAACTCTTTCCAAACA
CAgcaactctttccaaACA
58.3





1173
1173_1
CCAGCAACTCTTTCCAAA
CcagcaactctttcCAAA
69.7





1174
1174_1
CCAGCAACTCTTTCCAA
CCagcaactctttcCAA
42.1





1175
1175_1
ACCAGCAACTCTTTCCAA
ACcagcaactctttcCAA
65





1176
1176_1
TTACCAGCAACTCTTTC
TTACcagcaactcttTC
53





1177
1177_1
TGCTCCTCCTATTAAATAA
TGCtcctcctattaaatAA
76.3





1178
1178_1
GCTCCTCCTATTAAATAA
GCtcctcctattaaATAA
61.8





1179
1179_1
GCTCCTCCTATTAAATA
GCtcctcctattaaATA
60.2





1180
1180_1
TGCTCCTCCTATTAAATA
TGctcctcctattaaATA
70.2





1181
1181_1
TGCTCCTCCTATTAAAT
TGCtcctcctattaaAT
80.2





1182
1182_1
TTGCTCCTCCTATTAAAT
TTGCtcctcctattaaAT
79





1183
1183_1
ATTTAATAAAACAAAAACCC
ATttaataaaacaaaaaCCCT
97.2




T







1184
1184_1
GCCCAAAAAACTAAATT
GCCCaaaaaactaaaTT
95.5





1185
1185_1
GTTTTTACATTCTAACTT
GTTtttacattctaaCTT
54.1





1186
1186_1
TGTTTTTACATTCTAACT
TGTTtttacattctaaCT
63.8





1187
1187_1
CTGTTTTTACATTCTAAC
CTGTttttacattctaAC
62.5





1188
1188_1
CCCCATTCAAATATTTAT
CCCcattcaaatattTAT
64.9





1189
1189_1
GCCCCATTCAAATATTTAT
GCcccattcaaatattTAT
86.2





1188
1188_2
CCCCATTCAAATATTTAT
CCCCattcaaatatttAT
96.2





1190
1190_1
GCCCCATTCAAATATTTA
GCcccattcaaatatTTA
82.2





1191
1191_1
CCATTCAAATATATACATTTT
CCATtcaaatatatacattTT
72





1191
1191_2
CCATTCAAATATATACATTTT
CCATtcaaataTatacattTT
37.7





1192
1192_1
TCCATTCAAATATATACATTT
TCCAttcaaatatatacatTT
56.8





1193
1193_1
ATCCATTCAAATATATACATT
ATCCattcaaaTatatacaTT
48





1194
1194_1
TCCATTCAAATATATACATT
TCCAttcaaatatatacaTT
53.7





1193
1193_2
ATCCATTCAAATATATACATT
ATCCattcaaatatatacaTT
54.7





1195
1195_1
TATCCATTCAAATATATACAT
TATccattcaaatatataCAT
80.1





1196
1196_1
TCCATTCAAATATATACAT
TCCattcaaatatataCAT
43.1





1197
1197_1
ATCCATTCAAATATATACA
ATCCattcaaatatataCA
53.9





1198
1198_1
TTATCCATTCAAATATATACA
TTatccattcaaatataTACA
69.4





1199
1199_1
TCCATTCAAATATATACA
TCCAttcaaatatataCA
54.7





1200
1200_1
TATCCATTCAAATATATACA
TATCcattcaaatatataCA
53.3





1201
1201_1
CTTTATCCATTCAAATATATA
CTttatccattcaaataTATA
85.5





1202
1202_1
TCTTTATCCATTCAAATATAT
TCTttatccattcaaataTAT
62.6





1203
1203_1
CTCTTTATCCATTCAAATATA
CTCtttatccattcaaatATA
38.4





1204
1204_1
TCTTTATCCATTCAAATATA
TCtttatccattcaaaTATA
70.9





1203
1203_2
CTCTTTATCCATTCAAATATA
CTCTttatccattcaaataTA
33.6





1205
1205_1
CTTTATCCATTCAAATATA
CTttatccattcaaaTATA
78.4





1206
1206_1
TCTCTTTATCCATTCAAATAT
TCtctttatccattcaaaTAT
82





1207
1207_1
CTCTTTATCCATTCAAATAT
CTCtttatccattcaaaTAT
39.8





1208
1208_1
TCTTTATCCATTCAAATAT
TCTttatccattcaaaTAT
63.1





1209
1209_1
TCTCTTTATCCATTCAAATA
TCtctttatccattcaAATA
65.2





1210
1210_1
CTCTTTATCCATTCAAATA
CTCTttatccattcaaaTA
32.2





1211
1211_1
TCTCTTTATCCATTCAAAT
TCTCtttatccattcaaAT
42





1212
1212_1
TCTCTTTATCCATTCAAA
TCTCtttatccattcaAA
42.5





1213
1213_1
AGCACCATATATATCTCA
AgcaccatatatatCTCA
16





1214
1214_1
GCACCATATATATCTCA
GCaccatatatatcTCA
16





1215
1215_1
CAGCACCATATATATCTCA
CagcaccatatatatCTCA
19.2





1215
1215_2
CAGCACCATATATATCTCA
CAgcaccatatatatcTCA
24.1





1216
1216_1
AGCACCATATATATCTC
AGCaccatatatatcTC
19.9





1217
1217_1
GCACCATATATATCTC
GCACcatatatatcTC
82.7





1218
1218_1
CAGCACCATATATATCTC
CAgcaccatatatatCTC
21.1





1219
1219_1
CAGCACCATATATATCT
CAGcaccatatataTCT
28.9





1220
1220_1
ACAGCACCATATATATCT
ACAGcaccatatatatCT
21.9





1221
1221_1
ACAGCACCATATATATC
ACAGcaccatatataTC
25.4





1222
1222_1
CTATGTTATTATCCCCA
CTAtgttattatcccCA
56.1





1223
1223_1
TCTATGTTATTATCCCC
TctatgttattatcCCC
47.7





1224
1224_1
CTCTACACTCTAACTCT
CtctacactctaaCTCT
79.3





1225
1225_1
TCTCTACACTCTAACTCT
TctctacactctaaCTCT
79.6





1226
1226_1
TTCTCTACACTCTAACTCT
TTCtctacactctaactCT
86.9





1227
1227_1
CTTCTCTACACTCTAACTCT
CTtctctacactctaactCT
97





1227
1227_2
CTTCTCTACACTCTAACTCT
CttctctacactctaacTCT
84.5





1228
1228_1
TTCTCTACACTCTAACTC
TTCtctacactctaacTC
81.4





1229
1229_1
CTTCTCTACACTCTAACTC
CttctctacactctaaCTC
89.1





1230
1230_1
TCTCTACACTCTAACTC
TCtctacactctaaCTC
87.3





1231
1231_1
CCTTCTCTACACTCTAACTC
CcttctctacactctaacTC
98.3





1232
1232_1
TTCTCTACACTCTAACT
TTCTctacactctaaCT
80.1





1233
1233_1
CTTCTCTACACTCTAACT
CTTctctacactctaaCT
73.6





1234
1234_1
CCTTCTCTACACTCTAACT
CcttctctacactctAACT
77.7





1235
1235_1
CCTTCTCTACACTCTAAC
CCTtctctacactctaAC
82.4





1236
1236_1
CTTCTCTACACTCTAAC
CTtctctacactcTAAC
90.6





1237
1237_1
AGCCTTCTCTACACTCTAA
AgccttctctacactcTAA
80





1238
1238_1
CCTTCTCTACACTCTAA
CCttctctacactcTAA
72.2





1239
1239_1
GCCTTCTCTACACTCTAA
GCcttctctacactctAA
62.9





1240
1240_1
AGCCTTCTCTACACTCTA
AgccttctctacactcTA
85.2





1241
1241_1
TACTAACTACAACACAAATC
TACtaactacaacacaaaTCA
91.3




A







1241
1241_2
TACTAACTACAACACAAATC
TACtaactacAacacaaaTC
81.1




A
A






1242
1242_1
CTACTAACTACAACACAAAT
CTACtaactacaacacaaaTC
108




C







1243
1243_1
CACTACTAACTACAACACAA
CACTactaactacaacacaA
74




A
A






1244
1244_1
CACTACTAACTACAACACAA
CACtactaactacaacaCAA
87.4





1245
1245_1
ACACTACTAACTACAACACA
ACActactaactacaacaCA
84.1




A
A






1246
1246_1
CACTACTAACTACAACACA
CACTactaactacaacaCA
83.5





1247
1247_1
ACACTACTAACTACAACACA
ACACtactaactacaacaCA
81.3





1248
1248_1
GACACTACTAACTACAACAC
GACactactaactacaaCAC
51.6





1249
1249_1
GACACTACTAACTACAACA
GACActactaactacaaCA
51





1250
1250_1
AGACACTACTAACTACAA
AGAcactactaactaCAA
57.2





1251
1251_1
AGACACTACTAACTACA
AGACactactaactaCA
34.7





1252
1252_1
ATCATTTACCCCCAACCT
AtcatttacccccaacCT
96





1253
1253_1
ATCATTTACCCCCAACC
AtcatttacccccAACC
89.1





1254
1254_1
CAAATCATTTACCCCCAA
CaaatcatttacccCCAA
92





1255
1255_1
CCAAATCATTTACCCCCAA
CcaaatcatttaccccCAA
91





1256
1256_1
ACCAAATCATTTACCCCCA
AccaaatcatttaccccCA
89.9





1257
1257_1
TACCAAATCATTTACCCCC
TaccaaatcatttacccCC
84





1258
1258_1
ACCAAATCATTTACCCC
ACcaaatcatttacCCC
69.9





1259
1259_1
TACCAAATCATTTACCCC
TACcaaatcatttaccCC
56.3





1260
1260_1
CTACCAAATCATTTACCCC
CtaccaaatcatttaccCC
94





1261
1261_1
TACCAAATCATTTACCC
TAccaaatcatttACCC
68.9





1262
1262_1
CTACCAAATCATTTACC
CTACcaaatcatttaCC
70.3





1263
1263_1
TGCTACCAAATCATTTACC
TgctaccaaatcattTACC
79





1264
1264_1
GCTACCAAATCATTTACC
GCtaccaaatcatttACC
83.6





1265
1265_1
TGCTACCAAATCATTTAC
TGCTaccaaatcatttAC
88.3





1266
1266_1
GCTACCAAATCATTTAC
GCTaccaaatcattTAC
71.4





1267
1267_1
TGCTACCAAATCATTTA
TGCtaccaaatcatTTA
79.8





1268
1268_1
CTGCTACCAAATCATTTA
CTGctaccaaatcatTTA
75.3





1269
1269_1
ACTGCTACCAAATCATTT
ACTGctaccaaatcatTT
83.4





1270
1270_1
CTGCTACCAAATCATTT
CTGCtaccaaatcatTT
83





1271
1271_1
ACTGCTACCAAATCATT
ACTGctaccaaatcaTT
71.1





1272
1272_1
CACTTTGCCATAATCAA
CActttgccataaTCAA
26





1273
1273_1
TTATCTCAAACTATCCCCA
TTAtctcaaactatcccCA
92.9





1274
1274_1
ATCTCAAACTATCCCCA
ATctcaaactatccCCA
72.3





1275
1275_1
CTTATCTCAAACTATCCCCA
CttatctcaaactatcccCA
85.5





1276
1276_1
TATCTCAAACTATCCCC
TatctcaaactatcCCC
79.8





1277
1277_1
CTTATCTCAAACTATCCCC
CTtatctcaaactatccCC
84





1278
1278_1
TTATCTCAAACTATCCCC
TTAtctcaaactatccCC
89.7





1279
1279_1
CTTATCTCAAACTATCCC
CttatctcaaactaTCCC
83.5





1280
1280_1
CCTTATCTCAAACTATCCC
CcttatctcaaactatcCC
87.6





1279
1279_2
CTTATCTCAAACTATCCC
CTtatctcaaactatCCC
76.9





1281
1281_1
TTATCTCAAACTATCCC
TtatctcaaactaTCCC
84.7





1282
1282_1
CTTATCTCAAACTATCC
CTTatctcaaactaTCC
78.3





1283
1283_1
CCCTTATCTCAAACTATCC
CccttatctcaaactaTCC
76.4





1284
1284_1
CCTTATCTCAAACTATCC
CCTtatctcaaactatCC
69.3





1285
1285_1
CCTTATCTCAAACTATC
CCttatctcaaacTATC
75.9





1286
1286_1
GCCCTTATCTCAAACTATC
GCccttatctcaaactaTC
76.6





1287
1287_1
CCCTTATCTCAAACTATC
CCcttatctcaaacTATC
67.2





1288
1288_1
TGCCCTTATCTCAAACTAT
TgcccttatctcaaacTAT
90.5





1289
1289_1
GCCCTTATCTCAAACTAT
GCccttatctcaaacTAT
71.9





1290
1290_1
CCCTTATCTCAAACTAT
CCCTtatctcaaactAT
77.7





1291
1291_1
GCCCTTATCTCAAACTA
GCccttatctcaaacTA
68.4





1292
1292_1
TGCCCTTATCTCAAACTA
TgcccttatctcaaaCTA
81.5





1293
1293_1
TGCCCTTATCTCAAACT
TGcccttatctcaaaCT
75.7





1294
1294_1
TTGCCCTTATCTCAAAC
TTGCccttatctcaaAC
89





1295
1295_1
CTTGCCCTTATCTCAA
CTtgcccttatcTCAA
48.2





1296
1296_1
TGAAATCAAACTTCATCA
TGAaatcaaacttcaTCA
66.5





1297
1297_1
GGTCACCATACTTAAT
GGTCaccatacttaAT
89.7





1298
1298_1
TGCTAACACAAATTTCCT
TGctaacacaaattTCCT
47.3





1299
1299_1
GCTAACACAAATTTCCT
GCTaacacaaatttCCT
48.9





1299
1299_2
GCTAACACAAATTTCCT
GCtaacacaaattTCCT
45.7





1300
1300_1
TTGCTAACACAAATTTCC
TTGCtaacacaaatttCC
60.7





1301
1301_1
TGCTAACACAAATTTCC
TGCTaacacaaatttCC
62.6





1302
1302_1
TTGCTAACACAAATTTC
TTGCtaacacaaattTC
72.4





1303
1303_1
CCTTTGCTAACACAAAT
CCTTtgctaacacaaAT
48.1





1304
1304_1
GTATAACCAATAATAACTA
GTAtaaccaataataaCTA
86.1





1305
1305_1
TCTGACATCACACAATTT
TCTGacatcacacaatTT
67.8





1306
1306_1
TCTGACATCACACAATT
TCTGacatcacacaaTT
70.2





1307
1307_1
TATCTGACATCACACAA
TATctgacatcacaCAA
69.8





1308
1308_1
CTATTCCTTAACCCAAC
CTattccttaaccCAAC
77.7





1309
1309_1
GTCTATTCCTTAACCCAAC
GtctattccttaaccCAAC
86.2





1310
1310_1
GTCTATTCCTTAACCCAA
GtctattccttaacCCAA
60.4





1311
1311_1
TCTATTCCTTAACCCAA
TCTattccttaaccCAA
51





1312
1312_1
GTCTATTCCTTAACCCA
GtctattccttaacCCA
67.3





1313
1313_1
GTCTATTCCTTAACCC
GtctattccttaaCCC
77.4





1314
1314_1
GGTCTATTCCTTAACC
GGtctattccttaaCC
83.2





1315
1315_1
AGAACATTTCCTTCTCCT
AgaacatttccttctcCT
84.2





1316
1316_1
AACTGTCCCAAACAACC
AACtgtcccaaacaaCC
75





1317
1317_1
TTAGTCTCCCTCATTTTC
TtagtctccctcattTTC
72.4





1318
1318_1
ATTTAGTCTCCCTCATT
ATttagtctccctCATT
48





1319
1319_1
ATGCATCAAATCTCATA
ATGCatcaaatctcaTA
83.7





1320
1320_1
CCTAAATAATTTAATCATTAA
CCTaaataatttaatcatTAA
94





1321
1321_1
CCCTAAATAATTTAATCATTA
CCCTaaataatttaatcatTA
88.8





1322
1322_1
CCCCTAAATAATTTAATCATT
CCCctaaataatttaatcATT
80.7





1323
1323_1
CCCTAAATAATTTAATCATT
CCCTaaataatttaatcaTT
82.2





1324
1324_1
CCCTAAATAATTTAATCAT
CCCtaaataatttaatCAT
87.1





1325
1325_1
CCCCTAAATAATTTAATCA
CCCctaaataatttaaTCA
79.9





1326
1326_1
CCCTAAATAATTTAATCA
CCCtaaataatttaaTCA
82.5





1327
1327_1
CCCCTAAATAATTTAATC
CCCCtaaataatttaaTC
116





1328
1328_1
TCCCCTAAATAATTTAATC
TCCCctaaataatttaaTC
109





1329
1329_1
TTGCTAATATTTCCAAAA
TTGCtaatatttccaaAA
84.2





1330
1330_1
CTTGCTAATATTTCCAA
CTtgctaatatttCCAA
66.1





1331
1331_1
ACTGTCATCCATATTTCC
ActgtcatccatattTCC
66.2





1332
1332_1
ACTGTCATCCATATTTC
ACTgtcatccatatTTC
48.1





1333
1333_1
AATGCCCCACTCTAATAT
AATGccccactctaatAT
36.9





1334
1334_1
TGCCCCACTCTAATAT
TGCcccactctaatAT
52.8





1335
1335_1
ATGCCCCACTCTAATAT
ATgccccactctaaTAT
43.7





1336
1336_1
AAATGCCCCACTCTAATA
AAATgccccactctaaTA
25.7





1337
1337_1
ATGCCCCACTCTAATA
ATGccccactctaaTA
28.6





1338
1338_1
AATGCCCCACTCTAATA
AATGccccactctaaTA
29.9





1339
1339_1
TTAAATGCCCCACTCTA
TtaaatgccccactCTA
51.3





1340
1340_1
TCTGAAAATTCACTATCT
TCTGaaaattcactatCT
35.7





1341
1341_1
GTCTACTATATACATCT
GTCtactatatacaTCT
30.6





1342
1342_1
AGTCTACTATATACATCT
AGTCtactatatacatCT
45.3





1343
1343_1
AGTCTACTATATACATC
AGTCtactatatacaTC
57





1344
1344_1
GTCTACTATATACATC
GTCTactatatacaTC
46.5





1345
1345_1
TAGTCTACTATATACATC
TAgtctactatataCATC
68.3





1346
1346_1
TAGTCTACTATATACAT
TAGtctactatataCAT
89





1347
1347_1
CTAGTCTACTATATACAT
CTAgtctactatataCAT
86.6





1348
1348_1
CTAGTCTACTATATACA
CTAGtctactatataCA
88.5





1349
1349_1
ACTAGTCTACTATATAC
ACTagtctactataTAC
85.1





1350
1350_1
CTAGTCTACTATATAC
CTAgtctactataTAC
85.3





1351
1351_1
GTATATTCTACCCATAA
GTAtattctacccaTAA
51.3





1352
1352_1
TGTATATTCTACCCATAA
TGTatattctacccaTAA
48.4





1353
1353_1
TGTATATTCTACCCATA
TGtatattctaccCATA
45.6





1354
1354_1
ATGTATATTCTACCCATA
ATgtatattctaccCATA
90.2





1355
1355_1
ATGTATATTCTACCCAT
ATgtatattctacCCAT
51.1





1356
1356_1
GAAAACCACACAATTCCTA
GaaaaccacacaattCCTA
58.9





1357
1357_1
GAAAACCACACAATTCCT
GAaaaccacacaatTCCT
56.4





1358
1358_1
AGAAAACCACACAATTCCT
AGaaaaccacacaattCCT
58.4





1359
1359_1
CAGAAAACCACACAATTCC
CAGaaaaccacacaatTCC
43.3





1360
1360_1
AGAAAACCACACAATTCC
AGAaaaccacacaatTCC
47.6





1361
1361_1
CCAGAAAACCACACAATTC
CCAGaaaaccacacaatTC
26.3





1362
1362_1
CCAGAAAACCACACAATT
CCAGaaaaccacacaaTT
21





1363
1363_1
TCCAGAAAACCACACAAT
TCCAgaaaaccacacaAT
47.1





1364
1364_1
TTCCAGAAAACCACACAA
TTCCagaaaaccacacAA
49.8





1364
1364_2
TTCCAGAAAACCACACAA
TTCcagaaaaccacaCAA
45.8





1365
1365_1
GATATATCACTAAATCCAT
GAtatatcactaaatCCAT
27.4





1366
1366_1
GATATATCACTAAATCCA
GAtatatcactaaaTCCA
43.7





1367
1367_1
AGATATATCACTAAATCCA
AGatatatcactaaaTCCA
37.4





1368
1368_1
AGATATATCACTAAATCC
AGAtatatcactaaaTCC
33.6





1369
1369_1
TCATATATAAATTTCTCTA
TCAtatataaatttctCTA
78





1369
1369_2
TCATATATAAATTTCTCTA
TCATatataaatttctcTA
73.1





1370
1370_1
TCATATATAAATTTCTCT
TCatatataaatttCTCT
27.9





1370
1370_2
TCATATATAAATTTCTCT
TCATatataaatttctCT
60.2





1371
1371_1
AAGATCACACAACCATA
AAGAtcacacaaccaTA
19.8





1372
1372_1
TAAAAGATCACACAACCA
TAaaagatcacacaACCA
47.5





1373
1373_1
CATCACATAAAAACCCACTT
CATcacataaaaacccaCTT
45.4





1374
1374_1
CATCACATAAAAACCCACT
CAtcacataaaaaccCACT
57.9





1375
1375_1
TCATCACATAAAAACCCACT
TCatcacataaaaaccCACT
30.1





1376
1376_1
CATCACATAAAAACCCAC
CAtcacataaaaacCCAC
61.6





1377
1377_1
TCATCACATAAAAACCCAC
TCatcacataaaaacCCAC
30.6





1378
1378_1
GTCATCACATAAAAACCCAC
GTCatcacataaaaaccCAC
24.9





1379
1379_1
GTCATCACATAAAAACCCA
GTCatcacataaaaacCCA
28.7





1380
1380_1
TCATCACATAAAAACCCA
TCatcacataaaaaCCCA
43.9





1381
1381_1
CATCACATAAAAACCCA
CAtcacataaaaaCCCA
71.5





1382
1382_1
TCATCACATAAAAACCC
TCAtcacataaaaaCCC
42.9





1383
1383_1
GTCATCACATAAAAACCC
GTCatcacataaaaaCCC
24.9





1384
1384_1
AGTCATCACATAAAAACCC
AGtcatcacataaaaACCC
35.8





1384
1384_2
AGTCATCACATAAAAACCC
AGTCatcacataaaaacCC
23





1385
1385_1
TAGTCATCACATAAAAACC
TAGTcatcacataaaaaCC
36.3





1386
1386_1
AGTCATCACATAAAAACC
AGTCatcacataaaaaCC
34.9





1387
1387_1
ATGCTAAATACAAATCT
ATGCtaaatacaaatCT
81





1388
1388_1
GAAACCATTACTACAACCAA
GAaaccattactacaaCCAA
20.1





1389
1389_1
GAAACCATTACTACAACCA
GAaaccattactacaACCA
15.9





1390
1390_1
ATGAAACCATTACTACAAC
ATGAaaccattactacaAC
45.6





1391
1391_1
CATGAAACCATTACTACA
CATGaaaccattactaCA
55.9





1392
1392_1
CCATGAAACCATTACTAC
CCatgaaaccattaCTAC
29.5





1393
1393_1
CTCCCATGAAACCATTA
CTCCcatgaaaccatTA
73.7





1394
1394_1
TGCTTACTTTATACAAAA
TGCTtactttatacaaAA
55.9





1395
1395_1
ATGTTAATACTTTTTCCA
ATGttaatactttttCCA
92.9





1396
1396_1
CCTAATTTAACCCACAA
CCTaatttaacccaCAA
32.2





1397
1397_1
ATCCTAATTTAACCCACAA
ATCctaatttaacccaCAA
38.1





1398
1398_1
TCCTAATTTAACCCACAA
TCCtaatttaacccaCAA
39.9





1399
1399_1
TAATCCTAATTTAACCCACAA
TAAtcctaatttaacccaCAA
72.8





1400
1400_1
TAATCCTAATTTAACCCACA
TAatcctaatttaaccCACA
45





1401
1401_1
AATCCTAATTTAACCCACA
AATCctaatttaacccaCA
41.2





1402
1402_1
TCCTAATTTAACCCACA
TCCtaatttaacccACA
38.3





1403
1403_1
TAATCCTAATTTAACCCAC
TAatcctaatttaacCCAC
37.5





1404
1404_1
ATCCTAATTTAACCCAC
ATcctaatttaacCCAC
34.4





1405
1405_1
AATCCTAATTTAACCCAC
AAtcctaatttaacCCAC
48.2





1406
1406_1
TAATCCTAATTTAACCCA
TAatcctaatttaaCCCA
56.5





1407
1407_1
AATCCTAATTTAACCCA
AAtcctaatttaaCCCA
71.7





1408
1408_1
GTAATCCTAATTTAACCCA
GtaatcctaatttaaCCCA
63.6





1409
1409_1
TAATCCTAATTTAACCC
TAatcctaatttaACCC
56.5





1410
1410_1
GTAATCCTAATTTAACCC
GTaatcctaatttaACCC
44





1411
1411_1
AGTAATCCTAATTTAACCC
AGtaatcctaatttaaCCC
66.2





1410
1410_2
GTAATCCTAATTTAACCC
GTAatcctaatttaaCCC
34.2





1412
1412_1
AGTAATCCTAATTTAACC
AGTAatcctaatttaaCC
42.7





1413
1413_1
TCATTTATCACTACCACA
TCAtttatcactaccACA
26.5





1414
1414_1
CATCATTTATCACTACCACA
CatcatttatcactacCACA
46





1415
1415_1
CATTTATCACTACCACA
CAtttatcactacCACA
19.4





1416
1416_1
ATCATTTATCACTACCACA
ATcatttatcactacCACA
16.8





1416
1416_2
ATCATTTATCACTACCACA
ATCAtttatcactaccaCA
14.1





1417
1417_1
ACATCATTTATCACTACCACA
ACatcatttatcactaccACA
53.4





1418
1418_1
TCATTTATCACTACCAC
TCAtttatcactacCAC
18.9





1419
1419_1
ATCATTTATCACTACCAC
ATcatttatcactaCCAC
21.8





1420
1420_1
CATCATTTATCACTACCAC
CATcatttatcactacCAC
25.1





1421
1421_1
AACATCATTTATCACTACCAC
AACatcatttatcactacCAC
30.5





1421
1421_2
AACATCATTTATCACTACCAC
AacatcatttatcactaCCAC
40.4





1420
1420_2
CATCATTTATCACTACCAC
CatcatttatcactaCCAC
34.3





1422
1422_1
AACATCATTTATCACTACCA
AAcatcatttatcactACCA
34





1423
1423_1
CATCATTTATCACTACCA
CATCatttatcactacCA
11.3





1424
1424_1
TAACATCATTTATCACTACCA
TAacatcatttatcactaCCA
63.1





1425
1425_1
ACATCATTTATCACTACCA
ACATcatttatcactacCA
19





1422
1422_2
AACATCATTTATCACTACCA
AACatcatttatcactaCCA
25





1424
1424_2
TAACATCATTTATCACTACCA
TaacatcatttatcactACCA
61.3





1425
1425_2
ACATCATTTATCACTACCA
ACatcatttatcactACCA
23.5





1426
1426_1
TAACATCATTTATCACTACC
TAACatcatttatcactaCC
33.6





1427
1427_1
ACATCATTTATCACTACC
ACatcatttatcacTACC
32.3





1428
1428_1
TTAACATCATTTATCACTACC
TTAacatcatttatcactaCC
75.5





1429
1429_1
AACATCATTTATCACTACC
AACAtcatttatcactaCC
37.3





1430
1430_1
TTAACATCATTTATCACTAC
TTaacatcatttatcaCTAC
69.1





1431
1431_1
TAACATCATTTATCACTAC
TAacatcatttatcaCTAC
66.6





1432
1432_1
ATTAACATCATTTATCACTAC
ATtaacatcatttatcaCTAC
84.2





1432
1432_2
ATTAACATCATTTATCACTAC
ATtaacatcAtttatcaCTAC
62.8





1433
1433_1
ATTAACATCATTTATCACTA
ATTaacatcatttatcaCTA
81.3





1434
1434_1
TTAACATCATTTATCACTA
TTAacatcatttatcaCTA
74.5





1435
1435_1
TAATTAACATCATTTATCACT
TAattaacatcatttatCACT
84.3





1435
1435_2
TAATTAACATCATTTATCACT
TAattaacaTcatttatCACT
43.3





1436
1436_1
CTAATTAACATCATTTATCAC
CTaattaacatcatttaTCAC
81.4





1436
1436_2
CTAATTAACATCATTTATCAC
CTaattaacAtcatttaTCAC
46.7





1437
1437_1
CCTAATTAACATCATTTATCA
CCtaattaacatcatttaTCA
93.8





1438
1438_1
CTAATTAACATCATTTATCA
CTAattaacatcatttaTCA
89.6





1439
1439_1
CCTAATTAACATCATTTATC
CCTAattaacatcatttaTC
69.4





1440
1440_1
CCCTAATTAACATCATTTATC
CCctaattaacatcatttATC
86.3





1441
1441_1
CCTAATTAACATCATTTAT
CCTaattaacatcattTAT
87.4





1442
1442_1
CCTAATTAACATCATTTA
CCTAattaacatcattTA
66





1443
1443_1
CCCTAATTAACATCATTTA
CCCtaattaacatcattTA
88.7





1444
1444_1
GCCCTAATTAACATCATTT
GCCctaattaacatcatTT
87.9





1445
1445_1
CCCTAATTAACATCATTT
CCCTaattaacatcatTT
75.6





1446
1446_1
CGGCCCTAATTAACAT
CGGCcctaattaacAT
103





1447
1447_1
CTCGGCCCTAATTAA
CTCggccctaatTAA
57.4





1448
1448_1
CACATATAACATATAAACAC
CACAtataacatataaacaCA
61.7




A







1449
1449_1
TCACATATAACATATAAACA
TCAcatataacatataaaCAC
43.6




C







1450
1450_1
ACTATCACATATAACATATA
ACTAtcacatataacataTA
58.5





1451
1451_1
CACTATCACATATAACATATA
CACTatcacatataacataTA
28.1





1452
1452_1
CACTATCACATATAACATAT
CACtatcacatataacaTAT
52





1453
1453_1
CACTATCACATATAACATA
CACTatcacatataacaTA
24.3





1454
1454_1
CACTATCACATATAACAT
CACtatcacatataaCAT
40.1





1455
1455_1
CACTATCACATATAACA
CACTatcacatataaCA
27





1456
1456_1
CAAAGTTTTCCCATTAC
CAaagttttcccaTTAC
21





1457
1457_1
ACAAAGTTTTCCCATTA
ACAaagttttcccaTTA
20.5





1458
1458_1
TCAGTCCAACATAACTC
TCAGtccaacataacTC
15.2





1459
1459_1
CAGTCCAACATAACTC
CAGtccaacataaCTC
23.5





1460
1460_1
ATCAGTCCAACATAACTC
ATCAgtccaacataacTC
13.7





1461
1461_1
ATCAGTCCAACATAACT
ATCAgtccaacataaCT
15.9





1462
1462_1
TAAACATTAAACCCTCCCAA
TAaacattaaaccctccCAAA
87




A







1463
1463_1
AACATTAAACCCTCCCAA
AAcattaaaccctcCCAA
68.4





1464
1464_1
TAAACATTAAACCCTCCCAA
TaaacattaaaccctcCCAA
79.2





1465
1465_1
AAACATTAAACCCTCCCAA
AAacattaaaccctcCCAA
70.8





1466
1466_1
TATAAACATTAAACCCTCCCA
TAtaaacattaaaccctccCA
94





1467
1467_1
AACATTAAACCCTCCC
AAcattaaacccTCCC
78.3





1468
1468_1
AAACATTAAACCCTCCC
AAacattaaacccTCCC
89.4





1469
1469_1
TAAACATTAAACCCTCCC
TAAacattaaaccctCCC
72.9





1470
1470_1
ATAAACATTAAACCCTCCC
AtaaacattaaacccTCCC
86





1471
1471_1
TATAAACATTAAACCCTCC
TAtaaacattaaaccCTCC
91.1





1472
1472_1
TAAACATTAAACCCTCC
TAaacattaaaccCTCC
82.2





1473
1473_1
ACTATAAACATTAAACCCTCC
ActataaacattaaaccCTCC
86.5





1474
1474_1
ATAAACATTAAACCCTCC
ATaaacattaaaccCTCC
88.4





1475
1475_1
AACTATAAACATTAAACCCTC
AActataaacattaaacCCTC
92.6





1476
1476_1
CTATAAACATTAAACCCTC
CTataaacattaaacCCTC
82.9





1477
1477_1
ACTATAAACATTAAACCCTC
ACtataaacattaaacCCTC
89.8





1478
1478_1
AAACTATAAACATTAAACCC
AAactataaacattaaaCCCT
98.9




T







1479
1479_1
CTATAAACATTAAACCCT
CTataaacattaaaCCCT
82.2





1480
1480_1
ACTATAAACATTAAACCCT
ACtataaacattaaaCCCT
86.6





1481
1481_1
AACTATAAACATTAAACCCT
AActataaacattaaaCCCT
89.5





1482
1482_1
GCTTTAAACTATAAACATT
GCtttaaactataaaCATT
58.2





1483
1483_1
TGCTTTAAACTATAAACA
TGCTttaaactataaaCA
57.2





1484
1484_1
CAGATTTATCACTATTA
CAGAtttatcactatTA
15.4





1485
1485_1
TCACAGCCTATCACCAC
TCacagcctatcacCAC
47.3





1485
1485_2
TCACAGCCTATCACCAC
TCAcagcctatcaccAC
46.3





1486
1486_1
ATCACAGCCTATCACCA
AtcacagcctatcACCA
56.9





1486
1486_2
ATCACAGCCTATCACCA
ATCacagcctatcacCA
23.7





1487
1487_1
AATCACAGCCTATCACC
AATCacagcctatcaCC
32.9





1487
1487_2
AATCACAGCCTATCACC
AatcacagcctatCACC
52.2





1488
1488_1
ATCACAGCCTATCACC
AtcacagcctatCACC
60.1





1489
1489_1
GCGTCACCCAAATCAC
GCgtcacccaaatCAC
11





1490
1490_1
AGCGTCACCCAAATCA
AGmcgtcacccaaaTCA
17.4





1491
1491_1
AGCGTCACCCAAATC
AGmcgtcacccaAATC
18.8





1492
1492_1
CAGATCCTAAAATCACT
CAGAtcctaaaatcaCT
71.8





1493
1493_1
TCAGATCCTAAAATCAC
TCAgatcctaaaatCAC
66.2





1494
1494_1
AGTAAAACCAATCATCAT
AGTaaaaccaatcatCAT
30.8





1495
1495_1
AGTAAAACCAATCATCA
AGTaaaaccaatcaTCA
24.2





1496
1496_1
CCCTTCCATCTCTACTAAAA
CccttccatctctactaaAA
89.7





1497
1497_1
ATAACTACATAACAAACCCA
ATaactacataacaaaCCCA
69.1





1498
1498_1
AATAACTACATAACAAACCC
AAtaactacataacaaaCCCA
77.8




A







1499
1499_1
AACTACATAACAAACCCA
AActacataacaaaCCCA
62.9





1500
1500_1
TAACTACATAACAAACCCA
TAactacataacaaaCCCA
65





1501
1501_1
ACTACATAACAAACCCA
ACtacataacaaaCCCA
60.4





1502
1502_1
CAATAACTACATAACAAACC
CAAtaactacataacaaaCCC
72.6




C







1503
1503_1
ATAACTACATAACAAACCC
ATAactacataacaaaCCC
60.2





1504
1504_1
ACAATAACTACATAACAAAC
ACAataactacataacaaACC
78.5




C







1504
1504_2
ACAATAACTACATAACAAAC
ACAAtaactacataacaaaCC
80.9




C







1505
1505_1
TGAATTCACAATAACTACA
TGaattcacaataacTACA
38.1





1506
1506_1
GCACATTTTTCTTAAACT
GCACatttttcttaaaCT
62.2





1507
1507_1
GCTATACCTAAAACAATCT
GCTatacctaaaacaaTCT
62.2





1508
1508_1
GCTATACCTAAAACAATC
GCTAtacctaaaacaaTC
68.9





1509
1509_1
CCCTTGTAACTAAAAAT
CCCTtgtaactaaaaAT
100





1510
1510_1
CCCCTTGTAACTAAAAA
CCCCttgtaactaaaAA
86.1





1511
1511_1
CCCCTTGTAACTAAAA
CCCCttgtaactaaAA
101





1512
1512_1
ACCCCTTGTAACTAAA
ACCCcttgtaactaAA
88.8





1513
1513_1
CACCCCTTGTAACTAA
CAccccttgtaaCTAA
80.4





1514
1514_1
ACACCCCTTGTAACTA
ACACcccttgtaacTA
72.4





1515
1515_1
GCTAAAACTAATCATCT
GCTaaaactaatcaTCT
72.2





1516
1516_1
GGCTAAAACTAATCAT
GGCtaaaactaatCAT
70.8





1517
1517_1
TTACCCTTCATATATACATCT
TtacccttcatatatacaTCT
89.4





1518
1518_1
ATTACCCTTCATATATACATC
AttacccttcatatataCATC
82.4





1519
1519_1
TTACCCTTCATATATACATC
TTAcccttcatatatacATC
56.3





1520
1520_1
CATTACCCTTCATATATACAT
CAttacccttcatatataCAT
84.2





1521
1521_1
TTACCCTTCATATATACAT
TTAcccttcatatataCAT
55.3





1522
1522_1
ATTACCCTTCATATATACAT
ATTacccttcatatataCAT
49.3





1523
1523_1
ACATTACCCTTCATATATACA
ACAttacccttcatatataCA
55.2





1523
1523_2
ACATTACCCTTCATATATACA
AcattacccttcatataTACA
63.4





1524
1524_1
TTACCCTTCATATATACA
TTACccttcatatataCA
46.9





1525
1525_1
CATTACCCTTCATATATACA
CattacccttcatataTACA
66





1526
1526_1
ATTACCCTTCATATATACA
ATTAcccttcatatataCA
36.7





1527
1527_1
ATTACCCTTCATATATAC
ATTacccttcatataTAC
46.6





1528
1528_1
TTACCCTTCATATATAC
TTAcccttcatataTAC
56.9





1529
1529_1
CATTACCCTTCATATATAC
CATtacccttcatataTAC
63.4





1530
1530_1
ACATTACCCTTCATATATAC
ACAttacccttcatataTAC
34.5





1531
1531_1
TACATTACCCTTCATATATAC
TAcattacccttcatataTAC
76.9





1532
1532_1
CATTACCCTTCATATATA
CAttacccttcataTATA
76.5





1533
1533_1
TACATTACCCTTCATATATA
TACattacccttcatatATA
36.5





1534
1534_1
ATTACCCTTCATATATA
ATtacccttcataTATA
78





1535
1535_1
ACATTACCCTTCATATATA
ACattacccttcataTATA
59.5





1536
1536_1
CATTACCCTTCATATAT
CATtacccttcataTAT
73.7





1537
1537_1
ACATTACCCTTCATATAT
ACAttacccttcataTAT
46.1





1538
1538_1
TACATTACCCTTCATATAT
TACattacccttcataTAT
36.9





1539
1539_1
ACATTACCCTTCATATA
ACattacccttcaTATA
54.2





1540
1540_1
TACATTACCCTTCATATA
TAcattacccttcaTATA
71.5





1541
1541_1
TACATTACCCTTCATAT
TACattacccttcaTAT
34.5





1542
1542_1
GATTCTTATACTTACTA
GATtcttatacttaCTA
46.2





1543
1543_1
TGATTCTTATACTTACT
TGattcttatactTACT
45.7





1544
1544_1
ATGATTCTTATACTTACT
ATGAttcttatacttaCT
54





1545
1545_1
GCCTCATTTTTACCTTT
GCctcatttttaccTTT
82.6





1546
1546_1
ACCAATCTTCTATTTTA
ACCAatcttctatttTA
94.8





1547
1547_1
CAACCAATCTTCTATTTTA
CAACcaatcttctatttTA
90.3





1548
1548_1
GCAACCAATCTTCTATTTT
GCAAccaatcttctattTT
88.3





1549
1549_1
GCAACCAATCTTCTATTT
GCAaccaatcttctaTTT
85





1550
1550_1
GCAACCAATCTTCTATT
GCaaccaatcttcTATT
87.3





1551
1551_1
TGCAACCAATCTTCTATT
TGCaaccaatcttctaTT
90.2





1552
1552_1
TAACTGCAACCAATCTT
TAactgcaaccaaTCTT
88.2





1553
1553_1
TGAATACAACACACATCA
TGAatacaacacacaTCA
97.4





1554
1554_1
ATGAATACAACACACATCA
ATGAatacaacacacatCA
84.4





1555
1555_1
TAAAAATATAACTACTCCT
TAaaaatataactacTCCT
99.8





1556
1556_1
GTAAAAATATAACTACTCC
GTaaaaatataactaCTCC
93.7





1557
1557_1
TCAACTGATACCCACAA
TCAactgatacccaCAA
57.7





1558
1558_1
TGTCTTAACATTTTTCTT
TGTCttaacatttttcTT
63.1





1559
1559_1
CCACTTCAAACTTTTAATTAA
CCActtcaaacttttaatTAA
85





1560
1560_1
CCACTTCAAACTTTTAATTA
CCACttcaaacttttaatTA
84.9





1561
1561_1
CCCACTTCAAACTTTTAATTA
CCcacttcaaacttttaaTTA
88.7





1562
1562_1
CCACTTCAAACTTTTAATT
CCACttcaaacttttaaTT
79.1





1563
1563_1
CCCACTTCAAACTTTTAATT
CCCacttcaaacttttaaTT
86.2





1564
1564_1
ACCCACTTCAAACTTTTAATT
ACCcacttcaaacttttaaTT
100





1565
1565_1
CCACTTCAAACTTTTAAT
CCACttcaaacttttaAT
85.3





1566
1566_1
ACCCACTTCAAACTTTTAAT
ACCcacttcaaacttttAAT
88.8





1567
1567_1
AACCCACTTCAAACTTTTAAT
AACCcacttcaaacttttaAT
92.3





1568
1568_1
CCCACTTCAAACTTTTAA
CCCacttcaaactttTAA
79.9





1569
1569_1
ACCCACTTCAAACTTTTAA
ACCcacttcaaactaTAA
82.5





1570
1570_1
CCCACTTCAAACTTTTA
CCCacttcaaactttTA
79.6





1571
1571_1
ACCCACTTCAAACTTTTA
ACCcacttcaaacttTTA
77.2





1572
1572_1
AACCCACTTCAAACTTTTA
AACCcacttcaaactttTA
86.2





1573
1573_1
ACCCACTTCAAACTTTT
ACCCacttcaaacttTT
93.3





1574
1574_1
AACCCACTTCAAACTTTT
AACCcacttcaaacttTT
82.7





1575
1575_1
AACCCACTTCAAACTTT
AACCcacttcaaactTT
85.8





1576
1576_1
GGACTCTATTAATCAA
GGActctattaatCAA
91.7





1577
1577_1
GAATATTCTACTCTTCT
GAatattctactcTTCT
95.3





1578
1578_1
CTGTATTTACCAATTCAA
CTGtatttaccaattCAA
90.8





1579
1579_1
CTGTATTTACCAATTCA
CTGTatttaccaattCA
88.7





1580
1580_1
ACTGTATTTACCAATTCA
ACTGtatttaccaattCA
97.3





1581
1581_1
ACTGTATTTACCAATTC
ACTGtatttaccaatTC
104





1582
1582_1
CACTGTATTTACCAATT
CACTgtatttaccaaTT
91.1





1583
1583_1
TCACTGTATTTACCAAT
TCACtgtatttaccaAT
98.6





1584
1584_1
CCAACTACTTTACTTTTCAAA
CCaactactttacttttCAAA
84.3





1585
1585_1
CCAACTACTTTACTTTTCAA
CCaactactttactttTCAA
80





1586
1586_1
ACCAACTACTTTACTTTTCAA
ACcaactactttactttTCAA
85.1





1585
1585_2
CCAACTACTTTACTTTTCAA
CCAactactttacttttCAA
75.2





1587
1587_1
CCAACTACTTTACTTTTCA
CCAactactttacttttCA
71.9





1588
1588_1
TACCAACTACTTTACTTTTCA
TaccaactactttacttTTCA
82.8





1587
1587_2
CCAACTACTTTACTTTTCA
CCAactactttactttTCA
67.7





1589
1589_1
ACCAACTACTTTACTTTTCA
ACcaactactttactttTCA
84





1590
1590_1
TACCAACTACTTTACTTTTC
TACcaactactttacttTTC
75.3





1591
1591_1
GTACCAACTACTTTACTTT
GTACcaactactttactTT
75.8





1592
1592_1
GTACCAACTACTTTACTT
GTAccaactactttaCTT
65.7





1593
1593_1
GTACCAACTACTTTACT
GTACcaactactttaCT
74.5





1594
1594_1
TGTACCAACTACTTTACT
TGtaccaactacttTACT
87.1





1595
1595_1
TTGTACCAACTACTTTAC
TTGtaccaactacttTAC
73.3





1596
1596_1
GTACCAACTACTTTAC
GTAccaactacttTAC
72.5





1597
1597_1
TGTACCAACTACTTTAC
TGTaccaactacttTAC
66





1598
1598_1
TTGTACCAACTACTTTA
TTGTaccaactacttTA
49.3





1599
1599_1
ATTTCATTTTTCTTTTAATA
ATTtcatttttcttttaATA
98.6





1599
1599_2
ATTTCATTTTTCTTTTAATA
ATTTcatttttcttttaaTA
90.7





1600
1600_1
CCTAATTTCATTTTTCTTTT
CCtaatttcatttttcTTTT
69.2





1601
1601_1
TCCTAATTTCATTTTTCTTT
TCctaatttcatttttCTTT
47





1602
1602_1
TTCTTCATTATACCATCAAAT
TTCTtcattataccatcaaAT
29.4





1603
1603_1
TTTCTTCATTATACCATCAAA
TTTCttcattataccatcaAA
24.1





1604
1604_1
TTTTCTTCATTATACCATCAA
TTttcttcattataccaTCAA
14.3





1605
1605_1
TCTTCATTATACCATCAA
TCttcattataccaTCAA
5.02





1606
1606_1
TTTCTTCATTATACCATCAA
TTtcttcattataccaTCAA
21.2





1607
1607_1
TTCTTCATTATACCATCAA
TTCttcattataccatCAA
5.83





1608
1608_1
ATATTTTCTTCATTATACCAT
AtattttcttcattataCCAT
76.1





1609
1609_1
ATATTTTCTTCATTATACCA
ATattttcttcattataCCA
40.2





1610
1610_1
AATATTTTCTTCATTATACC
AAATattacttcattataCCA
37





1611
1611_1
AAATATTTTCTTCATTATACC
AAatattttcttcattaTACC
23.4





1612
1612_1
ATATTTTCTTCATTATACC
ATattttcttcattaTACC
14.2





1613
1613_1
AATATTTTCTTCATTATACC
AATAttttcttcattataCC
68





1614
1614_1
TAAATATTTTCTTCATTATA
TAaatattttcttcatTATA
96.8





1615
1615_1
TTTTCCTTCATCTACTTCT
TTTtccttcatctacttCT
42.8





1616
1616_1
ATTTTCCTTCATCTACTTCT
ATtttccttcatctacttCT
76





1617
1617_1
AATTTTCCTTCATCTACTTC
AATTttccttcatctactTC
54.9





1618
1618_1
AGAATTTTCCTTCATCTA
AgaattttccttcaTCTA
58





1619
1619_1
CAGAATTTTCCTTCATCT
CAgaattttccttcATCT
23.5





1620
1620_1
TCAGAATTTTCCTTCATC
TCAgaattttccttcaTC
29.7





1621
1621_1
CTAGAAATATCTCACATT
CTAGaaatatctcacaTT
64.6





1622
1622_1
CTAGAAATATCTCACAT
CTAgaaatatctcaCAT
75.5





1623
1623_1
ACTAGAAATATCTCACA
ACTAgaaatatctcaCA
53.2





1624
1624_1
ATTAGCCATTAATCTAT
ATtagccattaatCTAT
71.9





1625
1625_1
TTGTTACAAAATAATCCA
TTgttacaaaataaTCCA
12





1625
1625_2
TTGTTACAAAATAATCCA
TTGttacaaaataatCCA
23.8





1626
1626_1
TTATTTTTTACATTAACTA
TTAttttttacattaaCTA
92.1





1627
1627_1
TGCCAAAATACTAACATCA
TGCcaaaatactaacaTCA
32





1628
1628_1
GCCAAAATACTAACATCA
GCCaaaatactaacaTCA
27.8





1629
1629_1
TGCCAAAATACTAACATC
TGCCaaaatactaacaTC
61.5





1630
1630_1
GAGTACAACACTTACA
GAGTacaacacttaCA
31.8





1631
1631_1
CACATCCATTCATTTTAT
CACatccattcatttTAT
30.6





1632
1632_1
CCACATCCATTCATTTTAT
CCAcatccattcattttAT
21.7





1633
1633_1
CCACATCCATTCATTTTA
CCacatccattcattTTA
20





1634
1634_1
TATGCCACATCCATTCAT
TatgccacatccattCAT
47





1635
1635_1
TTATGCCACATCCATTCA
TtatgccacatccaTTCA
20.7





1636
1636_1
TATGCCACATCCATTCA
TAtgccacatccattCA
43.3





1637
1637_1
TTATGCCACATCCATTC
TtatgccacatccATTC
19.5





1638
1638_1
ATTATGCCACATCCATT
ATtatgccacatcCATT
25.1





1639
1639_1
AGTTTCATATTTTTAATC
AGTttcatatttttaATC
65.9





1640
1640_1
ATCACTGCACACTTTCC
ATCactgcacactttCC
12.9





1641
1641_1
AAGCTCTTTCCAAATTCT
AAGCtctttccaaattCT
34.6





1642
1642_1
TAGTTCTTAACTCTTCTC
TagttcttaactctTCTC
19.2





1643
1643_1
TTAGTTCTTAACTCTTC
TTAGttcttaactctTC
18





1644
1644_1
AGCTTCAAATACTCAAA
AGCTtcaaatactcaAA
74.5





1645
1645_1
TTTCAAAGCCACACCTA
TttcaaagccacaCCTA
66.9





1646
1646_1
AATATCCTCATTACCCATT
AATAtcctcattacccaTT
52.3





1647
1647_1
TATCCTCATTACCCATT
TAtcctcattaccCATT
53.4





1647
1647_2
TATCCTCATTACCCATT
TATCctcattacccaTT
22.3





1648
1648_1
ATATCCTCATTACCCATT
ATAtcctcattacccATT
55.8





1649
1649_1
AATATCCTCATTACCCAT
AAtatcctcattacCCAT
46.1





1650
1650_1
TAATATCCTCATTACCCAT
TAAtatcctcattaccCAT
58.3





1651
1651_1
TTAATATCCTCATTACCCAT
TTaatatcctcattaccCAT
61.8





1652
1652_1
ATATCCTCATTACCCAT
ATAtcctcattaccCAT
56.2





1653
1653_1
AATATCCTCATTACCCA
AAtatcctcattaCCCA
49.7





1654
1654_1
TAATATCCTCATTACCCA
TAATatcctcattaccCA
45.6





1655
1655_1
TTTAATATCCTCATTACCCA
TttaatatcctcattacCCA
67.5





1656
1656_1
TTAATATCCTCATTACCCA
TTaatatcctcattacCCA
36





1656
1656_2
TTAATATCCTCATTACCCA
TTAAtatcctcattaccCA
57.9





1654
1654_2
TAATATCCTCATTACCCA
TAAtatcctcattacCCA
40





1653
1653_2
AATATCCTCATTACCCA
AATatcctcattacCCA
44.8





1657
1657_1
ATTTAATATCCTCATTACCC
AtttaatatcctcattaCCC
59.9





1658
1658_1
TAATATCCTCATTACCC
TAATatcctcattacCC
32.9





1659
1659_1
TTAATATCCTCATTACCC
TTAAtatcctcattacCC
42





1660
1660_1
TTTAATATCCTCATTACCC
TttaatatcctcattACCC
41.1





1661
1661_1
AATTTAATATCCTCATTACCC
AatttaatatcctcattaCCC
61





1662
1662_1
TTTAATATCCTCATTACC
TTTAatatcctcattaCC
60.6





1663
1663_1
AATTTAATATCCTCATTACC
AAtttaatatcctcatTACC
58.8





1664
1664_1
TTAATATCCTCATTACC
TTaatatcctcatTACC
42.3





1665
1665_1
AAATTTAATATCCTCATTACC
AAatttaatatcctcatTACC
55.9





1666
1666_1
ATTTAATATCCTCATTACC
ATttaatatcctcatTACC
55.5





1667
1667_1
TAAATTTAATATCCTCATTAC
TAaatttaatatcctcaTTAC
78





1668
1668_1
TTAAATTTAATATCCTCATTA
TTAaatttaatatcctcaTTA
95.2





1669
1669_1
CTTAAATTTAATATCCTCATT
CTtaaatttaatatcctCATT
73.2





1670
1670_1
TCTTAAATTTAATATCCTCAT
TCttaaatttaatatccTCAT
46.8





1671
1671_1
TCTTAAATTTAATATCCTCA
TCttaaatttaatatcCTCA
29.8





1672
1672_1
TTCTTAAATTTAATATCCTCA
TTCttaaatttaatatccTCA
35





1673
1673_1
TTCTTAAATTTAATATCCTC
TTcttaaatttaatatCCTC
36.2





1674
1674_1
TCTTAAATTTAATATCCTC
TCttaaatttaatatCCTC
25.1





1675
1675_1
TTCTTAAATTTAATATCCT
TTCttaaatttaatatCCT
46.9





1676
1676_1
TCTTAAATTTAATATCCT
TCttaaatttaataTCCT
50.9





1677
1677_1
AATAGCCTTTATTCTAC
AAtagcctttattCTAC
33.6





1678
1678_1
CAGCAACAATTATTAATA
CAGCaacaattattaaTA
70.5





1679
1679_1
CCAGCAACAATTATTAAT
CCAGcaacaattattaAT
64.2





1680
1680_1
ACCAGCAACAATTATTAA
ACCagcaacaattatTAA
20.5





1680
1680_2
ACCAGCAACAATTATTAA
ACCAgcaacaattattAA
39.7





1681
1681_1
ACCAGCAACAATTATTA
ACCAgcaacaattatTA
39.4





1682
1682_1
TACCAGCAACAATTATT
TACCagcaacaattaTT
26.4





1683
1683_1
CCCCAAATCTAAAACACTTC
CCccaaatctaaaacacTTC
79.4





1684
1684_1
AACCCCAAATCTAAAACACT
AACCccaaatctaaaacacTT
82




T







1685
1685_1
CCCCAAATCTAAAACACTT
CCCcaaatctaaaacacTT
86.4





1686
1686_1
AACCCCAAATCTAAAACACT
AACCccaaatctaaaacaCT
75.2





1687
1687_1
ACCCCAAATCTAAAACACT
ACcccaaatctaaaaCACT
72.5





1688
1688_1
ACCCCAAATCTAAAACAC
ACCccaaatctaaaaCAC
80.9





1689
1689_1
GCAAATATTCACAAATCCT
GCAaatattcacaaatCCT
20.7





1689
1689_2
GCAAATATTCACAAATCCT
GCaaatattcacaaaTCCT
29.3





1690
1690_1
ACTATTTAACACACATTATCA
ACTatttaacacacattaTCA
36.6





1691
1691_1
CTATTTAACACACATTATCA
CTAtttaacacacattaTCA
49.6





1692
1692_1
TACTATTTAACACACATTATC
TACTatttaacacacattaTC
52.4





1693
1693_1
ACTATTTAACACACATTATC
ACTAtttaacacacattaTC
51.8





1694
1694_1
TACTATTTAACACACATTAT
TACtatttaacacacatTAT
91.1





1695
1695_1
CTACTATTTAACACACATTAT
CTActatttaacacacatTAT
72.7





1696
1696_1
CTACTATTTAACACACATTA
CTACtatttaacacacatTA
47.4





1697
1697_1
ACTACTATTTAACACACATTA
ACTActatttaacacacatTA
38.3





1698
1698_1
CTACTATTTAACACACATT
CTACtatttaacacacaTT
41.6





1699
1699_1
ACTACTATTTAACACACATT
ACtactatttaacacaCATT
40.3





1700
1700_1
ACTACTATTTAACACACAT
ACTactatttaacacaCAT
36.8





1701
1701_1
CTACTATTTAACACACA
CTACtatttaacacaCA
45.9





1702
1702_1
ACTACTATTTAACACACA
ACTActatttaacacaCA
32.6





1703
1703_1
TATAGACCCTTAATATT
TATAgacccttaataTT
41.4





1704
1704_1
TTATAGACCCTTAATAT
TTAtagacccttaaTAT
68.5





1705
1705_1
CATCACAAAATAACCTATCAT
CAtcacaaaataacctaTCAT
86.8





1706
1706_1
TCATCACAAAATAACCTATCA
TCAtcacaaaataacctaTCA
67.4





1707
1707_1
TTCATCACAAAATAACCTATC
TTCAtcacaaaataacctaTC
49





1708
1708_1
TTCATCACAAAATAACCTA
TTcatcacaaaataaCCTA
76.4





1709
1709_1
TTTCATCACAAAATAACCTA
TTtcatcacaaaataaCCTA
88.6





1710
1710_1
TCATCACAAAATAACCTA
TCatcacaaaataaCCTA
59.2





1711
1711_1
TTTTCATCACAAAATAACCTA
TTttcatcacaaaataaCCTA
86.1





1712
1712_1
ATTTTCATCACAAAATAACCT
ATTttcatcacaaaataaCCT
64.8





1713
1713_1
TATTTTCATCACAAAATAACC
TATTttcatcacaaaataaCC
76.9





1713
1713_2
TATTTTCATCACAAAATAACC
TATTttcatcaCaaaataaCC
56





1714
1714_1
GTATTTTCATCACAAAATA
GTATtttcatcacaaaaTA
47





1715
1715_1
TTACCTAGATCACTCC
TtacctagatcaCTCC
73.1





1716
1716_1
CTTACCTAGATCACTC
CTTacctagatcaCTC
81.5





1717
1717_1
CCTTACCTAGATCACT
CCTtacctagatcaCT
95.9





1718
1718_1
TAACTGCTCCTTAATCC
TAActgctccttaatCC
34.8





1719
1719_1
TCTAGCAATCCTCTCCT
TCtagcaatcctctcCT
64.2





1720
1720_1
TTCTAGCAATCCTCTCC
TtctagcaatcctcTCC
70.4





1721
1721_1
TTTTCACCTACTAATATTCAT
TTttcacctactaatatTCAT
55.3





1722
1722_1
TTTCACCTACTAATATTCAT
TTtcacctactaatatTCAT
66.2





1723
1723_1
TTCACCTACTAATATTCAT
TTCacctactaatattCAT
17.2





1724
1724_1
TCACCTACTAATATTCAT
TCAcctactaatattCAT
23.5





1725
1725_1
TCACCTACTAATATTCA
TCAcctactaatatTCA
21.1





1726
1726_1
TTTCACCTACTAATATTCA
TTTCacctactaatattCA
16.7





1727
1727_1
TTTTCACCTACTAATATTCA
TTttcacctactaataTTCA
31.3





1728
1728_1
TTTTTCACCTACTAATATTCA
TTtttcacctactaataTTCA
45.3





1729
1729_1
TTCACCTACTAATATTCA
TTCAcctactaatattCA
24.7





1730
1730_1
ATTTTTCACCTACTAATATTC
ATTtttcacctactaataTTC
48.5





1731
1731_1
TTTTTCACCTACTAATATTC
TTTttcacctactaataTTC
31.5





1732
1732_1
TATTTTTCACCTACTAATATT
TAtttttcacctactaaTATT
90.2





1733
1733_1
TATTTTTCACCTACTAATAT
TATttttcacctactaaTAT
89.1





1734
1734_1
TTATTTTTCACCTACTAATAT
TTAtttttcacctactaaTAT
86.1





1735
1735_1
TTATTTTTCACCTACTAATA
TTATttttcacctactaaTA
52.9





1736
1736_1
TATTTTTCACCTACTAATA
TATTtttcacctactaaTA
54.9





1737
1737_1
TTTATTTTTCACCTACTAATA
TTTAtttttcacctactaaTA
52





1738
1738_1
TTTATTTTTCACCTACTAA
TTtatttttcacctaCTAA
51.2





1739
1739_1
TTTATTTTTCACCTACTA
TTTatttttcacctaCTA
19





1740
1740_1
CTCAACTTCTACTACTAATT
CTCAacttctactactaaTT
19.7





1741
1741_1
TCTCAACTTCTACTACTAATT
TCTCaacttctactactaaTT
25.8





1742
1742_1
CTCTCAACTTCTACTACTAAT
CTCtcaacttctactactAAT
43





1743
1743_1
CTCAACTTCTACTACTAAT
CTCAacttctactactaAT
20.1





1744
1744_1
TCTCAACTTCTACTACTAAT
TCTCaacttctactactaAT
22.8





1745
1745_1
TCTCTCAACTTCTACTACTAA
TCtctcaacttctactacTAA
58.4





1746
1746_1
CTCAACTTCTACTACTAA
CTcaacttctactaCTAA
47.3





1747
1747_1
TCTCAACTTCTACTACTAA
TCtcaacttctactaCTAA
56.3





1748
1748_1
CTCAACTTCTACTACTA
CTCaacttctactaCTA
10.7





1749
1749_1
TTCTCTCAACTTCTACTACTA
TtctctcaacttctactaCTA
79.1





1750
1750_1
TCTCTCAACTTCTACTACTA
TCtctcaacttctactacTA
61.2





1751
1751_1
TCTCAACTTCTACTACTA
TCtcaacttctactaCTA
66.8





1752
1752_1
CTCTCAACTTCTACTACTA
CtctcaacttctactACTA
61.7





1753
1753_1
CTCTCAACTTCTACTACT
CTCtcaacttctactaCT
37.9





1754
1754_1
TCTCAACTTCTACTACT
TCtcaacttctacTACT
51.1





1755
1755_1
TCTCTCAACTTCTACTACT
TCtctcaacttctactACT
44.2





1756
1756_1
TTTCTCTCAACTTCTACTACT
TTtctctcaacttctactACT
65.7





1757
1757_1
TTCTCTCAACTTCTACTACT
TTCtctcaacttctactaCT
33.5





1758
1758_1
TTTCTCTCAACTTCTACTAC
TTtctctcaacttctacTAC
67.9





1759
1759_1
CTCTCAACTTCTACTAC
CTCtcaacttctacTAC
34.1





1760
1760_1
TTCTCTCAACTTCTACTAC
TtctctcaacttctaCTAC
63.8





1761
1761_1
TTTTCTCTCAACTTCTACTAC
TTTTctctcaacttctactAC
20.6





1762
1762_1
TCTCTCAACTTCTACTAC
TCtctcaacttctacTAC
49.7





1763
1763_1
TTTCTCTCAACTTCTACTA
TTtctctcaacttctaCTA
60.2





1764
1764_1
TTTTCTCTCAACTTCTACTA
TtttctctcaacttctACTA
52.2





1765
1765_1
TTTTTCTCTCAACTTCTACTA
TTTttctctcaacttctacTA
40.2





1766
1766_1
TCTCTCAACTTCTACTA
TCtctcaacttctaCTA
47.5





1767
1767_1
TTCTCTCAACTTCTACTA
TTCtctcaacttctacTA
35.1





1768
1768_1
TTTCTCTCAACTTCTACT
TTTCtctcaacttctaCT
28.6





1769
1769_1
TTTTCTCTCAACTTCTACT
TTTtctctcaacttctaCT
44.1





1770
1770_1
CTTTTTCTCTCAACTTCTACT
CtttttctctcaacttctaCT
99.8





1771
1771_1
TTTTTCTCTCAACTTCTACT
TTTttctctcaacttctaCT
43.7





1772
1772_1
CTTTTTCTCTCAACTTCTAC
CTTtttctctcaacttctAC
36.2





1773
1773_1
ACTTTTTCTCTCAACTTCTAC
ACTttttctctcaacttctAC
35.6





1774
1774_1
TTTTCTCTCAACTTCTAC
TtttctctcaacttCTAC
38.6





1775
1775_1
TTTTTCTCTCAACTTCTAC
TttttctctcaacttCTAC
42.1





1776
1776_1
CTTTTTCTCTCAACTTCTA
CTttttctctcaacttCTA
41.2





1777
1777_1
TACTTTTTCTCTCAACTTCTA
TactttttctctcaacttCTA
69.4





1778
1778_1
ACTTTTTCTCTCAACTTCTA
ActttttctctcaacttCTA
66.2





1779
1779_1
TTTTTCTCTCAACTTCTA
TttttctctcaactTCTA
35.5





1780
1780_1
TACTTTTTCTCTCAACTTCT
TActttttctctcaacttCT
65





1781
1781_1
TTACTTTTTCTCTCAACTTCT
TtactttttctctcaactTCT
62.1





1782
1782_1
TTACTTTTTCTCTCAACTTC
TTActttttctctcaactTC
38.9





1783
1783_1
TACTTTTTCTCTCAACTTC
TACtttttctctcaactTC
34





1784
1784_1
ACTTTTTCTCTCAACTTC
ActttttctctcaaCTTC
19.7





1785
1785_1
TTACTTTTTCTCTCAACTT
TTActttttctctcaaCTT
22





1786
1786_1
TACTTTTTCTCTCAACTT
TACtttttctctcaaCTT
22.3





1787
1787_1
TTACTTTTTCTCTCAACT
TTACtttttctctcaaCT
11.6





1788
1788_1
GTTACTTTTTCTCTCAACT
GTtactttttctctcAACT
43.2





1789
1789_1
GTTACTTTTTCTCTCAAC
GTtactttttctctCAAC
29





1790
1790_1
GTTACTTTTTCTCTCAA
GTtactttttctcTCAA
5.53





1791
1791_1
AGTTACTTTTTCTCTCAA
AGTtactttttctctCAA
6.5





1792
1792_1
CTTTTACATTCCCATTAACA
CTTTtacattcccattaaCA
24.5





1793
1793_1
CACTTTTACATTCCCATTAAC
CACttttacattcccattaAC
25.3





1794
1794_1
CTTTTACATTCCCATTAAC
CTtttacattcccatTAAC
21.5





1795
1795_1
ACTTTTACATTCCCATTAAC
ACttttacattcccatTAAC
23





1796
1796_1
ACTTTTACATTCCCATTAA
ACttttacattcccaTTAA
30





1797
1797_1
CTTTTACATTCCCATTAA
CTtttacattcccaTTAA
27.4





1798
1798_1
CACTTTTACATTCCCATTAA
CActtttacattcccaTTAA
28





1798
1798_2
CACTTTTACATTCCCATTAA
CACttttacattcccatTAA
15.9





1799
1799_1
TACACTTTTACATTCCCATTA
TAcacttttacattcccatTA
52.2





1800
1800_1
ACTTTTACATTCCCATTA
ACTtttacattcccaTTA
13.1





1801
1801_1
CACTTTTACATTCCCATTA
CActtttacattcccATTA
15.7





1802
1802_1
ACACTTTTACATTCCCATTA
ACacttttacattcccaTTA
19.1





1802
1802_2
ACACTTTTACATTCCCATTA
ACActtttacattcccatTA
9.66





1803
1803_1
CACTTTTACATTCCCATT
CActtttacattccCATT
10.2





1804
1804_1
TACACTTTTACATTCCCATT
TACacttttacattcccaTT
10.3





1805
1805_1
ACACTTTTACATTCCCATT
ACACttttacattcccaTT
4.51





1805
1805_2
ACACTTTTACATTCCCATT
ACacttttacattccCATT
6.8





1806
1806_1
TACACTTTTACATTCCCAT
TACacttttacattccCAT
3.53





1806
1806_2
TACACTTTTACATTCCCAT
TACActtttacattcccAT
4.79





1807
1807_1
TACACTTTTACATTCCCA
TACacttttacattccCA
6.35





1808
1808_1
GTACACTTTTACATTCCCA
GtacacttttacattcCCA
3





1808
1808_2
GTACACTTTTACATTCCCA
GTacacttttacattccCA
16.3





1809
1809_1
GTACACTTTTACATTCCC
GTAcacttttacattcCC
4.33





1810
1810_1
TACACTTTTACATTCCC
TACacttttacattcCC
3.26





1811
1811_1
TGTACACTTTTACATTCCC
TGtacacttttacattcCC
12.3





1809
1809_2
GTACACTTTTACATTCCC
GtacacttttacattCCC
2.49





1812
1812_1
TGTACACTTTTACATTCC
TGtacacttttacatTCC
2.47





1813
1813_1
CTGTACACTTTTACATTC
CTGtacacttttacaTTC
1.89





1814
1814_1
ATCTTATTTACATCTTCC
ATcttatttacatcTTCC
5.41





1815
1815_1
GAATCTTATTTACATCTTC
GAatcttatttacatCTTC
25.8





1816
1816_1
GAATCTTATTTACATCTT
GAatcttatttacaTCTT
19.1





1817
1817_1
TGAATCTTATTTACATCT
TGAatcttatttacaTCT
41.3





1818
1818_1
ATTCAGCTTTTTCAATC
ATTCagctttttcaaTC
16.8





1819
1819_1
TTAATTTTCCCTTCACTCCT
TtaattttcccttcactcCT
85.8





1820
1820_1
TTAATTTTCCCTTCACTCC
TtaattttcccttcactCC
85.8





1821
1821_1
TTAATTTTCCCTTCACTC
TtaattttcccttcACTC
51





1822
1822_1
GTTAATTTTCCCTTCACTC
GttaattttcccttcACTC
27.2





1823
1823_1
CAAAATTACTTCTTTTATCAT
CAaaattacttcttttaTCAT
86.7





1823
1823_2
CAAAATTACTTCTTTTATCAT
CAaaattacTtcttttaTCAT
51.5





1824
1824_1
CCAAAATTACTTCTTTTATCA
CCAaaattacttcttttaTCA
31.3





1824
1824_2
CCAAAATTACTTCTTTTATCA
CCaaaattacttcttttATCA
36





1825
1825_1
TCCAAAATTACTTCTTTTATC
TCcaaaattacttctttTATC
40.9





1826
1826_1
TCCAAAATTACTTCTTTTAT
TCCaaaattacttctttTAT
50.2





1827
1827_1
CCAAAATTACTTCTTTTAT
CCAaaattacttctttTAT
70





1828
1828_1
TTCCAAAATTACTTCTTTTAT
TTCcaaaattacttctttTAT
64.9





1829
1829_1
TCCAAAATTACTTCTTTTA
TCCAaaattacttctttTA
36.9





1830
1830_1
TTCCAAAATTACTTCTTTTA
TTCCaaaattacttctttTA
52.2





1831
1831_1
GTTCCAAAATTACTTCTTT
GTTCcaaaattacttctTT
54.8





1832
1832_1
GTTCCAAAATTACTTCTT
GTtccaaaattactTCTT
12.5





1833
1833_1
TGTTCCAAAATTACTTCT
TGTtccaaaattactTCT
20.1





1834
1834_1
ATGTTCCAAAATTACTTC
ATGTtccaaaattactTC
23.8





1835
1835_1
CATATTTTACTCTTTTTATT
CATAttttactctttttaTT
90.6





1836
1836_1
CCATATTTTACTCTTTTTAT
CCATattttactctttttAT
35.4





1836
1836_2
CCATATTTTACTCTTTTTAT
CCAtattttactcttaTAT
60.8





1837
1837_1
CCCATATTTTACTCTTTTTAT
CccatattttactctttTTAT
75.8





1838
1838_1
CATATTTTACTCTTTTTAT
CATattttactcttttTAT
83.2





1839
1839_1
CCCATATTTTACTCTTTTTA
CCcatattttactcttttTA
81.1





1840
1840_1
CCATATTTTACTCTTTTTA
CCatattttactcttTTTA
24.7





1841
1841_1
ACCCATATTTTACTCTTTTTA
AcccatattttactcttTTTA
59





1842
1842_1
CCATATTTTACTCTTTTT
CCATattttactctttTT
21.6





1843
1843_1
CCCATATTTTACTCTTTTT
CCcatattttactcttTTT
77.2





1844
1844_1
ACCCATATTTTACTCTTTTT
ACccatattttactctTTTT
97.4





1845
1845_1
TACCCATATTTTACTCTTTTT
TAcccatattttactcttTTT
58.6





1846
1846_1
TACCCATATTTTACTCTTTT
TACccatattttactctTTT
20.4





1847
1847_1
CCCATATTTTACTCTTTT
CCCatattttactcttTT
93.2





1848
1848_1
ACCCATATTTTACTCTTTT
ACCcatattttactcttTT
21.8





1846
1846_2
TACCCATATTTTACTCTTTT
TAcccatattttactcTTTT
22.5





1849
1849_1
TTACCCATATTTTACTCTTTT
TTAcccatattttactcttTT
41.4





1850
1850_1
TACCCATATTTTACTCTTT
TAcccatattttactCTTT
18.9





1851
1851_1
ACCCATATTTTACTCTTT
ACCcatattttactcTTT
13.4





1852
1852_1
TTACCCATATTTTACTCTTT
TTacccatattttactCTTT
14.5





1853
1853_1
TTTACCCATATTTTACTCTTT
TTTacccatattttactcTTT
22.2





1852
1852_2
TTACCCATATTTTACTCTTT
TTACccatattttactctTT
16.7





1853
1853_2
TTTACCCATATTTTACTCTTT
TTTAcccataactctTT
16





1854
1854_1
TTACCCATATTTTACTCTT
TTAcccatattttactCTT
14





1855
1855_1
TTTACCCATATTTTACTCTT
TTtacccatattttacTCTT
14.9





1856
1856_1
ACCCATATTTTACTCTT
ACCcatattttactCTT
8.02





1857
1857_1
TACCCATATTTTACTCTT
TACccatattttactCTT
16.7





1858
1858_1
TACCCATATTTTACTCT
TACccatattttacTCT
22.3





1859
1859_1
TTACCCATATTTTACTCT
TTACccatattttactCT
15.2





1860
1860_1
TTTACCCATATTTTACTCT
TTTAcccatattttactCT
11.8





1861
1861_1
TTACCCATATTTTACTC
TTAcccatattttaCTC
24.4





1862
1862_1
TTTACCCATATTTTACTC
TTTacccatattttaCTC
14





1863
1863_1
GTTTACCCATATTTTACTC
GTttacccatattttaCTC
12.2





1864
1864_1
GTTTACCCATATTTTACT
GTttacccatatttTACT
24.9





1865
1865_1
TGTTTACCCATATTTTAC
TGTttacccatatttTAC
13.1





1866
1866_1
GTTTACCCATATTTTAC
GTttacccatattTTAC
13.2





1867
1867_1
TGTTTACCCATATTTTA
TGTttacccatattTTA
6.69





1868
1868_1
TTCTTGCTTCAACCATC
TtcttgcttcaacCATC
13.6





1869
1869_1
GTTACCTCCCTTTATAT
GTtacctccctttatAT
60.9





1870
1870_1
GGTTACCTCCCTTTAT
GgttacctccctTTAT
39





1871
1871_1
AGGTTACCTCCCTTTA
AggttacctcccTTTA
35.4





1872
1872_1
ATGTTCTCTATCTCTATA
ATGttctctatctctATA
53.3





1873
1873_1
TATGTTCTCTATCTCTA
TAtgttctctatctCTA
73.4





1874
1874_1
AGATCAAACTAAAACCT
AGAtcaaactaaaaCCT
88.7





1875
1875_1
TGCCCAATTTCACCCAA
TGcccaatttcacccAA
30.3





1876
1876_1
TTTGCCCAATTTCACCC
TttgcccaatttcacCC
53.3





1877
1877_1
TTTTGCCCAATTTCACC
TTttgcccaatttcaCC
57.8





1878
1878_1
TGTATATCAACAATTCAT
TGTatatcaacaattCAT
20.8





1879
1879_1
ACATTTCTTTAAAATTTCCA
ACatttctttaaaattTCCA
96.4





1879
1879_2
ACATTTCTTTAAAATTTCCA
ACAtttctttaaaatttCCA
96.6





1880
1880_1
CACATTTCTTTAAAATTTCCA
CACAtttctttaaaatttcCA
95.5





1879
1879_3
ACATTTCTTTAAAATTTCCA
AcatttctttaaaattTCCA
98.1





1879
1879_4
ACATTTCTTTAAAATTTCCA
ACATttctttaaaatttcCA
98





1881
1881_1
CCACATTTCTTTAAAATTTCC
CcacatttctttaaaatTTCC
90





1882
1882_1
CACATTTCTTTAAAATTTCC
CAcatttctttaaaattTCC
94.8





1882
1882_2
CACATTTCTTTAAAATTTCC
CAcatttctttaaaatTTCC
89.1





1882
1882_3
CACATTTCTTTAAAATTTCC
CACAtttctttaaaatttCC
94.4





1883
1883_1
ACATTTCTTTAAAATTTCC
ACAtttctttaaaattTCC
91.9





1882
1882_4
CACATTTCTTTAAAATTTCC
CACatttctttaaaattTCC
92.4





1884
1884_1
CCACATTTCTTTAAAATTTC
CCACatttctttaaaattTC
98.3





1885
1885_1
ACCACATTTCTTTAAAATTTC
ACCAcatttctttaaaattTC
97.5





1884
1884_2
CCACATTTCTTTAAAATTTC
CCAcatttctttaaaattTC
102





1884
1884_3
CCACATTTCTTTAAAATTTC
CCacatttctttaaaaTTTC
94.9





1884
1884_4
CCACATTTCTTTAAAATTTC
CCAcatttctttaaaatTTC
87.2





1886
1886_1
ACCACATTTCTTTAAAATTT
ACCAcatttctttaaaatTT
94.8





1887
1887_1
ACAAAACCACATTTCTTTAA
ACAaaaccacatttcttTAA
97.4





1888
1888_1
CTGTTTTCAAATCATTTC
CTGTtttcaaatcattTC
15.8





1889
1889_1
GAACCATTACTATTATCAA
GAaccattactattaTCAA
27.3





1890
1890_1
AGAACCATTACTATTATCA
AGAaccattactattaTCA
19.8





1891
1891_1
AGAACCATTACTATTATC
AGaaccattactatTATC
17.9





1892
1892_1
CTAGAACCATTACTATTA
CTAGaaccattactatTA
35.3





1893
1893_1
TAGAACCATTACTATTA
TAGAaccattactatTA
13.2





1894
1894_1
CTAGAACCATTACTATT
CTAGaaccattactaTT
32.1





1895
1895_1
AGATTACCATCTTTCAAAA
AGATtaccatctttcaaAA
59.5





1895
1895_2
AGATTACCATCTTTCAAAA
AGAttaccatctttcaAAA
54.1





1896
1896_1
AGATTACCATCTTTCAAA
AGATtaccatctttcaAA
50.6





1896
1896_2
AGATTACCATCTTTCAAA
AGattaccatattCAAA
42.3





1897
1897_1
AGATTACCATCTTTCAA
AGAttaccatctttCAA
32.4





1898
1898_1
AAGATTACCATCTTTCA
AAGAttaccatattCA
47.9





1899
1899_1
CATGCTCACACATTTTAA
CATgctcacacatttTAA
60.5





1899
1899_2
CATGCTCACACATTTTAA
CAtgctcacacattTTAA
70.3





1899
1899_3
CATGCTCACACATTTTAA
CAtgctcacacatttTAA
69.8





1899
1899_4
CATGCTCACACATTTTAA
CATGctcacacattttAA
55.9





1900
1900_1
CTTAAGCTATCTAAACA
CTTAagctatctaaaCA
82.6





1901
1901_1
TGAACAATTCAACATTCA
TGAacaattcaacatTCA
67.7





1902
1902_1
GATCAAAAAACTTTCCCT
GAtcaaaaaactttCCCT
76.1





1903
1903_1
AGATCAAAAAACTTTCCCT
AGatcaaaaaactttCCCT
70.4





1904
1904_1
AGATCAAAAAACTTTCCC
AGAtcaaaaaactaCCC
73.6





1905
1905_1
TCCTAGATCAAAAAACT
TCCTagatcaaaaaaCT
69.9





1906
1906_1
ATTTTTTCTTCTCTTTTCA
ATTTtttcttctcttttCA
8.98





1907
1907_1
TATTTTTTCTTCTCTTTTCA
TATtttttcttctcttttCA
63.8





1908
1908_1
ATATTTTTTCTTCTCTTTTC
ATattttttcttctctTTTC
16.1





1909
1909_1
TCTGCTTTAAAAACTCTC
TCtgctttaaaaacTCTC
34.3





1910
1910_1
CTCTGCTTTAAAAACTC
CTCtgctttaaaaaCTC
51.6





1911
1911_1
ACTACACAAACACATTCAA
ACtacacaaacacatTCAA
37.6





1912
1912_1
CAAACTACACAAACACATTC
CAaactacacaaacacaTTC
41.2




A
A






1913
1913_1
ACAAACTACACAAACACATT
ACAaactacacaaacacaTT
63.1




C
C






1914
1914_1
CAACAAACTACACAAACACA
CAAcaaactacacaaacaCA
86.1




T
T






1915
1915_1
CACAACAAACTACACAAACA
CACaacaaactacacaaaCA
62.1




C
C






1916
1916_1
TCACAACAAACTACACAAAC
TCACaacaaactacacaaaC
48.6




A
A






1917
1917_1
TTCACAACAAACTACACAAA
TTCAcaacaaactacacaaA
58.8




C
C






1918
1918_1
ATTTCACAACAAACTACACA
ATTtcacaacaaactacaCA
76.8




A
A






1919
1919_1
CAATTTCACAACAAACTACA
CAAtttcacaacaaactaCAC
70.7




C







1920
1920_1
TGTAACAATTTCACAACAA
TGTaacaatttcacaaCAA
59.5





1921
1921_1
TGTAACAATTTCACAACA
TGTAacaatttcacaaCA
28.7





1922
1922_1
TTAAGCCAACCCCACCA
TtaagccaaccccacCA
83.1





1923
1923_1
TTTAAGCCAACCCCACC
TttaagccaaccccACC
69.2





1924
1924_1
ATTTAAGCCAACCCCAC
AtttaagccaaccCCAC
60.6





1925
1925_1
CCAGTAATACAAATTATA
CCAGtaatacaaattaTA
69.5





1926
1926_1
CCCAGTAATACAAATTA
CCCAgtaatacaaatTA
55.9





1927
1927_1
TCCCAGTAATACAAATT
TCCCagtaatacaaaTT
64.9





1928
1928_1
ATCCCAGTAATACAAAT
ATCCcagtaatacaaAT
65.9





1929
1929_1
CTACTAGCATCACCACT
CtactagcatcacCACT
19.8





1930
1930_1
TTCTACTAGCATCACC
TtctactagcatCACC
21.8





1931
1931_1
CTTCTACTAGCATCAC
CTtctactagcaTCAC
33.2





1932
1932_1
TAAATTACTCATTAAATCCAT
TAaattactcattaaatCCAT
77.8





1933
1933_1
ATAAATTACTCATTAAATCCA
ATaaattactcattaaaTCCA
52.4





1934
1934_1
TAAATTACTCATTAAATCCA
TAaattactcattaaaTCCA
51.6





1935
1935_1
CATAAATTACTCATTAAATCC
CATaaattactcattaaaTCC
58.5





1935
1935_2
CATAAATTACTCATTAAATCC
CATaaattacTcattaaaTCC
22.3





1936
1936_1
GATTTATTTTTCTACTTA
GAtttatttttctaCTTA
66





1937
1937_1
ATACAACAAACAATTCACTTT
ATacaacaaacaattcaCTTT
53.2





1937
1937_2
ATACAACAAACAATTCACTTT
ATACaacaaacaattcactTT
48.1





1938
1938_1
CGATACAACAAACAATTCA
CGATacaacaaacaattCA
23





1939
1939_1
GAACATCCACACTAACAACA
GAACatccacactaacaaCA
43.6





1940
1940_1
ACATCCACACTAACAACA
ACAtccacactaacaACA
65





1939
1939_2
GAACATCCACACTAACAACA
GAAcatccacactaacaACA
52





1939
1939_3
GAACATCCACACTAACAACA
GAacatccacactaacAACA
58.1





1941
1941_1
GAACATCCACACTAACAAC
GAACatccacactaacaAC
51.3





1941
1941_2
GAACATCCACACTAACAAC
GAacatccacactaaCAAC
63.3





1942
1942_1
TGAACATCCACACTAACAA
TGAacatccacactaaCAA
57.8





1943
1943_1
TTGAACATCCACACTAACA
TTGAacatccacactaaCA
60.3





1944
1944_1
TGAACATCCACACTAACA
TGAAcatccacactaaCA
42.6





1945
1945_1
CATTGAACATCCACACTA
CATtgaacatccacaCTA
59.4





1946
1946_1
ATTGAACATCCACACTA
ATTgaacatccacaCTA
50





1947
1947_1
CATTGAACATCCACACT
CAttgaacatccaCACT
43





1948
1948_1
ACTCATTGAACATCCAC
ACtcattgaacatCCAC
46.8





1949
1949_1
TATCTTTATTTAATAATCTT
TATCtttatttaataatcTT
93.4





1949
1949_2
TATCTTTATTTAATAATCTT
TAtctttatttaataaTCTT
96.9





1950
1950_1
TCTCAAGCTTCACTCTA
TCtcaagcttcactcTA
78.6





1951
1951_1
GACAATATATTCCTCAATC
GACAatatattcctcaaTC
73





1952
1952_1
GACAATATATTCCTCAAT
GACAatatattcctcaAT
82





1952
1952_2
GACAATATATTCCTCAAT
GAcaatatattcctCAAT
76.8





1953
1953_1
TCCTGTAACAATTATAC
TCCtgtaacaattaTAC
95.4





1954
1954_1
ACCCAGAATAAAAACCAC
ACccagaataaaaaCCAC
95.5





1955
1955_1
TTCCACTTTCTTACTCCC
TtccactttcttactcCC
96.6





1956
1956_1
TTCCACTTTCTTACTCC
TtccactttcttacTCC
86.3





1957
1957_1
TTTCCACTTTCTTACTCC
TttccactttcttacTCC
89.2





1958
1958_1
TTTCCACTTTCTTACTC
TTTCcactttcttacTC
89.2





1959
1959_1
ATCCCTTTACCACTTTT
ATCcctttaccactTTT
101





1960
1960_1
CATCCCTTTACCACTTTT
CAtccctttaccactTTT
98





1961
1961_1
TCATCCCTTTACCACTTT
TCatccctttaccactTT
101





1962
1962_1
TCATCCCTTTACCACTT
TCAtccctttaccacTT
96.9





1963
1963_1
CTCATCCCTTTACCACTT
CtcatccctttaccacTT
97.7





1964
1964_1
GTCTACATCTAACCCC
GtctacatctaacCCC
97





1965
1965_1
AGTCTACATCTAACCCC
AGtctacatctaaccCC
99.6





1966
1966_1
CAGTCTACATCTAACCCC
CagtctacatctaaccCC
97.4





1967
1967_1
CAGTCTACATCTAACCC
CagtctacatctaaCCC
99.5





1968
1968_1
TCAGTCTACATCTAACCC
TCagtctacatctaacCC
98.9





1969
1969_1
AGTCTACATCTAACCC
AGTctacatctaacCC
98.2





1970
1970_1
TCAGTCTACATCTAACC
TCagtctacatctAACC
98.3





1971
1971_1
TTCAGTCTACATCTAACC
TTCagtctacatctaaCC
98





1972
1972_1
TTCAGTCTACATCTAAC
TTCAgtctacatctaAC
98.7





1973
1973_1
TTTCAGTCTACATCTAA
TTtcagtctacatCTAA
90.1





1974
1974_1
AGTTTTAACCACACCTCCT
AgttttaaccacacctcCT
102





1975
1975_1
GTTTTAACCACACCTCC
GTTttaaccacacctCC
93.7





1976
1976_1
AGTTTTAACCACACCTCC
AgttttaaccacaccTCC
95





1977
1977_1
AGTTTTAACCACACCTC
AGttttaaccacacCTC
88.7





1978
1978_1
GAGTTTTAACCACACC
GAGttttaaccacACC
94.7





1979
1979_1
CAGATCTTCTCTTTATTT
CAGatcttctctttaTTT
96.3





1980
1980_1
TGTTTTCAACAAAACATCA
TGTtttcaacaaaacaTCA
89.9





1981
1981_1
TGTTTTCAACAAAACATC
TGttacaacaaaaCATC
97.5





1982
1982_1
CTGTTTTCAACAAAACAT
CTGttttcaacaaaaCAT
102





1983
1983_1
TCTGTTTTCAACAAAACA
TCTGttacaacaaaaCA
98





1984
1984_1
ATCTTTCTAAAACTTACC
ATCTttctaaaacttaCC
96.3





1985
1985_1
CAGAATCTTTCTAAAACT
CAGAatctttctaaaaCT
91.7





1986
1986_1
CTACAGAATCTTTCTAA
CTacagaatctttCTAA
97.6





1986
1986_2
CTACAGAATCTTTCTAA
CTAcagaatctttcTAA
95.6





1987
1987_1
ATTTCCCTTTATTTCCCTT
AtttccctttatttccCTT
92





1988
1988_1
GTATTTCCCTTTATTTCC
GtatttccctttattTCC
99.5










In the oligonucleotide compound column, capital letters represent beta-D-oxy LNA nucleosides, LNA cytosines are 5-methyl cytosine, lower case letters are DNA nucleosides, and all internucleoside linkages are phosphorothioate. mc represent 5-methyl cytosine DNA nucleosides (used in compounds 1490_1 and 14911).


Example 4
Materials and Methods:

The screening assay described in Example 2 was performed using a series of further oligonucleotide targeting human ATXN3 pre-mRNA using the qpCR: (ATXN3_exon_8-9(1) PrimeTime® XL qPCR Assay (IDT).









qPCR probe and primers set 2:


Probe:


(SEQ ID NO: 1134)


5′-/56-FAM/CTCCGCAGG/ZEN/GCT ATTCAGCT AAGT/


3IABkFQ/-3′





Primer 1:


(SEQ ID NO: 1135)


5′-AGT AAGATTTGT ACCTGATGTCTGT-3′





Primer 2:


(SEQ ID NO: 1136)


5′-CATGGAAGATGAGGAAGCAGAT-3′






Results:













TABLE 6









% of






ATXN3




Oligonucleotide Base 
Oligonucleotide
mRNA


SEQID
CMPID
Sequence
compound
remaining



















1110
1110_2
ACATCATTTATCACTACCAC
ACatcatttatcactacCAC
44





1102
1102_2
TATCTCAAACTATCCCCA
TatctcaaactatccCCA
74





1104
1104_2
TCCCCTAAATAATTTAATCA
TCCcctaaataatttaaTCA
78





1116
1116_2
TCTTCATTATACCATCAAAT
TCTTcattataccatcaaAT
12





1121
1121_2
CTCTCAACTTCTACTACTAA
CtctcaacttctactaCTAA
68





1114
1114_2
TGATTCTTATACTTACTA
TGATtcttatacttacTA
64





1120
1120_2
CATCACAAAATAACCTATCA
CATCacaaaataacctatCA
38





1100
1100_2
CCCCATTCAAATATTTATT
CCCcattcaaatatttATT
79





1112
1112_2
TCAGATCCTAAAATCACT
TCAGatcctaaaatcaCT
65





1123
1123_2
CCAAAATTACTTCTTTTATC
CCaaaattacttctttTATC
37





1117
1117_2
GTTTCATATTTTTAATCC
GTttcatatttttaATCC
10





1099
1099_2
CCAAAAGAAACCAAACCC
CCaaaagaaaccaaACCC
88





1109
1109_2
TGAAACCATTACTACAACC
TGAaaccattactacaACC
22





1113
1113_2
CTATACCTAAAACAATCTA
CTatacctaaaacaaTCTA
86





1119
1119_2
CAAATATTCACAAATCCTA
CaaatattcacaaatCCTA
78





1125
1125_2
ACAATATATTCCTCAATCA
ACaatatattcctcaATCA
74





1127
1127_2
CATCCCTTTACCACTTT
CatccctttaccaCTTT
97





1118
1118_2
TAATATCCTCATTACCCATT
TaatatcctcattaccCATT
97





1103
1103_2
TCTATTCCTTAACCCAAC
TCtattccttaaccCAAC
81





1122
1122_2
AATCTTATTTACATCTTCC
AATCttatttacatcttCC
11





1126
1126_2
CCTGTAACAATTATACA
CCTGtaacaattataCA
93





1122
1122_3
AATCTTATTTACATCTTCC
AatcttatttacaTCtTCC
54





1122
1122_4
AATCTTATTTACATCTTCC
AAtcTtatttacAtCttCC
17





1122
1122_5
AATCTTATTTACATCTTCC
AAtcttatttacAtCttCC
21





1122
1122_6
AATCTTATTTACATCTTCC
AatctTatttacaTCttCC
12





1122
1122_7
AATCTTATTTACATCTTCC
AatcttatttacAtCttCC
28





1122
1122_8
AATCTTATTTACATCTTCC
AAtcttatttacAtcTTCC
28





1122
1122_9
AATCTTATTTACATCTTCC
AAtcTtatttacAtctTCC
11





1122
1122_10
AATCTTATTTACATCTTCC
AatctTatttacAtctTCC
9





1122
1122_11
AATCTTATTTACATCTTCC
AatcTtatttacatcTTCC
10





1122
1122_12
AATCTTATTTACATCTTCC
AATcTtatttacAtcTtCC
10





1122
1122_13
AATCTTATTTACATCTTCC
AatCTtatttacAtcttCC
10





1122
1122_14
AATCTTATTTACATCTTCC
AatCttatttacatctTCC
7





1122
1122_15
AATCTTATTTACATCTTCC
AatcttatttacaTCttCC
32





1122
1122_16
AATCTTATTTACATCTTCC
AatCttatttacatcTTCC
4





1122
1122_17
AATCTTATTTACATCTTCC
AAtCttatttacatcTtCC
5





1122
1122_18
AATCTTATTTACATCTTCC
AaTcTtatttacaTcTtCC
9





1122
1122_19
AATCTTATTTACATCTTCC
AatcTTatttacatcTtCC
5





1122
1122_20
AATCTTATTTACATCTTCC
AatcTtatttacatCttCC
13





1122
1122_21
AATCTTATTTACATCTTCC
AAtcttatttacatCttCC
23





1122
1122_22
AATCTTATTTACATCTTCC
AatctTatttacatCttCC
8





1122
1122_23
AATCTTATTTACATCTTCC
AatcTTatttacatCttCC
4





1122
1122_24
AATCTTATTTACATCTTCC
AatctTatttacatcTTCC
8





1122
1122_25
AATCTTATTTACATCTTCC
AATcTTatttacatcTtCC
5





1122
1122_26
AATCTTATTTACATCTTCC
AAtctTatttacatcTtCC
12





1122
1122_27
AATCTTATTTACATCTTCC
AaTCTtatttacatcTtCC
3





1122
1122_28
AATCTTATTTACATCTTCC
AaTcTTatttacatcTtCC
3





1122
1122_29
AATCTTATTTACATCTTCC
AatCTTatttacatcTtCC
3





1122
1122_30
AATCTTATTTACATCTTCC
AAtcTTatttacatctTCC
5





1122
1122_31
AATCTTATTTACATCTTCC
AAtcTtatttacatctTCC
12





1122
1122_32
AATCTTATTTACATCTTCC
AAtcttatttacatctTCC
33





1122
1122_33
AATCTTATTTACATCTTCC
AatCtTatttacatctTCC
3





1122
1122_34
AATCTTATTTACATCTTCC
AatcTTatttacatctTCC
6





1122
1122_35
AATCTTATTTACATCTTCC
AatcTtatttacatctTCC
16





1122
1122_36
AATCTTATTTACATCTTCC
AATCtTatttacatcttCC
8





1122
1122_37
AATCTTATTTACATCTTCC
AAtCTTatttacatcttCC
5





1122
1122_38
AATCTTATTTACATCTTCC
AAtCttatttacatcttCC
16





1122
1122_39
AATCTTATTTACATCTTCC
AaTCTtatttacatcttCC
7





1122
1122_40
AATCTTATTTACATCTTCC
AaTCtTatttacatcttCC
5





1122
1122_41
AATCTTATTTACATCTTCC
AatCTTatttacatcttCC
5





1122
1122_42
AATCTTATTTACATCTTCC
AatCTtatttacatcttCC
13





1122
1122_43
AATCTTATTTACATCTTCC
AatcTTatttacatcttCC
17





1109
1109_3
TGAAACCATTACTACAACC
TgaaaccattacTAcaaCC
58





1109
1109_4
TGAAACCATTACTACAACC
TgaaaccattacTAcAaCC
20





1109
1109_5
TGAAACCATTACTACAACC
TgaAAccattacTacAaCC
23





1109
1109_6
TGAAACCATTACTACAACC
TgAaAccattactAcaaCC
50





1109
1109_7
TGAAACCATTACTACAACC
TgAaaCcattactAcaaCC
46





1109
1109_8
TGAAACCATTACTACAACC
TgaAAccattacTacaaCC
48





1109
1109_9
TGAAACCATTACTACAACC
TgaaaccattactaCAaCC
25





1109
1109_10
TGAAACCATTACTACAACC
TgaaAccattacTaCaACC
24





1109
1109_11
TGAAACCATTACTACAACC
TGaaAccattactaCaaCC
36





1109
1109_12
TGAAACCATTACTACAACC
TgAAAccattactaCaaCC
20





1109
1109_13
TGAAACCATTACTACAACC
TgAAaCcattactaCaaCC
26





1109
1109_14
TGAAACCATTACTACAACC
TgAaaccattactaCaaCC
27





1109
1109_15
TGAAACCATTACTACAACC
TGaAaccattacTacAaCC
14





1109
1109_16
TGAAACCATTACTACAACC
TgAaaCcattactacAACC
12





1109
1109_17
TGAAACCATTACTACAACC
TgaaaCcattacTacAaCC
36





1109
1109_18
TGAAACCATTACTACAACC
TgaaaCcattacTacaaCC
62





1109
1109_19
TGAAACCATTACTACAACC
TGaaAccattactacaaCC
47





1109
1109_20
TGAAACCATTACTACAACC
TgaAaccattactaCAaCC
19





1109
1109_21
TGAAACCATTACTACAACC
TgaAaccattactACaACC
16





1109
1109_22
TGAAACCATTACTACAACC
TgAAaccattactACaACC
9





1109
1109_23
TGAAACCATTACTACAACC
TgAaAccattactAcaACC
29





1109
1109_24
TGAAACCATTACTACAACC
TgaaaCcattactAcaACC
41





1109
1109_25
TGAAACCATTACTACAACC
TgaAACcattactAcaaCC
34





1109
1109_26
TGAAACCATTACTACAACC
TgaAaCcattactaCaaCC
28





1109
1109_27
TGAAACCATTACTACAACC
TGaAaCcattactacAACC
10





1109
1109_28
TGAAACCATTACTACAACC
TgAAaCcattactAcAACC
52





1109
1109_29
TGAAACCATTACTACAACC
TGaAAccattactacaACC
16





1109
1109_30
TGAAACCATTACTACAACC
TGAaaccattactacaaCC
36





1109
1109_31
TGAAACCATTACTACAACC
TgaaaCcattactaCaACC
21





1109
1109_32
TGAAACCATTACTACAACC
TgAAAccattactacAACC
9





1109
1109_33
TGAAACCATTACTACAACC
TgAaaCcattactacAaCC
14





1109
1109_34
TGAAACCATTACTACAACC
TGaaaccattactacaACC
43





1109
1109_35
TGAAACCATTACTACAACC
TgAAaCcattactacaACC
15





1109
1109_36
TGAAACCATTACTACAACC
TgaAACcattactacaaCC
15





1109
1109_37
TGAAACCATTACTACAACC
TGaAaCcattactacaaCC
16





1109
1109_38
TGAAACCATTACTACAACC
TGaaaCcattactacaaCC
38





1109
1109_39
TGAAACCATTACTACAACC
TgAAACcattactacaaCC
14





1109
1109_40
TGAAACCATTACTACAACC
TgAAaCcattactacaaCC
16





1109
1109_41
TGAAACCATTACTACAACC
TgaAaCcattactacaaCC
28





1109
1109_42
TGAAACCATTACTACAACC
TgaaACcattactacaaCC
28





1122
1122_44
AATCTTATTTACATCTTCC
AatcttatttacaTCTtCC
65





1122
1122_45
AATCTTATTTACATCTTCC
AatcTtatttacAtCttCC
38





1122
1122_46
AATCTTATTTACATCTTCC
AatcTtatttacaTcTTCC
34





1122
1122_47
AATCTTATTTACATCTTCC
AAtCttatttacAtcTtCC
10





1122
1122_48
AATCTTATTTACATCTTCC
AAtcTtatttacATcTtCC
35





1122
1122_49
AATCTTATTTACATCTTCC
AatCttatttacAtcTtCC
10





1122
1122_50
AATCTTATTTACATCTTCC
AAtCttatttacAtcttCC
11





1122
1122_51
AATCTTATTTACATCTTCC
AAtctTatttacatCTtCC
9





1122
1122_52
AATCTTATTTACATCTTCC
AatcTTatttacAtcTtCC
12





1122
1122_53
AATCTTATTTACATCTTCC
AatctTatttacatCTtCC
8





1122
1122_54
AATCTTATTTACATCTTCC
AaTcTtatttacatcTTCC
4





1122
1122_55
AATCTTATTTACATCTTCC
AAtcttatttacAtcTtCC
27





1122
1122_56
AATCTTATTTACATCTTCC
AAtCtTatttacAtcttCC
5





1122
1122_57
AATCTTATTTACATCTTCC
AAtcTTatttacatcttCC
14





1122
1122_58
AATCTTATTTACATCTTCC
AaTCttatttacatcttCC
13





1122
1122_59
AATCTTATTTACATCTTCC
AATcttatttacatCttCC
6





1122
1122_60
AATCTTATTTACATCTTCC
AAtcTtatttacatCttCC
10





1122
1122_61
AATCTTATTTACATCTTCC
AAtcTTatttacatcTtCC
6





1122
1122_62
AATCTTATTTACATCTTCC
AatCtTatttacatcTtCC
3





1122
1122_63
AATCTTATTTACATCTTCC
AATCttatttacaTcttCC
5





1122
1122_64
AATCTTATTTACATCTTCC
AatCttatttacatcTtCC
7





1122
1122_65
AATCTTATTTACATCTTCC
AatCttatttacatcttCC
32





1122
1122_66
AATCTTATTTACATCTTCC
AatcttatttacatcTTCC
19





1122
1122_67
AATCTTATTTACATCTTCC
AATCttatttacatcTtCC
3





1122
1122_68
AATCTTATTTACATCTTCC
AATcTtatttacatcTtCC
4





1122
1122_69
AATCTTATTTACATCTTCC
AAtCTtatttacatcTtCC
3





1122
1122_70
AATCTTATTTACATCTTCC
AAtCtTatttacatcTtCC
3





1122
1122_71
AATCTTATTTACATCTTCC
AAtcTtatttacatcTtCC
13





1122
1122_72
AATCTTATTTACATCTTCC
AaTCttatttacatcTtCC
5





1122
1122_73
AATCTTATTTACATCTTCC
AatCTtatttacatcTtCC
5





1122
1122_74
AATCTTATTTACATCTTCC
AatctTatttacatcTtCC
10





1122
1122_75
AATCTTATTTACATCTTCC
AAtCTtatttacatctTCC
3





1122
1122_76
AATCTTATTTACATCTTCC
AAtCttatttacatctTCC
5





1122
1122_77
AATCTTATTTACATCTTCC
AaTCttatttacatctTCC
5





1122
1122_78
AATCTTATTTACATCTTCC
AatCTtatttacatctTCC
4





1122
1122_79
AATCTTATTTACATCTTCC
AAtCTtatttacatcttCC
7





1122
1122_80
AATCTTATTTACATCTTCC
AAtCtTatttacatcttCC
5





1122
1122_81
AATCTTATTTACATCTTCC
AatCtTatttacatcttCC
8





1109
1109_43
TGAAACCATTACTACAACC
TgAAaccattacTAcAaCC
18





1109
1109_44
TGAAACCATTACTACAACC
TgAaAccattacTacAaCC
27





1109
1109_45
TGAAACCATTACTACAACC
TgaAaCcattacTacAaCC
65





1109
1109_46
TGAAACCATTACTACAACC
TgAaaccattacTacaACC
25





1109
1109_47
TGAAACCATTACTACAACC
TgaAaccattacTacaACC
35





1109
1109_48
TGAAACCATTACTACAACC
TgaaAccattacTacaACC
48





1109
1109_49
TGAAACCATTACTACAACC
TgaAaCcattacTacaaCC
44





1109
1109_50
TGAAACCATTACTACAACC
TgaAaccattacTaCaaCC
34





1109
1109_51
TGAAACCATTACTACAACC
TGaaaccattacTacaACC
29





1109
1109_52
TGAAACCATTACTACAACC
TgAAaccattacTacaACC
23





1109
1109_53
TGAAACCATTACTACAACC
TgaaaCcattacTaCaaCC
39





1109
1109_54
TGAAACCATTACTACAACC
TGaaaccattactaCaaCC
33





1109
1109_55
TGAAACCATTACTACAACC
TgAaAccattactaCaaCC
29





1109
1109_56
TGAAACCATTACTACAACC
TGaaAccattactacAACC
16





1109
1109_57
TGAAACCATTACTACAACC
TGaaAccattactacAaCC
18





1109
1109_58
TGAAACCATTACTACAACC
TgAaACcattactacaaCC
12





1109
1109_59
TGAAACCATTACTACAACC
TgAaaccattactaCAaCC
13





1109
1109_60
TGAAACCATTACTACAACC
TgaaAccattactACaaCC
36





1109
1109_61
TGAAACCATTACTACAACC
TGaaaccattactAcaACC
34





1109
1109_62
TGAAACCATTACTACAACC
TgAaaCcattactACaaCC
43





1109
1109_63
TGAAACCATTACTACAACC
TGaAAccattactaCaaCC
19





1109
1109_64
TGAAACCATTACTACAACC
TGaaaCcattactACaaCC
29





1109
1109_65
TGAAACCATTACTACAACC
TGaAaccattactAcaaCC
40





1109
1109_66
TGAAACCATTACTACAACC
TgaAAccattactAcAACC
14





1109
1109_67
TGAAACCATTACTACAACC
TGaAaccattactAcAaCC
14





1109
1109_68
TGAAACCATTACTACAACC
TGaaaCcattactAcAaCC
27





1109
1109_69
TGAAACCATTACTACAACC
TgAaaCcattactAcAACC
31





1109
1109_70
TGAAACCATTACTACAACC
TgAaAccattactAcAaCC
24





1109
1109_71
TGAAACCATTACTACAACC
TgaaACcattactacAACC
10





1109
1109_72
TGAAACCATTACTACAACC
TGAaaccattactacAaCC
11





1109
1109_73
TGAAACCATTACTACAACC
TgaAACcattactAcAaCC
34





1109
1109_74
TGAAACCATTACTACAACC
TGaAaCcattactacaACC
15





1109
1109_75
TGAAACCATTACTACAACC
TGaaACcattactacaaCC
14





1109
1109_76
TGAAACCATTACTACAACC
TGaAaccattactaCaaCC
22





1109
1109_77
TGAAACCATTACTACAACC
TgaAAccattactaCaaCC
30





1109
1109_78
TGAAACCATTACTACAACC
TgaaAccattactaCaaCC
50





1109
1109_79
TGAAACCATTACTACAACC
TgaAACcattactacAaCC
9





1109
1109_80
TGAAACCATTACTACAACC
TGaAaccattactacaaCC
31





1109
1109_81
TGAAACCATTACTACAACC
TgAaaCcattactacaaCC
31










In the oligonucleotide compound column, capital letters represent beta-D-oxy LNA nucleosides, LNA cytosines are 5-methyl cytosine, lower case letters are DNA nucleosides, and all internucleoside linkages are phosphorothioate.


Example 5: Testing In Vitro Efficacy of LNA Oligonucleotides in iCell® GlutaNeurons at 25 μM
Materials and Methods:

An oligonucleotide screen was performed in a human cell line using selected LNA oligonucleotides from the previous examples.


The iCell® GlutaNeurons derived from human induced pluripotent stem cell were purchased from the vendor listed in Table 2, and were maintained as recommended by the supplier in a humidified incubator at 37° C. with 5% CO2. For the screening assays, cells were seeded in 96 multi well plates in media recommended by the supplier (see Table 2 in the Materials and Methods section). The number of cells/well was optimized (Table 2).


Cells were grown for 7 days before addition of the oligonucleotide in concentration of 25 μM (dissolved in medium). 4 days after addition of the oligonucleotide, the cells were harvested.


RNA extraction and qPCR was performed as described for “Example 1”


Primer assays for ATXN3 and house keeping gene were:










ATXN3 primer assay (Assay ID: N/A, Item Name: Hs.PT.58.39355049):



Forward primer:


(SEQ ID NO: 1128)



GTTTCTAAAGACATGGTCACAGC






Reverse:


(SEQ ID NO: 1129)



CTATCAGGACAGAGTTCACATCC






Probe:


(SEQ ID NO: 1030)



56-FAM/AAAGGCCAG/ZEN/CCACCAGTTCAGG/3IABkFQ/






TBP primer assay (Assay ID: N/A, Item name: Hs.PT.58v.39858774


Probe:


(SEQ ID NO: 1131)



5′-/5HEX/TGA TCT TTG/ZEN/CAG TGA CCC AGC ATC A/3IABkFQ/-3′






Primer 1:


(SEQ ID NO: 1132)



5′-GCT GTT TAA CTT CGC TTC CG-3′






Primer 2:


(SEQ ID NO: 1133)



5′-CAG CAA CTT CCT CAA TTC CTT G-3′







Results:

The relative ATXN3 mRNA expression levels were determined as % of control (medium-treated cells) i.e. the lower the value the larger the inhibition.


The compounds tested and the target knock-down data is presented in Table 7.


Example 6: Determination of EC50 Values of LNA Gapmers Targeting ATXN3
Materials and Methods:

Values for EC50 (concentration at which half effect on target knockdown is observed) was determined for the cell lines SK-N-AS, A431 and iPSCs (iCell® GlutaNeurons). The following oligoconcentrations were used:

    • SK—N-AS: 50 μM—half log dilution (3.16 fold)—8 steps including blank control
    • A431: 50 μM—half log dilution (3.16 fold)—8 steps including blank control
    • iPCS: 10 μM—10 fold dilution—8 steps including blank control


The cells were treated with oligo, lysed and analysed as indicated in previous examples.


Results:

The compounds tested and their EC50 values is shown in table 7.


Example 7: In Vitro Toxicity Evaluation
Materials and Methods:

The criterion for selection of oligonucleotides assessed in the various safety assays is based on the magnitude and frequency of signals obtained. Safety assays used were: Caspase activation, hepatotoxicity, nephrotoxicity toxicity and immunotoxicity assays. The signals obtained in the individual in vitro safety assays result in a score (0-safe, 0.5 borderline toxicity, 1—mild toxicity, 2—medium toxicity and 3—severe toxicity) and are summarized into a cumulative score for each sequence (See table 7), providing an objective ranking of compounds. As reported in the references provided, the signal strength is a measure of risk for in vivo toxicity based on validation of the assays using in vivo relevant reference molecules


In vitro toxicity assays were performed as described in the following references:

  • Caspase activation assay: Dieckmann et al., Molecular Therapy: Nucleic Acids Vol. 10 Mar. 2018, pp 45-54.
  • Hepatotoxicity toxicity assay: Sewing et al., Methods in Molecular Biology Oligonucleotide-Based Therapies MIMB, volume 2036, pp 249-259 2019, Sewing et al., PLOS ONE DOI:10.1371/journal.pone.0159431 Jul. 21, 2016.
  • Nephrotoxicity toxicity assay: Moisan et al., Mol Ther Nucleic Acids. 2017 Mar. 17; 6:89-105. doi: 10.1016/j.omtn.2016.11.006. Epub 2016 Dec. 10.
  • Immunotoxicity: Sewing et al., PLoS One. 2017 Nov. 6; 12(11):e0187574. doi: 10.1371/journal.pone.0187574. eCollection 2017.


As part of the screening cascade 1170 compounds were evaluated in the cell lines SK-N-AS and A431 where compound efficacy was evaluated (Tables 4-6). Of these, 50 of the most effective compounds were evaluated for caspase activation of which 18 underwent further evaluation in the described in the three other in vitro tox assays (cumulative score is shown in Table 7).


Results:

Conclusively, 8 compounds were identified as being highly effective and potent in vitro, and with a low or absent toxicity in the 4 in vitro assays—these compounds were therefore selected for evaluated in transgenic mice expressing human ATNX3 pre-mRNA: Compounds #18561, 1813_1, 1812_1, 1809_2, 1607_1, 1122_62, 1122_67 and 1122_33.









TABLE 7







Data obtained from examples 5, 6 & 7

















HiPCS, Maximal



Total
SK-N-AS
A-431
HiPSC
efficacy at 25 μM



tox
EC50
EC50
EC50
(% remaining


CMPID
score
(μM)
(μM)
(μM)
ATXN3 transcript)















1856_1
1.5
0.53
0.22
0.23
2.87


1806_2
2  
0.35
0.19
0.03
0.91


1888_1

0.72
0.54



1813_1
2  
0.24
0.08
0.04
1.85


1640_1

1.50
0.19



1812_1
1.5
0.20
0.09
0.09
0.59


1117_2

0.73
0.57



1810_1

0.36
0.14



1809_2
 1.25
0.22
0.09
0.05
1.44


1489_1

1.16
0.30



1867_1

0.54
0.50



1893_1

0.95
0.34
0.41
4


1906_1

0.36
0.57
0.04
2.55


1214_1

1.05
0.38



1213_1

1.01
0.38



1423_1

0.75
0.23
0.03
3.58


1790_1

0.42
0.47



1605_1

0.47
0.17



1607_1
2.5
0.32
0.25
0.08
4.46


1805_1

0.75
0.23



1806_1

0.45
0.20
0.04
1.3


1809_1
3  
0.24
0.20
0.02
1.81


1808_1
2  
0.26
0.22
0.06
1.4


1625_1
0.5
0.94
0.25
0.66
7.16


1122_54

0.62
0.15



1122_16

0.30
0.15



1122_17

0.33
0.17
0.11
1.07


1122_62
0.5
0.21
0.10
0.03
3.53


1122_19

0.28
0.24



1122_23

0.54
0.18
0.05
0.59


1122_67
0  
0.29
0.10
0.01
0.52


1122_68

0.28
0.13
0.01


1122_69

0.27
0.12



1122_70

0.20
0.10



1122_27
1  
0.23
0.12
0.03
0.55


1122_72
0.5
0.25
0.15
0.06
2.28


1122_28
1  
0.20
0.12
0.01
0.37


1122_29

0.19
0.09
0.02
1.6


1122_73

0.29
0.18
0.04
1.59


1122_75
1  
0.44
0.12
0.03
2


1122_76

0.33
0.19



1122_77
1  
0.30
0.20
0.04
1.97


1122_78

0.29
0.18
0.02
1.91


1122_33
 1.25
0.18
0.10
0.02
1.84


1122_37

0.25
0.13
0.03
0.89


1122_80

0.33
0.17



1122_41

0.24
0.16
0.01
0.47


1109_22

0.90
0.23
0.11
8.41


1109_32
0  
0.75
0.17
0.09
3.49


1109_79

1.48
0.20










Example 8: In Vivo Transgenic Mouse Study
Materials and Methods:

Animal Care


In vivo activity and tolerability of the compounds were tested in 10-13 week old B6;CBA-Tg(ATXN3*)84.2Cce/IbezJ male and female mice (JAX® Mice, The Jackson Laboratory) housed 3-5 per cage. The mice are transgenic mice which express the human ATXN3 pre-mRNA sequence, with 84 CAG repeats motif, an allele which is associated with MJD in humans). Animals were held in colony rooms maintained at constant temperature (22±2° C.) and humidity (40+80%) and illuminated for 12 hours per day (lights on at 0600 hours). All animals had ad libitum access to food and water throughout the studies. All procedures are performed in accordance with the respective Swiss regulations and approved by the Cantonal Ethical Committee for Animal Research.


Administration Route —Cisterna Magna Injections.


The compounds were administered to mice by intra cisterna magna (ICM) injections. Prior to ICM injection the animals received 0.05 mg/kg Buprenorphine dosed sc as analgesia. For the ICM injection animals were placed in isofluran. Intracerebroventricular injections were performed using a Hamilton micro syringe with a FEP catheter fitted with a 36 gauge needle. The skin was incised, muscles retracted and the atlanto-occipital membrane exposed. Intracerebroventricular injections were performed using a Hamilton micro syringe with a catheter fitted with a 36 gauge needle. The 4 microliter bolus of test compound or vehicle was injected over 30 seconds. Muscles were repositioned and skin closed with 2-3 sutures. Animals were placed in a varm environment until they recovered from the procedure.


Two independent experiments were performed with groups of different compounds as shown in Table 8A.














TABLE 8A







Compound ID
Dose, μg
Time-point
Group Size





















Saline only
0
4 wk
6



1856_1
250
4 wk
8



1813_1
250
4 wk
8



1812_1
250
4 wk
8



1809_2
250
4 wk
8



1607_1
250
4 wk
8



1122_62
250
4 wk
8



1122_67
250
4 wk
8



1122_33
250
4 wk
8










Tolerability Results:


All compounds were found to be tolerated up to the 4 weeks timepoint. Acute toxicity was measured by monitoring the animal's behavior as described in WO2016/126995 (see example 9). Sub-acute toxicity was measured by monitoring the body weight of each animal during the time course of the experiment, with >5% weight reduction indicative of sub-acute toxicity. In some groups 1 or 2 animals did show some distress after the ICM administration and were euthanized, but this was likely to be due to the procedure rather than a adverse toxicity of any of the compounds. All eight compounds were therefore considered to be well tolerated in vivo.


4 weeks post administration, the animals were sacrificed, and tissues from the cortex, midbrain, cerebellum, hippocampus pons/medulla and striatum were collected weighed and snap frozen in liquid N2 directly after sampling. Samples were stored on dry ice until storage at −80° C.


Analysis of In Vivo Samples. Description of Tissue Preparation for Content Measurement and qPCR.


Mouse tissue samples were homogenized in the MagNA Pure LC RNA Isolation Tissue Lysis Buffer (Roche, Indianapolis, Ind.) using a Qiagen TissueLyzer II. The homogenates were incubated for 30 minutes at room temperature for complete lysis. After lysis the homogenates were centrifuged for 3 minutes at 13000 rpm and the supernatant used for analysis. Half was set aside for bioanalysis and for the other half, RNA extraction was continued directly.


Oligo Content Analysis


For bioanalysis, the samples were diluted 10-50 fold for oligo content measurements with a hybridization ELISA method. A biotinylated LNA-capture probe and a digoxigenin-conjugated LNA-detection probe (both 35 nM in 5×SSCT, each complementary to one end of the LNA oligonucleotide to be detected) was mixed with the diluted homogenates or relevant standards, incubated for 30 minutes at RT and then added to a streptavidine-coated ELISA plates (Nunc cat. no. 436014).


The plates were incubated for 1 hour at RT, washed in 2×SSCT (300 mM sodium chloride, 30 mM sodium citrate and 0,05% v/v Tween-20, pH 7.0) The captured LNA duplexes were detected using an anti-DIG antibodies conjugated with alkaline phosphatase (Roche Applied Science cat. No. 11093274910) and an alkaline phosphatase substrate system (Blue Phos substrate, KPL product code 50-88-00). The amount of oligo complexes was measured as absorbance at 615 nm on a Biotek reader.


Data was normalized to the tissue weight and expressed as nM of oligo.


mRNA Analysis


RNA was purified from 350 μL of supernatant using the MagNA Pure 96 instrument using the kit Cellular RNA Large Volume Kit (Roche, Indianapolis, Ind.). RNA samples were normalized to 2 ng/μL in RNase-Free water and stored at −20° C. until further use.


For one-step qPCR (cDNA synthesis and qPCR), each sample was run in duplicates with four probe sets (IDT, Leuven, Belgium) run in duplex.


To each reaction 4 μL of previously diluted RNA, 0.5 μL of water and 5.5 μL of TaqMan MasterMix was added. Plates were centrifuged and heat-chocked at 90° C. for 40sek followed by a short incubation on ice before analyzing the samples using qPCR (Incubation at 50° C. for 15 minutes and 90° C. for 3 minutes followed by 40 cycles at 95° C. for 5 sec and 60° C. for 45 sec). Assay probes are described below.


Data was analyzed using the relative standard curve method where each is first normalized to the housekeeping gene (RPL4) and then expressed as percent of untreated control animals.


qPCR Assays for In Vivo Studies:










Human ATXN3, qPR assay: (ATXN3_exon_8-9(1) PrimeTime ® XL qPCR Assay (IDT).



qPCR probe and primers:


Probe:


(SEQ ID NO: 1134)



5′-/56-FAM/CTCCGCAGG/ZEN/GC ATTCAGCT AAGT/3IABkFQ/-3′






Primer 1:


(SEQ ID NO: 1135)



5′-AGT AAGATTTGT ACCTGATGTCTGT-3′






Primer 2:


(SEQ ID NO: 1136)



5′-CATGGAAGATGAGGAAGCAGAT-3′







House Keeping Gene Used:










Mouse RPL4, qPCR assay (Mm.PT.58.17609218) PrimeTime ® XL qPCR Assay (IDT).



qPCR probe and primers:


Probe:


(SEQ ID NO: 1090)



5′-/5HEX/CTG AAC AGC/ZEN/CTC CTT GGT CTT CTT GTA/3IABkFQ/-3′






Primer 1:


(SEQ ID NO: 1091)



5′-CTT GCC AGC TCT CAT TCT CTG-3′






Primer 2:


(SEQ ID NO: 1092)



5′-TGG TGG TTG AAG ATA AGG TTG A-3′







Results:

The results are shown in Table 8B.


All compounds tested gave efficacious target inhibition in the tissues tested and were tolerated at the doses tested. Compound 1122_33 across the compounds tested has either the best or second ranked highest specific activity (lower EC50) in all tissues, followed by 1122_62 and 1122_67.


Compounds 1122_67, 1607_1, 1813_1 and 1122_33 provided high efficacy in vivo in all tissues tested, illustrating a remarkable consistent inhibition of ATXN3 expression across the brain tissues tested. Based on an accumulative rank score compound 1122_67 was consistently either the best or second ranked compound in terms of efficacy of ATXN3 knock down in the tissues tested.


Example 9: Testing In Vitro Efficacy of LNA Oligonucleotides and Reference Compounds in a Time Course, Dose Range Experiment in Human iPSC-Derived Neurons

Materials and Methods:


Compounds used: 1122_67 and 1813_1 & the following reference compounds disclosed in WO2019/217708, as referenced by the Compound ID numbers used in WO2019/217708: 1100673, 1101657, 1102130, 1103014 & 1102987. Compounds 1100673, 1101657, 1102130 are highlighted in WO2019/217708 as providing potent in vivo inhibition, compounds 1103014 and 1102987 were not evaluated in vivo in WO2019/217708, but are included as reference compounds due to the sequence similarity to compound 1122_67 (1103014) and 1813_1 (1102987).


The iCell® GlutaNeurons cells were prepared and maintained as described in Example 5 & Table 2. Cells were grown for 7 days before addition of the oligonucleotide in concentration of 0-10 μM (dissolved in medium).


Cells were harvested at 4 days, 6 days, 9 days, 12 days and 20 days after oligo treatment, and RNA extraction and qPCR was performed as described for “Example 1”, using the ATXN3 primar assay described in example 5. The relative ATXN3 mRNA expression levels were determined as % of control (medium-treated cells) i.e. the lower the value the larger the inhibition.


Results:

The results are shown in Table 9.











TABLE 9









EC50 in hiPSC-derived neurons, nM












Compound
Day 4
Day 6
Day 9
Day 12
Day 20















1122_67
7.2
1.3
1.4
1.1
1.1


1813_1
23
6.3
10
8.9
7.7


1100673
110
27
30
34
44


1101657
515
204
69
90
73


1102130
315
164
390
101
133


1103014
662
64
435
98
369


1102987
944
305
135
391
200










Compounds 1122_67 and 1813_1 were remarkably more potent than the 5 reference compounds, with compound 1122_67 being the most potent compound at all time points and both 1122_67 and 1813_1 gave a remarkably effective and long lasting inhibition of ATXN3 mRNA.


Example 10: Comparative In Vivo Transgenic Mouse Study
Materials and Methods:

A further in vivo study was performed at Charles River Laboratories Den Bosch B.V., Groningen, NL, using compound 1122_67 and 1813_1, and reference compound 1100673 (WO2019/217708). The study used male and female B6;CBA-Tg(ATXN3*)84.2Cce/IbezJ mice with the compounds administered via intracisternal (ICM) administration. At two timepoints after compound administration, 1 or 4 weeks, animals were euthanized and terminal plasma samples and tissues were collected.


Animal Care


In vivo activity and tolerability of the compounds were tested in 62 B6;CBA-Tg(ATXN3*)84.2Cce/IbezJ male and female mice (JAX® Mice, The Jackson Laboratory) at the age between 7-10 weeks. Following arrival, animals were housed in groups up to 5 in individually vented cages (IVC, 40×20×16 cm) in a temperature (22±2° C.) and humidity (55±15%) controlled environment on a 12 hour light cycle (07.00-19.00 h). Males and females were kept in separate cages. Standard diet (SDS Diets, RM1 PL) and domestic quality mains water were available ad libitum. If required, animals received soaked chow and/or Royal Canin in addition to Standard diet as part of pamper care. The experiments were conducted in strict accordance with the Guide for the Care and Use of Laboratory Animals (National Research Council 2011) and were in accordance with European Union directive 2010/63 and the Dutch law. The in vivo experiment described was performed at Charles River Laboratories Den Bosch B.V. location Groningen (Groningen, the Netherlands).


Administration Route—Intra-Cisterna Magna Injections.


The compounds were administered to mice by intra cisterna magna (ICM) injections. Mice were anesthetized using isoflurane (2.5-3% and 500 mL/min 02). Before surgery, Finadyne (1 mg/kg, s.c.) was administered for analgesia during surgery and the post-surgical recovery period. A mixture of bupivacaine and epinephrine was applied to the incision site and periost of the skull for local analgesia.


Animals were placed in a stereotaxic frame (Kopf instruments, USA) and an incision made at the back of the head towards the neck. Then, the skin was spread and the coordinates marked prior to drilling a hole in the occipital bone of the skull, where a cannula was placed. Next, the compounds were injected into the cisterna magna (ICM). A volume of 4 μL of the assigned test item was injected over 30 seconds. After injection, the needle and cannula were held in place for 30 seconds to ensure no back flow occurred. The cannula was then retracted, the hole was covered with skin and the incision was closed by sutures.


Animals were placed in a warm environment until recovered from the procedure.


Compound 1122_67 was administered at a single dose of 90, 150 or 250 μg, and compound 1813_1 was administered at a single dose of 150 μg or 250 μg. The reference compound 1100673 was administered at a single dose of 250 μg only.


From three days prior to ICM injections, up to one week after administration, animal's weight was registered daily. Animal's weight was monitored and registered at least twice a week for the rest of the experiment.


At the end of the experiment, on day 8 or 29 (1 or 4 weeks), the animals were euthanized by Euthasol® overdose. Terminal plasma was collected in Li-Hep tubes. Terminal tissues were harvested from the animals and were dissected on a chilled surface. Half of the tissue samples were stored in 2.0 mL Safe-Lock tubes, PCR clean, pre-weighted and precooled. Immediately after collection, samples were weighed and flash frozen in liquid N2 prior to storage at −80° C. The other half was fixed in 4% PFA for 72 hours and subsequently transferred to 70% ethanol awaiting shipment. Tissue dissection and collection was performed, collecting tissue from a range of tissues: Midbrain, Cortex, Striatum, Hippocampus, Cerebellum, Brainstem, and spinal cord (Cervical, Thoracic & Lumbar).


Tolerability Results:


Acute toxicity was measured by monitoring the animal's behavior as described in WO2016/126995 (see example 9). Chronic toxicity was measured by monitoring the body weight of each animal during the time course of the experiment, with >5% weight reduction indicative of chronic toxicity. In some groups 1 or 2 animals did show some distress after the ICM administration and were euthanized, but this was likely to be due to the nature of the surgical procedure rather than a adverse toxicity of any of the compounds.


There were signs of acute toxicity at the 250 μg dose of 1813_1 in 3 mice, leading to early euthanisation of this group of animals. Otherwise all compounds were found to be tolerated up to the 4 weeks timepoint.


After 4 weeks the animals were euthanised and brain and CNS tissue collected: Spinal cord, cortex, striatum, hippocampus, midbrain, brainstem and cerebellum as well as liver and kidney was collected in liquid nitrogen for drug concentration analysis an ATAXN3 mRNA analysis at 1 or 4 weeks following dosing.


Analysis of in vivo samples: Description of tissue preparation for content measurement and qPCR was performed as per Example 8. The EC50 was calculated, and maximum KD achieved recorded—this data is provided in Table 10.


Results:

Compound 1122_67 was the most effective compound in all brain tissues tested and gave an excellent effective knock-down in all brain tissues tested, indicating good bio-distribution to all key tissues (1813_1 was as effective as 1122_67 in spinal cord, brainstem and midbrain). Notably compound 1122_67 gave highly effective knock-down in cerebellum, a tissue which the reference compound 1100673 was notably less effective. A further key observation at the after 4 weeks of treatment is that the efficacy of 1122_67 was even further improved as compared to the 1 week timepoint in all brain tissues. Notably, the efficacy of the reference compound, 1100673 was notably lower at the 4 week stage vs. the 1 week timepoint, particularly in key cerebellum and cortex tissues. The long duration of action and high potency of 1122_67 indicates that this compound should require a less frequent administration in a therapeutic setting.


Example 11: Compound Stability to SVPD
Materials and Methods:

3′-exonuclease snake venom phosphodiesterase I (SVP) (Art. No. LS003926, Lot. No. 58H18367) was purchased by Worthington Biochemical Corp. (Lakewood, N.Y., USA). The reaction mix for the 3′-exonuclease snake venom phosphodiesterase I (SVP) assay consisted of 50 mM TRIS/HCl pH 8 buffer, 10 mM MgCl2, 30 U CIP (NEB, Ipswich, Mass., USA), 0.02 U SVP and the oligonucleotide compound. The stability of the ASOs against SVPD was determined by performing the nuclease assays over a one day time course. In each reaction mix an amount about 0.2 mg/mL ASO in a totaly volume of 150 μl was used.


The incubation period of 24 h at 37° C. was performed on an autosampler, the SVPD and reactions and the ASO stabilities were monitored in time intervals by an UHPLC system equipped with a diode-array detector and coupled with electrospray ionization-time of flight-mass spectrometry (ESI-ToF-MS). To generate the t=0 h time point, the enzyme was added into the reaction mix, directly before the first injection. Further injections took place at regular intervals over a period of 24 hours.


Compounds tested, 1122_67, 1813_1 and the reference compounds 1100673, 1101657, 1102130, 1103014, and 1102987.


Results:

The data is illustrated in FIG. 9. Whilst the three highlighted reference compounds from WO2019/217708 and the 1122_67 and 1813_1 compounds had good stability in the SVPD assay, the 2 reference compounds from WO2019/217708 with the closest sequence to 1122_67 and 1813_1, compounds 1103014 and 1102987 were notably more vulnerable to SVPD degradation as compared to 1122_67 and 1813_1.


Example 12: WT and polyQ Ataxin 3 Protein Levels in Human SCA3 Patient Derived Fibroblasts Treated with Selected Oligonucleotides (ASO)
Materials and Methods:

This experiment was performed to investigate the efficacy of efficacy of knock down of the LNA oligonucleotides, 1122_67 and 1122_33, as compared to the prior art compounds, 1100673 and 1102130 in SCA3 patient derived fibroblasts, allowing for an assessment of the efficacy on the disease causing ataxin3 allele and the ataxin3 WT allele.


Cell line used for the ASO treatment, human SCA3 patient derived fibroblasts (GM06153—Coriell Institute). One hundred thousand cells were seeded per well in a 24 well plate with a total volume of 1 ml. ASOs were added immediately after to a final concentration of 10 μM (gymnotic uptake). After 4 days of incubation at, cells were washed twice with PBS, and harvested in 200 μl RIPA buffer (Thermo Scientific, Pierce).


Western blots were performed on the capillary-based immunoassay platform (WES, ProteinSimple) using a WES 12-230 kDa Wes Separation Module. Cell lysate were diluted 10× in Sample load buffer (ProteinSimple) prior loading on the cartridge. Primary antibody for Ataxin 3 (rabbit monoclonal antibody, prod. #702788 from Invitrogen) and for HPRT (rabbit monoclonal antibody, cat. #Ab109021 from Abcam). Both antibodies were used in 1/100 dilutions. Goat anti-rabbit HRP conjugate (Part. #DM-001, ProteinSimple) was used as secondary antibody.


Compass software (ProteinSimple) was for quantification of the protein bands.


Results:

To show an efficient KD of both the wild type as well as the polyQ extended Ataxin 3 protein, GM06153 cells were treated with 10 uM of ASO for four days prior to protein analysis on the WES. Ataxin 3 antibody recognize both isoforms, and the intensity (area under peak) was normalized to the protein input based on the signal from HPRT. As seen from the FIGS. 10A and B, we observe that upon treatment with 1122_67 and 1122_33, there is an increased reduction in the polyQ extended Ataxin 3 compared to the wild type Ataxin 3. This trend is not observed for the other ASOs (Scrambled control, 1100673 or 1102130) where we observe a higher amount of the polyQ extended Ataxin 3, compared to the wild type Ataxin 3. A higher activity on the disease causing polyQ extended Ataxin 3 than the WT Ataxin 3 is preferable as it allows a selective reduction of the disease causing allele.


Example 13: Redesign Library
Materials and Methods:

Compound ID Nos. 1122_67 and 1122_33 were used as parents in a redesign library. The compounds in the redesign library differed from the parent compounds and each other in internucleoside linkages and/or the nucleosides used. In general, nucleosides at specific positions were varied between LNA, DNA and nucleoside analogs with different modifications in the 2′ position in the ribose. In some compounds, a MOPS or MOPO internucleoside linkages was introduced. The internucleoside linkages were otherwise phosphorothioate linkages. In some compounds, the chirality was controlled by use of phosphorothioate linkages providing for sterodefined backbones. The modifications employed are illustrated below.




embedded image


The compounds of the redesign library are listed in Table 11, where the structure of each compound is described by the hierarchical editing language for macromolecules (HELM) (for details, see Zhang et al., Chem. Inf. Model. 2012, 52, 10, 2796-2806) using the following HELM annotation keys:


[LR](G) is a beta-D-oxy-LNA guanine nucleoside,


[LR](T) is a beta-D-oxy-LNA thymine nucleoside,


[LR](A) is a beta-D-oxy-LNA adenine nucleoside,


[LR]([5meC] is a beta-D-oxy-LNA 5-methyl cytosine nucleoside,


[dR](G) is a DNA guanine nucleoside,


[dR](T) is a DNA thymine nucleoside,


[dR](A) is a DNA adenine nucleoside,


[dR]([C] is a DNA cytosine nucleoside,


[sP] is a phosphorothioate internucleoside linkage (stereo undefined)


[ssP] is a stereodefined Sp phosphorothioate internucleoside linkage


[MOPS] is a 3-methoxypropylphosphonothioate internucleoside linkage


[MOPO] is a 3-methoxypropylphosphonate internucleoside linkage


[mR](G) is a 2′-O-methyl guanine nucleoside,


[mR](U) is a 2′-O-methyl uracil nucleoside,


[mR](A) is a 2′-O-methyl adenine nucleoside,


[mR](C) is a 2′-O-methyl cytosine nucleoside,


[MOE](G) is a 2′-O-methoxyethyl guanine nucleoside,


[MOE](T) is a 2′-O-methoxyethyl thymine nucleoside,


[MOE](A) is a 2′-O-methoxyethyl adenine nucleoside,


[MOE]([5meC]) is a 2′-O-methoxyethyl 5-methyl cytosine nucleoside,


[fR](G) is a 2′-fluoro guanine nucleoside,


[fR](U) is a 2′-fluoro uracil nucleoside,


[fR]R(A) is a 2′-fluoro adenine nucleoside,


[fR](C) is a 2′-fluoro cytosine nucleoside.


Results:

In Table 11, a compound with a compound ID number “1122_” or “1816_” is a modified version of SEQ ID NO: 1122 or SEQ ID NO: 1816, respectively.









TABLE 11







Compound and HELM table








CMPIDNO
HELM





1122_82
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[MOE]([5meC])[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_83
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[mR](U)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_84
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[mR](U)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_85
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[mR](U)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_86
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[mR](U)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_87
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[mR](U)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_88
[LR](A)[sP]•[dR](A)[sP]•[mR](U)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_89
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[mR](U)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_90
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[mR](U)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_91
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[mR](U)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_92
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_93
[MOE](A)[sP]•[MOE](A)[sP]•[MOE](T)[sP]•[MOE]([5meC])[sP]•[MOE](T)[sP]•



[MOE](T)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•



[MOE](T)[sP]•[MOE](T)[sP]•[MOE]([5meC])[sP]•[MOE]([5meC])


1122_94
[MOE](A)[sP]•[MOE](A)P•[MOE](T)P•[MOE]([5meC])P•[MOE](T)P•



[MOE](T)P•[MOE](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])P•



[MOE](T)P•[MOE](T)[sP]•[MOE]([5meC])[sP]•[MOE]([5meC])


1122_95
[LR](A)[sP]•[mR](A)[sP]•[mR](U)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_96
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_97
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[LR]([5meC])[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_98
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_99
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[MOE]([5meC])[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_100
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[mR](U)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_101
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[mR](U)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_102
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[mR](U)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_103
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[mR](U)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_104
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[mR](U)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_105
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[mR](U)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_106
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[mR](U)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_107
[LR](A)[sP]•[LR](A)[sP]•[mR](U)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_108
[LR](A)[sP]•[mR](A)[sP]•[mR](U)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_109
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[mR](U)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_110
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP][LR]([5meC])


1122_111
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[LR]([5meC])[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_112
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_113
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[MOE]([5meC])[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_114
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[mR](U)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_115
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[mR](U)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_116
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[mR](U)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_117
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[mR](U)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_118
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[mR](U)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_119
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[mR](U)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_120
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[mR](U)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_121
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[mR](U)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_122
[LR](A)[sP]•[LR](A)[sP]•[mR](U)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_123
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_124
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[LR]([5meC])[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_125
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_126
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[ssP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_127
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[ssP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_128
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[ssP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_129
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[ssP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_130
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[ssP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_131
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[ssP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_132
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[ssP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_133
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[ssP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_134
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[ssP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_135
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[ssP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_136
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[ssP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_137
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[ssP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_138
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[ssP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_139
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[ssP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_140
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[ssP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_141
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[ssP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_142
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[ssP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_143
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[ssP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_144
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[ssP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_145
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[ssP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_146
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[ssP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_147
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[ssP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_148
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[ssP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_149
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[ssP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_150
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[ssP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_151
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[ssP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_152
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[ssP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_153
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[ssP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_154
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[ssP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_155
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[ssP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_156
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[ssP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_157
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[ sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[ssP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_158
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[ssP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_159
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[ssP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_160
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[ssP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_161
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[MOE](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_162
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_163
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[MOE](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_164
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[MOE](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_165
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_166
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[MOE](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_167
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_168
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[MOE](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_169
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[MOE](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_170
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_171
[LR](A)[sP]•[dR](A)[sP]•[MOE](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_172
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[mR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_173
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[mR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_174
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[mR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_175
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[mR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_176
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[mR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_177
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[LR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_178
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_179
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[LR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_180
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_181
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_182
[LR](A)[sP]•[dR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_183
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[MOE]([5meC])[sP]•[LR]([5meC])


1122_184
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[MOE](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_185
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[MOE](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_186
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_188
[MOE](A)[sP]•[MOE](A)[sP]•[MOE](T)[sP]•[MOE]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[MOE](T)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[MOE]([5meC])


1122_189
[MOE](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[MOE]([5meC])


1122_190
[MOE](A)[sP]•[MOE](A)P•[MOE](T)P•[MOE]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[MOE](T)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[MOE]([5meC])


1122_191
[LR](A)[sP]•[fR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_192
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[fR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_193
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[fR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_194
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[fR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])]sP]•[LR]([5meC])


1122_195
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[fR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_196
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[fR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_197
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_198
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[LR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_199
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_200
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[LR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])]sP]•[LR]([5meC])


1122_201
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[LR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_202
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])]sP]•[LR]([5meC])


1122_203
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[LR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])]sP]•[LR]([5meC])


1122_204
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_205
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[LR]([5meC])


1122_206
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[MOE](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_207
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[MOE](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_208
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[MOE](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_209
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_210
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[MOE](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_211
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[MOE](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_212
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_213
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[MOE](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_214
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_215
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[MOE](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_216
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[MOE](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_217
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[MOE]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_218
[LR](A)[sP]•[LR](A)[sP]•[MOE](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_219
[LR](A)[sP]•[MOE](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_220
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[mR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_221
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[mR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_222
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[mR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_223
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[mR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_224
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[mR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_225
[LR](A)[sP]•[mR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_226
[MOE](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[dR](T)[sP]•



[MOE](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[MOE](T)[sP]•[MOE]([5meC])[sP]•[MOE]([5meC])


1122_227
[MOE](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[MOE]([5meC])


1122_228
[MOE](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_229
[LR](A)[sP]•[fR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[ sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC] )[sP]•[LR]([5meC])


1122_230
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_231
[LR](A)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_232
[LR](A)[sP]•[mR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_233
[LR](A)[sP]•[MOE](A)P•[MOE](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_234
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_235
[LR](A)[sP]•[MOE](A)[sP]•[MOE](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_236
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[fR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_237
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[fR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_238
[MOE](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[dR](T)[sP]•



[MOE](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[MOE](T)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[MOE]([5meC])


1122_239
[MOE](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[MOE]([5meC])


1122_240
[MOE](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_241
[LR](A)[sP]•[fR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_242
[LR](A)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_243
[LR](A)[sP]•[mR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_244
[LR](A)[sP]•[MOE](A)P•[MOE](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_245
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_247
[LR](A)[sP]•[MOE](A)[sP]•[MOE](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_248
[MOE](A)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[MOE](T)[sP]•



[dR](T)[sP]•[mR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[MOE](T)[sP]•[MOE]([5meC])[sP]•[MOE]([5meC])


1122_249
[MOE](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR](T)[sP]•



[dR](T)[sP]•[mR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[MOE]([5meC])


1122_250
[MOE](A)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[MOE]([5meC])P•[MOE](T)[sP]•



[dR](T)[sP]•[mR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[MOE](T)[sP]•[MOE]([5meC])[sP]•[MOE]([5meC])


1122_251
[MOE](A)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[MOE](T)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[MOE]([5meC])


1122_252
[MOE](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[MOE]([5meC])


1122_253
[LR](A)[sP]•[fR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_254
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[fR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_255
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[fR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_256
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[fR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_257
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[fR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_258
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[fR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_259
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_260
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[LR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_261
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_262
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[LR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_263
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[LR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_264
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_265
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[LR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_266
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_267
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_268
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[LR]([5meC])


1122_269
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[MOE](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_270
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[MOE](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_271
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[MOE](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_272
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_273
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[MOE](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_274
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[MOE](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_275
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[MOE](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_276
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[MOE](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_277
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_278
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[MOE](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_279
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[MOE](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_280
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_281
[LR](A)[sP]•[LR](A)[sP]•[MOE](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_282
[LR](A)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_283
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[mR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_284
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[mR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_285
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[mR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_286
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[mR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_287
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[mR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_288
[LR](A)[sP]•[mR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_289
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[fR](C)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_290
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[fR](C)[sP]•[LR]([5meC])


1122_291
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[mR](C)[sP]•[LR]([5meC])


1122_292
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[mR](C)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_293
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[fR](C)[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_294
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[fR](C)[sP]•[LR]([5meC])


1122_295
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[mR](C)[sP]•[LR]([5meC])


1122_296
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[mR](C)[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_297
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[fR](C)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_298
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[fR](C)[sP]•[LR]([5meC])


1122_299
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[mR](C)[sP]•[LR]([5meC])


1122_300
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[mR](C)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_301
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[fR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_302
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[fR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_303
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[fR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_304
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_305
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[LR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_306
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_307
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[LR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_308
[LR](A)[sP]•[fR](A)[sP]•[fR](U)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_309
[LR](A)[sP]•[LR](A)[sP]•[fR](U)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_310
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[fR](U)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_311
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[fR](U)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_312
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[fR](U)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_313
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[fR](U)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_314
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[fR](U)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_315
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[fR](U)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_316
[LR](A)[sP]•[fR](A)[sP]•[fR](U)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_317
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[fR](U)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_318
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[fR](U)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_319
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[fR](U)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_320
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR[(T)[sP]•[dR[(T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[fR](U)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_321
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[fR](U)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_322
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[fR](U)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_323
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[fR](U)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_324
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[fR](U)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_325
[LR](A)[sP]•[dR](A)[sP]•[fR](U)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_326
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[fR](U)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_327
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[fR](U)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_328
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[fR](U)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_329
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[fR](U)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_330
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[fR](U)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_331
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[fR](U)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_332
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[fR](U)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_333
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[fR](U)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_334
[LR](A)[sP]•[LR](A)[sP]•[fR](U)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_335
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[fR](U)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_336
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[fR](U)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_337
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[MOPO]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_338
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[MOPO]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_339
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[MOPO]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_340
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[MOPO]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_341
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[MOPO]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_342
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[MOPO]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_343
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[MOPO]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_344
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[MOPO]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_345
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[MOPS]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_346
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[MOPS]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_347
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[MOPS]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_348
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[MOPS]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_349
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[MOPS]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_350
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[MOPS]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_351
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[MOPS]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_352
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[MOPS]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_353
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[MOPO]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_354
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[MOPO]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_355
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[MOPO]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_356
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[MOPO]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_357
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[MOPS]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_358
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[MOPS]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_359
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[MOPS]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_360
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[MOPO]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_361
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[MOPO]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_362
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[MOPO]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_363
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[MOPO]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_364
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[MOPO]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_365
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[MOPO]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_366
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[MOPO]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_367
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[MOPO]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_368
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[MOPO]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_369
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[MOPO]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_370
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[MOPO]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_371
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[MOPO]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_372
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[MOPO]•[LR]([5meC])[sP]•[LR]([5meC])


1122_373
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[MOPO]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_374
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[MOPO]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_375
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[MOPO]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_376
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[MOPO]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_377
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[MOPO]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP],[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_378
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[MOPO]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_379
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[MOPO]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_380
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[MOPO]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_381
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[MOPO]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_382
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[MOPO]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_383
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[MOPS]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_384
[LR](A)[sP]•[LR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[MOPS]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_385
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[MOPS]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_386
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[MOPS]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_387
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[MOPS]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_388
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[MOPS]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_389
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[MOPS]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_390
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[MOPS]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_391
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[MOPS]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_392
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[MOPS]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_393
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[MOPS]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_394
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[MOPS]•



[dR](T)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_395
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[MOPS]•[LR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_396
[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[dR](T)[sP]•[LR](T)[MOPS]•[LR]([5meC])[sP]•[LR]([5meC])


1122_397
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[MOPS]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_398
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[MOPS]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_399
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[MOPS]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_400
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[MOPS]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_401
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[MOPS]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_402
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[MOPS]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_403
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[MOPS]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_404
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[MOPS]•[dR](C)[sP]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_405
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[MOPS]•



[LR](T)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1122_406
[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](C)[sP]•



[LR](T)[MOPS]•[dR](T)[sP]•[LR]([5meC])[sP]•[LR]([5meC])


1816_2
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[LR]([5meC])[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_3
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[MOE]([5meC])[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_4
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[mR](U)[sP]•[LR](T)


1816_5
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[mR](U)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_6
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[mR](U)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_7
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[mR](U)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_8
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[mR](U)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_9
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[mR](U)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_10
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[mR](U)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_11
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[mR](U)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_12
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_13
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[ssP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_14
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[ssP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_15
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[ssP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_16
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[ssP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_17
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[ssP]•[LR](T)[sP]•[LR](T)


1816_18
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[ssP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_19
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[ssP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_20
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[ssP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_21
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[ssP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_22
[MOE](G)[sP]•[MOE](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•



[dR](T)[sP]•[MOE](T)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[MOE]([5meC])[sP]•[MOE](T)[sP]•[MOE](T)


1816_23
[MOE](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[MOE](T)


1816_24
[MOE](G)[sP]•[MOE](A)[sP]•[MOE](A)[sP]•[MOE](T)[sP]•[MOE]([5meC])[sP]•



[MOE](T)[sP]•[MOE](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[MOE](T)[sP]•



[MOE]([5meC])[sP]•[MOE](T)[sP]•[MOE](T)


1816_25
[MOE](G)[sP]•[MOE](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•



[dR](T)[sP]•[MOE](T)P•[MOE](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[MOE]([5meC])[sP]•[MOE](T)[sP]•[MOE](T)


1816_26
[MOE](G)[sP]•[MOE](A)P•[MOE](A)P[MOE](T)P•[MOE]([5meC])P•[MOE](T)P•



[MOE](T)[sP]•[dR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[MOE](T)P•[MOE]([5meC])[sP]•



[MOE](T)[sP]•[MOE](T)


1816_27
[LR](G)[sP]•[fR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_28
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[fR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_29
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[fR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_30
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[fR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_31
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[fR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_32
[LR](G)[sP]•[LR](A)[sP]•[fR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_33
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[LR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_34
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[LR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_35
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[LR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_36
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[LR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_37
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_38
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[LR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_39
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[LR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_40
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[LR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_41
[LR](G)[sP]•[LR](A)[sP]•[LR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_42
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[MOE](T)[sP]•[LR](T)


1816_43
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[MOE]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_44
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[MOE](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_45
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[MOE](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_46
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[MOE](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_47
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[MOE](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_48
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[MOE](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_49
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[MOE](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_50
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_51
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[MOE](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_52
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[MOE](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_53
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[MOE]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_54
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[MOE](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_55
[LR](G)[sP]•[LR](A)[sP]•[MOE](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_56
[LR](G)[sP]•[MOE](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_57
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[mR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_58
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[mR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_59
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[mR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_60
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[mR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_61
[LR](G)[sP]•[LR](A)[sP]•[mR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_62
[LR](G)[sP]•[mR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_63
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[fR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_64
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[fR](C)[sP]•[LR](T)[sP]•[LR](T)


1816_65
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[mR](C)[sP]•[LR](T)[sP]•[LR](T)


1816_66
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[mR](C)[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_67
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[fR](U)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_68
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[fR](U)[sP]•[LR](T)


1816_69
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[fR](U)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_70
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[fR](U)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_71
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[fR](U)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_72
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[fR](U)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_73
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[fR](U)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_74
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[fR](U)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_75
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[MOPO]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_76
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[MOPO]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_77
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[MOPO]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_78
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[MOPO]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_79
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[MOPO]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_80
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[MOPO]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_81
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[MOPO]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_82
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[MOPO]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_83
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[MOPO]•[LR](T)[sP]•[LR](T)


1816_84
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[MOPS]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_85
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[MOPS]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_86
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[MOPS]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_87
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[MOPS]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_88
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[MOPS]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_89
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[MOPS]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_90
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[MOPS]•[dR](T)[sP]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_91
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[MOPS]•



[LR]([5meC])[sP]•[LR](T)[sP]•[LR](T)


1816_92
[LR](G)[sP]•[LR](A)[sP]•[dR](A)[sP]•[dR](T)[sP]•[LR]([5meC])[sP]•



[dR](T)[sP]•[LR](T)[sP]•[LR](A)[sP]•[dR](T)[sP]•[dR](T)[sP]•



[dR](T)[sP]•[dR](A)[sP]•[dR](C)[sP]•[dR](A)[sP]•[dR](T)[sP]•



[LR]([5meC])[MOPS]•[LR](T)[sP]•[LR](T)









Example 14: Testing In Vitro Efficacy of LNA Oligonucleotides in iCell® GlutaNeurons at 1.25 μM and 62.5 nM
Materials and Methods:

The compounds of the redesign library described in Table 11 of Example 13 were evaluated for potency in human iPSC cells using two concentrations; 1.25 μM and 62.5 nM, comparing the effect on the ATXN3 transcript and the KCNB2 transcript at both concentrations.


The iCell GlutaNeuron cells were prepared and maintained essentially as described in Example 5 & Table 2. 96-well cell culture plates were coated with Poly-L-Omithine (0.01%) (Sigma-P4957), 100p/well for 4 hours. Rinsed 3 times with PBS and coated with Laminin (Roche Diagnostic, 11243217001) 0.5 mg/ml diluted 1:500 in PBS overnight at 4 degrees Celsius. The cells were treated and maintained as per recommendation by the vendor using the provided protocol: iCell® GlutaNeurons, User's Guide, Document ID: X1005, Version 1.2, Cellular Dynamics, Fujifilm; available at https: address cdn.stemcell.com/media/files/manual/MADX1005-icell_glutaneurons_users_guide.pdf (accessed on e.g. 10 Nov. 2020). Compounds were added to the cells from pre-dilution plates (compound diluted in PBS) to reach the desired final concentration. RNA purification and qPCR were performed as described in Example 2; however, using the qPCR assays described below for analysis.










Human KCNB2 pre-mRNA using the qPCR assay: “Hs.PT.58.39309562”,



PrimeTime ® XL qPCR Assay (Integrated DNA Technologies (IDT), Leuven, Belgium)


Probe:


(SEQ ID NO: 1989)



5′-/56-FAM/AGA AAC CTA/ZEN/ACT CAT CAG TGG CTG CAA/3IABkFQ/-3′






Primer 1:


(SEQ ID NO: 1990)



5′-GAA CAG GAT AGA CAC GAT GGC-3′






Primer 2:


(SEQ ID NO: 1991)



5′-AGA GAC TAT GCG AGA GCG A-3′






Human ATXN3 pre-mRNA using the qPCR assay: costum design “(ATXN3_exon_8-9(1)”,


PrimeTime ® XL qPCR Assay (IDT).


Probe:


(SEQ ID NO: 1134)



5′-/56-FAM/CTCCGCAGG/ZEN/GCT ATTCAGCT AAGT/3IABkFQ/-3′






Primer 1:


(SEQ ID NO: 1135)



5′-AGT AAGATTTGT ACCTGATGTCTGT-3′






Primer 2:


(SEQ ID NO: 1136)



5′-CATGGAAGATGAGGAAGCAGAT-3′






Human TBP pre-mRNA using the qPCR assay: “Hs.PT.58v.39858774”, PrimeTime ®


XL qPCR Assay (IDT)


Probe:


(SEQ ID NO: 1131)



5′-/5HEX/TGA TCT TTG/ZEN/CAG TGA CCC AGC ATC A/3IABkFQ/-3′






Primer 1:


(SEQ ID NO: 1132)



5′-GCT GTT TAA CTT CGC TTC CG-3′






Primer 2:


(SEQ ID NO: 1133)



5′-CAG CAA CTT CCT CAA TTC CTT G-3′







Results:

The results from this screen is presented in Table 12 as the level of remaining transcript with values given in percent (%) relative to untreated cells, i.e. low level means efficient knockdown. This was done for each of the applied concentrations for each of the two target genes (ATXN3 and KCNB2). Most of the tested compounds showed efficacious knockdown of the ATXN3 transcript at both concentrations used. The effect on the KCNB2 transcript was variable.













TABLE 12






1.25 uM (%
62.5 nM (%
1.25 uM (%
62.5 nM (%



ATXN3
ATXN3
KCNB2
KCNB2


CMP ID
mRNA
mRNA
mRNA
mRNA


NO
remaining)
remaining)
remaining)
remaining)



















1122_33
14.84
41.69
66.57
88.67


1122_67
15.03
39.41
9.93
59.09


1122_82
18.29
50.93
17.61
73.26


1122_83
18.12
54.07
84.73
96.23


1122_84
12.59
40.95
27.66
74.71


1122_85
15.13
40.70
23.47
82.11


1122_86
16.64
53.29
75.13
113.41


1122_87
13.46
35.67
19.90
69.29


1122_88
12.85
34.25
24.41
68.38


1122_89
16.45
46.10
38.00
75.09


1122_90
18.52
50.88
60.64
93.90


1122_91
17.83
45.26
35.19
86.04


1122_92
15.49
41.46
21.27
68.79


1122_93
65.98
89.20
90.58
103.35


1122_94
63.83
92.70
82.15
98.30


1122_95
15.40
35.25
6.65
49.08


1122_96
16.51
44.63
2.69
48.45


1122_97
37.79
65.35
42.78
75.62


1122_98
14.34
38.27
0.91
42.75


1122_99
33.48
58.08
25.62
69.29


1122_100
12.21
31.92
0.85
44.41


1122_101
15.41
46.59
60.45
90.56


1122_102
15.62
41.71
16.98
62.88


1122_103
14.11
37.53
2.61
46.87


1122_104
18.01
47.10
36.56
81.02


1122_105
18.20
43.65
19.99
74.46


1122_106
16.64
36.77
7.75
55.14


1122_107
14.84
41.59
32.47
69.47


1122_108
12.89
32.26
8.10
72.49


1122_109
15.35
35.47
2.01
57.70


1122_110
19.02
45.56
0.72
45.61


1122_111
55.00
73.98
36.41
88.13


1122_112
16.38
40.70
0.77
50.17


1122_113
29.42
56.92
17.68
60.51


1122_114
13.63
33.67
0.43
42.62


1122_115
18.86
46.13
57.49
98.41


1122_116
31.73
59.42
28.44
86.09


1122_117
26.55
55.77
10.27
67.46


1122_118
49.24
68.77
52.70
88.13


1122_119
19.51
44.68
9.36
60.99


1122_120
16.50
40.36
2.16
51.59


1122_121
16.61
40.45
5.55
56.34


1122_123
15.49
38.63
0.95
52.77


1122_124
28.90
54.57
17.31
68.48


1122_125
15.75
41.51
12.29
63.50


1122_126
15.68
44.30
9.96
63.90


1122_127
14.91
45.71
9.92
55.07


1122_128
18.12
46.12
20.98
79.79


1122_129
15.62
44.07
9.19
69.22


1122_130
14.90
43.91
8.27
68.50


1122_131
17.75
46.92
20.03
67.67


1122_132
17.93
41.86
8.22
72.39


1122_133
18.11
47.91
14.60
78.23


1122_134
17.42
48.52
14.02
61.73


1122_135
14.62
46.43
3.71
52.73


1122_136
16.28
35.03
8.48
56.82


1122_137
14.92
37.45
12.42
65.30


1122_138
14.40
37.58
14.48
63.64


1122_139
15.06
38.30
14.21
66.30


1122_140
14.40
37.78
18.42
63.01


1122_141
16.19
37.64
16.31
64.03


1122_142
15.90
40.17
15.61
61.47


1122_143
14.70
103.24
12.58
109.05


1122_144
15.85
38.70
24.26
63.50


1122_145
14.15
36.53
13.02
67.51


1122_146
15.95
38.11
20.70
69.38


1122_147
15.08
40.89
19.48
62.04


1122_148
17.05
37.47
15.74
57.67


1122_149
15.43
35.40
43.92
78.04


1122_150
14.10
34.07
43.11
82.00


1122_151
15.65
37.73
48.08
92.95


1122_152
13.89
33.97
32.02
83.04


1122_153
13.97
35.53
40.47
82.39


1122_154
13.75
34.07
35.44
86.80


1122_155
14.15
43.77
43.08
83.80


1122_156
15.13
37.99
44.64
87.46


1122_157
14.34
40.19
57.37
88.72


1122_158
13.68
35.71
42.68
80.61


1122_159
15.47
40.55
57.30
86.78


1122_160
13.51
38.20
36.47
80.75


1122_161
15.52
42.53
10.78
64.30


1122_162
16.08
46.05
43.50
90.89


1122_163
17.28
45.49
42.75
86.76


1122_164
33.44
63.29
64.52
94.34


1122_165
29.00
63.38
67.97
84.55


1122_166
16.50
50.60
37.71
85.58


1122_167
12.92
42.08
37.91
76.46


1122_168
17.21
53.77
74.23
98.46


1122_169
13.00
41.35
17.57
69.24


1122_170
15.62
48.53
71.05
92.86


1122_171
12.95
35.94
10.80
59.51


1122_172
14.15
40.39
30.00
76.26


1122_173
16.04
48.13
50.42
95.73


1122_174
16.06
46.62
27.28
75.84


1122_175
17.19
41.23
44.35
89.61


1122_176
12.72
38.58
24.65
74.88


1122_177
43.57
68.03
56.40
78.38


1122_178
18.39
48.85
7.77
60.36


1122_179
12.21
36.54
0.66
39.24


1122_180
11.41
29.30
2.53
50.10


1122_181
11.39
29.60
1.37
45.39


1122_182
11.91
33.43
1.00
38.58


1122_183
15.53
53.20
70.04
89.74


1122_184
18.29
50.25
71.87
94.73


1122_185
12.42
38.65
16.98
64.32


1122_186
15.43
35.73
0.60
38.92


1122_188
95.10
91.87
98.34
92.17


1122_189
13.17
45.93
42.56
81.86


1122_190
88.24
96.08
101.92
93.17


1122_191
17.43
47.23
35.22
84.24


1122_192
14.50
41.74
2.75
47.15


1122_193
17.94
45.59
16.35
70.52


1122_194
19.14
42.96
2.51
44.63


1122_195
15.03
41.04
6.84
58.60


1122_196
14.86
39.28
0.98
47.63


1122_197
14.80
39.13
0.62
45.40


1122_198
23.68
54.40
20.87
71.13


1122_199
22.98
50.51
18.55
67.76


1122_200
23.58
50.62
37.86
81.81


1122_201
19.40
46.35
7.15
59.27


1122_202
18.20
46.98
5.78
54.72


1122_203
17.69
45.67
2.10
48.19


1122_204
13.49
37.08
0.50
43.42


1122_205
115.04
44.88
5.19
83.93


1122_206
12.85
35.68
1.05
52.13


1122_207
16.58
45.34
58.08
97.54


1122_208
17.59
47.72
13.12
61.52


1122_209
18.16
44.97
35.65
72.69


1122_210
17.36
47.09
30.36
68.94


1122_211
19.96
46.56
20.87
72.34


1122_212
24.09
54.75
49.10
83.35


1122_213
18.37
48.15
27.49
74.55


1122_214
14.29
39.30
15.92
66.14


1122_215
15.37
38.56
2.04
41.18


1122_216
15.01
42.66
7.02
58.95


1122_217
17.30
46.90
32.59
82.10


1122_218
13.77
42.95
25.43
71.68


1122_219
12.87
37.59
17.95
52.45


1122_220
13.52
38.61
1.85
48.48


1122_221
18.36
45.47
29.00
75.06


1122_222
23.95
54.80
19.25
67.91


1122_223
19.96
48.20
33.50
74.16


1122_224
68.09
95.88
81.06
104.47


1122_225
31.31
66.62
53.44
90.70


1122_226
102.33
93.40
96.03
101.72


1122_227
17.68
49.92
63.44
98.06


1122_228
12.94
28.36
0.52
40.67


1122_229
13.82
36.60
25.36
83.32


1122_230
13.78
29.77
1.16
53.35


1122_231
13.75
34.55
14.04
67.82


1122_232
12.79
33.53
16.70
73.24


1122_233
11.52
28.88
0.67
39.96


1122_234
12.10
29.35
0.12
30.89


1122_235
10.75
31.37
1.35
45.12


1122_236
15.54
36.00
19.38
78.46


1122_237
14.85
38.11
20.56
76.35


1122_238
98.98
100.70
93.56
109.21


1122_239
18.93
56.23
59.59
93.71


1122_240
14.80
38.69
0.90
42.40


1122_241
15.37
46.65
20.38
66.87


1122_242
15.24
42.10
13.87
68.39


1122_243
15.73
44.21
14.67
66.50


1122_244
14.11
40.27
0.86
39.99


1122_245
13.14
33.83
0.38
39.46


1122_247
12.86
33.71
0.90
43.55


1122_248
90.91
95.53
106.59
91.46


1122_249
14.22
41.84
40.90
87.00


1122_250
90.31
100.03
100.46
97.45


1122_251
102.82
102.41
98.63
99.26


1122_252
16.50
48.66
38.13
85.83


1122_253
17.79
48.73
31.96
79.20


1122_254
16.26
46.83
26.68
70.97


1122_255
16.23
39.36
1.22
48.88


1122_256
18.48
44.91
7.37
62.07


1122_257
18.72
43.81
1.85
49.52


1122_258
28.90
59.55
22.76
80.32


1122_259
13.02
35.53
0.27
37.49


1122_260
39.03
64.19
25.97
75.30


1122_261
25.96
54.58
4.80
54.40


1122_262
64.09
79.15
48.38
86.81


1122_263
41.44
64.92
14.48
60.49


1122_264
31.93
53.80
8.86
57.82


1122_265
21.30
46.83
1.90
48.70


1122_266
12.74
38.89
0.38
39.26


1122_267
13.34
34.60
0.35
35.53


1122_268
21.75
52.36
45.71
88.45


1122_269
15.62
34.21
0.99
42.01


1122_270
18.23
48.08
55.25
92.41


1122_271
29.49
58.90
12.49
74.08


1122_272
22.71
53.62
17.96
86.69


1122_273
30.84
63.97
39.74
79.91


1122_274
25.06
55.33
14.72
72.24


1122_275
46.36
77.28
49.33
91.76


1122_276
22.07
52.96
22.13
75.39


1122_277
24.76
52.41
2.80
104.85


1122_278
16.09
39.55
1.05
53.39


1122_279
16.97
41.64
2.59
53.82


1122_280
19.16
47.62
53.88
89.20


1122_281
15.33
35.15
1.21
49.25


1122_282
18.74
46.47
19.18
70.60


1122_283
14.21
38.75
0.92
49.39


1122_284
21.36
50.04
17.88
77.20


1122_285
24.58
53.16
11.30
69.32


1122_286
26.61
59.28
32.18
85.20


1122_287
19.11
46.43
40.68
87.49


1122_288
17.38
46.11
29.23
83.51


1122_289
22.65
50.00
18.22
80.28


1122_290
15.73
46.26
46.94
97.94


1122_291
17.59
47.83
57.89
97.49


1122_292
18.87
45.34
51.24
76.10


1122_293
19.91
50.35
80.98
93.18


1122_294
15.68
44.72
63.82
89.72


1122_295
17.72
46.95
72.65
97.04


1122_296
18.22
45.33
84.64
65.09


1122_297
21.12
52.34
55.13
90.63


1122_298
19.04
49.85
43.05
83.36


1122_299
21.00
53.98
52.09
88.91


1122_300
21.03
56.31
63.83
96.36


1122_301
15.75
41.51
15.41
71.45


1122_302
15.98
41.88
33.75
82.19


1122_303
14.92
33.22
16.97
73.97


1122_304
12.17
33.01
0.96
54.41


1122_305
17.66
38.97
1.49
58.34


1122_306
18.52
42.72
3.38
58.51


1122_307
42.52
62.86
49.15
83.10


1122_308
15.75
46.33
18.59
81.21


1122_309
18.69
46.63
43.91
88.58


1122_310
21.63
49.10
64.20
92.07


1122_311
15.23
36.71
0.82
55.64


1122_312
16.28
40.30
14.72
71.61


1122_313
17.13
42.41
26.14
78.29


1122_314
17.15
44.16
17.44
74.43


1122_315
15.87
37.68
3.87
56.29


1122_316
12.46
40.91
15.99
79.86


1122_317
19.92
51.35
75.13
91.76


1122_318
19.72
55.90
84.62
96.07


1122_319
14.89
40.90
30.49
84.12


1122_320
14.12
38.83
35.60
80.47


1122_321
16.55
47.64
39.44
85.96


1122_322
19.89
46.85
51.06
83.91


1122_323
16.91
39.33
31.59
85.79


1122_324
13.32
34.73
23.93
76.58


1122_325
13.64
36.88
34.23
82.54


1122_326
17.03
47.80
65.51
93.50


1122_327
13.18
34.45
0.61
41.05


1122_328
28.85
51.75
33.40
73.68


1122_329
18.98
45.02
9.68
55.71


1122_330
26.09
52.37
29.65
77.91


1122_331
19.50
48.30
9.77
63.78


1122_332
17.96
54.05
7.57
72.56


1122_333
18.01
45.82
5.15
54.92


1122_334
16.51
45.70
5.62
58.84


1122_335
15.28
35.40
5.27
59.31


1122_336
18.18
45.30
24.99
75.94


1122_337
27.32
61.68
43.37
85.62


1122_338
22.35
54.50
54.55
91.68


1122_339
22.42
50.98
58.10
91.45


1122_340
25.98
55.48
52.18
86.84


1122_341
40.04
67.86
66.45
85.88


1122_342
33.39
65.88
81.06
97.00


1122_343
23.96
57.77
66.11
92.29


1122_344
19.07
50.69
51.17
87.76


1122_345
22.73
44.26
43.13
68.43


1122_346
28.50
52.00
39.06
76.26


1122_347
25.55
51.22
43.01
74.16


1122_348
31.34
57.48
78.45
88.42


1122_349
27.00
49.27
70.75
88.91


1122_350
27.26
49.10
71.61
83.98


1122_351
29.96
53.04
67.90
84.73


1122_352
47.95
67.08
76.26
94.96


1122_353
23.04
45.13
38.20
81.69


1122_354
19.76
54.60
20.83
84.09


1122_355
28.72
64.34
44.12
83.38


1122_356
23.17
54.13
35.26
84.71


1122_357
36.84
57.72
87.02
89.08


1122_358
31.44
55.16
70.12
98.02


1122_359
23.29
42.56
75.05
86.97


1122_360
46.17
76.08
83.99
97.08


1122_361
45.08
79.97
59.53
89.80


1122_362
20.19
52.03
67.99
91.95


1122_363
20.03
51.16
61.54
92.18


1122_364
18.52
49.68
67.09
90.93


1122_365
27.89
63.70
84.75
96.17


1122_366
26.03
58.79
72.51
94.70


1122_367
26.40
57.55
74.08
90.71


1122_368
22.86
56.72
76.23
94.79


1122_369
25.29
55.69
84.08
96.59


1122_370
22.13
53.63
79.33
102.20


1122_371
20.92
49.71
82.90
102.93


1122_372
78.75
89.48
90.13
86.02


1122_373
21.28
37.00
29.48
65.66


1122_374
21.07
39.82
38.49
65.24


1122_375
27.80
45.09
50.37
98.76


1122_376
41.22
73.10
74.20
89.62


1122_377
33.08
70.49
55.82
86.79


1122_378
39.67
76.42
61.47
101.82


1122_379
33.59
55.07
60.53
94.20


1122_380
35.32
56.74
61.02
91.68


1122_381
23.70
36.27
41.38
76.44


1122_382
44.17
72.48
102.42
107.96


1122_383
26.62
48.72
59.80
80.04


1122_384
20.81
36.64
68.01
81.12


1122_385
23.61
42.60
73.96
82.99


1122_386
28.37
47.44
86.39
91.79


1122_387
23.74
47.69
77.56
93.28


1122_388
24.35
47.90
92.08
97.12


1122_389
34.32
57.61
94.04
99.30


1122_390
34.60
56.65
91.59
90.00


1122_391
31.49
54.88
87.18
93.65


1122_392
25.53
49.54
89.63
87.21


1122_393
32.46
55.79
87.24
90.73


1122_394
29.70
54.84
91.32
91.63


1122_395
24.81
48.43
84.39
85.36


1122_396
21.64
48.37
88.32
106.30


1122_397
27.44
52.67
46.66
85.73


1122_398
27.46
48.78
58.77
84.48


1122_399
33.72
53.83
77.24
96.59


1122_400
34.23
70.11
74.49
91.35


1122_401
40.45
65.20
74.57
92.43


1122_402
44.99
66.13
68.64
94.15


1122_403
41.50
62.63
74.02
88.51


1122_404
49.88
69.59
81.27
104.32


1122_405
26.42
46.67
64.61
85.54


1122_406
22.20
43.08
64.84
93.36


1816_2
60.44
75.00
72.19
101.12


1816_3
32.49
64.72
81.52
99.97


1816_4
20.62
53.39
86.99
94.28


1816_5
28.44
63.88
87.90
101.86


1816_6
22.90
52.87
82.34
95.59


1816_7
80.07
88.95
93.22
101.92


1816_8
43.52
67.76
96.84
104.02


1816_9
21.44
54.71
92.27
103.41


1816_10
17.09
49.44
76.99
95.59


1816_11
21.06
53.06
78.28
98.39


1816_12
20.06
55.59
84.79
102.08


1816_13
17.14
48.05
93.50
100.40


1816_14
19.55
59.40
90.51
105.28


1816_15
22.72
59.25
101.19
106.47


1816_16
24.44
62.31
96.03
102.54


1816_17
22.53
55.69
91.49
101.21


1816_18
21.46
53.93
85.50
99.48


1816_19
21.31
54.40
87.10
95.06


1816_20
23.72
53.87
92.47
105.09


1816_21
19.76
50.72
89.60
105.93


1816_22
95.15
104.15
102.13
103.05


1816_24
91.75
95.00
98.28
102.02


1816_25
56.04
88.36
86.52
109.26


1816_26
102.21
101.78
105.12
108.00


1816_27
24.15
67.01
92.61
99.83


1816_28
21.76
57.39
101.49
98.46


1816_29
30.53
72.76
99.75
98.54


1816_30
24.86
57.27
74.75
84.15


1816_31
41.00
72.35
106.54
101.47


1816_32
21.68
53.64
83.45
100.28


1816_33
36.10
74.71
78.48
109.62


1816_34
43.48
68.78
90.47
99.53


1816_35
78.05
89.09
93.93
96.53


1816_36
81.65
87.07
91.10
97.06


1816_37
62.87
82.62
96.63
102.82


1816_38
34.50
62.63
88.71
98.47


1816_39
17.06
43.55
68.41
91.25


1816_40
22.42
59.75
58.94
93.82


1816_41
24.34
60.50
78.94
94.74


1816_42
17.21
51.49
88.87
106.71


1816_43
15.45
48.67
93.79
96.40


1816_44
27.69
62.14
89.86
98.76


1816_45
28.43
62.53
93.60
104.83


1816_46
38.65
95.31
99.48
95.34


1816_47
39.25
73.69
85.32
99.46


1816_48
72.88
95.79
95.86
105.23


1816_49
42.05
72.73
95.26
95.07


1816_50
24.87
61.64
93.95
95.41


1816_51
24.13
58.48
94.87
86.45


1816_52
19.07
46.64
61.73
103.50


1816_53
24.65
59.39
95.95
103.39


1816_54
18.52
50.37
75.25
100.65


1816_55
21.38
55.81
80.93
97.54


1816_56
23.72
74.56
81.95
94.12


1816_57
31.08
63.23
97.13
97.12


1816_58
26.25
60.06
82.44
91.63


1816_59
38.54
74.45
96.86
99.10


1816_60
21.27
53.40
102.79
95.99


1816_61
22.84
55.21
84.32
108.50


1816_62
28.18
66.34
89.02
100.92


1816_63
22.52
58.32
99.09
104.39


1816_64
17.21
48.69
101.88
109.05


1816_65
18.02
48.71
97.59
108.12


1816_66
24.48
59.70
98.74
91.48


1816_67
25.08
60.20
102.17
102.41


1816_68
18.20
52.03
93.53
107.27


1816_69
28.58
64.76
100.03
95.56


1816_70
32.32
65.70
93.94
104.28


1816_71
47.83
78.25
89.25
109.07


1816_72
35.33
62.27
91.64
107.72


1816_73
20.55
98.77
85.68
103.65


1816_74
26.71
60.10
87.66
99.83


1816_75
31.75
70.98
92.29
103.96


1816_76
30.37
70.69
90.86
92.75


1816_77
46.64
80.44
96.29
96.64


1816_78
66.00
85.83
105.70
99.60


1816_79
48.67
81.73
106.97
104.42


1816_80
44.30
78.70
103.70
96.43


1816_81
35.02
71.62
106.18
92.41


1816_82
35.59
74.21
101.32
95.75


1816_83
31.00
68.54
101.18
108.75


1816_84
36.03
64.72
106.82
105.76


1816_85
33.15
61.56
88.45
90.53


1816_86
56.37
79.42
90.69
82.37


1816_87
78.23
89.04
100.79
100.34


1816_88
59.21
78.21
98.16
100.09


1816_89
48.25
69.64
108.37
103.72


1816_90
45.69
67.16
98.04
103.46


1816_91
42.96
60.75
102.38
96.43


1816_92
25.54
49.02
99.38
98.21









Example 15: In Vitro Toxicity Evaluation—Caspase Assays
Materials and Methods:

Based on the results in Table 12, the 79 compounds most potent in targeting ATXN3 with the least effect on KCNB2 were selected for toxicity evaluation in two caspase activation assays (see Dieckmann et al., Molecular Therapy: Nucleic Acids Vol. 10 Mar. 2018, pp 45 54); respectively conducted in HepG2 cells (“HEPG2”) and 3T3 cells (“3T”).


Results.

The results are shown in Table 13. Using the same scoring criteria as in Example 7, the vast majority of the compounds were found safe in the toxicity assessment. In the “HEPG2” assay, compound 1816_52 had a score of 0.5, compounds 1816_0 and 1816_40 a score of 1, and compound 1816_39 a score of 3. In the “3T3” assay, the compounds with a score of 0.5 were: 18161_11, 1816_74, and 1816_30; the compounds with a score of 1 were: 1816_54 and 1816_10; the compound with a score of two was: 1816_51; and the compounds with a score of three were: 1816_40 and 1816_39,














TABLE 13






HepG2
3T3
EC50
EC50
EC50 ratio



Assay
Assay
ATXN3
KCNB2
(KCNB2/


CMPIDNO
score
score
(nM)
(nM)
ATXN3)




















1122_33
0
0
103.7
2330
22.5


1122_67
0
0
71.09
155.40
2.20


1122_91
0
0
87.73
673.50
7.68


1122_107
0
0
89.93
789.00
8.77


1122_125
0
0
81.85
98.95
1.2


1122_144
0
0
103.10
515.60
5.00


1122_146
0
0
93.11
490.10
5.26


1122_149
0
0
62.77
766.80
12.22


1122_150
0
0
89.36
808.50
9.05


1122_151
0
0
75.71
654.80
8.65


1122_152
0
0
66.09
662.20
10.02


1122_153
0
0
84.38
1208.00
14.32


1122_154
0
0
64.22
820.00
12.77


1122_155
0
0
75.16
1303.00
17.34


1122_156
0
0
55.26
736.10
13.32


1122_157
0
0
71.27
1658.00
23.26


1122_158
0
0
53.18
1217.00
22.88


1122_159
0
0
92.93
1472.00
15.84


1122_160
0
0
57.47
791.50
13.77


1122_163
0
0
98.81
564.40
5.71


1122_167
0
0
87.59
763.60
8.72


1122_172
0
0
67.13
465.70
6.94


1122_175
0
0
127.90
1277.00
9.98


1122_218
0
0
87.76
311.80
3.55


1122_294
0
0
93.12
2338.00
25.11


1122_296
0
0
114.80
8032.00
69.97


1122_302
0
0
104.10
682.80
6.56


1122_313
0
0
90.50
418.70
4.63


1122_319
0
0
70.04
408.20
5.83


1122_320
0
0
87.66
364.50
4.16


1122_323
0
0
99.59
720.60
7.24


1122_325
0
0
90.83
585.40
6.45


1122_359
0
0
108.80
1365.00
12.55


1122_373
0
0
80.50
176.20
2.19


1122_374
0
0
111.70
274.20
2.45


1122_375
0
0
173.00
364.20
2.11


1122_381
0
0
83.62
277.80
3.32


1122_384
0
0
117.70
856.90
7.28


1122_385
0
0
112.10
1754.00
15.65


1122_406
0
0
142.70
647.00
4.53


1816_4
0
0
200.90
248307.00
1235.97


1816_6
0
0
261.00
26826.00
102.78


1816_9
0
0
224.00
3280.00
14.64


1816_10
0
1





1816_11
0
0.5





1816_12
0
0
110
27238
247.6


1816_13
0
0
129.30
36344.00
281.08


1816_14
0
0
181.10
2262.00
12.49


1816_15
0
0
159.80
18449.00
115.45


1816_17
0
0
208.90
33758.00
161.60


1816_18
0
0
138.40
322538.00
2330.48


1816_19
0
0
180.40
107214.00
594.31


1816_20
0
0
299.50
279468.00
933.12


1816_21
0
0
203.00
16057.00
79.10


1816_28
0
0
141.10
10000.00
70.87


1816_30
1
0.5





1816_32
0
0
170.80
13406.00
78.49


1816_39
3
3





1816_40
1
3





1816_41
0
0
154.50
12106.00
78.36


1816_42
0
0
134.60
63672.00
473.05


1816_43
0
0
89.79
569489.00
6342.45


1816_51
0
0
239.70
9150.00
38.17


1816_52
0.5
2





1816_53
0
0
392.80
35864.00
91.30


1816_54
0
1





1816_55
0
0
209.00
7219.00
34.54


1816_58
0
0
259.00
23941.00
92.44


1816_60
0
0
167.10
67695.00
405.12


1816_61
0
0
165.20
22618.00
136.91


1816_63
0
0
263.00
19355.00
73.59


1816_64
0
0
127.00
5929.00
46.69


1816_65
0
0
99.75
36592.00
366.84


1816_66
0
0
351.30
3822.00
10.88


1816_67
0
0





1816_68
0
0
177.80
112276.00
631.47


1816_74
0
0.5





1816_91
0
0





1816_92
0
0
175.20
1472.00
8.40









Example 16: Determination of EC 50 Values for ATXN3 and KCNB2 in iCell® Glutaneurons
Materials and Methods:

69 compounds were assessed in an EC50 determination in iCell Glutaneurons including compound 1122_67 and 1122_33. The experimental setup was the same as described in Example 14, except that the following compound concentrations were used (nM): 31.6, 10; 3.2; 0.32; 0.1; 0.03; 0.01 (8-step half-log).


Results:

The resulting EC50 values for ATXN3 and KCNB2 as well as the resulting ratio between the EC50 values (KCNB2/ATXN3) are shown in Table 13. From the data. generated, it was observed that the compounds showed an increased ratio between the determined EC50 values for KCNB2 and ATXN3 as compared to compound 1122_67. The potency of the compounds on ATXN3 knockdown was relatively maintained for most compounds while it was decreased (higher EC50 value) for all compounds when focusing on the potency on KCNB2 knockdown.


Based on the data in Table 12 (double point determination) and Table 13 (caspase in vitro toxicity; EC50 for ATXN3 knock down and the ratio between KCNB2 and ATXN3 EC50 values), 27 compounds (shown in Table 14 and in FIG. 12) were selected based on their safety (caspase scores above 0 were discontinued), high potency and efficacy in ATXN3 inhibition, selectivity (i.e., high ratio between KCNB2/ATXN3 EC50 values) as well as their chemical diversity.


The base sequence, sugar sequence and backbone sequence features of the selected compounds are shown in Table 14, using the HELM-dictionary shown below (see Example 13 for more detailed HELM annotations).

















Base sequence
Sugar sequence
Backbone sequence









A: (A)
D: [dR]
M: [MOPS]



C: (C)
F: [fR]
S: [ssP]



E: (5meC)
L: [LR]
X: [sP]



G: (G)
M: [MOE]



T: (T)
O: [mR]



U: (U)

















TABLE 14







Selected compounds











CMPIDNO
Base sequence
Sugar sequence
Backbone sequence
FIG.





1122_91
AATETTATTUACATCTTEE
LDDLDLDDDODDDDDDLLL
XXXXXXXXXXXXXXXXXX
12A





1122_107
AAUETTATTTACATCTTEE
LLOLDDDDDDDDDDDLDLL
XXXXXXXXXXXXXXXXXX
12B





1122_154
AATETTATTTACATCTTEE
LDDLDLDDDDDDDDDDLLL
XXXXXXXXXXSXXXXXXX
12C





1122_155
AATETTATTTACATCTTEE
LDDLDLDDDDDDDDDDLLL
XXXXXXXXXXXSXXXXXX
12D





1122_156
AATETTATTTACATCTTEE
LDDLDLDDDDDDDDDDLLL
XXXXXXXXXXXXSXXXXX
12E





1122_157
AATETTATTTACATCTTEE
LDDLDLDDDDDDDDDDLLL
XXXXXXXXXXXXXSXXXX
12F





1122_158
AATETTATTTACATCTTEE
LDDLDLDDDDDDDDDDLLL
XXXXXXXXXXXXXXSXXX
12G





1122_167
AATETTATTTACATCTTEE
LDDLDLMDDDDDDDDDLLL
XXXXXXXXXXXXXXXXXX
12H





1122_172
AATETTATTTACATCTTEE
LDDLDLDDDDDDDDODLLL
XXXXXXXXXXXXXXXXXX
12I





1122_175
AATETTATTTACATCTTEE
LDDLDLDDDDODDDDDLLL
XXXXXXXXXXXXXXXXXX
12J





1122_294
AATETTATTTACATCTTCE
LDDLDLDDDDDDDDDDLFL
XXXXXXXXXXXXXXXXXX
12K





1122_296
AATCTTATTTACATCTTEE
LDDODLDDDDDDDDDDLLL
XXXXXXXXXXXXXXXXXX
12L





1122_359
AATETTATTTACATCTTEE
LLLLDDDDDDDDDDDLDLL
XXXXXXXXXXXXXXMXXX
12M





1122_384
AATETTATTTACATCTTEE
LLLLDDDDDDDDDDDLDLL
XXXXXXXXXXXXXXXMXX
12N





1122_385
AATETTATTTACATCTTEE
LDDLDLDDDDDDDDDDLLL
XXXXXMXXXXXXXXXXXX
12O





1816_13
GAATETTATTTACATETT
LLDDLDLLDDDDDDDLLL
XXXXXXXXXXXSXXXXX
12P





1816_15
GAATETTATTTACATETT
LLDDLDLLDDDDDDDLLL
XXXXXXXXXXXXXSXXX
12Q





1816_28
GAATETTATTTACATETT
LLDDLDLFDDDDDDDLLL
XXXXXXXXXXXXXXXXX
12R





1816_41
GAATETTATTTACATETT
LLLDLDLLDDDDDDDLLL
XXXXXXXXXXXXXXXXX
12S





1816_42
GAATETTATTTACATETT
LLDDLDLLDDDDDDDLML
XXXXXXXXXXXXXXXXX
12T





1816_43
GAATETTATTTACATETT
LLDDLDLLDDDDDDDMLL
XXXXXXXXXXXXXXXXX
12U





1816_60
GAATETTATTTACATETT
LLDDLDLODDDDDDDLLL
XXXXXXXXXXXXXXXXX
12V





1816_61
GAATETTATTTACATETT
LLODLDLLDDDDDDDLLL
XXXXXXXXXXXXXXXXX
12W





1816_64
GAATETTATTTACATCTT
LLDDLDLLDDDDDDDFLL
XXXXXXXXXXXXXXXXX
12X





1816_65
GAATETTATTTACATCTT
LLDDLDLLDDDDDDDOLL
XXXXXXXXXXXXXXXXX
12Y





1816_68
GAATETTATTTACATEUT
LLDDLDLLDDDDDDDLFL
XXXXXXXXXXXXXXXXX
12Z





1816_92
GAATETTATTTACATETT
LLDDLDLLDDDDDDDLLL
XXXXXXXXXXXXXXXMX
12AA























TABLE 8B









Cortex
Midbrain
Cerebellum
Hippocampus
Pons/medulla
Striatum





















Max

Max

Max

Max

Max

Max



EC50
efficacy (%
EC50
efficacy (%
EC50
efficacy (%
EC50
efficacy (%
EC50
efficacy (%
EC50
efficacy (%


Compounds
(nM)
remaining)
(nM)
remaining)
(nM)
remaining)
(nM)
remaining)
(nM)
remaining)
(nM)
remaining)






















1856_1
251
33
77
20
434
49
202
41

24
103
27


1813_1
260
22
93
20
347
47
279
30

22
89
18


1812_1
307
52
156
28
603
50
233
35

26
184
32


1809_2
134
57
153
34
511
50
111
46

21
93
29


1607_1
193
40
89
17
120
42
81
21

15
63
26


1122_62
125
56
74
26
226
16
86
46

19
54
36


1122_67
125
23
79
14
261
27
146
22

13
88
19


1122_33
102
47
38
16
166
35
79
24

17
63
29






















TABLE 10









Cortex (A1)
Cerebellum
Brainstem
Midbrain
Striatum


















EC50
Max KD
EC50
Max KD
EC50
Max KD
EC50
Max KD
EC50
Max KD

















Tissue
(nM)
observed
(nM)
observed
(nM)
observed
(nM)
observed
(nM)
observed





















1 week of
1122_67
242
88%
833
74%
196
87%
165
89%
148
77%


treatment
1813_1 
278
61%
966
57%
377
85%
183
90%
118
51%



1100673
391
67%
2012
48%
769
79%
279
81%
331
69%


4 week of
1122_67
100
92%
365
81%
 81
93%
 94
95%
 46
89%


treatment
1813_1 
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND



1100673
199
49%
1229
33%
419
72%
129
74%
130
35%
















Spinal cord,
Spinal cord,
Spinal cord,



Hippocampus
cervical
thoracic
lumbar
















EC50
Max KD
EC50
Max KD
EC50
Max KD
EC50
Max KD















Tissue
(nM)
observed
(nM)
observed
(nM)
observed
(nM)
observed



















1 week of
1122_67
243
75%
41
89%
39
90%
54
89%


treatment
1813_1 
341
63%
45
90%
36
92%
48
91%



1100673
516
66%
83
83%
51
83%
68
82%


4 week of
1122_67
 89
92%
16
93%
Imprecise
93%
18
93%


treatment
1813_1 
ND
ND
ND
ND
ND
ND
ND
ND



1100673
329
52%
48
83%
Imprecise
84%
56
84%
















TABLE 15







Particular antisense oligonucleotide variants of SEQ ID NO: 1122


Options for nucleobases, sugar modifications and internucleoside linkages for particular


antisense oligonucleotides according to the invention. The options from which the nucleoside


at each specific residue # in SEQ ID NO: 1122 can be chosen is shown in each line indicated by


that residue #, starting from the 5′-end. The selection of a specific nucleobase (“Nucleobase


options for residue #”) and a sugar modification (“Sugar modification options for residue #”) 


defines the nucleoside at that residue #. The options for the internucleoside linkage between


the nucleoside at a specific residue # and the next residue,starting from the 5′-end, is


shown in the column entitled “Backbone modification options for internucleoside linkage #”.










Residue #
Nucleobase options

Backbone modification


in SEQ ID
for residue #
Sugar modification options
options for


NO: 1122
A: (A); C: (C);
for residue #
internucleoside linkage 


(from 5′-
E: (5meC); G: (G);
D: F: [fR]; L: [LR];
# (from 5′-end)


end)
T: (T); U: (U)
M: [MOE]; O: [mR]
M: [MOPS]; S: [ssP]; X: [sP]





 1
AAAAAAAAAAAAAAA
LLLLLLLLLLLLLLL
XXXXXXXXXXXXXXX





 2
AAAAAAAAAAAAAAA
DLDDDDDDDDDDLLD
XXXXXXXXXXXXXXX





 3
TUTTTTTTTTTTTTT
DODDDDDDDDDDLLD
XXXXXXXXXXXXXXX





 4
EEEEEEEEEEECEEE
LLLLLLLLLLLOLLL
XXXXXXXXXXXXXXX





 5
TTTTTTTTTTTTTTT
DDDDDDDDDDDDDDD
XXXXXXXXXXXXXXX





 6
TTTTTTTTTTTTTTT
LDLLLLLLLLLLDDL
XXXXXXXXXXXXXXM





 7
AAAAAAAAAAAAAAA
DDDDDDDMDDDDDDD
XXXXXXXXXXXXXXX





 8
TTTTTTTTTTTTTTT
DDDDDDDDDDDDDDD
XXXXXXXXXXXXXXX





 9
TTTTTTTTTTTTTTT
DDDDDDDDDDDDDDD
XXXXXXXXXXXXXXX





10
UTTTTTTTTTTTTTT
ODDDDDDDDDDDDDD
XXXXXXXXXXXXXXX





11
AAAAAAAAAAAAAAA
DDDDDDDDDODDDDD
XXSXXXXXXXXXXXX





12
CCCCCCCCCCCCCCC
DDDDDDDDDDDDDDD
XXXSXXXXXXXXXXX





13
AAAAAAAAAAAAAAA
DDDDDDDDDDDDDDD
XXXXSXXXXXXXXXX





14
TTTTTTTTTTTTTTT
DDDDDDDDDDDDDDD
XXXXXSXXXXXXXXX





15
CCCCCCCCCCCCCCC
DDDDDDDDODDDDDD
XXXXXXSXXXXXMXX





16
TTTTTTTTTTTTTTT
DLDDDDDDDDDDLLD
XXXXXXXXXXXXXMX





17
TTTTTTTTTTTTTTT
LDLLLLLLLLLLDDL
XXXXXXXXXXXXXXX





18
EEEEEEEEEECEEEE
LLLLLLLLLLFLLLL
XXXXXXXXXXXXXXX





19
EEEEEEEEEEEEEEE
LLLLLLLLLLLLLLL
















TABLE 16







Particular antisense oligonucleotide variants of SEQ ID NO: 1816


Options for nucleobases, sugar modifications and internucleoside linkages for particular


antisense oligonucleotides according to the invention. The options from which the nucleoside at


each specific residue # in SEQ ID NO: 1122 can be chosen is shown in each line indicated by that


residue #, starting from the 5′-end. The selection of a specific nucleobase (“Nucleobase options


for residue #”) and a sugar modification (“Sugar modification options for residue #”) defines


the nucleoside at that residue #. The options for the internucleoside linkage between the


nucleoside at a specific residue # and the next residue, starting from the 5′-end, is shown in


the column entitled “Backbone modification options for internucleoside linkage #”.










Residue #


Backbone modification


in SEQ
Nucleobase options 
Sugar modification
options for residue #


ID NO: 1816
for residue #
options for residue #
(from 5′-end)


(from
A: (A); C: (C); E: (5meC);
D: F: [fR]; L: [LR];
M: [MOPS]; S: [ssP]; 


5′-end)
G: (G); T: (T); U: (U)
M: [MOE]; O: [mR]
X: [sP]





 1
GGGGGGGGGGGG
LLLLLLLLLLLL
XXXXXXXXXXXX





 2
AAAAAAAAAAAA
LLLLLLLLLLLL
XXXXXXXXXXXX





 3
AAAAAAAAAAAA
DDDLDDDODDDD
XXXXXXXXXXXX





 4
TTTTTTTTTTTT
DDDDDDDDDDDD
XXXXXXXXXXXX





 5
EEEEEEEEEEEE
LLLLLLLLLLLL
XXXXXXXXXXXX





 6
TTTTTTTTTTTT
DDDDDDDDDDDD
XXXXXXXXXXXX





 7
TTTTTTTTTTTT
LLLLLLLLLLLL
XXXXXXXXXXXX





 8
AAAAAAAAAAAA
LLFLLLOLLLLL
XXXXXXXXXXXX





 9
TTTTTTTTTTTT
DDDDDDDDDDDD
XXXXXXXXXXXX





10
TTTTTTTTTTTT
DDDDDDDDDDDD
XXXXXXXXXXXX





11
TTTTTTTTTTTT
DDDDDDDDDDDD
XXXXXXXXXXXX





12
AAAAAAAAAAAA
DDDDDDDDDDDD
SXXXXXXXXXXX





13
CCCCCCCCCCCC
DDDDDDDDDDDD
XXXXXXXXXXXX





14
AAAAAAAAAAAA
DDDDDDDDDDDD
XSXXXXXXXXXX





15
TTTTTTTTTTTT
DDDDDDDDDDDD
XXXXXXXXXXXX





16
EEEEEEEECCEE
LLLLLMLLFOLL
XXXXXXXXXXXM





17
TTTTTTTTTTUT
LLLLMLLLLLFL
XXXXXXXXXXXX





18
TTTTTTTTTTTT
LLLLLLLLLLLL








Claims
  • 1. An antisense oligonucleotide selected from the group consisting of Compound ID Nos. 1122_91, 1122_107, 1122_154, 1122_155, 1122_156, 1122_157, 1122_158, 1122_167, 1122_172,1122_175, 1122_294, 1122_296, 1122_359, 1122_384, 1122_385, 1816_13, 1816_15, 1816_28, 1816_41, 1816_42, 1816_43, 1816_60, 1816_61, 1816_64, 1816_65, 1816_68, and 1816_92, or a pharmaceutically acceptable salt thereof.
  • 2. An antisense oligonucleotide according to claim 1 of the following chemical annotation: a. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[mR]U[sP].[dR](A)[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C)[sP].[LR][5me]C (SEQ ID NO:1122, wherein residue 10 is U) (Compound ID No. 1122_91);b. [LR]A[sP].[LR]A[sP].[mR]U[sP].[LR][5me]C[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[LR]T[sP].[dR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122, wherein residue 3 is U) (Compound ID No. 1122_107);c. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5m e]C (SEQ ID NO:1122) (Compound ID No. 1122_154);d. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5m e]C (SEQ ID NO:1122) (Compound ID No. 1122_155);e. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5meC][sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[d R]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_156);f. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5meC][sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[d R]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_157);g. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5m e]C (SEQ ID NO:1122) (Compound ID No. 1122_158);h. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[MOE]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5m e]C (SEQ ID NO:1122) (Compound ID No. 1122_167);i. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[mR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5m e]C (SEQ ID NO:1122) (Compound ID No. 1122_172);j. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[mR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5m e]C (SEQ ID NO:1122) (Compound ID No. 1122_175);k. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[fR]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_294);l. [LR]A[sP].[dR]A[sP].[dR]T[sP].[mR]C[sP].[dR]T[sP].[LR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_296);m. [LR]A[sP].[LR]A[sP].[LR]T[sP].[LR][5me]C[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[MOPS].[LR]T[sP].[dR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_359);n. [LR]A[sP].[LR]A[sP].[LR]T[sP].[LR][5me]C[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[LR]T[MOPS].[dR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_384);o. [LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[MOPS].[dR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[dR]C[sP].[dR]T[sP].[LR]T[sP].[LR][5me]C[sP].[LR][5me]C (SEQ ID NO:1122) (Compound ID No. 1122_385);p. [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_13);q. [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_15);r. [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP][fR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_28);s. [LR]G[sP].[LR]A[sP].[LR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_41);t. [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[MOE]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_42);u. [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[MOE][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_43);v. [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[mR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_60);w. [LR]G[sP].[LR]A[sP].[mR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_61);x. [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[fR]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_64);y. [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[mR]C[sP].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_65);z. [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[fR]U[sP].[LR]T (SEQ ID NO:1816, wherein residue 17 is U) (Compound ID No. 1816_68); oraa. [LR]G[sP].[LR]A[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[sP].[dR]T[sP].[LR]T[sP].[LR]A[sP].[dR]T[sP].[dR]T[sP].[dR]T[sP].[dR]A[sP].[dR]C[sP].[dR]A[sP].[dR]T[sP].[LR][5me]C[MOPS].[LR]T[sP].[LR]T (SEQ ID NO:1816) (Compound ID No. 1816_92);or a pharmaceutically acceptable salt thereof, wherein[LR] is a beta-D-oxy-LNA nucleoside,[LR][5me]C is a beta-D-oxy-LNA 5-methyl cytosine nucleoside,[dR] is a DNA nucleoside,[sP] is a phosphorothioate internucleoside linkage (stereo undefined)[ssP] is a stereodefined Sp phosphorothioate internucleoside linkage[MOPS] is a 3-methoxypropylphosphonothioate internucleoside linkage[MOPO] is a 3-methoxypropylphosphonate internucleoside linkage[mR] is a 2′-O-methyl nucleoside,[MOE] is a 2′-O-methoxyethyl nucleoside, and[fR] is a 2′-fluoro nucleoside.
  • 3. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12A (Compound ID No. 1122_91); or a pharmaceutically acceptable salt thereof.
  • 4. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12B (Compound ID No. 1122_107); or a pharmaceutically acceptable salt thereof.
  • 5. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12C (Compound ID No. 1122_154); or a pharmaceutically acceptable salt thereof.
  • 6. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12D (Compound ID No. 1122_155); or a pharmaceutically acceptable salt thereof.
  • 7. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12E (Compound ID No. 1122_156); or a pharmaceutically acceptable salt thereof.
  • 8. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12F (Compound ID No. 1122_157); or a pharmaceutically acceptable salt thereof.
  • 9. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12G (Compound ID No. 1122_158); or a pharmaceutically acceptable salt thereof.
  • 10. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12H (Compound ID No. 1122_167); or a pharmaceutically acceptable salt thereof.
  • 11. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12I (Compound ID No. 1122_172); or a pharmaceutically acceptable salt thereof.
  • 12. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12J (Compound ID No. 1122_175); or a pharmaceutically acceptable salt thereof.
  • 13. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12K (Compound ID No. 1122_294); or a pharmaceutically acceptable salt thereof.
  • 14. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12L (Compound ID No. 1122_296); or a pharmaceutically acceptable salt thereof.
  • 15. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12M (Compound ID No. 1122_359); or a pharmaceutically acceptable salt thereof.
  • 16. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12N (Compound ID No. 1122_384); or a pharmaceutically acceptable salt thereof.
  • 17. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12O (Compound ID No. 1122_385); or a pharmaceutically acceptable salt thereof.
  • 18. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12P (Compound ID No. 1816_13); or a pharmaceutically acceptable salt thereof.
  • 19. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12Q (Compound ID No. 1816_15); or a pharmaceutically acceptable salt thereof.
  • 20. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12R (Compound ID No. 1816_28); or a pharmaceutically acceptable salt thereof.
  • 21. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12S (Compound ID No. 1816_41); or a pharmaceutically acceptable salt thereof.
  • 22. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12T (Compound ID No. 1816_42); or a pharmaceutically acceptable salt thereof.
  • 23. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12U (Compound ID No. 1816_43); or a pharmaceutically acceptable salt thereof.
  • 24. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12V (Compound ID No. 1816_60); or a pharmaceutically acceptable salt thereof.
  • 25. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12W (Compound ID No. 1816_61); or a pharmaceutically acceptable salt thereof.
  • 26. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12X (Compound ID No. 1816_64); or a pharmaceutically acceptable salt thereof.
  • 27. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12Y (Compound ID No. 1816_65); or a pharmaceutically acceptable salt thereof.
  • 28. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12Z (Compound ID No. 1816_68); or a pharmaceutically acceptable salt thereof.
  • 29. The antisense oligonucleotide according to claim 1, which is the antisense oligonucleotide shown in FIG. 12AA (Compound ID No. 1816_92); or a pharmaceutically acceptable salt thereof.
  • 30. A conjugate comprising an oligonucleotide according to claim 1, and at least one conjugate moiety covalently attached to said oligonucleotide; or a pharmaceutically acceptable salt thereof.
  • 31. A pharmaceutical composition comprising an oligonucleotide according to claim 1 or a conjugate thereof and a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.
  • 32. An in vivo or in vitro method for modulating ATXN3 expression in a target cell which is expressing ATXN3, said method comprising administering an oligonucleotide selected from a group consisting of Compound ID Nos. 1122_91, 1122_107, 1122_154, 1122_155, 1122_156, 1122_157, 1122_158, 1122_167, 1122_172, 1122_175, 1122_294, 1122_296, 1122_359, 1122_384, 1122_385, 1816_13, 1816_15, 1816_28, 1816_41, 1816_42, 1816_43, 1816_60, 1816_61, 1816_64, 1816_65, 1816_68, and 1816_92, a conjugate, a salt, or a pharmaceutical composition thereof in an effective amount to said cell.
  • 33. A method for treating or preventing a disease comprising administering a therapeutically or prophylactically effective amount of an oligonucleotide selected from a group consisting of Compound ID Nos. 1122_91, 1122_107, 1122_154, 1122_155, 1122_156, 1122_157, 1122_158, 1122_167, 1122_172, 1122_175, 1122_294, 1122_296, 1122_359, 1122_384, 1122_385, 1816_13, 1816_15, 1816_28, 1816_41, 1816_42, 1816_43, 1816_60, 1816_61, 1816_64, 1816_65 1816_68, and 1816_92, a conjugate, a salt, or a pharmaceutical composition thereof to a subject suffering from or susceptible to the disease.
  • 34. The method of claim 33, wherein the disease is spinocerebellar ataxia, such as spinocerebellar ataxia 3, such as Machado-Joseph disease
  • 35. The oligonucleotide, a conjugate, a salt, or a pharmaceutical composition thereof according to claim 1 for use in medicine.
  • 36. The oligonucleotide, a conjugate, a salt, or a pharmaceutical composition thereof according to claim 1 for use in the treatment or prevention of spinocerebellar ataxia, such as spinocerebellar ataxia 3, such as Machado-Joseph disease, (MJD).
  • 37. Use of the oligonucleotide, a conjugate, a salt, or a pharmaceutical composition thereof according to claim 1 for the preparation of a medicament for treatment or prevention of spinocerebellar ataxia, such as spinocerebellar ataxia 3, such as Machado-Joseph disease.
Priority Claims (1)
Number Date Country Kind
EP20211612.5 Dec 2020 EP regional