These and other objects of the invention will be apparent from the following detailed description of the embodiments of the invention with reference to the accompanying drawings, in which:
Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
With reference to
A fabricating method and apparatus of a thin film pattern according to one preferred embodiment of the invention uses an etch resist solution that includes a surfactant inclusive of an ethylene oxide fluorinated polymer. The etch resist solution including this surfactant has a stronger adhesive force with the print plate than with the blanket, thus it becomes possible to easily transfer the etch resist solution from the blanket to the print plate. As a result, the reliability of forming the thin film pattern by a resist printing method can be improved.
Referring to
First, as shown in
A typical composition of the etch resist solution is as in TABLE 1.
Herein, Novolac, epoxy-Novolac, PMMA (poly methyl methacrylate), PMMA copolymers, PMA (poly methyl acrylate), PMA copolymers etc. are used as the base polymer.
The carrier solvent means a solvent used for evenly coating the etch resist solution 14A over the blanket by reducing the viscosity of the etch resist solution 14A sprayed from the etch resist solution spray device 12. The carrier solvent may be an alcohol such as methanol, ethanol, propanol, isopropanol, butanol etc. Non-alcoholic solvents such as benzene may be used. The carrier solvent may also be a solvent mixture, e.g., a mixture of alcohols. The boiling point of the carrier solvent is preferably less than 100□.
The printing solvent is used to give the etch resist solution 14A coated over the blanket a sticky characteristic or adhesiveness. The printing solvent is a solvent that dissolves the base polymer well, such as NMP (N-Methylpyrrolidone), ethyl benzoate, tri-isopropyl benzene, etc. The boiling point of the printing solvent is preferably not less than 200□.
The surfactant is a material firmly adheres to the interface to greatly decrease the surface tension of the interface, and acts to lower the surface tension of the etch resist solution 14A.
The surfactant may include an ethylene oxide fluorinated polymer material having the general formula CF3(CF2)m(CH2CH2O)n where m is about 1-10 and n is about 8-50. Typical examples of this material include CF3(CF2)4(CH2CH20)10, CF3(CF2)5(CH2CH2O)14, etc. Instead of the ethylene oxide moiety, block copolymers of ethylene oxide and propylene oxide can also be used. The surfactant inclusive of the ethylene oxide fluorinated polymer increases the surface energy of the etch resist solution 14A. Accordingly, the etch resist solution 14A has a stronger adhesive force with the print plate 20 than with the blanket 15, thus the etch resist solution 14A can be easily transferred from the blanket 15 to the print plate 20.
With reference to
Referring to
Here, the surface energy γ is the energy required for forming an interface with the air, and a material having a high surface energy γ has difficulty in forming an interface with the air. The characteristic of forming the interface with an opposite surface becomes stronger as the surface energy γ of the opposite surface of a liquid state or solid state which in which it contacts becomes lower. That is, the material having the high surface energy γ, if a fluid material having a low surface energy γ is spread thereon, can make the fluid material spread widely. Further, the material having the low surface energy γ does not easily form an interface with the opposite material, thereby easily separating from the opposite material and having a strong characteristic of contacting the air. The surface energy γ is expressed as the sum of a non-polar surface energy γd and a polar surface energy γp, as in Mathematical Formula 1.
γ=γd+γp [Mathematical Formula 1]
In relation to the surface energy γ, TABLE 2 represents γd, γp values of each of the blanket 15, the etch resist solution 14A and the print plate 20.
Here, in order to easily transfer the etch resist solution 14A from the blanket 15 to the print plate 20, the adhesive force between the etch resist solution 14A and the blanket 15 should be lower than the adhesive force between the etch resist solution 14A and the print plate 20.
That is, as shown in
Herein, the adhesive force W according to γd, γp in two interfaces can be shown as in Mathematical Formula 2.
W=2(γ d1*γ d2)1/2+2(γ p1*γ p2)1/2 [Mathematical Formula 2]
γ d1, γ p1 represent the non-polar surface energy and the polar surface energy of any one of the interfaces that are different from each other, and γ d2, γ p2 represent the non-polar surface energy and the polar surface energy of the other interface between the two different interfaces. The unit of W is mJ/m2.
According to TABLE 1 and Mathematical Formula 2, the adhesive force Wb between the etch resist solution 14A and the print plate 20 is about 52, and the adhesive force Wa between the blanket 15 and the etch resist solution 14A is about 32, thus the difference between two adhesive forces is not high. Here, the mathematically-calculated adhesive force Wb of about 52 between the etch resist solution 14A and the print plate 20 and the adhesive force Wa of about 32 between the blanket 14 and the etch resist solution 14A can have an error or deviation in accordance with variables such as other process conditions. Thus, the difference of about 20 is not a difference with which a reliable transfer process can be performed.
Accordingly, if substantially performing the transfer process, the characteristic of transferring the etch resist solution 14A from the blanket 15 to the print plate 20 decreases, thus the reliability of forming the thin film pattern by the resist printing method deteriorates.
In order to solve the problems of the related art, the invention utilizes a surfactant formed of (or inclusive of) an ethylene oxide fluorinated polymer material having the general formula CF3(CF2)m(CH2CH2O)n where m is about 1-10 and n is about 8-50, such as CF3(CF2)4(CH2CH20)10, CF3(CF2)5(CH2CH20)14, etc.
Referring to
As a result, after adopting the interface energy in the invention, the γd, γp values of each of the blanket 15, the etch resist solution 14A and the print plate 20 are as in TABLE 3.
That is, if comparing TABLE 3 with TABLE 2, the γd, γp values of the etch resist solution (semifluorinated surfactant included) in the invention are known to be remarkably higher in comparison to the related art of TABLE 2.
Numerically, the adhesive force Wa between the etch resist solution 14A and the print plate 20 is about 113, and the adhesive force Wb between the blanket 15 and the etch resist solution 14A is about 58. That is, the adhesive force Wa between the etch resist solution 14A and the print plate 20 is remarkably higher than the adhesive force Wb between the blanket 15 and the etch resist solution 14A. Thus, the etch resist solution 14A can be easily transferred from the blanket 15 to the print plate 20. The reliability of the transfer process is therefore improved, thereby making it possible to improve the reliability of forming a thin film pattern by the resist printing method.
Afterwards, the thin film pattern can be formed by use of the devices shown in
The gate pattern such as the gate electrode, the gate line, etc. of the liquid crystal display device can be formed, no matter how the thin film pattern of the liquid crystal display panel is, by using the fabricating apparatus and method of the thin film pattern according to the invention. Further, the invention is not limited to forming liquid crystal display panels, but includes the thin film pattern of any display device such as a field emission display (FED), plasma display panel (PDP), organic electro luminescence display (OLED), etc. can be formed.
As described above, the fabricating apparatus of the thin film pattern and the fabricating method of the thin film pattern using the same according to the invention uses an etch resist solution that includes an ethylene or propylene oxide fluorinated polymer surfactant. The etch resist solution inclusive of the surfactant has the stronger adhesive force with the print plate than with the blanket, and it is thereby possible to easily transfer the etch resist solution from the blanket to the print plate. As a result, the reliability of forming the thin film pattern by the resist printing method can be improved.
Although the invention has been explained by the embodiments shown in the drawings described above, it should be understood to the ordinary skilled person in the art that the invention is not limited to the embodiments, but rather that various changes or modifications thereof are possible without departing from the spirit of the invention. Accordingly, the scope of the invention shall be determined only by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0056739 | Jun 2006 | KR | national |