This application claims the priority benefit of French Application for Patent No. 2200190, filed on Jan. 11, 2022, the content of which is hereby incorporated by reference in its entirety to the maximum extent allowable by law.
The present disclosure generally concerns electronic devices and, more specifically, electronic chip carriers.
Electronic integrated circuit chips are present in many electronic devices. Such chips are often placed, during one or a plurality of manufacturing steps or during their operation, in a carrier structure comprising a cavity, the chip being located in the cavity.
There is a need in the art to overcomes all or part of the disadvantages of known chip carriers.
An embodiment provides a method of manufacturing a carrier comprising a cavity, comprising: forming a wall surrounding the cavity, the wall comprising at least one first level, wherein forming each first level comprises forming a layer of a first resin around a first block, the first block being made of a material different from the first resin, and removing the first block(s).
According to an embodiment, the method comprises: forming a base of the carrier having the wall resting thereon, wherein forming the base comprises forming at least one second level, wherein forming each second level comprises forming a layer of a first resin extending in front of the location of the cavity.
According to an embodiment, forming the base comprises forming metal vias crossing the base in front of the cavity.
According to an embodiment, forming at least certain levels comprises growing metal tracks and metal vias.
According to an embodiment, the first block(s) are made of the same material as the tracks and vias.
According to an embodiment, the levels are formed on an at least partially metallic plate.
According to an embodiment, the second levels are formed on the at least partially metallic plate before forming the first levels.
According to an embodiment, the at least partially metallic plate forms the base of the carrier.
According to an embodiment, the first levels are formed on the at least partially metallic plate before forming the second levels.
According to an embodiment, the first block(s) are formed by a portion of the at least partially metallic plate.
According to an embodiment, the wall comprises a plurality of levels and all the first blocks have same horizontal dimensions.
According to an embodiment, at least one sidewall of at least one first block is inclined with respect to the plane of the back of the cavity.
According to an embodiment, the first blocks of the first levels closest to the back of the cavity have at least one horizontal dimension smaller than that of the first blocks in the other first levels.
According to an embodiment, the method comprises filling of the cavity with a second resin different from the first resin.
Another embodiment provides a device obtained by the method such as previously described, the cavity having a height greater than 30 µm.
The foregoing features and advantages, as well as others, will be described in detail in the following description of specific embodiments given by way of illustration and not limitation with reference to the accompanying drawings, in which:
Like features have been designated by like references in the various figures. In particular, the structural and/or functional features that are common among the various embodiments may have the same references and may dispose identical structural, dimensional and material properties.
For the sake of clarity, only the steps and elements that are useful for an understanding of the embodiments described herein have been illustrated and described in detail.
Unless indicated otherwise, when reference is made to two elements connected together, this signifies a direct connection without any intermediate elements other than conductors, and when reference is made to two elements coupled together, this signifies that these two elements can be connected or they can be coupled via one or more other elements.
In the following disclosure, unless otherwise specified, when reference is made to absolute positional qualifiers, such as the terms “front”, “back”, “top”, “bottom”, “left”, “right”, etc., or to relative positional qualifiers, such as the terms “above”, “below”, “upper”, “lower”, etc., or to qualifiers of orientation, such as “horizontal”, “vertical”, etc., reference is made to the orientation shown in the figures.
Unless specified otherwise, the expressions “around”, “approximately”, “substantially” and “in the order of” signify within 10%, and preferably within 5%.
Carrier 10 comprises a lower portion, or base, 12. Base 12 comprises one or a plurality of resin layers.
In the embodiment of
The resin forming the base is, for example, an epoxy resin, for example a thermosetting molding resin. For example, said resin is a black resin. For example, said resin is a resin opaque for at least certain wavelengths, for example visible wavelengths, that is, for example, wavelengths in the range from 380 nm to 780 nm.
Carrier 10 further comprises a lateral wall 14 or upper portion. Wall 14 rests on base 12, more precisely on an upper surface of base 12. Wall 14 extends on the periphery of base 12. Preferably, the upper surface of base 12 is divided into a central portion and a peripheral portion surrounding the central portion, with lateral wall 14 resting on the peripheral portion, preferably on the entire peripheral portion.
Thus, wall 14 forms (or delimits) a cavity 16. Cavity 16 is, for example, intended to receive an integrated circuit chip, not shown. Cavity 16 is located in front of the central portion of the upper surface of base 12. In other words, the upper surface of base 12, and in particular the central portion, forms a bottom, the back, of cavity 16. Walls 14, and more precisely inner surfaces of walls 14, form sidewalls of cavity 16. Further, cavity 16 is open.
Wall 14 is formed of one or a plurality of resin layers, preferably the same resin as the resin forming the layer(s) of base 12. Thus, wall 14 comprises one or a plurality of resin layers, for example made of epoxy resin, for example a black resin, for example a thermosetting molding resin.
Each layer of wall 14 may comprise metal tracks 18 and metal vias 20, for example, copper tracks and vias. Conductive tracks 22, for example, rest on the upper surface of wall 14. For example, each track 22 rests in contact with an end of a via 18 flush with the upper surface of wall 14. Tracks 18, 22 and vias 20 form an interconnection network.
As a variant, tracks 22 may be located in a resin layer and may be flush with the upper surface of wall 14.
Preferably, wall 14 has a height, that is, the distance between the upper surface of base 12 and the upper surface of wall 14, greater than the height of the integrated circuit chip intended to be placed in the cavity.
The height of wall 14, that is, the height of cavity 16, is for example greater than 30 µm, for example greater than 700 µm, for example greater than 1 mm. The height of wall 14 is, for example, smaller than 2 mm.
As a variant, base 12 may comprise, in addition to the resin layer(s), metal tracks and metal vias, not shown, such as tracks 18 and vias 20.
The different resin layers forming base 12 and/or wall 14, for example, have a same height. However, one or a plurality of levels may have different heights. In the example of
The carrier 10 of
In the example of
Chip 24 comprises, for example, connection pads 26, for example located on the upper surface of chip 24. Pads 26 are coupled to tracks 22 by electric wires 28. Thus, test signals may be supplied to chip 24 via carrier 10.
In the example of
The device comprises, in this application, a plate 32, preferably transparent to the operating wavelengths of chip 30. Plate 32 is, for example, made of glass. Plate 32 closes cavity 16. Plate 32 is thus positioned at least in front of the central portion of the upper surface of the base. Plate 32 rests on the upper surface of wall 14. Plate 32 is bonded to the upper surface of wall 14, for example, by a bonding element 34, for example, glue.
In the example of
Chip 30, for example, has connection pads 40 coupled to tracks 36 by electric wires 42.
During this step, the tracks 18 and the vias 20 of a level N1 are formed on a plate 44, for example, a metal plate. The step of
Tracks 18 and vias 20 correspond to the tracks and to the vias of the level N1 of the carrier 10 of
A block 46 is bonded to plate 44. Block 46, for example, has a cuboid shape. Block 46 is located at the location of cavity 16 in level N1. Block 46 is, for example, bonded to plate 16 by a bonding layer, for example, a glue layer. The dimensions of block 46 are substantially equal to the dimensions of the portion of cavity 16 in level N1. In particular, the height of block 46 is substantially equal, preferably equal, to the height of level N1.
Block 46 is, for example, made of resin, of plastic, or of metal. Block 46 is made of a material different from the resin forming carrier 10. Block 46 is preferably made of a material which does not bond to the resin.
During this step, the resin, for example in liquid form, is placed on plate 46 to form a resin layer 48. The quantity of resin used is sufficient for tracks 18, vias 20, and block 46 to be buried in the resin. Thus, the thickness of the resin layer is greater than the height of level N1 and is thus greater than the height of block 46.
The resin is then heated so that it becomes solid. The resin is thinned, for example, by a chemical-mechanical polishing method, so that the height of the layer is equal to the height of level N1. The thinning of the resin is performed so that the ends of vias 20 and the upper surface of block 46, that is, the surface most distant from plate 44, are flush with the upper surface of layer 48.
During this step, level N2 is formed. The steps of
In the example of
Preferably, block 50 has horizontal dimensions smaller than or equal to those of block 46. In other words, block 50 preferably only rests on block 46 and does not rest on the resin of level N1. More generally, in the method of
In the example of
In the example of
During this step, a resin layer 52 is formed on the last manufactured level of wall 14, that is, level N2 in the example of
The method then comprises a step of removal of plate 44 and of blocks 46 and 50. In the case where blocks 46 and 50 are bonded to plate 44, the blocks are removed by the removal of the plate.
As a variant, the method may comprise, after the removal of the plate, a step of etching of blocks 46 and 50. The blocks are preferably made of a material capable of being selectively etched over the material of tracks 18 and vias 20 and of the resin.
As a variant, blocks 46 and 50 may be made of copper. Blocks 46 and 50 are, for example, formed by the method of growth of tracks 18 and of vias 20. Blocks 46 and 50, tracks 18, and vias 20 are, for example, formed simultaneously. The method then comprises a step of forming of a mask protecting the tracks 18 and the vias 20 which were in contact with the plate, and then a step of etching of blocks 46 and 50.
As a variant, blocks 46 and 50 may correspond to a portion of plate 44. Thus, plate 44 may comprise a protruding portion having the shape and the dimensions of cavity 16. Tracks 18 and vias 20, as well as the resin layers, are placed around the protruding portion.
It could have been chosen to form a stack of layers, for example, insulating layers, for example comprising conductive tracks and vias, and then to etch the cavity in the stack of layers. However, such a method would not enable to control as precisely the dimensions of the cavity. Further, such a method does not enable to form deep cavities with current etching techniques.
The method of
During this step, a resin layer, for example, liquid, is formed on plate 44. The resin is then heated so that it becomes solid. The thickness of the resin layer is at least equal to the thickness of base 12. The resin layer is, for example, then thinned, for example by a chemical-mechanical polishing method, so that the resin layer is substantially planar and has a thickness substantially equal to the thickness of base 12. The resin layer then forms base 12. The levels N3 and N4 of
During this step, level N2 is formed on base 12. More precisely, the step of
During this step, level N1 is formed on level N2. More precisely, the step of
Preferably, block 46 entirely covers block 50. More generally, in the method of
The method then comprises a step of removal of plate 44 and of blocks 46 and 50.
Carrier 54 differs from the carrier 10 of
In the example of
The horizontal dimensions of lower portion 16a are smaller than the horizontal dimensions of portion 16b. A portion of the resin of the level(s) corresponding to portion 16a is located in front of portion 16b, thus forming step 56. Preferably, step 56 is located over the entire periphery of cavity 16. Conductive tracks, not shown, are for example formed on step 56. The conductive racks, not shown, are for example coupled to tracks 18 and vias 20.
Carrier 54 is particularly adapted to forming part of a package of an optoelectronic device such as shown in
The method of manufacturing carrier 54 differs from the methods described in relation with
Carrier 58 differs from the carrier of
In the example of
As a variant, cavity 16 may narrow away from base 12. Thus, at least one of the horizontal dimensions, that is, in a plane parallel with the back of cavity 16, of cavity 15 decreases with the distance from base 12. The angle A between the back of the cavity and at least one of the sidewalls of cavity 16 is then smaller than 90°, for example, in the range from 45° to 85°.
Such a carrier is, for example, useful in a package of an optoelectronic device. Indeed, the rays are then filtered during their travel to an integrated circuit chip located at the back of the cavity.
The method of manufacturing carrier 58 differs from the methods described in relation with
Carrier 60 differs from the carrier 10 of
The method of manufacturing carrier 60 differs from the methods described in relation with
The upper layer of base 62, that is, the layer closest to wall 14 and the layer having wall 14 formed thereon, comprises at least metal portions, to allow the growth of tracks 18 and of vias 20. For example, said upper layer may be an entirely metallic layer.
Carrier 64 differs from the carrier 10 of
Preferably, an integrated circuit chip, not shown, is intended to be placed in cavity 16, in contact, by its lower surface, with vias 66. Preferably, all vias 66 are in contact with the chip. Vias 66 are, for example, used to dissipate the heat from the integrated circuit chip. The vias are then, for example, wider than vias 20 to allow a better heat dissipation.
As a variant, at least some of vias 66 may be used to electrically connect the chip located in cavity 16 to external circuits.
Carrier 66 differs from the carrier 10 of
In the example of
The carrier 66 of
The method of manufacturing carrier 66 comprises, for example, the steps described in relation with
Carrier 74 differs from the carrier 66 of
The carrier 74 of
An advantage of the described embodiments is that they allow a better control of the cavity dimensions.
Another advantage of the described embodiments is that they allow the forming of carriers having a cavity of large dimensions.
Another advantage of the described embodiments is that they enable to obtain a black carrier, opaque to the operating wavelengths.
Another advantage of the described embodiments is that they enable to obtain a more solid carrier, which does not risk delaminating.
Another advantage of the described embodiments is that, since the cavity is not etched, it is possible to form a cavity having various shapes.
Another advantage of the described embodiments is that it is possible to form conductive vias and tracks having various shapes.
Various embodiments and variants have been described. Those skilled in the art will understand that certain features of these various embodiments and variants may be combined, and other variants will occur to those skilled in the art. In particular, although the previously-described carriers comprise a single cavity, other carriers may comprise a plurality of cavities. Said cavities may be, according to an embodiment, located on the same side of the structure with respect to the base.
According to another embodiment, the cavities may be on the two opposite sides of the base. Thus, the method of manufacturing such an embodiment would combine the methods of
Finally, the practical implementation of the described embodiments and variations is within the abilities of those skilled in the art based on the functional indications given hereabove.
Number | Date | Country | Kind |
---|---|---|---|
2200190 | Jan 2022 | FR | national |