The present invention relates to charged particle spectrum analysis apparatus, and in particular, although not exclusively, to time-of-flight mass spectrometers.
In time-of-flight mass spectrometry, ions produced from a sample are accelerated by an electric field along a flight path in a pulsed fashion. The field provides each ion with the same kinetic energy. Since kinetic energy is related to mass and velocity by K=½ mv2, the velocity of a given ion, and therefore its arrival time at the detector (positioned at the far end of the flight tube), depends on its mass to charge ratio m/z according to the following relationship.
where d is the length of the flight tube and V is the acceleration potential. The mass resolution of a time-of-flight mass spectrometer is therefore directly determined by the time resolution of the detection system. An alternative method for generation of sample ions involves using a neutral sample within a DC field and to effect ionization using a laser (or other means). The sample molecules do not ‘see’ the extraction field until they are ionized. Microchannel plates (MCPs) are usually used to detect the ions. MCPs are thin glass plates laser-drilled with an array of holes. The plates are resistively coated, such that an ion striking the front of a channel elicits the emission of electrons from the surface. When an appropriate potential difference is applied across the plate, the electrons are accelerated through the channel, producing more electrons on every collision with the channel surface. For each ion striking the front of a channel, up to 103 electrons are emitted from the back face. Typically, two or three MCPs are stacked together to increase the gain to 106 or higher. In most time-of-flight experiments (and in all commercial mass spectrometers), the total electron current produced by the MCPs is measured.
Currently employed detection techniques are limited in their time (and therefore mass) resolution primarily by the time resolution of the readout electrons used to read a time-dependent signal from the MCP's.
We seek to provide an improved charged particle spectrum analysis apparatus, and in particular an improved time-of-flight mass spectrometer.
According to a first aspect of the invention there is provided a charged particle spectrum analysis apparatus comprising an electric field generator arranged to subject charged particles to a time-varying electric field, a detector to record charged particle time spectrum data of charged particles which have passed through the electric field, the detector comprising a position-sensitive detection portion, and the time-varying electric field arranged to be activated in synchrony with activation of detector, and the time-varying electric field arranged to subject a predetermined region of said detection portion to consecutive charged particle deflection cycles.
According to a second aspect of the invention there is provided a method of charged particle spectrum analysis comprising subjecting charged particles to a time-varying electric field, and activating a detector to record charged particle time spectrum data of the charged particles which have passed through the field, and activating the time-varying electric field in synchrony with the detector, the detector comprising a position-sensitive detection portion, and arranging the time-varying electric field to subject a predetermined region of said detection portion to consecutive charged particle deflection cycles.
Various embodiments of the invention will now be described, by way of example only, with reference to the following drawings in which:
Below are described two embodiments of charged particle spectrum analysis apparatus. The first in which the electrons emitted from the back of the microchannel plate detector are streaked, and the second in which the sample ions are streaked as they travel along the flight tube. Both embodiments require that the ion beam takes the form of either a well-defined spot or, if the potential for parallelised detection is to be exploited, a sheet. This may be achieved either by passing the sample ion beam through an appropriate aperture or slit or by focusing the ions into a ribbon or sheet beam using electric or magnetic fields.
Referring to
The detection portion 15 comprises an MCP-phosphor combination, comprising at least one MCP and a phosphor screen. Each electron striking the MCP elicits a cascade of electrons through one of the channels, and the pulse of electrons leaving a back face of the MCP is accelerated towards the phosphor screen, producing a pulse of light. It will be appreciated that if no further gain is required this could be replaced by a simple phosphor screen. In this way the distribution of electrons striking the detector is transformed into an image on the phosphor screen, and the image can then be captured by the camera 13. In will be appreciated that in alternative embodiments the detector may comprise another type of position-sensitive particle sensor, such as a phosphor or CMOS-based particle sensor.
The camera 13 comprises an image sensor which may comprise Charge Coupled Device (CCD) or Complimentary Metal Oxide Semiconductor (CMOS) technologies. The image sensor is a fast image sensor capable of repeatedly capturing frames with a high repetition rate which is synchronised with the electric field. The camera could be a framing camera in which the frame rate is synchronised with the time-varying electric field. Alternatively, the camera may comprise a CMOS-based ‘event counting’ sensor in which the clock rate of the sensor is synchronised with the time-varying electric field. In one of several approaches multiple images are recorded over the timescale of the time-of-flight mass spectrum, typically spanning up to hundreds of microseconds. In one embodiment of the imaging sensor of the event-counting type, rather than recording full image frames during each exposure, the sensor will record the position and arrival time of each ion as it reaches the detector, yielding considerable savings on data storage and handling (the total number of data points that will need to be read out from the sensor will be equal to the number of ions detected rather than to the total number of pixels in all of the recorded frames).
It will be appreciated that both the CCD and CMOS devices are sensitive to both visible light and to charged particles, and so may be used in what could be termed a direct detection mode in which the electrons are detected directly by the imaging sensor, rather than being converted into an optical signal by impinging on a phosphor screen. In this mode, time resolution can be increased as compared to use of imaging on a phosphor screen.
It is straightforward to show that for electrons accelerated through a potential V, the potential Vdef required to cause a deflection d over a path length L is
where z and x are the length and separation of the deflection plates, respectively. As shown in
The ramped deflection potential is shown at 20 in
The image at the phosphor screen is recorded by the imaging sensor of the camera 13, and the frequency of the ramp potential is synchronised with the frame rate of the camera, such that ions sampled within a single sweep are recorded in a single frame. Each sweep, corresponding to what may be termed a deflection cycle, is directed onto the same predetermined region of the detector, in a consecutive repeating manner. Each sweep progressively deflects particles across the predetermined region (for example from top to bottom, or vice versa, or from one side to the other, of the predetermined region) The synchronisation between the imaging sensor and the ramped potential is achieved by way of a controller 17 which comprises a data processor and a memory. The memory containing instructions to cause the data processor to output synchronised, or phased, control signals 22 and 23 to the camera 13 and to a voltage generator for the deflection plates 11, respectively.
As is schematically shown at 30, the frequency of the control signal 23 is such that each ramped cycle is substantially temporally co-terminus with the frame rate of the camera 13 such that ions sampled within a single sweep (ie one cycle of the time-varying electric field) are recorded in a single frame.
Data processing of the TOF mass spectra from the images is performed by the controller 17 and will now be described.
In the following, we denote the signal at a particular pixel position (xi,yj), where i and j are the pixel indices (both running from 0 to 511 for an exemplary 512×512 pixel sensor), as S(xi,yj). The first step in the data analysis is to sum over the position (x) axis to obtain the total signal arriving at the detector as a function of the position along the vertical (y) axis. The signal S(yn) at a particular vertical position yn is
The integrated signal is shown to the right of the image 40 in
t=(N−1)Tclock+f(y)
Here, the first term determines the ‘start’ time of the frame. Each frame is synchronised to the clock cycle of the image sensor of the camera 13, so the total time that has elapsed up to the start of the frame is simply the number of clock cycles elapsed so far, N−1, multiplied by the clock period Tclock. The detailed form of the second term, which converts from y position to time within the frame of interest, will depend on the details of the sweep pulse, specifically its time variation and amplitude, as well as on the distance the swept electrons travel between the slit and detector, and the acceleration potential between the slit and detector. An ‘instrument resolution function’ correction to correct for imperfect collimation of the swept electrons or ions and/or any non-linearities in the experimental timing or extraction potentials could also be performed. The resulting form of the time varying signal is shown in
Once this transformation has been conducted, the data is in the same form as obtained from a conventional time-of-flight measurement, and may be converted to a mass spectrum and analysed using standard techniques.
The above analysis has ignored any spatial information encoded in the x axis of the images. However, by employing appropriate velocity or spatial mapping ion optics, the apparatus could be configured such that the x coordinate contains one dimension of information on the position or velocity of the sample ions at their point of formation. In order to retain this information during the data processing, one would simply omit the summation over the x axis of the detector and carry out the transformation of the y axis from position (in pixels) to time-of-flight or ion mass. An appropriate transformation would also have to be carried out on the x axis to convert from ion arrival position (in pixels) to the corresponding position or velocity relevant to the ions at their point of formation.
One advantage of particular importance of the apparatus 1 is that extremely high time resolutions are achievable. A greater time resolution corresponds to an improved ability to resolve different masses. The time resolution is determined by the clock cycle of the imaging sensor of the camera 13 and by the number of pixels over which the ion or electron signal is distributed. For example, a conservative estimate for the length of a clock cycle is 50 ns. If the ion/electron signal is swept over 512 pixels, this gives a time resolution of (50×10−9)/512=9.77×10−11 s=97.7 ps. Further gains in the time resolution are achievable by reducing the length of a clock cycle and/or by increasing the number of pixels in the sensor. The above calculation assumes that one ion arriving at the detector illuminates one pixel on the image sensor. If multiple pixels are illuminated then the time resolution is degraded somewhat. However, this effect may be partly compensated for by de-convoluting an ‘instrument resolution function’ from the images. In the case that the ions or electrons are focussed into a spot, an advantage is that a full 512×512 array of pixels could be used to improve the time resolution. This would require the focussed spot to be deflected across the detector in a zig-zag two-dimensional streak or raster (rather like that used in an old television), rather than a one dimensional linear streak shown in
The total recording time per TOF cycle is determined by the memory allocated to the counters in each pixel. For example, assuming that the sensor is equipped with 12 bit counters, this gives a total recording time equal to 212 times the length of a clock cycle, which comes to around 200 μs for a 50 ns clock period. This is a relatively straightforward parameter to adjust by changing the specifications of the image sensor chip. This, therefore, results in the advantage of a (relatively) long recording period, combined with high time (and therefore) mass resolution.
A further advantage of the apparatus 1 is that significantly improved ion throughputs can be achieved. The ion throughput, defined as the total number of ions that can be recorded per second, is determined by the number of ions that can be recorded per time-of-flight cycle (a function of the detector size), and the repetition rate (number of cycles per second) at which the sensor can be run.
Using the example of a sensor containing 512×512 pixels, and in which each pixel can detect multiple ions per TOF cycle. Detection of multiple ions per TOF cycle is achieved by way of generating a timestamp each time a pixel is triggered by the arrival of an ion. So, in this example the total number of ions N that can in principle be detected per cycle is
N=512×512×4=1048576
Recording for 200 μs per cycle corresponds to a repetition rate R of 1/(200×10−6), or 5000 Hz. The maximum possible total ion throughput T is therefore
T=NR=(1048576)×(5000)=5.24×109 ions s−1.
It will be appreciated, however, that the actual throughput may be somewhat less than this, primarily because if more than four ions strike the same pixel within the recording time, the later ions will not be detected. However, this could be improved by including additional counters into each pixel
Reference is now made to
Number | Date | Country | Kind |
---|---|---|---|
GB 1 012 170.5 | Jul 2010 | GB | national |
This application is a national stage application under 35 U.S.C. §371 of International Application No. PCT/GB2011/051374 filed 20 Jul. 2011, which claims priority to Great Britain Application No. GB 1 012 170.5 filed 20 Jul. 2010, the disclosures of which are expressly incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2011/051374 | 7/20/2011 | WO | 00 | 3/13/2013 |