Many consumer electronic products incorporate a microphone. As this is a high volume market, average selling price (ASP) is typically a key factor. The “Yole Silicon Microphone Market Report 2005” [1] projects the total silicon microphone market to be 2.75 M units and 221 M$ by 2008 with the major applications being mobile phones, PDAs, laptops, PCs, hearing aids, acoustic noise control and automotive crash detection. Many of these products use conventional electret condenser microphones (ECM) produced by a number of low cost suppliers. To date, one silicon micromachined microphone (Knowles acoustics SiSonic [2]) has been able to compete effectively in this market by meeting the performance, reliability, and price expectations set by the ECM suppliers. Typically, die shrinkage (more parts per wafer) and elimination of processing steps (lower cost per fabrication lot run) can lower the ASP. However, the high costs associated with silicon microfabrication currently limits the microfabrication-based cost cutting measures. The packaging costs of the device can also be a dominant factor. For the SiSonic microphone, the packaging structure includes a base, a wall, and a lid all made from FR4 printed-circuit board (PCB) material and laminated together [2]. This package must be large enough to fit the silicon microphone and amplifier die, as well as the associated passives.
Embodiments of the subject invention relate to a method of fabricating a capacitive microphone. Embodiments also pertain to a capacitive microphone. In an embodiment, the subject capacitive microphone can use PCB-fabrication technology to realize a low-cost microphone integrated with the microphone package.
Embodiments of the subject capacitive microphone can be condenser or electret condenser. In a specific embodiment fabricated using PCB-based technology, a 24″×24″ substrate is utilized, which can save costs for high volume. In an embodiment locating the interface electronics within the cavity, a conductive interior surface on the enclosure top, wall, or bottom can be used to connect the backplate to the interface electronics, and connecting to the diaphragm, such that no wire bonds are needed. Reducing the need for wire bonds can reduce costs and improve reliability. In an embodiment, the exterior of the package can be metal-plated and grounded to shield against electromagnetic interference. In accordance with various embodiments of the invention, lower fabrication cost and an integrated package can allow the microphone diaphragm to be much larger. The larger diaphragm can improve sensitivity, increase the sensor capacitance, and reduce the noise floor, resulting in superior performance. Embodiments of the invention can incorporate a large back volume such that the microphone can reduce cavity stiffening effects with respect to silicon devices that are limited to a silicon wafer thickness resulting in improved device performance.
Embodiments of the subject invention relate to a method of fabricating a capacitive microphone. Embodiments also pertain to a capacitive microphone. In an embodiment, the subject capacitive microphone can use PCB-fabrication technology to realize a low-cost microphone integrated with the microphone package.
Referring to
An optional dust cover 22 can be provided over the one or more apertures 13. The dust cover 22 can be in the form of a protective mesh. In a specific embodiment, the dust cover 22 can be a felt top.
Embodiments of the subject capacitive microphone can be condenser or electret condenser. In a specific embodiment fabricated using PCB-based technology, a 24″×24″ substrate is utilized, which can save costs for high volume. In an embodiment locating the interface electronics within the cavity, a conductive interior surface on the enclosure top, wall, or bottom can be used to connect the backplate to the interface electronics, and connecting to the diaphragm, such that no wire bonds are needed. Reducing the need for wire bonds can reduce costs and improve reliability. In an embodiment, the exterior of the package can be metal-plated and grounded to shield against electromagnetic interference. In accordance with various embodiments of the invention, lower fabrication cost and an integrated package can allow the microphone diaphragm to be much larger. The larger diaphragm can improve sensitivity, increase the sensor capacitance, and reduce the noise floor, resulting in superior performance. Embodiments of the invention can incorporate a large back volume such that the microphone can reduce cavity stiffening effects with respect to silicon devices that are limited to a silicon wafer thickness resulting in improved device performance.
In a condenser embodiment of the subject microphone, the microphone can withstand higher operating temperatures and can withstand lead-free solder re-flow cycles (e.g., around 400° C.), which is a product assembly advantage over ECMs. The enclosure of various embodiments of the invention can use a variety of materials, including as examples printed circuit board (PCB) or printed wiring board (PWB). PCB and PWB technology refer to modern circuit board construction. These boards can include multiple laminated dielectric and conductive layers. The dielectric layer can serve as the structural support. FR4 (flame-retardant 4) can be used as the dielectric layer in the boards. Other options include, but are not limited to, FR2, polyimide (for flexible circuits), Getek, Thermount, and Rogers 4050, Rogers 4003 (RF circuits), etc. The conductive layers (e.g., copper or other metal) can be etched or “patterned” to provide discrete electrical connections between various regions of the board.
In an embodiment, surface-micromachining can be used to form a microphone directly on the board substrate forming a portion of the enclosure. Referring to
In one embodiment, patterns can be etched in the outer conductor layer(s) 201 of the PCB board 200 in preparation of interconnecting the electronics of the microphone.
Referring to
In another embodiment as illustrated in
Referring to
When constructing a complete package with the ASIC interface electronics and, optionally other components embedded, the system can be a multi-chip module (MCM), where MCM technology refers to assembling one or more devices, chips, or components on a common substrate to form a more complex system. MCMs can be further classified by the supporting technology used to form the electrical interconnections on the substrate. Embodiments of the invention can utilize MCM-L, MCM-D, and/or MCM-C, where MCM-L (laminated MCM) involves a base substrate that is a multi-layer laminated PCB, MCM-D (deposited MCM) involves a base substrate that is often a semiconductor wafer with films deposited using thin film deposition techniques, and MCM-C (ceramic substrate MCM) involves a base substrate that is laminated ceramic board, (e.g. low-temperature co-fired ceramic (LTCC)) most often used for RF circuits.
All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.
The present application is a divisional of U.S. application Ser. No. 14/258,478, filed Apr. 22, 2014, which is a divisional of U.S. application Ser. No. 12/597,572, filed Dec. 1, 2009, now U.S. Pat. No. 8,705,775, which is the U.S. National Stage Application of International Patent Application No. PCT/US2008/061603, filed Apr. 25, 2008, which claims the benefit of U.S. application Ser. No. 60/926,307, filed Apr. 25, 2007, all of which are hereby incorporated by reference herein in their entirety, including any figures, tables, or drawings.
Number | Name | Date | Kind |
---|---|---|---|
4492825 | Brzezinski et al. | Jan 1985 | A |
5452268 | Bernstein | Sep 1995 | A |
5490220 | Loeppert et al. | Feb 1996 | A |
5740261 | Loeppert et al. | Apr 1998 | A |
5870482 | Loeppert et al. | Feb 1999 | A |
6535460 | Loeppert et al. | Mar 2003 | B2 |
6552469 | Pederson et al. | Apr 2003 | B1 |
6842964 | Tucker et al. | Jan 2005 | B1 |
6847090 | Loeppert | Jan 2005 | B2 |
6928178 | Chang et al. | Aug 2005 | B2 |
6987859 | Loeppert et al. | Jan 2006 | B2 |
7023066 | Lee et al. | Apr 2006 | B2 |
7132307 | Wang et al. | Nov 2006 | B2 |
7166910 | Minervini | Jan 2007 | B2 |
7466834 | Ogura et al. | Dec 2008 | B2 |
7940944 | Song et al. | May 2011 | B2 |
7949142 | Song et al. | May 2011 | B2 |
8155355 | Ogura et al. | Apr 2012 | B2 |
8325951 | Wang et al. | Dec 2012 | B2 |
20050018864 | Minervini | Jan 2005 | A1 |
20060093171 | Zhe et al. | May 2006 | A1 |
20090116662 | Wu | May 2009 | A1 |
Number | Date | Country |
---|---|---|
2231235 | Jul 1990 | GB |
Entry |
---|
“SIMM '05, Yole Silicon Microphone Market Report 2005 Technolgy and Market Analysis: From Silicon Microphone Device to Mircrophone Modules”, Yole Development, Sep. 2005. |
P.V. Loeppert and S.B. Lee, “SiSonicTM—The first commercialized MEMS microphone,” in Proceedings of Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, 2006, pp. 27-30. |
Bustillo, James M., et al., “Surface Micromachining for Microelectromechanical Systems” Proceedings of the IEEE, Aug. 1998, pp. 1552-1574, vol. 86, No. 8. |
Hietanen, Jarmo, et al., “An integrated Printed Circuit Board (PCB) microphone”, J. Acoust. Soc. Am., May 2000, pp. L25-L30. |
Bruel & Kjaer, “Technical Documentation: Microphone Handbook”, 1996. vol. 1. |
David T. Martin, Design, Fabrication Characterization of a MEMS Dual Backplate Capacitive Microphone, Ph.D. dissertation, University of Florida, Gainesville, FL 2007. |
Karthik Kadirvel, Development of Closed-Loop Interface Circuits for Capacitive Transducers with Application to a MEMS Capacitive Micorphone, Ph.D. dissertation, University of Florida, Gainesville, FL 2007. |
Number | Date | Country | |
---|---|---|---|
20170094436 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
60926307 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14258478 | Apr 2014 | US |
Child | 15372927 | US | |
Parent | 12597572 | US | |
Child | 14258478 | US |