The present disclosure relates to moveable edge rings in substrate processing systems.
The background description provided here is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Substrate processing systems may be used to treat substrates such as semiconductor wafers. Example processes that may be performed on a substrate include, but are not limited to, chemical vapor deposition (CVD), atomic layer deposition (ALD), conductor etch, and/or other etch, deposition, or cleaning processes. A substrate may be arranged on a substrate support, such as a pedestal, an electrostatic chuck (ESC), etc. in a processing chamber of the substrate processing system. During etching, gas mixtures including one or more precursors may be introduced into the processing chamber and plasma may be used to initiate chemical reactions.
The substrate support may include a ceramic layer arranged to support a wafer. For example, the wafer may be clamped to the ceramic layer during processing. The substrate support may include an edge ring arranged around an outer portion (e.g., outside of and/or adjacent to a perimeter) of the substrate support. The edge ring may be provided to confine plasma to a volume above the substrate, protect the substrate support from erosion caused by the plasma, etc.
A bottom ring is configured to support a moveable edge ring. The edge ring is configured to be raised and lowered relative to a substrate support. The bottom ring includes an upper surface that is stepped, an annular inner diameter, an annular outer diameter, a lower surface, and a plurality of vertical guide channels provided through the bottom ring from the lower surface to the upper surface of the bottom ring. Each of the guide channels includes a first region having a smaller diameter than the guide channel, and the guide channels are configured to receive respective lift pins for raising and lowering the edge ring.
In other features, a diameter of the guide channel is between 0.063″ and 0.067″. Each of the guide channels includes a cavity on the lower surface of the bottom ring, wherein the cavities have a diameter greater than the guide channels. Transitions between the guide channels and the cavities are chamfered. The chamfered transitions have a height and width between 0.020″ and 0.035″ and an angle between 40° and 50°. An inner diameter of a step in the upper surface is at least 13.0″.
In other features, the bottom ring includes a guide feature extending upward from the upper surface of the bottom ring. The guide channels pass through the guide feature. The guide feature includes the first regions of the guide channels. The upper surface includes an inner annular rim, and wherein the guide feature and the inner annular rim define a groove. A height of the guide feature is greater than a height of the inner annular rim. At least one of a first upper corner and a second upper corner of the guide feature is chamfered. The upper surface includes an inner annular rim and an outer annular rim, wherein the guide feature and the inner annular rim define a first groove, and wherein the guide feature and the outer annular rim define a second groove.
In other features, the upper surface includes at least two changes in direction. The upper surface includes at least five changes of direction. The upper surface includes at least five alternating vertical and horizontal paths. The bottom ring has a first outer diameter and a second outer diameter greater than the first outer diameter. The bottom ring includes an annular lip extending radially outward from an outer diameter of the bottom ring. The lower surface includes a plurality of cavities configured to be aligned with bolt holes in a baseplate of the substrate support.
A middle ring is configured to be arranged on a bottom ring and to support a moveable edge ring. The edge ring is configured to be raised and lowered relative to a substrate support. The middle ring includes an upper surface that is stepped, an annular inner diameter, an annular outer diameter, a lower surface, a guide feature defining the annular outer diameter, an inner annular rim defining the annular inner diameter, and a groove defined between the guide feature and the inner annular rim.
In other features, at least one of a first upper corner and a second upper corner of the guide feature is chamfered. The middle ring is “U”-shaped. The upper surface includes at least four changes of direction. The upper surface includes at least five alternating vertical and horizontal surfaces.
Further areas of applicability of the present disclosure will become apparent from the detailed description, the claims and the drawings. The detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
In the drawings, reference numbers may be reused to identify similar and/or identical elements.
A substrate support in a substrate processing system may include an edge ring. An upper surface of the edge ring may extend above an upper surface of the substrate support, causing the upper surface of the substrate support (and, in some examples, an upper surface of a substrate arranged on the substrate support) to be recessed relative to the edge ring. This recess may be referred to as a pocket. A distance between the upper surface of the edge ring and the upper surface of the substrate may be referred to as a “pocket depth.” Generally, the pocket depth is fixed according to a height of the edge ring relative to the upper surface of the substrate.
Some aspects of etch processing may vary due to characteristics of the substrate processing system, the substrate, gas mixtures, etc. For example, flow patterns, and therefore an etch rate and etch uniformity, may vary according to the pocket depth of the edge ring, edge ring geometry (i.e., shape), as well as other variables including, but not limited to, gas flow rates, gas species, injection angle, injection position, etc. Accordingly, varying the configuration of the edge ring (e.g., including edge ring height and/or geometry) may modify the gas velocity profile across the surface of the substrate.
Some substrate processing systems may implement moveable (e.g., tunable) edge rings and/or replaceable edge rings. In one example, a height of a moveable edge may be adjusted during processing to control etch uniformity. The edge ring may be coupled to an actuator configured to raise and lower the edge ring in response to a controller, user interface, etc. In one example, a controller of the substrate processing system controls the height of the edge ring during a process, between process steps, etc. according to a particular recipe being performed and associated gas injection parameters. Further, edge rings and other components may comprise consumable materials that wear/erode over time. Accordingly, the height of the edge ring may be adjusted to compensate for erosion. In other examples, edge rings may be removable and replaceable (e.g., to replace eroded or damaged edge rings, to replace an edge ring with an edge ring having different geometry, etc.). Examples of substrate processing systems implementing moveable and replaceable edge rings can be found in U.S. patent application Ser. No. 14/705,430, filed on May 6, 2015, the entire contents of which are incorporated herein by reference.
Substrate processing systems and methods according to the principles of the present disclosure include middle edge rings and bottom edge rings configured to support movable top edge rings.
Referring now to
For example only, the upper electrode 104 may include a gas distribution device such as a showerhead 109 that introduces and distributes process gases (e.g., etch process gases). The showerhead 109 may include a stem portion including one end connected to a top surface of the processing chamber. A base portion is generally cylindrical and extends radially outwardly from an opposite end of the stem portion at a location that is spaced from the top surface of the processing chamber. A substrate-facing surface or faceplate of the base portion of the showerhead includes a plurality of holes through which process gas or purge gas flows. Alternately, the upper electrode 104 may include a conducting plate and the process gases may be introduced in another manner.
The substrate support 106 includes a conductive baseplate 110 that acts as a lower electrode. The baseplate 110 supports a ceramic layer 112. In some examples, the ceramic layer 112 may comprise a heating layer, such as a ceramic multi-zone heating plate. A thermal resistance layer 114 (e.g., a bond layer) may be arranged between the ceramic layer 112 and the baseplate 110. The baseplate 110 may include one or more coolant channels 116 for flowing coolant through the baseplate 110.
An RF generating system 120 generates and outputs an RF voltage to one of the upper electrode 104 and the lower electrode (e.g., the baseplate 110 of the substrate support 106). The other one of the upper electrode 104 and the baseplate 110 may be DC grounded, AC grounded or floating. For example only, the RF generating system 120 may include an RF voltage generator 122 that generates the RF voltage that is fed by a matching and distribution network 124 to the upper electrode 104 or the baseplate 110. In other examples, the plasma may be generated inductively or remotely. Although, as shown for example purposes, the RF generating system 120 corresponds to a capacitively coupled plasma (CCP) system, the principles of the present disclosure may also be implemented in other suitable systems, such as, for example only transformer coupled plasma (TCP) systems, CCP cathode systems, remote microwave plasma generation and delivery systems, etc.
A gas delivery system 130 includes one or more gas sources 132-1, 132-2, . . . , and 132-N (collectively gas sources 132), where N is an integer greater than zero. The gas sources supply one or more gases (e.g., etch gas, carrier gases, purge gases, etc.) and mixtures thereof. The gas sources may also supply purge gas. The gas sources 132 are connected by valves 134-1, 134-2, . . . , and 134-N (collectively valves 134) and mass flow controllers 136-1, 136-2, . . . , and 136-N (collectively mass flow controllers 136) to a manifold 140. An output of the manifold 140 is fed to the processing chamber 102. For example only, the output of the manifold 140 is fed to the showerhead 109.
A temperature controller 142 may be connected to a plurality of heating elements, such as thermal control elements (TCEs) 144 arranged in the ceramic layer 112. For example, the heating elements 144 may include, but are not limited to, macro heating elements corresponding to respective zones in a multi-zone heating plate and/or an array of micro heating elements disposed across multiple zones of a multi-zone heating plate. The temperature controller 142 may be used to control the plurality of heating elements 144 to control a temperature of the substrate support 106 and the substrate 108.
The temperature controller 142 may communicate with a coolant assembly 146 to control coolant flow through the channels 116. For example, the coolant assembly 146 may include a coolant pump and reservoir. The temperature controller 142 operates the coolant assembly 146 to selectively flow the coolant through the channels 116 to cool the substrate support 106.
A valve 150 and pump 152 may be used to evacuate reactants from the processing chamber 102. A system controller 160 may be used to control components of the substrate processing system 100. A robot 170 may be used to deliver substrates onto, and remove substrates from, the substrate support 106. For example, the robot 170 may transfer substrates between the substrate support 106 and a load lock 172. Although shown as separate controllers, the temperature controller 142 may be implemented within the system controller 160. In some examples, a protective seal 176 may be provided around a perimeter of the bond layer 114 between the ceramic layer 112 and the baseplate 110.
The substrate support 106 includes an edge ring 180. The edge ring 180 may correspond to a top ring, which may be supported by a bottom ring 184. In some examples, the edge ring 180 may be further supported by one or more of a middle ring (not shown in
Referring now to
For example only, the edge ring 220 is shown in a fully lowered position in
Features of an example substrate support 300 are shown in more detail in
The lift pins 332 may comprise an erosion-resistant material (e.g., sapphire). An outer surface of the lift pins 332 may be polished smooth to reduce friction between the lift pins 332 and structural features of the bottom ring 320 to facilitate movement. In some examples, one or more ceramic sleeves 340 may be arranged in the channels 328 around the lift pins 332. Each of the lift pins 332 may include a rounded upper end 344 to minimize contact area between the upper end 344 and the edge ring 324. The smooth outer surface, rounded upper end 344, guide channel 328, and/or ceramic sleeves 340 facilitate raising and lowering of the edge ring 324 and while preventing binding of the lift pins 332 during movement.
As shown in
The edge ring 324 includes an annular bottom groove 356 arranged to receive the guide feature 348. For example, a profile (i.e., cross-section) shape of the edge ring 324 may generally correspond to a “U” shape configured to receive the guide feature 348, although other suitable shapes may be used. Further, although the upper surface of the edge ring 324 is shown as generally horizontal (i.e., parallel to an upper surface of the substrate support 300), the upper surface of the edge ring 324 may have a different profile in other examples. For example, the upper surface of the edge ring 324 may be tilted or slanted, rounded, etc. In some examples, the upper surface of the edge ring 324 is tilted such that a thickness at an inner diameter of the edge ring 324 is greater than a thickness at an outer diameter of the edge ring 324 to compensate for erosion at the inner diameter.
Accordingly, a bottom surface of the edge ring 324 is configured to be complementary to an upper surface of the bottom ring 320 in
For example, as shown in
The profile (i.e., cross-section) shape of the edge ring 324 (as well as the interfacing surfaces of the bottom ring 320, middle ring 336, etc.) is designed to facilitate manufacturing and reduce manufacturing costs. For example, walls 380, 384 of the groove 356 and the guide feature 340 may be substantially vertical (e.g., in contrast to being parabolic, trapezoidal, triangular, etc.) to facilitate manufacturing while preventing plasma and process material leakage. For example only, substantially vertical may be defined as being perpendicular to upper and/or lower surfaces of the edge ring 324, within 1° of a normal line of an upper and/or lower surface of the edge ring 324, parallel to a direction of movement of the edge ring 324, etc. Further, the vertical walls 380, 384 maintain alignment of the edge ring 324 relative to the guide feature 340 during movement of the edge ring 324. In contrast, when respective profiles of the groove 356 and the guide feature 340 are parabolic, trapezoidal, triangular, etc., upward movement of the edge ring 324 causes significant separation between the walls 380 and the walls 384.
Surfaces of the edge ring 324, the bottom ring 320, and the middle ring 336 within the interface 360 (and, in particular, within the groove 356) are relatively smooth and continuous to minimize friction between the edge ring 324 and the guide feature 340 during movement of the edge ring 324. For example, respective surfaces of the edge ring 324, the bottom ring 320, and the middle ring 336 within the interface 360 may undergo additional polishing to achieve a desired surface smoothness. In other examples, surfaces of the edge ring 324, the bottom ring 320, and the middle ring 336 within the interface 360 may be coated with a material that further reduces friction. In still other examples, the surfaces of the edge ring 324, the bottom ring 320, and the middle ring 336 within the interface 360 (and, in particular, the edge ring 324) may be free of screw holes and/or similar assembly features. In this manner, creation of particles due to contact between surfaces (e.g., during movement of the edge ring 324) may be minimized.
When the edge ring 324 is raised for tuning during processing as described above, the controller 228 as described in
For example, the “thickness” of the edge ring 324, as used herein, may refer to a thickness of the edge ring 324 at an inner diameter of the edge ring 324 (e.g., a thickness/height of the edge ring 324 at an inner wall 388). In some examples, a thickness of the edge ring 324 may not be uniform across an upper surface of the edge ring 324 (e.g., the upper surface of the edge ring 324 may be tilted as described above such that a thickness at the inner wall 388 is greater than a thickness at an outer diameter of the edge ring 324). However, since erosion due to exposure to plasma may be increased at the inner wall 388 relative to an outer diameter of the edge ring 324, the edge ring 324 may be formed such that the inner wall 388 has at least a predetermined thickness to compensate for the increased erosion at the inner wall 388. For example only, the inner wall 388 is substantially vertical to avoid contact with the substrate 316 during movement of the edge ring 324.
Referring now to
In the examples of
In an example, a lower, inside corner 436 of the edge ring 424 may be chamfered to facilitate alignment (i.e., centering) of the edge ring 424 on the substrate support 400. Conversely, an upper, outside corner 444 and/or a lower, inside corner 448 of the ceramic layer 412 may be chamfered complementarily to the corner 436. Accordingly, as the edge ring 424 is lowered onto the substrate support 400, the chamfered corner 436 interacts with the chamfered corner(s) 444/448 to cause the edge ring 424 to self-center on the substrate support 400.
An upper, outer corner 456 of the edge ring 424 may be chamfered to facilitate removal of the edge ring 424 from the processing chamber 102. For example, since the substrate support 400 is configured for in situ removal of the edge ring 424 (i.e., without fully opening and venting the processing chamber 102), the edge ring 424 is configured to be removed via an airlock. Typically, airlocks are sized to accommodate substrates of a predetermined size (e.g., 300 mm). However, the edge ring 424 has a diameter that is significantly larger than the substrate 416 and a typical edge ring 424 may not fit through the airlock. Accordingly, a diameter of the edge ring 424 is reduced (e.g., as compared to the edge rings 324 as shown in
For example only, the chamfer of the outer corner may have a height of 0.050″ to 0.070″, a width of 0.030″ to 0.050″, and an angle of 25-35°. In some examples, the chamfer of the lower corner 436 may have a height of approximately 0.025″ (e.g., 0.015″ to 0.040″), a width of approximately 0.015″ (e.g., 0.005″ to 0.030″), and an angle of approximately 60° (50-70°). For example only, a thickness (i.e., height) of the edge ring 424 is approximately, but not greater than, 0.275″ (e.g., 0.25″ to 0.30″). For example, the thickness of the edge ring 424 may not exceed a height of an airlock of the processing chamber 102 to allow removal of the edge ring 424. For example only, the “thickness” of the edge ring 424, as used herein, may refer to a thickness of the edge ring 424 at an inner diameter of the edge ring 424 (e.g., a thickness/height of the edge ring 424 at an inner wall 458) as described above with respect to
As shown in
Accordingly, similar to the examples of
Referring now to
The examples of
As shown in
Accordingly, similar to the examples of
For example only, the chamfers of the lower corners 556 and 558 may have a height and width of approximately 0.005″ to 0.030″ and an angle of approximately 25 to 35° For example, a thickness (i.e., height) of the edge ring 524/526 may be approximately, but not greater than, 0.25″ (e.g., 0.25″ to 0.26″) and a depth of the groove 548 may be 0.200″ to 0.220″. A difference between the thickness of the edge ring 524/526 and the depth of the groove 548 may be not less than 0.075″. For example, the thickness of the edge ring 524/526 may not exceed a height of an airlock of the processing chamber 102 to allow removal of the edge ring 524/526. However, the thickness of the edge ring 524/526 may also be maximized, without exceeding the height of the airlock, to optimize tunability of the edge ring 524/526. In other words, as the edge ring 524/526 erodes over time, the amount the edge ring 524/526 may be raised without needing to be replaced increases proportionately to the thickness of the edge ring 524/526. For example only, the “thickness” of the edge ring 524/526 as used herein, may refer to a thickness of the edge ring 524/526 at an inner diameter of the edge ring 524/526 (e.g., a thickness/height of the edge ring 524/526 at an inner wall 568) as described above with respect to
Referring now to
Referring now to
The substrate support 700 includes an insulator ring or plate 716 and a baseplate (e.g., of an ESC) 720 arranged on the insulator plate 716. The baseplate 720 supports a ceramic layer 724 configured to support a substrate thereon for processing. One or more vias or guide channels 728 may be formed through the insulator plate 716 and the bottom rings 704, 708, 712 to accommodate lift pins 732 arranged to selectively raise and lower the respective edge rings. For example, the guide channels 728 function as pin alignment holes for respective ones of the lift pins 732. A gap between the lift pins 732 and inner surfaces of the guide channels 728 is minimized to decrease plasma leakage. In other words, a diameter of the guide channels 728 is only slightly greater (e.g., 0.005″-0.010″ greater) than a diameter of the lift pins 732. For example, the lift pins 732 may have a diameter of 0.057″-0.061″ while the guide channels 728 have a diameter of 0.063″-0.067″. In some examples, the guide channels 728 include narrow regions 734 that have a diameter that is less than other portions of the guide channels 728 to further restrict plasma leakage. For example, the narrow regions 734 may have a diameter that is 0.002-0.004″ less than the diameter of the guide channels 728. Similarly, in some examples, the lift pins 732 may include narrow regions located within the narrow regions 734 of the guide channels 728.
As shown in
Similarly, as shown in
In some examples, portions of the guide feature 746 and/or the bottom ring 712 may be chamfered to facilitate alignment (i.e., centering) of the edge ring 524 on the substrate support 700. For example, corners 760 and 764 of the guide feature 746 and corner 768 of the bottom ring 712 are chamfered. In some examples, the chamfer of the corner 760 may have a height and width of at least approximately 0.008″ (e.g., 0.007″ to 0.011″) and an angle of 15-25°. The chamfer of the corner 764 may have a height and width of at least approximately 0.01″ (e.g., 0.01″ to 0.02″) and an angle of 20-35°. The chamfer of the corner 768 may have a height and width of at least approximately 0.010″ (e.g., 0.010″ to 0.030″) and an angle of 20-35°.
Inner diameters of the bottom rings 704, 708, and 712 may be at least 11.5″ (e.g., between 11.5″ and 11.7″). Outer diameters of the bottom rings 704, 708, and 712 may be no greater than 14″ (e.g., between 13.8″ and 14.1″). Step inner diameters of the bottom rings 708 and 712 at 772 are selected to accommodate the outer diameter of the edge ring 424 or 524. For example, the outer diameter of the edge ring 424 or 524 may be approximately 12.8″ (e.g., +/−0.10″). Accordingly, the inner diameter of the bottom rings 708 and 712 at 772 may be at least 13.0″.
Referring now to
The substrate support 800 includes an insulator ring or plate 816 and a baseplate (e.g., of an ESC) 820 arranged on the insulator plate 816. The baseplate 820 supports a ceramic layer 824 configured to support a substrate thereon for processing. A bond layer 828 may be arranged between the baseplate 820 and the ceramic layer 824 and a seal 832 surrounds the bond layer 828. One or more vias or guide channels 836 may be formed through the insulator plate 816 and the bottom rings 804, 808, and 812 to accommodate lift pins 840 arranged to selectively raise and lower the respective edge rings. For example, the guide channels 836 function as pin alignment holes for respective ones of the lift pins 840. A gap between the lift pins 840 and inner surfaces of the guide channels 836 is minimized to decrease plasma leakage. In other words, a diameter of the guide channels 836 is only slightly greater (e.g., 0.005″-0.010″ greater) than a diameter of the lift pins 840. For example, the lift pins 840 may have a diameter of 0.1″ while the guide channels 836 have a diameter of 0.105″. In some examples, the guide channels 836 include narrow regions 842 that have a diameter that is less than other portions of the guide channels 836 to further restrict plasma leakage. For example, the narrow regions 842 may have a diameter that is 0.002-0.004″ less than the diameter of the guide channels 836. In some examples, one or more ceramic sleeves 844 may be arranged in the channels 836 around the lift pins 840.
As shown in
In examples where the guide channels 836 include the ceramic sleeves 844 (e.g., examples where the guide channels 836 are routed through the baseplate 820), the bottom rings 804, 808, and 812 may be configured to accommodate the ceramic sleeves 844. For example, the bottom rings 804, 808, and 812 may include a clearance feature such as cavity or cutout 856 having a greater diameter than the guide channels 836 to accommodate upper ends of the ceramic sleeves 844. In some examples, the bottom rings 804, 808, and 812 may be installed subsequent to the lift pins 840. Accordingly, respective openings in the bottom rings 804, 808, and 812 may include a chamfered edge 860 to facilitate installation of the bottom rings 804, 808, and 812 over the lift pins 840. For example, the chamfer of the edge 860 may have a height and width of 0.020″ to 0.035″ and an angle of 40-50°.
As shown in
In some examples, such as shown in
Referring now to
The middle ring 900 includes an inner annular rim 904 and an outer annular rim 908 defining a groove 912. The groove 912 is configured to receive a respective top edge ring (e.g., the edge ring 324 or 526). Conversely, the outer annular rim 908 functions as a guide feature to center the top edge ring 324 or 526 during replacement as described above in
Referring now to
The substrate support 1000 includes an insulator ring or plate 1008 and a baseplate (e.g., of an ESC) 1012 arranged on the insulator plate 1008. The baseplate 1012 supports a ceramic layer 1016 configured to support a substrate thereon for processing. A bond layer 1020 may be arranged between the baseplate 1012 and the ceramic layer 1016 and a seal 1024 surrounds the bond layer 1020. As shown in
The substrate support 1000 may include a liner 1044 arranged to enclose and protect components of the substrate support 1000 such as the insulator plate 1008, the baseplate 1012, and the bottom ring 1004. The bottom ring 1004 as shown in
As shown in
The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure. Further, although each of the embodiments is described above as having certain features, any one or more of those features described with respect to any embodiment of the disclosure can be implemented in and/or combined with features of any of the other embodiments, even if that combination is not explicitly described. In other words, the described embodiments are not mutually exclusive, and permutations of one or more embodiments with one another remain within the scope of this disclosure.
Spatial and functional relationships between elements (for example, between modules, circuit elements, semiconductor layers, etc.) are described using various terms, including “connected,” “engaged,” “coupled,” “adjacent,” “next to,” “on top of,” “above,” “below,” and “disposed.” Unless explicitly described as being “direct,” when a relationship between first and second elements is described in the above disclosure, that relationship can be a direct relationship where no other intervening elements are present between the first and second elements, but can also be an indirect relationship where one or more intervening elements are present (either spatially or functionally) between the first and second elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A OR B OR C), using a non-exclusive logical OR, and should not be construed to mean “at least one of A, at least one of B, and at least one of C.”
In some implementations, a controller is part of a system, which may be part of the above-described examples. Such systems can comprise semiconductor processing equipment, including a processing tool or tools, chamber or chambers, a platform or platforms for processing, and/or specific processing components (a wafer pedestal, a gas flow system, etc.). These systems may be integrated with electronics for controlling their operation before, during, and after processing of a semiconductor wafer or substrate. The electronics may be referred to as the “controller,” which may control various components or subparts of the system or systems. The controller, depending on the processing requirements and/or the type of system, may be programmed to control any of the processes disclosed herein, including the delivery of processing gases, temperature settings (e.g., heating and/or cooling), pressure settings, vacuum settings, power settings, radio frequency (RF) generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, positional and operation settings, wafer transfers into and out of a tool and other transfer tools and/or load locks connected to or interfaced with a specific system.
Broadly speaking, the controller may be defined as electronics having various integrated circuits, logic, memory, and/or software that receive instructions, issue instructions, control operation, enable cleaning operations, enable endpoint measurements, and the like. The integrated circuits may include chips in the form of firmware that store program instructions, digital signal processors (DSPs), chips defined as application specific integrated circuits (ASICs), and/or one or more microprocessors, or microcontrollers that execute program instructions (e.g., software). Program instructions may be instructions communicated to the controller in the form of various individual settings (or program files), defining operational parameters for carrying out a particular process on or for a semiconductor wafer or to a system. The operational parameters may, in some embodiments, be part of a recipe defined by process engineers to accomplish one or more processing steps during the fabrication of one or more layers, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits, and/or dies of a wafer.
The controller, in some implementations, may be a part of or coupled to a computer that is integrated with the system, coupled to the system, otherwise networked to the system, or a combination thereof. For example, the controller may be in the “cloud” or all or a part of a fab host computer system, which can allow for remote access of the wafer processing. The computer may enable remote access to the system to monitor current progress of fabrication operations, examine a history of past fabrication operations, examine trends or performance metrics from a plurality of fabrication operations, to change parameters of current processing, to set processing steps to follow a current processing, or to start a new process. In some examples, a remote computer (e.g. a server) can provide process recipes to a system over a network, which may include a local network or the Internet. The remote computer may include a user interface that enables entry or programming of parameters and/or settings, which are then communicated to the system from the remote computer. In some examples, the controller receives instructions in the form of data, which specify parameters for each of the processing steps to be performed during one or more operations. It should be understood that the parameters may be specific to the type of process to be performed and the type of tool that the controller is configured to interface with or control. Thus as described above, the controller may be distributed, such as by comprising one or more discrete controllers that are networked together and working towards a common purpose, such as the processes and controls described herein. An example of a distributed controller for such purposes would be one or more integrated circuits on a chamber in communication with one or more integrated circuits located remotely (such as at the platform level or as part of a remote computer) that combine to control a process on the chamber.
Without limitation, example systems may include a plasma etch chamber or module, a deposition chamber or module, a spin-rinse chamber or module, a metal plating chamber or module, a clean chamber or module, a bevel edge etch chamber or module, a physical vapor deposition (PVD) chamber or module, a chemical vapor deposition (CVD) chamber or module, an atomic layer deposition (ALD) chamber or module, an atomic layer etch (ALE) chamber or module, an ion implantation chamber or module, a track chamber or module, and any other semiconductor processing systems that may be associated or used in the fabrication and/or manufacturing of semiconductor wafers.
As noted above, depending on the process step or steps to be performed by the tool, the controller might communicate with one or more of other tool circuits or modules, other tool components, cluster tools, other tool interfaces, adjacent tools, neighboring tools, tools located throughout a factory, a main computer, another controller, or tools used in material transport that bring containers of wafers to and from tool locations and/or load ports in a semiconductor manufacturing factory.
The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure. Further, although each of the embodiments is described above as having certain features, any one or more of those features described with respect to any embodiment of the disclosure can be implemented in and/or combined with features of any of the other embodiments, even if that combination is not explicitly described. In other words, the described embodiments are not mutually exclusive, and permutations of one or more embodiments with one another remain within the scope of this disclosure.
Spatial and functional relationships between elements (for example, between modules, circuit elements, semiconductor layers, etc.) are described using various terms, including “connected,” “engaged,” “coupled,” “adjacent,” “next to,” “on top of,” “above,” “below,” and “disposed.” Unless explicitly described as being “direct,” when a relationship between first and second elements is described in the above disclosure, that relationship can be a direct relationship where no other intervening elements are present between the first and second elements, but can also be an indirect relationship where one or more intervening elements are present (either spatially or functionally) between the first and second elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A OR B OR C), using a non-exclusive logical OR, and should not be construed to mean “at least one of A, at least one of B, and at least one of C.”
In some implementations, a controller is part of a system, which may be part of the above-described examples. Such systems can comprise semiconductor processing equipment, including a processing tool or tools, chamber or chambers, a platform or platforms for processing, and/or specific processing components (a wafer pedestal, a gas flow system, etc.). These systems may be integrated with electronics for controlling their operation before, during, and after processing of a semiconductor wafer or substrate. The electronics may be referred to as the “controller,” which may control various components or subparts of the system or systems. The controller, depending on the processing requirements and/or the type of system, may be programmed to control any of the processes disclosed herein, including the delivery of processing gases, temperature settings (e.g., heating and/or cooling), pressure settings, vacuum settings, power settings, radio frequency (RF) generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, positional and operation settings, wafer transfers into and out of a tool and other transfer tools and/or load locks connected to or interfaced with a specific system.
Broadly speaking, the controller may be defined as electronics having various integrated circuits, logic, memory, and/or software that receive instructions, issue instructions, control operation, enable cleaning operations, enable endpoint measurements, and the like. The integrated circuits may include chips in the form of firmware that store program instructions, digital signal processors (DSPs), chips defined as application specific integrated circuits (ASICs), and/or one or more microprocessors, or microcontrollers that execute program instructions (e.g., software). Program instructions may be instructions communicated to the controller in the form of various individual settings (or program files), defining operational parameters for carrying out a particular process on or for a semiconductor wafer or to a system. The operational parameters may, in some embodiments, be part of a recipe defined by process engineers to accomplish one or more processing steps during the fabrication of one or more layers, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits, and/or dies of a wafer.
The controller, in some implementations, may be a part of or coupled to a computer that is integrated with the system, coupled to the system, otherwise networked to the system, or a combination thereof. For example, the controller may be in the “cloud” or all or a part of a fab host computer system, which can allow for remote access of the wafer processing. The computer may enable remote access to the system to monitor current progress of fabrication operations, examine a history of past fabrication operations, examine trends or performance metrics from a plurality of fabrication operations, to change parameters of current processing, to set processing steps to follow a current processing, or to start a new process. In some examples, a remote computer (e.g. a server) can provide process recipes to a system over a network, which may include a local network or the Internet. The remote computer may include a user interface that enables entry or programming of parameters and/or settings, which are then communicated to the system from the remote computer. In some examples, the controller receives instructions in the form of data, which specify parameters for each of the processing steps to be performed during one or more operations. It should be understood that the parameters may be specific to the type of process to be performed and the type of tool that the controller is configured to interface with or control. Thus as described above, the controller may be distributed, such as by comprising one or more discrete controllers that are networked together and working towards a common purpose, such as the processes and controls described herein. An example of a distributed controller for such purposes would be one or more integrated circuits on a chamber in communication with one or more integrated circuits located remotely (such as at the platform level or as part of a remote computer) that combine to control a process on the chamber.
Without limitation, example systems may include a plasma etch chamber or module, a deposition chamber or module, a spin-rinse chamber or module, a metal plating chamber or module, a clean chamber or module, a bevel edge etch chamber or module, a physical vapor deposition (PVD) chamber or module, a chemical vapor deposition (CVD) chamber or module, an atomic layer deposition (ALD) chamber or module, an atomic layer etch (ALE) chamber or module, an ion implantation chamber or module, a track chamber or module, and any other semiconductor processing systems that may be associated or used in the fabrication and/or manufacturing of semiconductor wafers.
As noted above, depending on the process step or steps to be performed by the tool, the controller might communicate with one or more of other tool circuits or modules, other tool components, cluster tools, other tool interfaces, adjacent tools, neighboring tools, tools located throughout a factory, a main computer, another controller, or tools used in material transport that bring containers of wafers to and from tool locations and/or load ports in a semiconductor manufacturing factory.
The present disclosure is a divisional of U.S. patent application Ser. No. 16/487,703, filed on Aug. 21, 2019, which is a National Stage of International Application PCT/US2017/062769, filed on Nov. 21, 2017. The entire disclosures of the applications referenced above are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3534753 | Ollivier | Oct 1970 | A |
4262686 | Heim et al. | Apr 1981 | A |
4374698 | Sanders et al. | Feb 1983 | A |
4431477 | Zajac | Feb 1984 | A |
4793897 | Dunfield et al. | Dec 1988 | A |
5190823 | Anthony et al. | Mar 1993 | A |
5220515 | Freerks et al. | Jun 1993 | A |
5304248 | Cheng et al. | Apr 1994 | A |
5329965 | Gordon | Jul 1994 | A |
5346578 | Benzing et al. | Sep 1994 | A |
5376214 | Iwasaki et al. | Dec 1994 | A |
5413145 | Rhyne et al. | May 1995 | A |
5520969 | Nishizato et al. | May 1996 | A |
5569350 | Osada et al. | Oct 1996 | A |
5605179 | Strong, Jr. et al. | Feb 1997 | A |
5660673 | Miyoshi | Aug 1997 | A |
5662143 | Caughran | Sep 1997 | A |
5683517 | Shan | Nov 1997 | A |
5702530 | Shan et al. | Dec 1997 | A |
5744695 | Forbes | Apr 1998 | A |
5762714 | Mohn et al. | Jun 1998 | A |
5792272 | van Os et al. | Aug 1998 | A |
5840129 | Saenz et al. | Nov 1998 | A |
5851299 | Cheng et al. | Dec 1998 | A |
5907221 | Sato et al. | May 1999 | A |
5952060 | Ravi | Sep 1999 | A |
6022809 | Fan | Feb 2000 | A |
6042687 | Singh et al. | Mar 2000 | A |
6044534 | Seo et al. | Apr 2000 | A |
6048403 | Deaton et al. | Apr 2000 | A |
6050283 | Hoffman et al. | Apr 2000 | A |
6060400 | Oehrlein et al. | May 2000 | A |
6062256 | Miller et al. | May 2000 | A |
6074959 | Wang et al. | Jun 2000 | A |
6152168 | Ohmi et al. | Nov 2000 | A |
6206976 | Crevasse et al. | Mar 2001 | B1 |
6210593 | Ohkuni et al. | Apr 2001 | B1 |
6217937 | Shealy | Apr 2001 | B1 |
6231716 | White et al. | May 2001 | B1 |
6294466 | Chang | Sep 2001 | B1 |
6328808 | Tsai et al. | Dec 2001 | B1 |
6376386 | Oshima | Apr 2002 | B1 |
6492774 | Han et al. | Dec 2002 | B1 |
6508911 | Han et al. | Jan 2003 | B1 |
6511543 | Stauss et al. | Jan 2003 | B1 |
6589352 | Yudovsky et al. | Jul 2003 | B1 |
6605352 | Windischmann | Aug 2003 | B1 |
6623597 | Han | Sep 2003 | B1 |
6709547 | Ni et al. | Mar 2004 | B1 |
6722642 | Sutton et al. | Apr 2004 | B1 |
6736931 | Collins et al. | May 2004 | B2 |
6744212 | Fischer et al. | Jun 2004 | B2 |
6818560 | Koshimizu et al. | Nov 2004 | B1 |
6841943 | Vahedi et al. | Jan 2005 | B2 |
6896765 | Steger | May 2005 | B2 |
6898558 | Klekotka | May 2005 | B2 |
6962879 | Zhu et al. | Nov 2005 | B2 |
7129171 | Zhu et al. | Oct 2006 | B2 |
7288482 | Panda et al. | Oct 2007 | B2 |
7309646 | Heo et al. | Dec 2007 | B1 |
7311784 | Fink | Dec 2007 | B2 |
7338907 | Li et al. | Mar 2008 | B2 |
7378128 | Rancoule | May 2008 | B2 |
7431788 | Ricci et al. | Oct 2008 | B2 |
7481944 | Nozawa et al. | Jan 2009 | B2 |
7736998 | Morita et al. | Jun 2010 | B2 |
7757541 | Monkowski et al. | Jul 2010 | B1 |
7758698 | Bang et al. | Jul 2010 | B2 |
7882800 | Koshiishi et al. | Feb 2011 | B2 |
7968469 | Collins et al. | Jun 2011 | B2 |
7988813 | Chen et al. | Aug 2011 | B2 |
8137463 | Liu et al. | Mar 2012 | B2 |
8177910 | Schmid et al. | May 2012 | B2 |
8291935 | Merritt et al. | Oct 2012 | B1 |
8485128 | Kellogg et al. | Jul 2013 | B2 |
8552334 | Tappan et al. | Oct 2013 | B2 |
8555920 | Hirata et al. | Oct 2013 | B2 |
8592328 | Hausmann et al. | Nov 2013 | B2 |
8826855 | Kellogg et al. | Sep 2014 | B2 |
8889024 | Watanabe et al. | Nov 2014 | B2 |
8956980 | Chen et al. | Feb 2015 | B1 |
8999106 | Liu et al. | Apr 2015 | B2 |
9011637 | Yamamoto | Apr 2015 | B2 |
9051647 | Cooperberg et al. | Jun 2015 | B2 |
9059678 | Long et al. | Jun 2015 | B2 |
9142391 | Yamamoto | Sep 2015 | B2 |
9318343 | Ranjan et al. | Apr 2016 | B2 |
9412555 | Augustino et al. | Aug 2016 | B2 |
9471065 | Koyomogi et al. | Oct 2016 | B2 |
9640409 | Yang et al. | May 2017 | B1 |
9779916 | Dhindsa et al. | Oct 2017 | B2 |
10096471 | Canniff | Oct 2018 | B2 |
10147588 | Eason et al. | Dec 2018 | B2 |
10410832 | Zhang et al. | Sep 2019 | B2 |
10490392 | Ishizawa | Nov 2019 | B2 |
10504738 | Lin et al. | Dec 2019 | B2 |
10510516 | Lin et al. | Dec 2019 | B2 |
10591934 | Gopalakrishnan et al. | Mar 2020 | B2 |
10651015 | Angelov et al. | May 2020 | B2 |
10658222 | Yan et al. | May 2020 | B2 |
10699878 | Caron et al. | Jun 2020 | B2 |
10825659 | Treadwell et al. | Nov 2020 | B2 |
10957561 | Drewery et al. | Mar 2021 | B2 |
20010002581 | Nishikawa et al. | Jun 2001 | A1 |
20010004903 | Ohmi et al. | Jun 2001 | A1 |
20010013363 | Kitayama et al. | Aug 2001 | A1 |
20010035530 | Udagawa | Nov 2001 | A1 |
20020038669 | Yamagishi et al. | Apr 2002 | A1 |
20020042205 | McMillin et al. | Apr 2002 | A1 |
20020043337 | Goodman et al. | Apr 2002 | A1 |
20020045265 | Bergh et al. | Apr 2002 | A1 |
20020046991 | Smith et al. | Apr 2002 | A1 |
20020048536 | Bergh et al. | Apr 2002 | A1 |
20020067585 | Fujiwara | Jun 2002 | A1 |
20020071128 | Doan | Jun 2002 | A1 |
20020072240 | Koike | Jun 2002 | A1 |
20020088542 | Nishikawa et al. | Jul 2002 | A1 |
20020160125 | Johnson et al. | Oct 2002 | A1 |
20020174905 | Latino et al. | Nov 2002 | A1 |
20020175144 | Hung et al. | Nov 2002 | A1 |
20030000369 | Funaki | Jan 2003 | A1 |
20030003696 | Gelatos et al. | Jan 2003 | A1 |
20030011619 | Jacobs et al. | Jan 2003 | A1 |
20030013080 | Luebke et al. | Jan 2003 | A1 |
20030015141 | Takagi | Jan 2003 | A1 |
20030021356 | Okuda et al. | Jan 2003 | A1 |
20030023023 | Harris et al. | Jan 2003 | A1 |
20030116195 | Weissgerber et al. | Jun 2003 | A1 |
20030130807 | Ambrosina et al. | Jul 2003 | A1 |
20030186563 | Kobayashi et al. | Oct 2003 | A1 |
20030196890 | Le | Oct 2003 | A1 |
20030201069 | Johnson | Oct 2003 | A1 |
20030213560 | Wang et al. | Nov 2003 | A1 |
20030230239 | Shan | Dec 2003 | A1 |
20030231950 | Raaijmakers | Dec 2003 | A1 |
20030236592 | Shajii et al. | Dec 2003 | A1 |
20030236638 | Shajii et al. | Dec 2003 | A1 |
20030236643 | Shajii et al. | Dec 2003 | A1 |
20040007176 | Janakiraman et al. | Jan 2004 | A1 |
20040025060 | Raffaele et al. | Feb 2004 | A1 |
20040026149 | Wilkinson | Feb 2004 | A1 |
20040031338 | Chen et al. | Feb 2004 | A1 |
20040053428 | Steger | Mar 2004 | A1 |
20040060595 | Chittenden | Apr 2004 | A1 |
20040089240 | Dando et al. | May 2004 | A1 |
20040094206 | Ishida | May 2004 | A1 |
20040112538 | Larson et al. | Jun 2004 | A1 |
20040112539 | Larson et al. | Jun 2004 | A1 |
20040112540 | Larson et al. | Jun 2004 | A1 |
20040149389 | Fink | Aug 2004 | A1 |
20040163601 | Kadotani et al. | Aug 2004 | A1 |
20040168719 | Nambu | Sep 2004 | A1 |
20040173270 | Harris et al. | Sep 2004 | A1 |
20040200529 | Lull et al. | Oct 2004 | A1 |
20040250600 | Bevers et al. | Dec 2004 | A1 |
20040261492 | Zarkar et al. | Dec 2004 | A1 |
20050005994 | Sugiyama et al. | Jan 2005 | A1 |
20050041238 | Ludviksson et al. | Feb 2005 | A1 |
20050061447 | Kim et al. | Mar 2005 | A1 |
20050067021 | Bevers et al. | Mar 2005 | A1 |
20050082007 | Nguyen et al. | Apr 2005 | A1 |
20050155625 | Jangjian et al. | Jul 2005 | A1 |
20050199342 | Shajii et al. | Sep 2005 | A1 |
20050241763 | Huang et al. | Nov 2005 | A1 |
20060011237 | Tison et al. | Jan 2006 | A1 |
20060021223 | Wakayama et al. | Feb 2006 | A1 |
20060060141 | Kamaishi et al. | Mar 2006 | A1 |
20060090797 | Olander | May 2006 | A1 |
20060097644 | Kono et al. | May 2006 | A1 |
20060124169 | Mizusawa et al. | Jun 2006 | A1 |
20060207595 | Ohmi et al. | Sep 2006 | A1 |
20060212233 | Wong et al. | Sep 2006 | A1 |
20060237063 | Ding et al. | Oct 2006 | A1 |
20060283551 | Son | Dec 2006 | A1 |
20070024077 | McClintock | Feb 2007 | A1 |
20070026684 | Parascandola et al. | Feb 2007 | A1 |
20070066038 | Sadjadi et al. | Mar 2007 | A1 |
20070131350 | Ricci | Jun 2007 | A1 |
20070158025 | Larson | Jul 2007 | A1 |
20070175391 | Mizusawa | Aug 2007 | A1 |
20070187363 | Oka et al. | Aug 2007 | A1 |
20070204797 | Fischer | Sep 2007 | A1 |
20070204914 | Kurosawa et al. | Sep 2007 | A1 |
20070208427 | Davidson et al. | Sep 2007 | A1 |
20070233412 | Gotoh et al. | Oct 2007 | A1 |
20070240778 | L'Bassi et al. | Oct 2007 | A1 |
20070256785 | Pamarthy et al. | Nov 2007 | A1 |
20070256786 | Zhou et al. | Nov 2007 | A1 |
20070259112 | Ishikawa et al. | Nov 2007 | A1 |
20070283882 | Cho et al. | Dec 2007 | A1 |
20070284344 | Todorov et al. | Dec 2007 | A1 |
20080014347 | Power | Jan 2008 | A1 |
20080072823 | Yudovsky et al. | Mar 2008 | A1 |
20080101978 | Ryabova et al. | May 2008 | A1 |
20080115834 | Geoffrion et al. | May 2008 | A1 |
20080121177 | Bang et al. | May 2008 | A1 |
20080121178 | Bang et al. | May 2008 | A1 |
20080174387 | Chiang | Jul 2008 | A1 |
20080202588 | Gold et al. | Aug 2008 | A1 |
20080202609 | Gold et al. | Aug 2008 | A1 |
20080202610 | Gold et al. | Aug 2008 | A1 |
20080223873 | Chen et al. | Sep 2008 | A1 |
20080236749 | Koshimizu | Oct 2008 | A1 |
20080317564 | Cheng et al. | Dec 2008 | A1 |
20090015141 | Wang et al. | Jan 2009 | A1 |
20090056629 | Katz et al. | Mar 2009 | A1 |
20090061083 | Chiang et al. | Mar 2009 | A1 |
20090061640 | Wong et al. | Mar 2009 | A1 |
20090061644 | Chiang et al. | Mar 2009 | A1 |
20090067954 | Lanee et al. | Mar 2009 | A1 |
20090078196 | Midorikawa | Mar 2009 | A1 |
20090090174 | Paul et al. | Apr 2009 | A1 |
20090095364 | Itoh et al. | Apr 2009 | A1 |
20090151419 | Doniat et al. | Jun 2009 | A1 |
20090162952 | Liu et al. | Jun 2009 | A1 |
20090163037 | Miya et al. | Jun 2009 | A1 |
20090183548 | Monkowski et al. | Jul 2009 | A1 |
20090183549 | Monkowski et al. | Jul 2009 | A1 |
20090197423 | Koshimizu et al. | Aug 2009 | A1 |
20090209112 | Koelmel et al. | Aug 2009 | A1 |
20090221117 | Tan et al. | Sep 2009 | A1 |
20090236313 | Qiu et al. | Sep 2009 | A1 |
20090272717 | Pamarthy et al. | Nov 2009 | A1 |
20090279989 | Wong et al. | Nov 2009 | A1 |
20090320754 | Oya et al. | Dec 2009 | A1 |
20100012310 | Christensen et al. | Jan 2010 | A1 |
20100025369 | Negishi et al. | Feb 2010 | A1 |
20100030390 | Yamaguchi et al. | Feb 2010 | A1 |
20100071438 | Davis et al. | Mar 2010 | A1 |
20100122655 | Tiner et al. | May 2010 | A1 |
20100144539 | Bergh et al. | Jun 2010 | A1 |
20100145633 | Yasuda | Jun 2010 | A1 |
20100178770 | Zin | Jul 2010 | A1 |
20100197070 | Stoddard et al. | Aug 2010 | A1 |
20100216313 | Iwai | Aug 2010 | A1 |
20100229976 | Hirata et al. | Sep 2010 | A1 |
20100264117 | Ohmi et al. | Oct 2010 | A1 |
20100269924 | Yasuda | Oct 2010 | A1 |
20100272347 | Rodnick et al. | Oct 2010 | A1 |
20100273334 | Koelmel et al. | Oct 2010 | A1 |
20110019332 | Chistyakov | Jan 2011 | A1 |
20110025322 | Yamazaki et al. | Feb 2011 | A1 |
20110026588 | Boyce | Feb 2011 | A1 |
20110026595 | Yasuda et al. | Feb 2011 | A1 |
20110031111 | Kobayashi | Feb 2011 | A1 |
20110094596 | Sugiyama et al. | Apr 2011 | A1 |
20110108524 | Dhindsa et al. | May 2011 | A1 |
20110135821 | Ding | Jun 2011 | A1 |
20110157760 | Willwerth et al. | Jun 2011 | A1 |
20110229837 | Migita | Sep 2011 | A1 |
20110253225 | Beeby et al. | Oct 2011 | A1 |
20110259262 | Khattak et al. | Oct 2011 | A1 |
20110265883 | Cruse et al. | Nov 2011 | A1 |
20110265951 | Xu et al. | Nov 2011 | A1 |
20110287631 | Yamamoto | Nov 2011 | A1 |
20110303696 | Kelekar et al. | Dec 2011 | A1 |
20120031500 | Hirose et al. | Feb 2012 | A1 |
20120032756 | Long et al. | Feb 2012 | A1 |
20120034786 | Dhindsa et al. | Feb 2012 | A1 |
20120080092 | Singh et al. | Apr 2012 | A1 |
20120091108 | Lin et al. | Apr 2012 | A1 |
20120097266 | Cobb et al. | Apr 2012 | A1 |
20120149213 | Nittala et al. | Jun 2012 | A1 |
20120152364 | Hashimoto et al. | Jun 2012 | A1 |
20120156363 | Quinn et al. | Jun 2012 | A1 |
20120174990 | Yasuda | Jul 2012 | A1 |
20120175062 | de la Llera et al. | Jul 2012 | A1 |
20120190208 | Ozu et al. | Jul 2012 | A1 |
20120238102 | Zhang et al. | Sep 2012 | A1 |
20120238103 | Zhang et al. | Sep 2012 | A1 |
20120244715 | Lebouitz et al. | Sep 2012 | A1 |
20120247386 | Sanchez et al. | Oct 2012 | A1 |
20120280429 | Ravi et al. | Nov 2012 | A1 |
20120282162 | Skelton et al. | Nov 2012 | A1 |
20120289057 | DeDontney | Nov 2012 | A1 |
20120298221 | Takeuchi et al. | Nov 2012 | A1 |
20120305184 | Singh et al. | Dec 2012 | A1 |
20120312800 | Chartier et al. | Dec 2012 | A1 |
20120328780 | Yamagishi | Dec 2012 | A1 |
20130000731 | Singh et al. | Jan 2013 | A1 |
20130008607 | Matsumoto et al. | Jan 2013 | A1 |
20130025715 | Yamaguchi et al. | Jan 2013 | A1 |
20130029494 | Sasaki et al. | Jan 2013 | A1 |
20130029496 | Bauer et al. | Jan 2013 | A1 |
20130045605 | Wang et al. | Feb 2013 | A1 |
20130085618 | Ding | Apr 2013 | A1 |
20130104996 | Oh et al. | May 2013 | A1 |
20130106286 | Banna et al. | May 2013 | A1 |
20130131300 | Olmscheid et al. | May 2013 | A1 |
20130135058 | Long et al. | May 2013 | A1 |
20130145816 | Lowe | Jun 2013 | A1 |
20130155568 | Todorow et al. | Jun 2013 | A1 |
20130157388 | Grimbergen | Jun 2013 | A1 |
20130220433 | Sawada et al. | Aug 2013 | A1 |
20130255784 | Ye et al. | Oct 2013 | A1 |
20130256962 | Ranish et al. | Oct 2013 | A1 |
20130270997 | Zhao et al. | Oct 2013 | A1 |
20130284374 | Lubomirsky et al. | Oct 2013 | A1 |
20130288477 | Rieschl et al. | Oct 2013 | A1 |
20130313785 | Otschik et al. | Nov 2013 | A1 |
20130334038 | Riker | Dec 2013 | A1 |
20140017900 | Doba et al. | Jan 2014 | A1 |
20140020764 | Woelk et al. | Jan 2014 | A1 |
20140033828 | Larson et al. | Feb 2014 | A1 |
20140034243 | Dhindsa et al. | Feb 2014 | A1 |
20140080308 | Chen et al. | Mar 2014 | A1 |
20140094039 | Ranish et al. | Apr 2014 | A1 |
20140120737 | Swaminathan et al. | May 2014 | A1 |
20140141621 | Ren et al. | May 2014 | A1 |
20140144471 | Kahlon et al. | May 2014 | A1 |
20140182689 | Shareef et al. | Jul 2014 | A1 |
20140190822 | Riker et al. | Jul 2014 | A1 |
20140213055 | Himori et al. | Jul 2014 | A1 |
20140235063 | McMillin et al. | Aug 2014 | A1 |
20140248780 | Ingle et al. | Sep 2014 | A1 |
20140262038 | Wang et al. | Sep 2014 | A1 |
20140262763 | Rasheed | Sep 2014 | A1 |
20140263177 | Povolny et al. | Sep 2014 | A1 |
20140272459 | Daugherty et al. | Sep 2014 | A1 |
20140273460 | Reyland et al. | Sep 2014 | A1 |
20140273505 | Hsieh et al. | Sep 2014 | A1 |
20140311676 | Hatoh et al. | Oct 2014 | A1 |
20150009906 | Dore et al. | Jan 2015 | A1 |
20150010381 | Cai | Jan 2015 | A1 |
20150017810 | Guha | Jan 2015 | A1 |
20150037183 | Rood et al. | Feb 2015 | A1 |
20150044873 | Kellogg | Feb 2015 | A1 |
20150059859 | Takahashi et al. | Mar 2015 | A1 |
20150099066 | Huotari et al. | Apr 2015 | A1 |
20150099365 | Chen et al. | Apr 2015 | A1 |
20150181684 | Banna et al. | Jun 2015 | A1 |
20150184287 | Tsung et al. | Jul 2015 | A1 |
20150234390 | Koyomogi et al. | Aug 2015 | A1 |
20150262793 | Okunishi et al. | Sep 2015 | A1 |
20150287572 | Daugherty et al. | Oct 2015 | A1 |
20150336275 | Mazzocco et al. | Nov 2015 | A1 |
20150340209 | Koltonski | Nov 2015 | A1 |
20150371831 | Rozenzon et al. | Dec 2015 | A1 |
20150373783 | Kitagawa | Dec 2015 | A1 |
20160035610 | Park et al. | Feb 2016 | A1 |
20160039126 | Tan et al. | Feb 2016 | A1 |
20160111258 | Taskar et al. | Apr 2016 | A1 |
20160172165 | Jeon et al. | Jun 2016 | A1 |
20160181116 | Berry, III et al. | Jun 2016 | A1 |
20160204019 | Ishii et al. | Jul 2016 | A1 |
20160211165 | McChesney et al. | Jul 2016 | A1 |
20160211166 | Yan et al. | Jul 2016 | A1 |
20160215392 | Yudovsky et al. | Jul 2016 | A1 |
20160247688 | Zhu et al. | Aug 2016 | A1 |
20160293431 | Sriraman et al. | Oct 2016 | A1 |
20170018407 | Kondo | Jan 2017 | A1 |
20170032982 | Drewery et al. | Feb 2017 | A1 |
20170040148 | Augustino et al. | Feb 2017 | A1 |
20170043527 | Uttaro | Feb 2017 | A1 |
20170062769 | Kim et al. | Mar 2017 | A1 |
20170069464 | Ye et al. | Mar 2017 | A1 |
20170069511 | Yang et al. | Mar 2017 | A1 |
20170110335 | Yang et al. | Apr 2017 | A1 |
20170111025 | Kapoor et al. | Apr 2017 | A1 |
20170115657 | Trussell et al. | Apr 2017 | A1 |
20170200586 | Treadwell et al. | Jul 2017 | A1 |
20170213751 | Oohashi | Jul 2017 | A1 |
20170213758 | Rice et al. | Jul 2017 | A1 |
20170236688 | Caron et al. | Aug 2017 | A1 |
20170236694 | Eason et al. | Aug 2017 | A1 |
20170236741 | Angelov et al. | Aug 2017 | A1 |
20170236743 | Severson et al. | Aug 2017 | A1 |
20170256393 | Kim et al. | Sep 2017 | A1 |
20170256435 | Joubert et al. | Sep 2017 | A1 |
20170263478 | McChesney et al. | Sep 2017 | A1 |
20170278679 | Angelov et al. | Sep 2017 | A1 |
20170287682 | Musselman et al. | Oct 2017 | A1 |
20170287753 | Musselman et al. | Oct 2017 | A1 |
20170326733 | Ramachandran et al. | Nov 2017 | A1 |
20180019107 | Ishizawa | Jan 2018 | A1 |
20180052104 | Larsson et al. | Feb 2018 | A1 |
20180053629 | Zhang et al. | Feb 2018 | A1 |
20180114716 | Hao et al. | Apr 2018 | A1 |
20180138069 | Tan et al. | May 2018 | A1 |
20180166259 | Ueda | Jun 2018 | A1 |
20180190526 | Hao et al. | Jul 2018 | A1 |
20180218933 | Luere et al. | Aug 2018 | A1 |
20180277416 | Takahashi et al. | Sep 2018 | A1 |
20180358211 | Mun | Dec 2018 | A1 |
20190013232 | Yan et al. | Jan 2019 | A1 |
20190027988 | Filipenko et al. | Jan 2019 | A1 |
20190279888 | Gopalakrishnan et al. | Sep 2019 | A1 |
20190363003 | Sarode Vishwanath | Nov 2019 | A1 |
20200004954 | Zawadowskiy et al. | Jan 2020 | A1 |
20200020565 | Rathnasinghe | Jan 2020 | A1 |
20200049547 | Spyropoulos et al. | Feb 2020 | A1 |
20200395195 | Sanchez et al. | Dec 2020 | A1 |
20210057256 | Bergantz et al. | Feb 2021 | A1 |
20210066052 | Emura | Mar 2021 | A1 |
20210111007 | Kim et al. | Apr 2021 | A1 |
20210291374 | Bergantz et al. | Sep 2021 | A1 |
20220122878 | Wu et al. | Apr 2022 | A1 |
20220246408 | Genetti et al. | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
1189859 | Aug 1998 | CN |
1701421 | Nov 2005 | CN |
101552182 | Oct 2009 | CN |
102243977 | Nov 2011 | CN |
102315150 | Jan 2012 | CN |
103730318 | Apr 2014 | CN |
104205321 | Dec 2014 | CN |
104299929 | Jan 2015 | CN |
104752141 | Jul 2015 | CN |
104851832 | Aug 2015 | CN |
105336561 | Feb 2016 | CN |
107093569 | Aug 2017 | CN |
107768275 | Mar 2018 | CN |
108369922 | Aug 2018 | CN |
112563108 | Mar 2021 | CN |
0424299 | Apr 1991 | EP |
0821404 | Jan 1998 | EP |
0838842 | Apr 1998 | EP |
0875979 | Nov 1998 | EP |
H07221024 | Aug 1995 | JP |
H10-280173 | Oct 1998 | JP |
20000124141 | Apr 2000 | JP |
3076791 | Aug 2000 | JP |
2001-230239 | Aug 2001 | JP |
2001522142 | Nov 2001 | JP |
2002500439 | Jan 2002 | JP |
2002503765 | Feb 2002 | JP |
2002-176030 | Jun 2002 | JP |
2002-217171 | Aug 2002 | JP |
2002-231794 | Aug 2002 | JP |
2003-513434 | Apr 2003 | JP |
2004-266127 | Sep 2004 | JP |
2004296553 | Oct 2004 | JP |
2006173223 | Jun 2006 | JP |
2006186171 | Jul 2006 | JP |
2006-344701 | Dec 2006 | JP |
2007207808 | Aug 2007 | JP |
2007-234867 | Sep 2007 | JP |
2007321244 | Dec 2007 | JP |
2007535819 | Dec 2007 | JP |
2008027936 | Feb 2008 | JP |
2008-244274 | Oct 2008 | JP |
2008-251681 | Oct 2008 | JP |
2010034416 | Feb 2010 | JP |
2010267894 | Nov 2010 | JP |
2011-54933 | Mar 2011 | JP |
2011210853 | Oct 2011 | JP |
2012-049376 | Mar 2012 | JP |
2012507860 | Mar 2012 | JP |
2012216614 | Nov 2012 | JP |
2013511847 | Apr 2013 | JP |
2013526063 | Jun 2013 | JP |
2013530516 | Jul 2013 | JP |
5767373 | Aug 2015 | JP |
2015201552 | Nov 2015 | JP |
2016046451 | Apr 2016 | JP |
2016-146472 | Aug 2016 | JP |
2016-219820 | Dec 2016 | JP |
2017183701 | Oct 2017 | JP |
2018010992 | Jan 2018 | JP |
2018098239 | Jun 2018 | JP |
2018125519 | Aug 2018 | JP |
2019505088 | Feb 2019 | JP |
2020043137 | Mar 2020 | JP |
20020031417 | May 2002 | KR |
1020020031417 | May 2002 | KR |
20020071398 | Sep 2002 | KR |
20030065126 | Aug 2003 | KR |
20040050080 | Jun 2004 | KR |
20050008792 | Jan 2005 | KR |
20050038898 | Apr 2005 | KR |
100578129 | May 2006 | KR |
20070073704 | Jul 2007 | KR |
100783062 | Dec 2007 | KR |
100803858 | Feb 2008 | KR |
20080013552 | Feb 2008 | KR |
20080023569 | Mar 2008 | KR |
20090080520 | Jul 2009 | KR |
1020090080520 | Jul 2009 | KR |
2010-0105695 | Sep 2010 | KR |
20100123724 | Nov 2010 | KR |
2011-0125188 | Nov 2011 | KR |
2013-0124616 | Nov 2013 | KR |
1020130124616 | Nov 2013 | KR |
20130137962 | Dec 2013 | KR |
20140001540 | Jan 2014 | KR |
2014-0101870 | Aug 2014 | KR |
2014-0103872 | Aug 2014 | KR |
2014-0132542 | Nov 2014 | KR |
10-2016-0063412 | Jun 2016 | KR |
20167013192 | Jun 2016 | KR |
10-2016-0088820 | Jul 2016 | KR |
20170037526 | Apr 2017 | KR |
20180099776 | Sep 2018 | KR |
1020180099776 | Sep 2018 | KR |
101927936 | Dec 2018 | KR |
20190026898 | Mar 2019 | KR |
10-1974422 | May 2019 | KR |
101974420 | May 2019 | KR |
506234 | Oct 2002 | TW |
200302035 | Jul 2003 | TW |
200520137 | Jun 2005 | TW |
1267563 | Dec 2006 | TW |
201001588 | Jan 2010 | TW |
201207933 | Feb 2012 | TW |
201324653 | Jun 2013 | TW |
201347063 | Nov 2013 | TW |
201351532 | Dec 2013 | TW |
201426854 | Jul 2014 | TW |
201436089 | Sep 2014 | TW |
201447965 | Dec 2014 | TW |
201528310 | Jul 2015 | TW |
201601208 | Jan 2016 | TW |
201626427 | Jul 2016 | TW |
201817899 | May 2018 | TW |
WO-0040776 | Jul 2000 | WO |
WO-0113404 | Feb 2001 | WO |
WO-2007008509 | Jan 2007 | WO |
WO-2009086109 | Jul 2009 | WO |
WO-2011051251 | May 2011 | WO |
WO-2013108750 | Jul 2013 | WO |
WO-2013123617 | Aug 2013 | WO |
WO-2014068886 | May 2014 | WO |
WO-2014163742 | Oct 2014 | WO |
WO-2014209492 | Dec 2014 | WO |
WO-2017131927 | Aug 2017 | WO |
2017155812 | Sep 2017 | WO |
WO-2018010986 | Jan 2018 | WO |
WO-2019103722 | May 2019 | WO |
WO-2019143858 | Jul 2019 | WO |
WO-2020-180656 | Sep 2020 | WO |
WO-2021026110 | Feb 2021 | WO |
WO-2021030184 | Feb 2021 | WO |
WO-2021-167897 | Aug 2021 | WO |
WO-2021-194470 | Sep 2021 | WO |
WO-2022076227 | Apr 2022 | WO |
Entry |
---|
International Search Report and Written Opinion issued in PCT/US2017/062769, mailed Aug. 21, 2018; ISA/KR. |
International Search Report and Written Opinion issued in PCT/US2017/043527, mailed Apr. 20, 2018; ISA/KR. |
Search Report dated Sep. 7, 2020 corresponding to European Application No. 17 919 402.2, 9 pages. |
Machine Translation of Notice of Reasons for Refusal corresponding to Japanese Patent Application No. 2019-559033 dated Dec. 22, 2020, 4 pages. |
Translation of Written Opinion corresponding to Singapore Application No. 11201907515W dated Mar. 15, 2020, 4 pages. |
Translation of Notification of Examination Opinions dated May 4, 2020 corresponding to Taiwanese Patent Application No. 106142110, 7 pages. |
Translation of Notification of Office Action dated Dec. 17, 2019 corresponding to Korean Patent Application No. 10-2018-7021511, 2 pages. |
Translation of Notification of Office Action dated Jun. 26, 2020 corresponding to Korean Patent Application No. 10-2018-7021511, 2 pages. |
Search Report dated Feb. 19, 2020 corresponding to European Application No. 17 932 862.0, 7 pages. |
Office Action dated Dec. 1, 2020 corresponding to Japanese Application No. 2019- 553416, 4 pages. |
Translation of Decision of Refusal dated Feb. 3, 2021 corresponding to Taiwanese Patent Application No. 106142110, 4 pages. |
Translation of Decision for Grant of Patent dated Jul. 28, 2020 corresponding to Korean Application No. 10-2018-7021879, 1 page. |
Translation of Written Opinion corresponding to Singapore Application No. 11201908264Q dated Feb. 19, 2020, 7 pages. |
Translation of Notification of Office Action dated Dec. 19, 2019 corresponding to Korean Patent Application No. 10-2018-7021879, 7 pages. |
Translation of Notification of Office Action dated Mar. 29, 2020 corresponding to Korean Patent Application No. 10-2020-7004813, 3 pages. |
Translation of Decision for Grant of Patent dated Feb. 24, 2021 corresponding to Korean Application No. 10-2020-7013289, 1 page. |
Translation of Notification of Office Action dated Aug. 27, 2021 corresponding to Korean Patent Application No. 10-2021-7014539, 8 pages. |
Decision for Grant of Patent for Korean Application No. 10-2021-7014539 dated Feb. 23, 2022. |
Notice of Reasons for Refusal for Japanese Application No. 2021-75777 dated Jul. 12, 2022. |
International Search Report and Written Opinion of the ISA issued in PCT/US2020/045389, mailed Nov. 17, 2020; ISA/KR. |
Translation of Second Office Action dated Feb. 16, 2021 corresponding to Japanese Application No. 2017-039058, 4 pages. |
First Office Action corresponding to Taiwanese Patent Application No. 106106790 dated Oct. 7, 2020, 7 pages. |
First Office Action corresponding to Chinese Patent Application No. 201710122891.1 dated Apr. 10, 2020, 14 pages. |
Second Office Action corresponding to Chinese Patent Application No. 201710122891.1 dated Dec. 3, 2020, 5 pages. |
MP125E N-470 Linear Drive User Manual; Version 1.1.0; Date Sep. 18, 2014; 54 Pages; Physik Instrumente (PI) GmbH & Co. KG, Auf der Roemerstr. 1, 76228 Karlsruhe, Germany. |
First Office Action dated Dec. 29, 2017 corresponding to Chinese Patent Application No. 201610032252.1, 12 pages. |
First Office Action dated Aug. 2, 2018 corresponding to Chinese Patent Application No. 201710036188.9, 7 pages. |
Bohr, Mark, “The New Era of Scaling in an SoC World” Intel Logic Technology Development; ISSCC; 2009; 66 Pages. |
Dusa, Mircean et al., “Pitch Doubling Through Dual Patterning Lithography Challenges in Integration and Litho Budgets,” Optical Microlithography XX, vol. 6520, 65200G, (2007); 10 pages. |
U.S. Office Action dated Oct. 5, 2015 issued in U.S. Appl. No. 14/576,020 [LAMRP146]. |
Blain et al. (Jul./Aug. 1996) “Role of nitrogen in the downstream etching of silicon nitride,” Journal of Vacuum Science & Technology A, 14(4):2151-2157. |
Blain (Mar./ Apr. 1999) “Mechanism of nitrogen removal from silicon nitride by nitric oxide,” Journal of Vacuum Science & Technology A, 17(2):665-667. |
Kastenmeier et al. (Nov./Dec. 1999) “Highly selective etching of silicon nitride over silicon and silicon dioxide,” J. Vac. Sci. Techno !. A, American Vacuum Society, 17 (6):3179-3184. |
Kastenmeier et al. (Sep./Oct. 1996) “Chemical dry etching of silicon nitride and silicon dioxide using CF4/02/N2 gas mixtures,” J. Vac. Sci. Technol. A14(5):2802-2813. |
Oehrlein et al. (1996) “Study of plasma-surface interactions: chemical dry etching and high-density plasma etching,” Plasma Sources Sci. Technol. 5:193-199. |
Tajima et al. (2013) “Room-Temperature Si Etching in NO/F2 Gases and the Investigation of Surface Reaction Mechanisms,” The Journal of Physical Chemistry C, 117:5118-5125. |
Yun et al. (2007) “Large Etch Rate Enhancement by NO-Induced Surface Chemical Reaction during Chemical Dry Etching of Silicon Oxide in F2 Remote Plasmas,” Journal of The Electrochemical Society, 154(4):D267-D272. |
US Final Ofice Action dated Feb. 26, 2016 issued in U.S. Appl. No. 14/576,020 [LAMRP146]. |
US Office Action dated Sep. 23, 2016 issued in U.S. Appl. No. 14/576,020 [LAMRP146]. |
European Extended Search Report dated May 30, 2016 issued in EP 15 199 363.1 [LAMRP146EP]. |
U.S. Appl. No. 62/106,407, filed Jan. 22, 2015, in the names of Joseph Yudovsky et al., & entitled “Injector for Spatially Separated Atomic Layer Deposition Chamber” pp. 1-68. (Year: 2015). |
US PPA No. 62065497, entitled “Gas Supply Delivery Arrangement Including a Gas Splitter for Tunable Gas Flow Control,” filed Oct. 17, 2014, in the names of Mark Taskar et al. (Year: 2014). |
First Chinese Office Action for Chinese Application No. 201710013856.6 dated Oct. 21, 2019. |
First Chinese Office Action for Chinese Application No. CN201710076420.1 issued Dec. 17, 2019. No translation provided. 11 pages. |
First Office Action corresponding to Japanese Application No. 2018-186353, dated Jan. 21, 2020, 8 pages. |
First Office Action corresponding to Japanese Application No. 2016-004302, dated Jan. 28, 2020, 4 pages. |
First Office Action corresponding to Tiawanese Application No. 106104190, dated Sep. 4, 2020, 5 pages. |
Office Action issued in corresponding Japanese Patent Application 2016-143886 dated Sep. 8, 2020. |
Translation of First Office Action dated Sep. 28, 2020 corresponding to Korean Patent Application No. 10-2018-0114808, 3 pages. |
Translation of Notification of Examination Opinions corresponding to Taiwanese Patent Application No. 106101332 dated Nov. 19, 2020, 9 pages. |
D. A. Jobson. “On the Flow of a Compressible Fluid through Orifices.” Proceedings of the Institution of Mechanical Engineers. 169[1](1955). pp. 767-776. https://doi.org/10.1243/PIME_PROC_ 1955_169_077 _02 (Year: 1955). |
Cashco, Inc. “Fluid Flow Basics ofThrottling Valves.” 1999. pp. 1-56. Available Mar. 24, 2020 online at: https://www.controlglobal.com/assets/Media/MediaManager/RefBook_ Cash co_Fluid. pdf. (Year: 1999). |
O'Keefe Controls Co. “Choked Flow of Gases.” in Catalog 11. 2003. pp. 20-24 & 48. (Year: 2003). |
Christophe Corre. “Lecture 5: Quasi-1 D compressible Flows” in “Fundamentals of Compressible and Viscous Flow Analysis—Part II.” 2018. pp. 94-148. Ecole Centrale de Lyon. Fluid Mechanics and Acoustics Laboratory (LMFA ). http://lmfa.ec-lyon. (Year: 2018). |
Notification of Examination Opinions corresponding to Taiwanese Patent Application No. 10512352 dated Feb. 19, 2020, 5 pages. |
First Office Action dated Mar. 17, 2020 corresponding to Chinese Patent Application 20170076027.2, 8 pages. |
First Office Action with Translation dated Sep. 7, 2021 corresponding to Korean Patent Application No. 10-2017-0083210, 6 pages. |
First Office Action with Translation dated Oct. 7, 2021 corresponding to Japanese Patent Application No. 2017-154893, 7 pages. |
Notification of Search Report corresponding to Singapore Patent Application No. 10201808035Y dated Oct. 20, 2022, 11 pages. |
Office Action dated May 29, 2023 from Korean Patent Office for Korean Patent Application No. 10-2021-0079769; 8 pages. |
International Search Report and Written Opinon for PCT Applicaiton No. PCT/US2019/045085 dated Dec. 20, 2019. |
Notification of Transmittal of International Search Report and the Written Opinion of the International Searching Authority dated Feb. 22, 2018, 16 pages. |
International Search Report and Written Opinion of the ISA issued in PCT/US2018/050273, mailed May 13, 2019; ISA/KR. |
Notice of Reason for Refusal issued in corresponding Japanese patent application No. 2019-505020 dated Oct. 16, 2020. |
Office Action issued in corresponding Korean Patent Application No. 10-2018-7028683 dated Nov. 26, 2020. |
Office Action issued in corresponding Taiwanese Patent Application No. 10-2018-7028683 dated Nov. 26, 2020. |
Office Action issued in corresponding Taiwanese Patent Application No. 109128923 dated May 11, 2021 (4 pages). |
Office Action issued in corresponding Korean Patent Application No. 10-2018-7028683 dated Apr. 27, 2022. |
Supplementary Partial European Search Report issued in corresponding European Patent Applicaton No. 18929891 dated Mar. 18, 2022. |
Office Action issued in corresponding Korean Patent Application 10-2018-7028683 dated Dec. 29, 2022. |
Office Action issued in corresponding Japanese Patent Application 2022-31361 dated Jan. 17, 2023 (no English translation available). |
Office Action issued in corresponding Taiwanese Patent Application 111104002 dated Mar. 6, 2023. |
Office Action issued in corresponding Chinese Patent Application 201880002160.6 dated Mar. 23, 2023. |
International Search Report and Written Opinion of the ISA issued in PCT/US2020/044168, mailed Nov. 17, 2020; ISA/KR. |
International Search Report and Written Opinion of the ISA issued in PCT/US2020/024333, mailed Dec. 24, 2020; ISA/KR. |
International Search Report and Written Opinion of the ISA issued in PCT/US2021/052732, mailed Jan. 21, 2022; ISA/KR. |
Supplementary Partial European Search Report issued in corresponding European Patent Application No. 2085609 dated Aug. 3, 2023. |
U.S. Appl. No. 16/487,703, filed Aug. 21, 2019, Hiran Rajitha Rathnasinghe. |
U.S. Appl. No. 16/497,091, filed Sep. 24, 2019, Hiran Rajitha Rathnasinghe. |
U.S. Appl. No. 17/181,571, filed Feb. 22, 2021, Haoquan Yan. |
U.S. Appl. No. 17/631,984, filed Feb. 1, 2022, Hui Ling Han. |
U.S. Appl. No. 17/633,727, filed Feb. 8, 2022, Rohini Mishra. |
U.S. Appl. No. 17/671,211, filed Feb. 14, 2022, Christopher Kimball. |
U.S. Appl. No. 17/681,633, filed Feb. 25, 2022, Hiran Rajitha Rathnasinghe. |
U.S. Appl. No. 17/913,008, filed Sep. 20, 2022, Hui Ling Han. |
Taiwanese Office Action for Taiwanese Application No. 110126786 dated Oct. 16, 2023. |
Number | Date | Country | |
---|---|---|---|
20220189744 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16487703 | US | |
Child | 17681606 | US |