This application relates to robots. There remains a need for robots capable of handling substrates in a heterogeneous vacuum processing environment.
A substrate-handling vacuum robot includes a first robotic arm with a single-substrate end effector and a second robotic arm with a batch end effector. The single-substrate end effector permits single-substrate pick-and-place operations while the batch end effector permits batch handling of substrates within a vacuum environment.
As used herein, “robot” shall include any kind of known robot or similar device or facility that includes a mechanical capability and a control capability, which may include a combination of a controller, processor, computer, or similar facility, a set of motors or similar facilities, one or more resolvers, encoders or similar facilities, one or more mechanical or operational facilities, such as arms, wheels, legs, links, claws, extenders, grips, nozzles, sprayers, end effectors, actuators, and the like, as well as any combination of any of the above. One embodiment is a robotic arm.
As used herein “drive” shall include any form of drive mechanism or facility for inducing motion. In embodiments it includes the motor/encoder section of a robot.
As used herein, “axis” shall include a motor or drive connected mechanically through linkages, belts or similar facilities, to a mechanical member, such as an arm member. An “N-axis drive” shall include a drive containing N axes; for example a “2-axis drive” is a drive containing two axes.
As used herein, “arm” shall include a passive or active (meaning containing motors/encoders) linkage that may include one or more arm or leg members, bearings, and one or more end effectors for holding or gripping material to be handled.
As used herein, “SCARA arm” shall mean a Selectively Compliant Assembly Robot Arm (SCARA) robotic arm in one or more forms known to those of skill in the art, including an arm consisting of one or more upper links connected to a drive, one or more lower links connected through a belt or mechanism to a motor that is part of the drive, and one or more end units, such as an end effector or actuator.
As used herein, “turn radius” shall mean the radius that an arm fits in when it is fully retracted.
As used herein, “reach” shall include, with respect to a robotic arm, the maximum reach that is obtained when an arm is fully extended. Usually the mechanical limit is a little further out than the actual effective reach, because it is easier to control an arm that is not completely fully extended (in embodiments there is a left/right singularity at full extension that can be hard to control).
As used herein, “containment” shall mean situations when the arm is optimally retracted such that an imaginary circle can be drawn around the arm/end effector/material that is of minimum radius.
As used herein, the “reach-to-containment ratio” shall mean, with respect to a robotic arm, the ratio of maximum reach to minimum containment.
As used herein, “robot-to-robot” distance shall include the horizontal distance between the mechanical central axes of rotation of two different robot drives.
As used herein, “slot valve” shall include a rectangular shaped valve that opens and closes to allow a robot arm to pass through (as opposed to a vacuum (isolation) valve, which controls the pump down of a vacuum chamber). For example, the SEMI E21.1-1296 standard (a published standard for semiconductor manufacturing) the slot valve for 300 mm wafers in certain semiconductor manufacturing process modules has an opening width of 336 mm, a opening height of 50 mm and a total valve thickness of 60 mm with the standard also specifying the mounting bolts and alignment pins.
As used herein, “transfer plane” shall include the plane (elevation) at which material is passed from a robot chamber to a process module chamber through a slot valve. Per the SEMI E21.1-1296 standard for semiconductor manufacturing equipment the transfer plane is 14 mm above the slot valve centerline and 1100 mm above the plane of the factory floor.
As used herein, “section” shall include a vacuum chamber that has one or more robotic drives in it. This is the smallest repeatable element in a linear system.
As used herein, “link” shall include a mechanical member of a robot arm, connected on both ends to another link, an end effector, or the robot drive.
As used herein, “L1,” “L2”, “L3” or the like shall include the numbering of the arm links starting from the drive to the end effector.
As used herein, “end effector” shall include an element at an active end of a robotic arm distal from the robotic drive and proximal to an item on which the robotic arm will act. The end effector may be a hand of the robot that passively or actively holds the material to be transported in a semiconductor process or some other actuator disposed on the end of the robotic arm.
As used herein, the term “SCARA arm” refers to a robotic arm that includes one or more links and may include an end effector, where the arm, under control, can move linearly, such as to engage an object. A SCARA arm may have various numbers of links, such as 3, 4, or more. As used herein, “3-link SCARA arm” shall include a SCARA robotic arm that has three members: link one (L1), link two (L2) and an end effector. A drive for a 3-link SCARA arm usually has 3 motors: one connected to L1, one to the belt system, which in turn connects to the end effector through pulleys and a Z (lift) motor. One can connect a fourth motor to the end effector, which allows for some unusual moves not possible with only three motors.
As used herein, “dual SCARA arm” shall include a combination of two SCARA arms (such as two 3 or 4-link SCARA arms (typically designated A and B)) optionally connected to a common drive. In embodiments the two SCARA arms are either completely independent or share a common link member L1. A drive for a dual independent SCARA arm usually has either five motors: one connected to L1-A, one connected to L1-B, one connected to the belt system of arm A, one connected to the belt system of arm B, and a common Z (lift) motor. A drive for a dual dependent SCARA arm usually has a common share L1 link for both arms A and B and contains typically four motors: one connected to the common link L1, one connected to the belt system for arm A, one connected to the belt system for arm B, and a common Z (lift) motor.
As used herein, “4-link SCARA arm” shall include an arm that has four members: L1, L2, L3 and an end effector. A drive for a 4-link SCARA arm can have four motors: one connected to L1, one to the belt systems connected to L2 and L3, one to the end effector and a Z motor. In embodiments only 3 motors are needed: one connected to L1, one connected to the belt system that connects to L2, L3 and the end effector, and a Z motor.
As used herein, “Frog-leg style arm” shall include an arm that has five members: L1A, L1B, L2A, L3B and an end effector. A drive for a frog-leg arm can have three motors, one connected to L1A—which is mechanically by means of gearing or the like connected to L1B-, one connected to a turret that rotates the entire arm assembly, and a Z motor. In embodiments the drive contains three motors, one connected to L1A, one connected to LIB and a Z motor and achieves the desired motion through coordination between the motors.
As used herein, “Dual Frog-leg style arm” shall include an arm that has eight members L1A, L1B, L2A-1, L2A-2, L2B-1, L2B-2 and two end effectors. The second link members L2A-1 and L2B-1 form a single Frog-leg style arm, whereas the second link members L2A-2 and L2B-2 also form a single Frog-leg style arm, however facing in an opposite direction. A drive for a dual frog arm may be the same as for a single frog arm.
As used herein, “Leap Frog-leg style arm” shall include an arm that has eight members L1A, L1B, L2A-1, L2A-2, L2B-1, L2B-2 and two end effectors. The first link members L1A and L1B are each connected to one of the motors substantially by their centers, rather than by their distal ends. The second link members L2A-1 and L2B-1 form a single Frog-leg style arm, whereas the second link members L2A-2 and L2B-2 also form a single Frog-leg style arm, however facing in the same direction. A drive for a dual frog arm may be the same as for a single frog arm.
The foregoing and other objects and advantages of the invention will be appreciated more fully from the following further description thereof, with reference to the accompanying drawings, wherein:
Various equipment architectures are used for handling semiconductor wafers, reticles, disc media (CD's, DVD's, HD-DVD's, Blu-ray, etc.) and any other generally planar media in a vacuum processing environment, all referred to generally herein as “substrates”. Each type of manufacturing equipment handles substrates and transports the substrates among various processes, such as chemical vapor deposition processes, etching processes, cleaning processes, and the like. Many such processes are extremely sensitive to contaminants, such as particulates and volatile organic compounds, so vacuum handling is employed, along with various isolated process modules devoted to specific processes. Some vacuum handling systems and process modules are configured to handle substrates in batches, while other vacuum handling systems and process modules are configured to handle individual substrates. It may be efficient or useful under certain circumstances to have one or more non-batch or single wafer process modules incorporated into a system where process times are suitably proportional to provide acceptable utilization of the single and batch process modules in cooperation. The robotic handler described below permits improved flexibility in the interconnection of single-substrate and batch processing components.
As depicted, the first robotic arm 102 is a single link SCARA unit, and the second robotic arm 106 is a two-link SCARA unit. However, each one of the robotic arms 102, 106 may be, for example, a SCARA-type unit with any suitable number of arm links, or any other robotic arm or other robot suitable for handling substrates in a vacuum environment. In other embodiments, the first robotic arm 102 or the second robotic arm 106 may be a frog-leg-style arm, dual frog-leg-style arm, leap frog-leg-style arm (the foregoing collectively referred to herein as a “frog-leg-style arm”), Cartesian movement arm, telescoping arm, or any other type of robot arm suitable for handling substrates in a vacuum environment. In addition, depending on particular deployments of manufacturing processes, the two arms 102, 106 may be fully independent, or partially or selectively dependent. In embodiments, either or both of the two arms 102, 106 may have z-movement capability. This may significantly expand to flexibility of the overall system, such as by permitting the first robotic arm 102 to access any one of a number of vertically-stacked shelves in a batch processing module or other device, or by permitting vertical stacking of batch processing devices within a vacuum environment. All such variations are intended to fall within the scope of this disclosure.
The end effector 104 may be a conventional end effector, or any other hardware suitable for handling a substrate.
The batch end effector 108 may have a number of vertically-stacked, single-substrate effectors 110 in a fixed orientation relative to one another. In embodiments, the single-substrate effectors 110 may be vertically aligned, or the single-substrate effectors 110 may be vertically offset, according to the physical configuration of a batch processing device that the second robotic arm 106 services. In embodiments, the second robotic arm 106 may have two single-substrate effectors 110 as depicted. However, it will be understood that any suitable number of effectors may be employed such as three effectors, four effectors, or any other number of effectors. In still further embodiments, the batch end effector 108 may employ various combinations of side-by-side effectors, vertically-stacked aligned effectors, vertically-stacked offset effectors, and so forth, again according to the physical configuration of devices serviced by the robot 100. All such variations are intended to fall within the scope of this disclosure.
In embodiments the components of the system can be controlled by a software controller 199, which in embodiments may be a central controller that controls each of the components. In embodiments the components form a linkable handling system under control of the software, where the software controls each robot to hand off a material to another robot, a transfer station, a process module, a load lock, a buffer, or any other component of a vacuum processing system. A software scheduler 199S, such as a neural net-based, rule-based, or other scheduler, may be employed to coordinate actions of the robot with a vacuum handling system. In embodiments process modules, robots, and the like can make themselves known over a control network, so that the software controller knows what new process modules, robots, or other components have been connected. In embodiments the software system may include an interface that permits the user to run a simulation of the system.
As may be realized, using the robotic arm configuration described herein, the robotic arms may be controlled so that the single end effector 104 may be employed for individual picks and placements of wafers within modules while the batch end effector 108 may be employed for batch transfers between process modules via, e.g., batch buffers, robot-to-robot hand offs, or any other suitable batch processing technique.
The device 310 may include any device or combination of devices useful for processing or handling a substrate. This may include, for example, a batch process module 310′ (
Having thus described several illustrative embodiments, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to form a part of this disclosure, and are intended to be within the spirit and scope of this disclosure. Thus, while the invention has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is not to be limited by the foregoing examples, but is to be understood in the broadest sense allowable by law.
This application is a continuation-in-part of U.S. application Ser. No. 11/679,829 filed on Feb. 27, 2007, and this application claims the benefit of U.S. Provisional Application No. 60/913,257 filed Apr. 20, 2007. The entire content of each of these applications is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4664578 | Kakehi | May 1987 | A |
4884216 | Kuperstein | Nov 1989 | A |
5019233 | Blake et al. | May 1991 | A |
5076205 | Vowles et al. | Dec 1991 | A |
5135349 | Lorenz et al. | Aug 1992 | A |
5292393 | Maydan et al. | Mar 1994 | A |
5364222 | Akimoto et al. | Nov 1994 | A |
5442730 | Bigus | Aug 1995 | A |
5447409 | Grunes et al. | Sep 1995 | A |
5474410 | Ozawa et al. | Dec 1995 | A |
5558482 | Hiroki et al. | Sep 1996 | A |
5566275 | Kano | Oct 1996 | A |
5606646 | Khan et al. | Feb 1997 | A |
5943659 | Giles et al. | Aug 1999 | A |
5989346 | Hiroki | Nov 1999 | A |
6048162 | Moslehi | Apr 2000 | A |
6059507 | Adams | May 2000 | A |
6074443 | Venkatesh et al. | Jun 2000 | A |
6132165 | Carducci | Oct 2000 | A |
6203268 | Miyashita | Mar 2001 | B1 |
6256555 | Bacchi et al. | Jul 2001 | B1 |
6270306 | Otwell et al. | Aug 2001 | B1 |
6299404 | Muka et al. | Oct 2001 | B1 |
6312525 | Bright et al. | Nov 2001 | B1 |
6366830 | Bacchi et al. | Apr 2002 | B2 |
6374144 | Viviani et al. | Apr 2002 | B1 |
6379095 | Elliott et al. | Apr 2002 | B1 |
6481956 | Hofmeister | Nov 2002 | B1 |
6584369 | Patel et al. | Jun 2003 | B2 |
6632065 | Cameron et al. | Oct 2003 | B1 |
6669434 | Namba et al. | Dec 2003 | B2 |
6725114 | Jevtic | Apr 2004 | B1 |
6802934 | Saeki et al. | Oct 2004 | B2 |
6941199 | Bottomley et al. | Sep 2005 | B1 |
6979165 | Larson et al. | Dec 2005 | B2 |
7025554 | Ozawa et al. | Apr 2006 | B2 |
7230441 | Carlson-Stevermer | Jun 2007 | B2 |
7293950 | Bonora et al. | Nov 2007 | B2 |
7769482 | Pannese et al. | Aug 2010 | B2 |
7815739 | Matsuura | Oct 2010 | B2 |
8442667 | Pannese | May 2013 | B2 |
20010048867 | Lebar et al. | Dec 2001 | A1 |
20010053324 | Saeki et al. | Dec 2001 | A1 |
20020006323 | Yoshida et al. | Jan 2002 | A1 |
20030088530 | Ramanan | May 2003 | A1 |
20030171972 | Heskin | Sep 2003 | A1 |
20040062627 | Aggarwal et al. | Apr 2004 | A1 |
20050118000 | Kasai et al. | Jun 2005 | A1 |
20060099063 | Pietrantonio et al. | May 2006 | A1 |
20060156979 | Thakur et al. | Jul 2006 | A1 |
20070141748 | Rice | Jun 2007 | A1 |
20070160447 | Amikura et al. | Jul 2007 | A1 |
20080138175 | Mitchell et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
43 33 820 | Apr 1994 | DE |
Entry |
---|
Hesselroth et al, Neural Network Control of a Pneumatic Robot Arm, IEEE, pp. 28-34, 1994. |
Number | Date | Country | |
---|---|---|---|
20080260500 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60913257 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11679829 | Feb 2007 | US |
Child | 12106975 | US |