COMPOSITIONS AND METHODS FOR TREATING MACULAR DYSTROPHY

Abstract
The disclosure provides composition comprising a nucleic acid sequence comprising (a) a sequence encoding a vitelliform macular dystrophy-2 (VMD2) promoter, and (b) a sequence encoding a Bestrophin-1 (BEST1) protein as well as the use of these compositions for the treatment of macular dystrophy in a subject comprising administration of the composition to an eye of a subject via a subretinal or a suprachoroidal route.
Description
INCORPORATION OF SEQUENCE LISTING

The contents of the text file named “NIGH-011 002US SeqList.txt,” which was created on Apr. 4, 2019 and is 72 KB in size, are hereby incorporated by reference in their entirety.


FIELD OF THE DISCLOSURE

The invention relates to the fields of molecular biology, neurobiology and gene therapy treatments for degenerative eye diseases.


BACKGROUND

Macular degeneration is a medical condition, which may result in blurred or no vision in the center of the visual field. In macular degeneration, the photoreceptors in the part of the retina called the macula, which is responsible for central vision, degenerate or die. In some cases, macular degeneration is caused by mutations in the Bestrophin-1 gene (BEST1, also called VMD2). There is currently no treatment for this devastating disease. There is thus a long felt need in the art for additional therapeutic approaches to treat macular degeneration. The disclosure provides compositions and methods of treatment for macular degeneration.


SUMMARY

The disclosure provides a composition comprising a nucleic acid sequence comprising: (a) a sequence encoding a vitelliform macular dystrophy-2 (VMD2) promoter, and (b) a sequence encoding a Bestrophin-1 (BEST1) protein. In some embodiments, the sequence encoding the VMD2 promoter encodes a human VMD2 promoter. In some embodiments, the sequence encoding the BEST1 protein encodes a human BEST1 protein. In some embodiments, the sequence encoding the BEST1 protein comprises a coding sequence. In some embodiments, the sequence encoding the BEST1 protein comprises a cDNA sequence.


The disclosure provides a composition comprising a nucleic acid sequence comprising: (a) a sequence encoding a ubiquitous promoter, and (b) a sequence encoding a Bestrophin-1 (BEST1) protein. In some embodiments, the sequence encoding the BEST1 protein encodes a human BEST1 protein. In some embodiments, the sequence encoding the BEST1 protein comprises a coding sequence. In some embodiments, the sequence encoding the BEST1 protein comprises a cDNA sequence. In some embodiments, the sequence encoding a ubiquitous promoter comprises a sequence encoding a CAG promoter.


In some embodiments of the compositions of the disclosure, the nucleic acid sequence further comprises: (c) a sequence encoding a posttranscriptional regulatory element (PRE). In some embodiments, the sequence encoding the PRE comprises a sequence isolated or derived from a naturally occurring sequence. In some embodiments, the sequence encoding the PRE comprises a sequence isolated or derived from a non-naturally-occurring sequence. In some embodiments, the sequence encoding the PRE comprises a sequence isolated or derived from a viral sequence. In some embodiments, the sequence encoding the PRE comprises a sequence isolated or derived from a woodchuck hepatitis virus (WPRE).


In some embodiments of the compositions of the disclosure, the nucleic acid sequence further comprises: (d) a sequence encoding a polyadenylation (polyA) signal. In some embodiments, the sequence encoding the polyA signal comprises a sequence isolated or derived from a naturally occurring sequence. In some embodiments, the sequence encoding the polyA signal comprises a sequence isolated or derived from a non-naturally-occurring sequence. In some embodiments, the sequence encoding the polyA signal comprises a sequence isolated or derived from a mammalian sequence. In some embodiments, the sequence encoding the polyA signal comprises a sequence isolated or derived from a human sequence. In some embodiments, the sequence encoding the polyA signal comprises a sequence isolated or derived from a mammalian Bovine Growth Hormone (BGH) gene.


In some embodiments of the compositions of the disclosure, the nucleic acid sequence further comprises: (e) a sequence encoding a 5′ untranslated region (UTR). In some embodiments, the sequence encoding the 5′ UTR comprises a sequence isolated or derived from a naturally occurring sequence. In some embodiments, the sequence encoding the 5′ UTR comprises a sequence isolated or derived from a non-naturally-occurring sequence. In some embodiments, the sequence encoding the 5′ UTR comprises a sequence isolated or derived from a mammalian sequence. In some embodiments, the sequence encoding the 5′ UTR comprises a sequence isolated or derived from a human sequence. In some embodiments, the sequence encoding the 5′ UTR comprises a sequence isolated or derived from a viral sequence. In some embodiments of the compositions of the disclosure, the nucleic acid sequence further comprises: (f) a sequence encoding an intron, and (g) a sequence encoding an exon, wherein the sequence encoding the intron and the sequence encoding the exon are operably linked. In some embodiments, the intron is located between the sequence encoding the VMD2 promoter and the sequence encoding the exon, wherein the sequence encoding the exon is located between the sequence encoding the intron and the sequence encoding the 5′ UTR, and wherein the sequence encoding the intron is spliced by a mammalian cell. In some embodiments, the sequence encoding the exon comprises a sequence isolated or derived from a mammalian gene. In some embodiments, the sequence encoding the exon comprises a sequence isolated or derived from a rabbit (Oryctolagus cuniculus) beta globin gene. In some embodiments, the sequence encoding the intron comprises a non-naturally occurring sequence. In some embodiments, the sequence encoding the intron comprises a fusion sequence. In some embodiments, the sequence encoding the intron comprises a sequence encoding a splice donor site, and a sequence encoding a splice branch point and acceptor site. In some embodiments, the sequence encoding the splice donor site comprises a sequence isolated or derived from a vertebrate gene. In some embodiments, the sequence encoding the splice donor site comprises a sequence isolated or derived from a chicken (Gallus gallus) beta actin gene (CBA). In some embodiments, the sequence encoding the splice branch point and acceptor site comprises a sequence isolated or derived from a vertebrate gene. In some embodiments, the sequence encoding the splice branch point and acceptor site comprises a sequence isolated or derived from a rabbit (Oryctolagus cuniculus) beta globin gene.


In some embodiments of the compositions of the disclosure, the sequence encoding the 5′ UTR comprises a sequence encoding a Kozak sequence or a portion thereof. In some embodiments, the sequence encoding a Kozak sequence has at least 50% identity to the nucleic acid sequence of GCCRCCATGG. In some embodiments, the sequence encoding a Kozak sequence comprises or consists of the nucleic acid sequence of GGCACCATGA.


In some embodiments of the compositions of the disclosure, the sequence encoding the human VMD2 promoter comprises or consists of









(SEQ ID NO: 1)








1
AATTCTGTCA TTTTACTAGG GTGATGAAAT






TCCCAAGCAA CACCATCCTT TTCAGATAAG





61
GGCACTGAGG CTGAGAGAGG AGCTGAAACC






TACCCGGGGT CACCACACAC AGGTGGCAAG





121
GCTGGGACCA GAAACCAGGA CTGTTGACTG






CAGCCCGGTA TTCATTCTTT CCATAGCCCA





181
CAGGGCTGTC AAAGACCCCA GGGCCTAGTC






AGAGGCTCCT CCTTCCTGGA GAGTTCCTGG





241
CACAGAAGTT GAAGCTCAGC ACAGCCCCCT






AACCCCCAAC TCTCTCTGCA AGGCCTCAGG





301
GGTCAGAACA CTGGTGGAGC AGATCCTTTA






GCCTCTGGAT TTTAGGGCCA TGGTAGAGGG





361
GGTGTTGCCC TAAATTCCAG CCCTGGTCTC






AGCCCAACAC CCTCCAAGAA GAAATTAGAG





421
GGGCCATGGC CAGGCTGTGC TAGCCGTTGC






TTCTGAGCAG ATTACAAGAA GGGACTAAGA





481
CAAGGACTCC TTTGTGGAGG TCCTGGCTTA






GGGAGTCAAG TGACGGCGGC TCAGCACTCA





541
CGTGGGCAGT GCCAGCCTCT AAGAGTGGGC






AGGGGCACTG GCCACAGAGT CCCAGGGAGT





601
CCCACCAGCC TAGTCGCCAG ACC.






In some embodiments of the compositions of the disclosure, the sequence encoding the CAG promoter comprises or consists of









(SEQ ID NO: 2)








1
CCATTGACGT CAATAATGAC GTATGTTCCC






ATAGTAACGC CAATAGGGAC TTTCCATTGA





61
CGTCAATGGG TGGAGTATTT ACGGTAAACT






GCCCACTTGG CAGTACATGA AGTGTATCAT





121
ATGCCAAGTA CGCCCCCTAT TGACGTCAAT






GACGGTAAAT GGCCCGCCTG GCATTATGCC





181
CAGTACATGA CCTTATGGGA CTTTCCTACT






TGGCAGTACA TCTACGTATT AGTCATCGCT





241
ATTACCATGG TCGAGGTGAG CCCCACGTTC






TGCTTCACTC TCCCCATCTC CCCCCCCTCC





301
CCACCCCCAA TTTTGTATTT ATTTATTTTT






TAATTATTTT GTGCAGCGAT GGGGGGGGGG





361
GGGGGGGGGG GGCGCGCGCC AGGCGGGGCG






GGGGGGGGGG AGGGGCGGGG CGGGGCGAGG





421
CGGAGAGGTG CGGCGGCAGC CAATCAGAGC






GGCGCGCTCC GAAAGTTTCC TTTTATGGCG





481
AGGCGGCGGC GGCGGCGGCC CTATAAAAAG






CGAAGCGCGC GGGGGGGGGG AGTCGCTGCG





541
CGCTGCCTTC GCCCCGTGCC CCGCTCCGCC






GCCGCCTCGC GCCGCCCGCC CCGGCTCTGA





601
CTGACCGCGT TACTCCCACA GGTGAGCGGG






CGGGACGGCC CTTCTCCTCC GGGCTGTAAT





661
TAGCGCTTGG TTTAATGACG GCTTGTTTCT






TTTCTGTGGC TGCGTGAAAG CCTTGAGGGG





721
CTCCGGGAGG GCCCTTTGTG CGGGGGGAGC






GGCTCGGGGC TGTCCGCGGG GGGACGGCTG





781
CCTTCGGGGG GGACGGGGCA GGGCGGGGTT






CGGCTTCTGG CGTGTGACCG GCGGCTCTAG





841
AGCCTCTGCT AACCATGTTC ATGCCTTCTT






CTTTTTCCTA CAGCTCCTGG GCAACGTGCT





901
GGTTATTGTG CTGTCTCATC ATTTTGGCAA






AGAATTGGAT C.






In some embodiments of the compositions of the disclosure, the sequence encoding the human BEST1 protein comprises or consists of









(SEQ ID NO: 3)








1
ATGACCATCA CTTACACAAG CCAAGTGGCT






AATGCCCGCT TAGGCTCCTT CTCCCGCCTG





61
CTGCTGTGCT GGCGGGGCAG CATCTACAAG






CTGCTATATG GCGAGTTCTT AATCTTCCTG





121
CTCTGCTACT ACATCATCCG CTTTATTTAT






AGGCTGGCCC TCACGGAAGA ACAACAGCTG





181
ATGTTTGAGA AACTGACTCT GTATTGCGAC






AGCTACATCC AGCTCATCCC CATTTCCTTC





241
GTGCTGGGCT TCTACGTGAC GCTGGTCGTG






ACCCGCTGGT GGAACCAGTA CGAGAACCTG





301
CCGTGGCCCG ACCGCCTCAT GAGCCTGGTG






TCGGGCTTCG TCGAAGGCAA GGACGAGCAA





361
GGCCGGCTGC TGCGGCGCAC GCTCATCCGC






TACGCCAACC TGGGCAACGT GCTCATCCTG





421
CGCAGCGTCA GCACCGCAGT CTACAAGCGC






TTCCCCAGCG CCCAGCACCT GGTGCAAGCA





481
GGCTTTATGA CTCCGGCAGA ACACAAGCAG






TTGGAGAAAC TGAGCCTACC ACACAACATG





541
TTCTGGGTGC CCTGGGTGTG GTTTGCCAAC






CTGTCAATGA AGGCGTGGCT TGGAGGTCGA





601
ATCCGGGACC CTATCCTGCT CCAGAGCCTG






CTGAACGAGA TGAACACCTT GCGTACTCAG





661
TGTGGACACC TGTATGCCTA CGACTGGATT






AGTATCCCAC TGGTGTATAC ACAGGTGGTG





721
ACTGTGGCGG TGTACAGCTT CTTCCTGACT






TGTCTAGTTG GGCGGCAGTT TCTGAACCCA





781
GCCAAGGCCT ACCCTGGCCA TGAGCTGGAC






CTCGTTGTGC CCGTCTTCAC GTTCCTGCAG





841
TTCTTCTTCT ATGTTGGCTG GCTGAAGGTG






GCAGAGCAGC TCATCAACCC CTTTGGAGAG





901
GATGATGATG ATTTTGAGAC CAACTGGATT






GTCGACAGGA ATTTGCAGGT GTCCCTGTTG





961
GCTGTGGATG AGATGCACCA GGACCTGCCT






CGGATGGAGC CGGACATGTA CTGGAATAAG





1021
CCCGAGCCAC AGCCCCCCTA CACAGCTGCT






TCCGCCCAGT TCCGTCGAGC CTCCTTTATG





1081
GGCTCCACCT TCAACATCAG CCTGAACAAA






GAGGAGATGG AGTTCCAGCC CAATCAGGAG





1141
GACGAGGAGG ATGCTCACGC TGGCATCATT






GGCCGCTTCC TAGGCCTGCA GTCCCATGAT





1201
CACCATCCTC CCAGGGCAAA CTCAAGGACC






AAACTACTGT GGCCCAAGAG GGAATCCCTT





1261
CTCCACGAGG GCCTGCCCAA AAACCACAAG






GCAGCCAAAC AGAACGTTAG GGGCCAGGAA





1321
GACAACAAGG CCTGGAAGCT TAAGGCTGTG






GACGCCTTCA AGTCTGCCCC ACTGTATCAG





1381
AGGCCAGGCT ACTACAGTGC CCCACAGACG






CCCCTCAGCC CCACTCCCAT GTTCTTCCCC





1441
CTAGAACCAT CAGCGCCGTC AAAGCTTCAC






AGTGTCACAG GCATAGACAC CAAAGACAAA





1501
AGCTTAAAGA CTGTGAGTTC TGGGGCCAAG






AAAAGTTTTG AATTGCTCTC AGAGAGGGAT





1561
GGGGCCTTGA TGGAGCACCC AGAAGTATCT






CAAGTGAGGA GGAAAACTGT GGAGTTTAAC





1621
CTGACGGATA TGCCAGAGAT CCCCGAAAAT






CACCTCAAAG AACCTTTGGA ACAATCACCA





1681
ACCAACATAC ACACTACACT CAAAGATCAC






ATGGATCCTT ATTGGGCCTT GGAAAACAGG





1741
GATGAAGCAC ATTCCTAA.






The disclosure provides a vector comprising a composition of the disclosure. In some embodiments, the vector is a plasmid.


The disclosure provides a delivery vector comprising the vector of the disclosure. In some embodiments, the delivery vector is a viral delivery vector. In some embodiments, the delivery vector comprises a single stranded viral genome. In some embodiments, the delivery vector comprises a double stranded viral genome. In some embodiments, the delivery vector comprises an RNA molecule.


The disclosure provides a delivery vector comprising the vector of the disclosure. In some embodiments, the delivery vector comprises a sequence isolated or derived from an adeno-associated virus (AAV) vector. In some embodiments, the delivery vector comprises a sequence isolated or derived from an AAV vector of serotype AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11 or any combination thereof. In some embodiments, the delivery vector comprises a sequence isolated or derived from an AAV vector of serotype AAV2. In some embodiments, the delivery vector comprises a sequence isolated or derived from an AAV vector of serotype AAV8. In some embodiments, the delivery vector comprises a sequence encoding a first inverted terminal repeat (ITR) and a second ITR isolated or derived from an AAV vector of serotype AAV2 and a sequence encoding a viral gene isolated or derived from an AAV vector of serotype AAV2. In some embodiments, the delivery vector comprises a sequence encoding a first inverted terminal repeat (ITR) and a second ITR isolated or derived from an AAV vector of serotype AAV8 and a sequence encoding a viral gene isolated or derived from an AAV vector of serotype AAV8. In some embodiments, the delivery vector comprises a sequence encoding a first inverted terminal repeat (ITR) and a second ITR isolated or derived from an AAV vector of serotype AAV2 and a sequence encoding a viral gene isolated or derived from an AAV vector of serotype AAV8.


The disclosure provides a pharmaceutical composition comprising a composition of the disclosure and a pharmaceutically-acceptable carrier. In some embodiments, the pharmaceutically-acceptable carrier comprises TMN200.


The disclosure provides a pharmaceutical composition comprising a vector of the disclosure a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutically acceptable carrier comprises TMN200.


The disclosure provides a pharmaceutical composition comprising a delivery vector of the disclosure and a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutically acceptable carrier comprises TMN200.


The disclosure provides a cell comprising a composition of the disclosure. The disclosure provides a cell comprising a vector of the disclosure. The disclosure provides a cell comprising a delivery vector of the disclosure. The disclosure provides a cell comprising a pharmaceutical composition of the disclosure. In some embodiments, the cell is a mammalian cell. In some embodiments, the mammalian cell is a non-human primate cell, a rodent cell, a mouse cell, a rat cell or a rabbit cell. In some embodiments, the cell is a human cell. In some embodiments, the human cell is a neuronal cell, a glial cell, a retinal cell, a photoreceptor cell, a rod cell, a cone cell or a cuboidal cell of the retinal pigment epithelium (RPE). In some embodiments, the human cell is a photoreceptor cell. In some embodiments, the human cell is an HEK293 cell or an ARPE19 cell. In some embodiments, the human cell is isolated or derived from an RPE of a human retina. In some embodiments, the cell is in vivo, in vitro, ex vivo or in situ.


The disclosure provides a method of treating macular dystrophy in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of a composition of the disclosure.


The disclosure provides a method of treating macular dystrophy in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of a composition comprising the vector of the disclosure.


The disclosure provides a method of treating macular dystrophy in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of a composition comprising the delivery vector of the disclosure.


In some embodiments of the methods of the disclosure, the subject is a human. In some embodiments, the subject is a non-human primate, a dog, a cat, a rodent, a mouse, a rat, or a rabbit. In some embodiments, the subject has macular dystrophy.


In some embodiments of the methods of the disclosure, the subject has a mutation in one or both copies of a BEST1 gene. In some embodiments, the mutation is heritable as a dominant mutation. In some embodiments, the dominant mutation causes Best Vitelliform Macular Dystrophy (BVMD) in the subject. In some embodiments, the mutation is heritable as a recessive mutation. In some embodiments, the recessive mutation causes Autosomal Recessive Bestrophinopathy (ARB) in the subject. In some embodiments, the mutation occurs in a coding sequence of one or both copies of a BEST1 gene. In some embodiments, the mutation occurs in a non-coding sequence of one or both copies of a BEST1 gene. In some embodiments, the mutation comprises a substitution, an insertion, a deletion, an inversion, a translocation, a frameshift, or a combination thereof in one both copies of a BEST1 gene.


In some embodiments of the methods of the disclosure, administering comprises an injection or an infusion via a subretinal, a suprachoroidal or an intravitreal route. In some embodiments, administering comprises an injection or an infusion via a subretinal route. In some embodiments, administering comprises a two-step injection or a two-step infusion via a subretinal route.


In some embodiments of the methods of the disclosure, the therapeutically effective amount is formulated in a volume of between 10 and 200 μL, inclusive of the endpoints. In some embodiments, the therapeutically effective amount is formulated in a volume of between 10 and 50 μL, between 50 and 100 μL, between 100 and 150 μL or between 150 and 200 μL, inclusive of the endpoints, for each range. In some embodiments, the therapeutically effective amount is formulated in a volume of between 70 and 120 μL, inclusive of the endpoints, and wherein the administering comprises an injection or an infusion via a subretinal route. In some embodiments, the therapeutically effective amount is formulated in a volume of 100 μL and wherein the administering comprises an injection or an infusion via a subretinal route.


In some embodiments of the methods of the disclosure, the therapeutically effective amount comprises a concentration of an AAV delivery vector of at least 1×1010 DRP/mL, at least 1×10″ DRP/mL, at least 1×1012 DRP/mL, at least 2×1012 DRP/mL, at least 5×1012 DRP/mL or at least 1.5×10″ DRP/mL. In some embodiments, the therapeutically effective amount comprises a concentration of an AAV delivery vector of at least 2×10″ DRP/mL, at least 5×10″ DRP/mL or at least 1.5×10″ DRP/mL. In some embodiments, the therapeutically effective amount comprises a concentration of an AAV delivery vector of at least 5×1012 DRP/mL. In some embodiments, the therapeutically effective amount comprises a concentration of an AAV delivery vector of at least 1.5×10″ DRP/mL.


In some embodiments of the methods of the disclosure, the therapeutically effective amount comprises a dose of 2×108 genome particles (gp), 5×108 gp, 1.5×109 gp, 2×109 gp, 5×109 gp, 2×1010 gp, 5×1010 gp, 6×1010 gp, 1.2×1011 gp, 1.5×1011 gp, 2×1011 gp, 4.5×1011 gp, 5×1011 gp, 1.2×1012 gp, 1.5×1012 gp, 2×1012 gp or 5×1012 gp. In some embodiments, the subject is a mouse and wherein the therapeutically effective amount comprises a dose of 5×108 gp, 1.5×109 gp or 5×109 gp. In some embodiments, the subject is a non-human primate and wherein the therapeutically effective amount comprises a dose of 1.2×1011 gp, 4.5×1011 gp or 1.2×1012 gp of AAV viral particles. In some embodiments, the subject is human and wherein the therapeutically effective amount comprises a dose of 5×1010 gp, 1.5×1011 gp, 1.5×1012 gp or 1.5×1012 gp of AAV viral particles.


In some embodiments of the methods of the disclosure, the composition further comprises a TMN200 buffer.


The disclosure provides a composition of the disclosure for use in treating macular dystrophy in a subject in need thereof.


The disclosure provides a vector of the disclosure for use in treating macular dystrophy in a subject in need thereof.


The disclosure provides a delivery vector of the disclosure for use in treating macular dystrophy in a subject in need thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1A-B are a pair of maps of a plasmid encoding VMD2. IntEx.BEST1.WPRE.pA construct with AAV2 ITRs.



FIG. 2A-B are a pair of maps of a plasmid encoding VMD2.BEST1.WPRE.pA construct with AAV2 ITRs.



FIG. 3A-C are a series of three maps of two plasmids encoding CAG.BEST1.WPRE.pA with AAV2 ITRs. FIG. 3A and FIG. 3B are two maps of a CAG.BEST.WPRE.pA plasmid with an AmpR selectable marker. FIG. 3C is a map of a CAG.BEST.WPRE.pA plasmid with a KanR selectable marker and a stuffer sequence.



FIG. 4 is a map of a plasmid encoding VMD2.GFP.WPRE.pA with AAV2 ITRs.



FIG. 5 is a map of a plasmid encoding VMD2. Int.Ex.GFP.WPRE.pA with AAV2 ITRs.



FIG. 6A-B are each a series of images, 6 images and 3 images, respectively, showing BEST1 expression in HEK293 cells transduced with AAV.CAG.BEST1.pA, AAV.CAG.BEST1.WPRE.pA and an untransduced control. Cells are stained with Hoechst blue dye and anti-hBestrophin-1. Bestrophin-1 protein is localized throughout the cytosol



FIG. 7A-B is a picture of a Western Blot (7A) and a bar graph (7B), respectively, showing the expression of Bestrophin-1 protein and a beta-actin control in HEK293 cells transduced with AAV.CAG.BEST1.pA (sample 1) or AAV.CAG.BEST1.WPRE.pA (sample 2) or a negative control (sample 3). Plasmid-transfected HEK293 cells were used as a positive control. FIG. 7B shows the quantification of Bestrophin-1 protein expression in HEK293 cells transduced with AAV.CAG.BEST1.pA (n=9) or AAV.CAG.BEST1.WPRE.pA (n=9) or an untransduced negative control (n=8). The Y-axis shows the normalized LiCor Value. Error bars are ±SEM. *** indicates p<0.001 when compared to the un-transduced control.



FIG. 8A-B is a single plot (8A) and a series of four plots (8B), respectively, showing whole-cell patch clamp recording data from HEK293 cells transduced with AAV2/2 CAG.BEST1.pA, AAV2/2 CAG.BEST1.WPRE.pA or AAV2/2 CAG.GFP.WPRE.pA vectors, as well as an untransduced control. In FIG. 8A, Current (pA) is plotted on the X-axis from −140 to 500 in increments of 20, while Voltage (in mV) is plotted on the Y-axis from −200 to 500 in units of 100. In FIG. 8B, the current waveforms are shown. Current (I)/Voltage (V) plots of HEK293 transduced with the different vectors and an untransduced control are shown, clockwise from the top left: AAV2/2 CAG.BEST1.pA, AAV2/2 CAG.BEST1.WPRE.pA, untransduced control and AAV2/2 CAG.GFP.WPRE.pA. The inset scale bar (center) shows 250 pA on the Y-axis and 100 milliseconds on the X-axis.



FIG. 9A-B is a pair of plots showing the chord conductance of HEK293 cells transduced with AAV2/2 CAG.BEST1.pA (n=10), AAV2/2 CAG.BEST1.WPRE.pA (n=10), AAV2/2 CAG.GFP.WPRE.pA (n=11) and an untransduced control (n=10). Chord conductance is plotted on the Y-axis from 0 to 10 in units of 2. **** indicates p<0.0001, * indicates p<0.05, ns stands for not significant.



FIG. 10A-B are a pair of flow charts showing two embodiments of an experimental procedure for assaying BEST1 expression in differentiated ARPE19 cells. FIG. 10A show an experimental procedure for assaying BEST1 expression in transfected differentiated ARPE19 cells. FIG. 10B shows an experimental procedure for assaying BEST1 expression in transfected and/or transduced differentiated ARPE19 cells.



FIG. 11A-B is a series of 16 images (A) and 6 images (B) showing BEST1 and ZO-1 immunostaining of transfected ARPE19 cells that were differentiated for 1 month. (A) The rows, top to bottom show ARPE19 cells with the following constructs: untransfected control, CAG.BEST1.WPRE, VMD2.BEST1.WPRE and VMD2. IntEx.BEST1.WPRE. The columns from left to right show: nuclei stained with Hoechst in blue, ZO-1 staining in green (ZO-1 is a marker of the cytoplasmic membrane surface of intercellular tight junctions), BEST1 in red, and a merged image (Hoechst, ZO-1, BEST1). Scale bars show 100 microns (μm). (B) Shown in the top row are ARPE19 cells transfected with VMD2.BEST1.WPRE.pA. Shown in the bottom row are ARPE19 cells transfected with VMD2. IntEx.BEST1.WPRE.pA. The images from left to right show ZO-1 (green) and BEST1 (red), and a merged image (Hoechst, ZO-1 and BEST1). The scale bar in the merged images indicates 25 μm.



FIG. 12A-B is a series of 16 images (A) and 9 images (B) showing BEST1 and ZO-immunostaining of transfected ARPE19 cells that were differentiated for 3 months. (A) The rows, top to bottom show ARPE19 cells with the following constructs: untransfected control, CAG.BEST1.WPRE, VMD2.BEST1.WPRE and VMD2. IntEx.BEST1.WPRE. The columns from left to right show: nuclei stained with Hoechst in blue, ZO-1 staining in green, BEST1 in red, and a merged image (Hoechst, ZO-1, BEST1). Scale bars show 100 microns (μm). (B) Representative images of FIG. 12A at higher magnification. The rows from top to bottom show CAG.BEST1.WPRE, VMD2.BEST1.WPRE and VMD2. IntEx.BEST1.WPRE. The columns from left to right show staining for ZO-1 in green, BEST1 in red and a merged image including Hoechst in blue. The scale bar in the merged images indicates 25 μm.



FIG. 13A-B shows two series of 8 images each showing GFP fluorescence in ARPE19 cells differentiated for 4 months, pre-treated with 400 nM doxorubicin and transduced with (FIG. 13A) AAV2/2.CAG.GFP.WPRE or (FIG. 13B) AAV2/2.VMD2. InEx.GFP.WPRE at 3 different multiplicities of infection (MOI). The MOIs used were 2, 4 and 8×104 genome particles (gp)/cell. The scale bars in the negative control (untransduced and untreated cells) indicates 50 pin. The top row in each panel indicates untreated control cells, the bottom row are cells pre-treated with 400 nM doxorubicin.



FIG. 14 is a series of 20 images showing BEST1 and ZO-1 immunostaining of ARPE19 cells differentiated for 4 months, pre-treated with 400 nM doxorubicin and transduced with AAV2/2.CAG.BEST1.WPRE and AAV2/2.VMD2. InEx.BEST1.WPRE at two different MOIs: 1 and 4×104 gp/cell. The rows, top to bottom show ARPE19 cells with the following viral vectors: untransduced control, AAV2/2.CAG.BEST1.WPRE at a MOI 10,000 gp/cell, AAV2/2.CAG.BEST1.WPRE at a MOI 40,000 gp/cell, AAV2/2.VMD2. InEx.BEST1.WPRE at a MOI 10,000 gp/cell and AAV2/2.VMD2. InEx.BEST1.WPRE at a MOI 40,000 gp/cell. The columns from left to right show: nuclei stained with Hoechst in blue, ZO-1 staining in green, BEST1 in red, and a merged image (Hoechst, ZO-1, BEST1). Scale bars show 50 μm.



FIG. 15 is a table outlining a 4/8 week in vivo pilot study protocol in mice.



FIG. 16 is a series of 6 optical coherence tomography (OCT) images of mouse eyes four weeks after being injected with sham, VMD2.BEST1.WPRE or VMD2. IntEx.BEST1.WPRE AAV constructs. The columns, from left to right, show mice injected with a sham, with VMD2.BEST1.WPRE and with VMD2. IntEx.BEST1.WPRE AAV constructs.



FIG. 17 is a series of 3 OCT images of mouse eyes four weeks after being injected with, from left to right: sham, VMD2.BEST1.WPRE or VMD2. IntEx.BEST1.WPRE AAV constructs. Indicated morphological structures are the retinal ganglion cell (RGC), inner plexiform layer (IPL), the inner nuclear layer (INL), the outer plexiform layer (OPL), the outer nuclear layer (ONL), the retinal pigmented epithelium (RPE). Blue and red arrows indicate retinal thicknesses.



FIG. 18 is a series of 12 OCT images of mouse eyes four and eight weeks after being injected with sham, VMD2.BEST1.WPRE or VMD2. IntEx.BEST1.WPRE AAV constructs (columns, from left to right). Mid-sagittal and off-center views are shown in alternating rows. The top two rows are animals imaged at 4 weeks post injection, and the bottom two rows are animals imaged at 8 weeks post injection.



FIG. 19 is a series of 12 fluorescent microscopy images of mouse eyes four weeks after being injected with sham, VMD2.BEST1.WPRE or VMD2. IntEx.BEST1.WPRE AAV constructs and stained with anti BEST1 (green), anti Rhodopsin (red) and DAPI (blue). The rows show, from top to bottom, sham injected eyes, eyes injected VMD2.BEST1.WPRE or VMD2. IntEx.BEST1.WPRE AAV particles. The columns, from left to right, show anti BEST1 (green), anti Rhodopsin (red), DAPI (blue) and a merged image. The retinal pigment epithelium (RPE), photoreceptors (PR) and retinal ganglion cells (RGC) are indicated at bottom.



FIG. 20 is a series of 12 images of mouse eyes eight weeks after being injected with, in columns from left to right: sham, VMD2.BEST1.WPRE or VMD2. IntEx.BEST1.WPRE AAV particles and stained for BEST1 (green), Rhodopsin (red) and DAPI (blue). The rows, from top to bottom, are a merged image, anti-BEST1 (also called huBEST1), anti-Rhodopsin and a bright field image.



FIG. 21 is an image of a western blot showing BEST1 protein expression in dissected mouse RPE and choroid complex four weeks after injection with sham, CAG.BEST1.WPRE, VMD2.BEST1.WPRE or VMD2. IntEx.BEST1.WPRE AAV constructs. The blue arrow indicates a recombinant human Bestrophin-1 protein, while the red arrow indicates the suggested size of the BEST1 protein. CAG.BEST1.WPRE was used as a control. CAG is a strong promoter with a constitutive expression in mammalian cells. It is an hybrid between the cytomegalovirus (CMV) enhancer element, the chicken beta-actin promoter (CBA) and the splice acceptor of the rabbit beta-globin gene.



FIG. 22 is a table outlining a 4/13 week in vivo proof of concept (PoC) study protocol in mice.



FIG. 23 is a series of 20 OCT images of mouse eyes four weeks and 13 weeks after being injected with sham, VMD2. IntEx.BEST1.WPRE or VMD2.BEST1.WPRE AAV constructs at two different dosages (1×108 GC/μL/eye and 1×109 GC/μL/eye). Mid-sagittal (top row) and off-center (bottom row) views are shown in alternating rows.



FIG. 24 is a series of 20 microscopy images of mouse eyes four weeks after being injected with sham, VMD2. IntEx.BEST1.WPRE or VMD2.BEST1.WPRE AAV constructs at two different dosages (1×108 GC/μL/eye and 1×109 GC/μL/eye), and stained with anti-BEST1 (huBEST1, green), anti-Rhodopsin (red) and DAPI (blue). Also shown are bright field images (bottom row). The columns, from left to right, show VMD2. IntEx.BEST1.WPRE at 1×108 GC/μL/eye, VMD2. IntEx.BEST1.WPRE at 1×109 GC/μL/eye, VMD2.BEST1.WPRE at 1×108 GC/μL/eye and VMD2.BEST1.WPRE at 1×109 GC/μL/eye. Rows, from top to bottom show: a merged image, anti-BEST1, anti-Rhodopsin and bright field. Anatomical structures indicated in the upper left image are the inner nuclear layer (INL), the outer nuclear layer (ONL), the outer segment (OS), the retinal pigment epithelium (RPE) and the choroid.



FIG. 25A-B are a pair of images of western blots looking at BEST1 protein expression in cells or injected mouse RPE and choroid complex. FIG. 25A is a western blot showing the expression of Bestrophin-1 protein and a beta-actin control in HEK293 and ARPE-19 cells transfected with pCAG.BEST1.WPRE, pVMD2.BEST1.WPRE and pVMD2. InEx.BEST1.WPRE or an untransfected sample as negative control. FIG. 25B is a western blot showing BEST1 protein in isolated RPE and choroid samples from mice injected with either a high does (1×109 GC/μL/eye) or low dose (1×108 GC/μL/eye) of either VMD2. IntEx.BEST1.WPRE or VMD2.BEST1.WPRE AAV particles.



FIG. 26 is a table showing a study design for assaying human BEST1 expression by immunohistochemistry and western blot in mice injected with AAV2/2.VMD2. InEx.BEST1.WPRE.



FIG. 27 is a table showing a protocol for a proposed good laboratory practice (GLP) study to assess potential toxicity in mice.



FIG. 28 is a table showing a protocol for the evaluation of toxicity assessment study materials at 4 weeks.



FIG. 29 is a table showing a protocol for a proposed good laboratory practice (GLP) study to assess potential toxicity in non-human primates.



FIG. 30 is a table showing a dosing regimen in mouse, non-human primate and human equivalent doses in genome particles (gp) using a BEST1 AAV viral vector of the disclosure. The BEST1 AAV viral vector for the proposed doses is at a concentration of 2×1012 DRP/mL and made according to current good manufacturing practice (GMP) standards.



FIG. 31 is a table showing a dosing regimen and the required concentrations of DNAse resistant particles (DRP) and number of genome particles (gp) per dose in mouse, non-human primate and human of a BEST1 AAV viral vector of the disclosure.





DETAILED DESCRIPTION

The disclosure relates to the finding that in many cases macular degeneration may be caused by mutations in or the abnormal function of the protein Bestrophin-1 (BEST1, also known as VMD2). The macula is a region near the center of the retina, and is responsible for central, high-resolution color vision. The fovea, located near the center of the macula, contains the largest concentration of cone cell photoreceptors in the eye. Mutations in a gene called Bestrophin-1 (BEST1, or human BEST1 (hBEST1), also known as VMD2) are associated with at least five distinct retinal degeneration diseases, called bestrinopathies. Bestrinopathies comprise best vitelliform macular dystrophy (BVMD), autosomal recessive bestrophinopathy, adult-onset vitelliform macular dystrophy, autosomal dominant vitreoretinochoroidopathy and retinitis pigmentosa. These mutations can be either dominant (for example, BVMD) or recessive. Best Vitelliform Macular Dystrophy (BVMD) and Autosomal Recessive Bestrophinopathy may cause macular degeneration with an onset in late childhood or adolescence. However, in some cases, macular degeneration begins in adulthood. However, regardless of age of onset, bestrinopathies can have a devastating effect on vision, and there is currently no known effective treatment. Given the key role that BEST1 function plays in bestrophinopathies, one approach to the treatment of bestophinopathy is to deliver a functional BEST1 protein to the affected cells of the patient.


Bestrophin-1 (BEST1)

Bestrophin-1 (BEST1) is an integral membrane protein found primarily in the retinal pigment epithelium of the eye (RPE) and predominantly localizes to the basolateral plasma membrane. BEST1 protein is thought to function as an ion channel and a regulator of intracellular calcium signaling. Human BEST1 can be found in the NCBI database with accession numbers NP_004174.1 and NM_004183.3, the contents of which are incorporated by reference in their entirety herein.


In some embodiments of the compositions of the disclosure, a sequence encoding a BEST1 protein of the disclosure comprises or consists of an amino acid sequence having at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity to the sequence of:









(SEQ ID NO: 4)








1
MTITYTSQVA NARLGSFSRL LLCWRGSIYK






LLYGEFLIFL LCYYIIRFIY RLALTEEQQL





61
MFEKLTLYCD SYIQLIPISF VLGFYVTLVV






TRWWNQYENL PWPDRLMSLV SGFVEGKDEQ





121
GRLLRRTLIR YANLGNVLIL RSVSTAVYKR






FPSAQHLVQA GFMTPAEHKQ LEKLSLPHNM





181
FWVPWVWFAN LSMKAWLGGR IRDPILLQSL






LNEMNTLRTQ CGHLYAYDWI SIPLVYTQVV





241
TVAVYSFFLT CLVGRQFLNP AKAYPGHELD






LVVPVFTFLQ FFFYVGWLKV AEQLINPFGE





301
DDDDFETNWI VDRNLQVSLL AVDEMHQDLP






RMEPDMYWNK PEPQPPYTAA SAQFRRASFM





361
GSTFNISLNK EEMEFQPNQE DEEDAHAGII






GRFLGLQSHD HHPPRANSRT KLLWPKRESL





421
LHEGLPKNHK AAKQNVRGQE DNKAWKLKAV






DAFKSAPLYQ RPGYYSAPQT PLSPTPMFFP





481
LEPSAPSKLH SVTGIDTKDK SLKTVSSGAK






KSFELLSESD GALMEHPEVS QVRRKTVEFN





541
LTDMPEIPEN HLKEPLEQSP TNIHTTLKDH






MDPYWALENR DEAHS.






In some embodiments of the compositions of the disclosure, a sequence encoding a BEST1 protein of the disclosure comprises or consists of the amino acid sequence:









(SEQ ID NO: 4)








1
MTITYTSQVA NARLGSFSRL LLCWRGSIYK






LLYGEFLIFL LCYYIIRFIY RLALTEEQQL





61
MFEKLTLYCD SYIQLIPISF VLGFYVTLVV






TRWWNQYENL PWPDRLMSLV SGFVEGKDEQ





121
GRLLRRTLIR YANLGNVLIL RSVSTAVYKR






FPSAQHLVQA GFMTPAEHKQ LEKLSLPHNM





181
FWVPWVWFAN LSMKAWLGGR IRDPILLQSL






LNEMNTLRTQ CGHLYAYDWI SIPLVYTQVV





241
TVAVYSFFLT CLVGRQFLNP AKAYPGHELD






LVVPVFTFLQ FFFYVGWLKV AEQLINPFGE





301
DDDDFETNWI VDRNLQVSLL AVDEMHQDLP






RMEPDMYWNK PEPQPPYTAA SAQFRRASFM





361
GSTFNISLNK EEMEFQPNQE DEEDAHAGII






GRFLGLQSHD HHPPRANSRT KLLWPKRESL





421
LHEGLPKNHK AAKQNVRGQE DNKAWKLKAV






DAFKSAPLYQ RPGYYSAPQT PLSPTPMFFP





481
LEPSAPSKLH SVTGIDTKDK SLKTVSSGAK






KSFELLSESD GALMEHPEVS QVRRKTVEFN





541
LTDMPEIPEN HLKEPLEQSP TNIHTTLKDH






MDPYWALENR DEAHS.






In some embodiments of the compositions of the disclosure, a nucleic acid sequence encoding a BEST1 protein of the disclosure comprises or consists of a nucleic acid having at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity to the nucleic acid sequence of:









(SEQ ID NO: 3)








1
ATGACCATCA CTTACACAAG CCAAGTGGCT






AATGCCCGCT TAGGCTCCTT CTCCCGCCTG





61
CTGCTGTGCT GGCGGGGCAG CATCTACAAG






CTGCTATATG GCGAGTTCTT AATCTTCCTG





121
CTCTGCTACT ACATCATCCG CTTTATTTAT






AGGCTGGCCC TCACGGAAGA ACAACAGCTG





181
ATGTTTGAGA AACTGACTCT GTATTGCGAC






AGCTACATCC AGCTCATCCC CATTTCCTTC





241
GTGCTGGGCT TCTACGTGAC GCTGGTCGTG






ACCCGCTGGT GGAACCAGTA CGAGAACCTG





301
CCGTGGCCCG ACCGCCTCAT GAGCCTGGTG






TCGGGCTTCG TCGAAGGCAA GGACGAGCAA





361
GGCCGGCTGC TGCGGCGCAC GCTCATCCGC






TACGCCAACC TGGGCAACGT GCTCATCCTG





421
CGCAGCGTCA GCACCGCAGT CTACAAGCGC






TTCCCCAGCG CCCAGCACCT GGTGCAAGCA





481
GGCTTTATGA CTCCGGCAGA ACACAAGCAG






TTGGAGAAAC TGAGCCTACC ACACAACATG





541
TTCTGGGTGC CCTGGGTGTG GTTTGCCAAC






CTGTCAATGA AGGCGTGGCT TGGAGGTCGA





601
ATCCGGGACC CTATCCTGCT CCAGAGCCTG






CTGAACGAGA TGAACACCTT GCGTACTCAG





661
TGTGGACACC TGTATGCCTA CGACTGGATT






AGTATCCCAC TGGTGTATAC ACAGGTGGTG





721
ACTGTGGCGG TGTACAGCTT CTTCCTGACT






TGTCTAGTTG GGCGGCAGTT TCTGAACCCA





781
GCCAAGGCCT ACCCTGGCCA TGAGCTGGAC






CTCGTTGTGC CCGTCTTCAC GTTCCTGCAG





841
TTCTTCTTCT ATGTTGGCTG GCTGAAGGTG






GCAGAGCAGC TCATCAACCC CTTTGGAGAG





901
GATGATGATG ATTTTGAGAC CAACTGGATT






GTCGACAGGA ATTTGCAGGT GTCCCTGTTG





961
GCTGTGGATG AGATGCACCA GGACCTGCCT






CGGATGGAGC CGGACATGTA CTGGAATAAG





1021
CCCGAGCCAC AGCCCCCCTA CACAGCTGCT






TCCGCCCAGT TCCGTCGAGC CTCCTTTATG





1081
GGCTCCACCT TCAACATCAG CCTGAACAAA






GAGGAGATGG AGTTCCAGCC CAATCAGGAG





1141
GACGAGGAGG ATGCTCACGC TGGCATCATT






GGCCGCTTCC TAGGCCTGCA GTCCCATGAT





1201
CACCATCCTC CCAGGGCAAA CTCAAGGACC






AAACTACTGT GGCCCAAGAG GGAATCCCTT





1261
CTCCACGAGG GCCTGCCCAA AAACCACAAG






GCAGCCAAAC AGAACGTTAG GGGCCAGGAA





1321
GACAACAAGG CCTGGAAGCT TAAGGCTGTG






GACGCCTTCA AGTCTGCCCC ACTGTATCAG





1381
AGGCCAGGCT ACTACAGTGC CCCACAGACG






CCCCTCAGCC CCACTCCCAT GTTCTTCCCC





1441
CTAGAACCAT CAGCGCCGTC AAAGCTTCAC






AGTGTCACAG GCATAGACAC CAAAGACAAA





1501
AGCTTAAAGA CTGTGAGTTC TGGGGCCAAG






AAAAGTTTTG AATTGCTCTC AGAGAGCGAT





1561
GGGGCCTTGA TGGAGCACCC AGAAGTATCT






CAAGTGAGGA GGAAAACTGT GGAGTTTAAC





1621
CTGACGGATA TGCCAGAGAT CCCCGAAAAT






CACCTCAAAG AACCTTTGGA ACAATCACCA





1681
ACCAACATAC ACACTACACT CAAAGATCAC






ATGGATCCTT ATTGGGCCTT GGAAAACAGG





1741
GATGAAGCAC ATTCCTAA.






In some embodiments of the compositions of the disclosure, a nucleic acid sequence encoding a BEST1 protein of the disclosure comprises or consists of the nucleic acid sequence:









(SEQ ID NO: 3)








1
ATGACCATCA CTTACACAAG CCAAGTGGCT






AATGCCCGCT TAGGCTCCTT CTCCCGCCTG





61
CTGCTGTGCT GGCGGGGCAG CATCTACAAG






CTGCTATATG GCGAGTTCTT AATCTTCCTG





121
CTCTGCTACT ACATCATCCG CTTTATTTAT






AGGCTGGCCC TCACGGAAGA ACAACAGGTG





181
ATGTTTGAGA AACTGACTCT GTATTGCGAC






AGCTACATCC AGCTCATCCC CATTTCCTTC





241
GTGCTGGGCT TCTACGTGAC GCTGGTCGTG






ACCCGCTGGT GGAACCAGTA CGAGAACCTG





301
CCGTGGCCCG ACCGCCTCAT GAGCCTGGTG






TCGGGCTTCG TCGAAGGCAA GGACGAGCAA





361
GGCCGGCTGC TGCGGCGCAC GCTCATCCGC






TACGCCAACC TGGGCAACGT GCTCATCCTG





421
CGCAGCGTCA GCACCGCAGT CTACAAGCGC






TTCCCCAGCG CCCAGCACCT GGTGCAAGCA





481
GGCTTTATGA CTCCGGCAGA ACACAAGCAG






TTGGAGAAAC TGAGCCTACC ACACAACATG





541
TTCTGGGTGC CCTGGGTGTG GTTTGCCAAC






CTGTCAATGA AGGCGTGGCT TGGAGGTCGA





601
ATCCGGGACC CTATCCTGCT CCAGAGCCTG






CTGAACGAGA TGAACACCTT GCGTACTCAG





661
TGTGGACACC TGTATGCCTA CGACTGGATT






AGTATCCCAC TGGTGTATAC ACAGGTGGTG





721
ACTGTGGCGG TGTACAGCTT CTTCCTGACT






TGTCTAGTTG GGCGGCAGTT TCTGAACCCA





781
GCCAAGGCCT ACCCTGGCCA TGAGCTGGAC






CTCGTTGTGC CCGTCTTCAC GTTCCTGCAG





841
TTCTTCTTCT ATGTTGGCTG GCTGAAGGTG






GCAGAGCAGC TCATCAACCC CTTTGGAGAG





901
GATGATGATG ATTTTGAGAC CAACTGGATT






GTCGACAGGA ATTTGCAGGT GTCCCTGTTG





961
GCTGTGGATG AGATGCACCA GGACCTGCCT






CGGATGGAGC CGGACATGTA CTGGAATAAG





1021
CCCGAGCCAC AGCCCCCCTA CACAGCTGCT






TCCGCCCAGT TCCGTCGAGC CTCCTTTATG





1081
GGCTCCACCT TCAACATCAG CCTGAACAAA






GAGGAGATGG AGTTCCAGCC CAATCAGGAG





1141
GACGAGGAGG ATGCTCACGC TGGCATCATT






GGCCGCTTCC TAGGCCTGCA GTCCCATGAT





1201
CACCATCCTC CCAGGGCAAA CTCAAGGACC






AAACTACTGT GGCCCAAGAG GGAATCCCTT





1261
CTCCACGAGG GCCTGCCCAA AAACCACAAG






GCAGCCAAAC AGAAGGTTAG GGGCCAGGAA





1321
GACAACAAGG CCTGGAAGCT TAAGGCTGTG






GACGCCTTCA AGTCTGCCCC ACTGTATCAG





1381
AGGCCAGGCT ACTACAGTGC CCCACAGACG






CCCCTCAGCC CCACTCCCAT GTTCTTCCCC





1441
CTAGAACCAT CAGCGCCGTC AAAGCTTCAC






AGTGTCACAG GCATAGACAC CAAAGACAAA





1501
AGCTTAAAGA CTGTGAGTTC TGGGGCCAAG






AAAAGTTTTG AATTGCTCTC AGAGAGGGAT





1561
GGGGCCTTGA TGGAGCACCC AGAAGTATCT






CAAGTGAGGA GGAAAACTGT GGAGTTTAAC





1621
CTGACGGATA TGCCAGAGAT CCCCGAAAAT






CACCTCAAAG AACCTTTGGA ACAATCACCA





1681
ACCAACATAC ACACTACACT CAAAGATCAC






ATGGATCCTT ATTGGGCCTT GGAAAACAGG





1741
GATGAAGCAC ATTCCTAA.






In some embodiments of the compositions of the disclosure, a nucleic acid sequence encoding a BEST1 protein of the disclosure comprises a codon optimized sequence. In some embodiments, the sequence has been codon optimized for expression in a mammalian cell. In some embodiments, the sequence has been codon optimized for expression in a human cell.


BEST1 Expression

In some embodiments of the compositions of the disclosure, a nucleic acid sequence encoding a BEST1 protein of the disclosure further comprises a sequence encoding a regulatory element that enhances or increases BEST1 transcript or BEST1 protein expression. Exemplary regulatory element that enhances or increases BEST1 transcript or BEST1 protein expression include, but are not limited to, a promoter, an enhancer, a superenhancer, an intron, an exon, a combination of an intron and exon, a sequence encoding an untranslated region (e.g. a 5′ untranslated region (UTR) or a 3′ UTR), a sequence comprising a polyadenylation (polyA) signal, and a posttranscriptional regulatory element (PRE).


Exemplary promoters of the disclosure include, but are not limited to, those promoters capable of expressing a sequence encoding a BEST1 protein or a BEST1 protein in a mammalian cell. Exemplary promoters of the disclosure include, but are not limited to, those promoters capable of expressing a sequence encoding a BEST1 protein or a BEST1 protein in a human cell. In some embodiments, the mammalian or the human cell may be in vivo, ex vivo, in vitro or in situ. In some embodiments, the promoter may be constitutively active. In some embodiments, the promoter may be cell-type specific. In some embodiments, the promoter may be inducible.


Exemplary constitutively active promoters of the disclosure include, but are not limited to, a viral promoter. Viral promoters of the disclosure may include, but are not limited to, a simian virus 40 (SV40) promoter, a cytomegalovirus (CMV) promoter, ubiquitin C (UBC) promoter, elongation factor-1 alpha (EF1A) promoter, phosphoglycerate kinase 1 (PGK) promoter and a CAG promoter (a combination of a (C) the cytomegalovirus (CMV) early enhancer element, (A) the promoter comprising the first exon and the first intron of chicken beta-actin gene, and (G) the splice acceptor of the rabbit beta-globin gene). In some embodiments, a CMV promoter is used to control expression of a nucleic acid sequence encoding a BEST1 protein of the disclosure. In some embodiments, a CAG promoter is used to control expression of a nucleic acid sequence encoding a BEST1 protein of the disclosure. Non-viral promoters of the disclosure may include, but are not limited to, a chicken beta actin (CBA) promoter. In some embodiments, the CBA promoter comprises the chicken beta actin the first exon and intron of the CBA gene. In some embodiments, the promoter comprises the chicken beta actin promoter and the cytomegalovirus early enhancer elements. In some embodiments, the promoter further comprises a rabbit beta globin splice acceptor sequence (the CAG promoter). In some embodiments, the CAG promoter comprises or consists of a nucleic acid sequence having at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity to the nucleic acid sequence of:









(SEQ ID NO: 2)








1
CCATTGACGT CAATAATGAC GTATGTTCCC






ATAGTAACGC CAATAGGGAC TTTCCATTGA





61
CGTCAATGGG TGGAGTATTT ACGGTAAACT






GCCCACTTGG CAGTACATGA AGTGTATCAT





121
ATGCCAAGTA CGCCCCCTAT TGACGTCAAT






GACGGTAAAT GGCCCGCCTG GCATTATGCC





181
CAGTACATGA CCTTATGGGA CTTTCCTACT






TGGCAGTACA TCTACGTATT AGTCATCGCT





241
ATTACCATGG TCGAGGTGAG CCCCACGTTC






TGCTTCACTC TCCCCATCTC CCCCCCCTCC





301
CCACCCCCAA TTTTGTATTT ATTTATTTTT






TAATTATTTT GTGCAGCGAT GGGGGGGGGG





361
GGGGGGGGGG GGCGCGCGCC AGGCGGGGCG






GGGGGGGGGG AGGGGCGGGG CGGGGCGAGG





421
CGGAGAGGTG CGGCGGCAGC CAATCAGAGC






GGCGCGCTCC GAAAGTTTCC TTTTATGGCG





481
AGGCGGCGGC GGCGGCGGCC CTATAAAAAG






CGAAGCGCGC GGGGGGGGGG AGTCGCTGCG





541
CGCTGCCTTC GCCCCGTGCC CCGCTCCGCC






GCCGCCTCGC GCCGCCCGCC CCGGCTCTGA





601
CTGACCGCGT TACTCCCACA GGTGAGCGGG






CGGGACGGCC CTTCTCCTCC GGGCTGTAAT





661
TAGCGCTTGG TTTAATGACG GCTTGTTTCT






TTTCTGTGGC TGCGTGAAAG CCTTGAGGGG





721
CTCCGGGAGG GCCCTTTGTG CGGGGGGAGC






GGCTCGGGGC TGTCCGCGGG GGGACGGCTG





781
CCTTCGGGGG GGACGGGGCA GGGCGGGGTT






CGGCTTCTGG CGTGTGACCG GCGGCTCTAG





841
AGCCTCTGCT AACCATGTTC ATGCCTTCTT






CTTTTTCCTA CAGCTCCTGG GCAACGTGCT





901
GGTTATTGTG CTGTCTCATC ATTTTGGCAA






AGAATTGGAT C.






Exemplary cell-type specific promoters of the disclosure include, but are not limited to, a promoter capable of expressing a nucleic acid or a protein in a neuron, a promoter capable of expressing a nucleic acid or a protein in a retinal cell, a promoter capable of expressing a nucleic acid or a protein in a photoreceptor, a promoter capable of expressing a nucleic acid or a protein in a rod cell, and a promoter capable of expressing a nucleic acid or a protein in a cone cell. In some embodiments, a sequence encoding a tissue specific promoter comprises a sequence encoding a human VMD2 gene (also known as Bestrophin-1). In some embodiments, a tissue specific promoter comprises a human VMD2 promoter (also known as Bestrophin-1). In some embodiments, the human VMD2 promoter comprises or consists of a nucleic acid sequence having at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% identity to the nucleic acid sequence of:









(SEQ ID NO: 1)








1
AATTCTGTCA TTTTACTAGG GTGATGAAAT






TCCCAAGCAA CACCATCCTT TTCAGATAAG





61
GGCACTGAGG CTGAGAGAGG AGCTGAAACC






TACCCGGGGT CACCACACAC AGGTGGCAAG





121
GCTGGGACCA GAAACCAGGA CTGTTGACTG






CAGCCCGGTA TTCATTCTTT CCATAGCCCA





181
CAGGGCTGTC AAAGACCCCA GGGCCTAGTC






AGAGGCTCCT CCTTCCTGGA GAGTTCCTGG





241
CACAGAAGTT GAAGCTCAGC ACAGCCCCCT






AACCCCCAAC TCTCTCTGCA AGGCCTCAGG





301
GGTCAGAACA CTGGTGGAGC AGATCCTTTA






GCCTCTGGAT TTTAGGGCCA TGGTAGAGGG





361
GGTGTTGCCC TAAATTCCAG CCCTGGTCTC






AGCCCAACAC CCTCCAAGAA GAAATTAGAG





421
GGGCCATGGC CAGGCTGTGC TAGCCGTTGC






TTCTGAGCAG ATTACAAGAA GGGACTAAGA





481
CAAGGACTCC TTTGTGGAGG TCCTGGCTTA






GGGAGTCAAG TGACGGCGGC TCAGCACTCA





541
CGTGGGCAGT GCCAGCCTCT AAGAGTGGGC






AGGGGCACTG GCCACAGAGT CCCAGGGAGT





601
CCCACCAGCC TAGTCGCCAG ACC.






In some embodiments, the human VMD2 promoter comprises or consists of a nucleic acid sequence having 100% identity to the nucleic acid sequence of:









(SEQ ID NO: 1)








1
AATTCTGTCA TTTTACTAGG GTGATGAAAT






TCCCAAGCAA CACCATCCTT TTCAGATAAG





61
GGCACTGAGG CTGAGAGAGG AGCTGAAACC






TACCCGGGGT CACCACACAC AGGTGGCAAG





121
GCTGGGACCA GAAACCAGGA CTGTTGACTG






CAGCCCGGTA TTCATTCTTT CCATAGCCCA





181
CAGGGCTGTC AAAGACCCCA GGGCCTAGTC






AGAGGCTCCT CCTTCCTGGA GAGTTCCTGG





241
CACAGAAGTT GAAGCTCAGC ACAGCCCCCT






AACCCCCAAC TCTCTCTGCA AGGCCTCAGG





301
GGTCAGAACA CTGGTGGAGC AGATCCTTTA






GCCTCTGGAT TTTAGGGCCA TGGTAGAGGG





361
GGTGTTGCCC TAAATTCCAG CCCTGGTCTC






AGCCCAACAC CCTCCAAGAA GAAATTAGAG





421
GGGCCATGGC CAGGCTGTGC TAGCCGTTGC






TTCTGAGCAG ATTACAAGAA GGGACTAAGA





481
CAAGGACTCC TTTGTGGAGG TCCTGGCTTA






GGGAGTCAAG TGACGGCGGC TCAGCACTCA





541
CGTGGGCAGT GCCAGCCTCT AAGAGTGGGC






AGGGGCACTG GCCACAGAGT CCCAGGGAGT





601
CCCACCAGCC TAGTCGCCAG ACC.






In some embodiments of the compositions of the disclosure, the nucleic acid sequence comprising a sequence encoding a BEST1 protein and a sequence encoding a promoter, further comprises an intron and an exon. The presence of an intron and an exon increases levels of protein expression. In some embodiments, the intron is positioned between the VMD2 promoter and the exon. In some embodiments, including those embodiments wherein the intron is positioned between the VMD2 promoter and the exon, the exon is positioned 5′ of the BEST coding sequence.


The exon may comprise a coding sequence, a non-coding sequence, or a combination of both. In some embodiments, the exon comprises non-coding sequence. In some embodiments, the exon is isolated or derived from a mammalian gene. In embodiments, the mammal is a rabbit (Oryctolagus cuniculus). In some embodiments, the mammalian gene comprises a rabbit beta globin gene. In some embodiments, the exon comprises a nucleic acid sequence having at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to the nucleic acid sequence of:











(SEQ ID NO: 6)



CTCCTGGGCA ACGTGCTGGT TATTGTGCTG







TCTCATCATT TTGGCAAAGA ATT






In some embodiments, the exon comprises a nucleic acid sequence having 100% identify to the nucleic acid sequence of:











(SEQ ID NO: 6)



CTCCTGGGCA ACGTGCTGGT TATTGTGCTG







TCTCATCATT TTGGCAAAGA ATT






Introns may comprise a splice donor site, a splice acceptor site or a branch point. Introns may comprise a splice donor site, a splice acceptor site and a branch point. Exemplary splice acceptor sites comprise nucleotides “GT” (“GU” in the pre-mRNA) at the 5′ end of the intron. Exemplary splice acceptor sites comprise an “AG” at the 3′ end of the intron. In some embodiments, the branch point comprises an adenosine (A) between 20 and 40 nucleotides, inclusive of the endpoints, upstream of the 3′ end of the intron. The intron may be an artificial or non-naturally occurring sequence. Alternatively, the intron may be isolated or derived from a vertebrate gene. The intron may comprise a sequence encoding a fusion of two sequences, each of which may be isolated or derived from a plurality of vertebrate genes. In some embodiments, a vertebrate gene contributing to the intron nucleic acid sequence comprises a chicken (Gallus gallus) gene. In some embodiments, the chicken gene comprises the chicken beta actin gene. In some embodiments, a vertebrate gene contributing to the intron nucleic acid sequence comprises a rabbit (Oryctolagus cuniculus) gene. In some embodiments, the rabbit gene comprises the rabbit beta globin gene. In some embodiments, the intron comprises a nucleic acid sequence having at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to the nucleic acid sequence of:










(SEQ ID NO: 7)










1
GTGCCGCAGG GGGACGGCTG CCTTCGGGGG GGACGGGGCA GGGCGGGGTT CGGCTTCTGG






61
CGTGTGACCG GCGGCTCTAG AGCCTCTGCT AACCATGTTC ATGCCTTCTT CTTTTTCCTA





121
CAG.






In some embodiments, the intron comprises a nucleic acid sequence having 100% identify to the nucleic acid sequence of:










(SEQ ID NO: 7)










1
GTGCCGCAGG GGGACGGCTG CCTTCGGGGG GGACGGGGCA GGGCGGGGTT CGGCTTCTGG






61
CGTGTGACCG GCGGCTCTAG AGCCTCTGCT AACCATGTTC ATGCCTTCTT CTTTTTCCTA





121
CAG.






Kozak sequences are short sequence motifs that are recognized by the ribosome as the translation start site. Kozak sequences may be positioned immediately upstream, or surrounding the translational start site. In vertebrates, the Kozak consensus sequence comprises a sequence of having at least 50% identity to the consensus sequence of gccRccATGG, where R represents an A or G, and the ATG encoding the start methionine is bolded. An exemplary Kozak sequence of the disclosure comprises a sequence of GGCACCATGA. In some embodiments, the nucleic acid comprising a nucleic acid sequence encoding BEST1, further comprises a sequence encoding a 5′ untranslated sequence (5′ UTR). In some embodiments, the 5′ UTR comprises a Kozak sequence. In some embodiments, the 5′ UTR comprises a portion of a Kozak sequence. In some embodiments, the 5′ UTR comprises at least 50%, at least 60%, at least 70% or at least 80% of a Kozak sequence.


In some embodiments, the nucleic acid comprising a nucleic acid sequence encoding BEST1, further comprises a nucleic acid sequence encoding transcriptional response element (PRE). Exemplary PREs comprise a Woodchuck PRE (WPRE), which is derived from the Woodchuck hepatitis virus. In some embodiments, a sequence encoding a WPRE is positioned 3′ of the nucleic acid sequence encoding BEST1. In some embodiments, a sequence encoding a WPRE is positioned between the nucleic acid sequence encoding BEST1 and the sequence encoding a polyA signal. In some embodiments, a sequence encoding a WPRE comprises a nucleic acid sequence having at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to the nucleic acid sequence of:










(SEQ ID NO: 8)










1
ATCGATAATC AACCTCTGGA TTACAAAATT TGTGAAAGAT TGACTGGTAT TCTTAACTAT






61
GTTGCTCCTT TTACGCTATG TGGATACGCT GCTTTAATGC CTTTGTATCA TGCTATTGCT





121
TCCCGTATGG CTTTCATTTT CTCCTCCTTG TATAAATCCT GGTTGCTGTC TCTTTATGAG





181
GAGTTGTGGC CCGTTGTCAG GCAACGTGGC GTGGTGTGCA CTGTGTTTGC TGACGCAACC





241
CCCACTGGTT GGGGCATTGC CACCACCTGT CAGCTCCTTT CCGGGACTTT CGCTTTCCCC





301
CTCCCTATTG CCACGGCGGA ACTCATCGCC GCCTGCCTTG CCCGCTGCTG GACAGGGGCT





361
CGGCTGTTGG GCACTGACAA TTCCGTGGTG TTGTCGGGGA AATCATCGTC CTTTCCTTGG





421
CTGCTCGCCT GTGTTGCCAC CTGGATTCTG CGCGGGACGT CCTTCTGCTA CGTCCCTTCG





481
GCCCTCAATC CAGCGGACCT TCCTTCCCGC GGCCTGCTGC CGGCTCTGCG GCCTCTTCCG





541
CGTCTTCGCC TTCGCCCTCA GACGAGTCGG ATCTCCCTTT GGGCCGCCTC CCC.






In some embodiments, a sequence encoding a WPRE comprises a nucleic acid sequence having 100% identity to the nucleic acid sequence of:










(SEQ ID NO: 8)










1
ATCGATAATC AACCTCTGGA TTACAAAATT TGTGAAAGAT TGACTGGTAT TCTTAACTAT






61
GTTGCTCCTT TTACGCTATG TGGATACGCT GCTTTAATGC CTTTGTATCA TGCTATTGCT





121
TCCCGTATGG CTTTCATTTT CTCCTCCTTG TATAAATCCT GGTTGCTGTC TCTTTATGAG





181
GAGTTGTGGC CCGTTGTCAG GCAACGTGGC GTGGTGTGCA CTGTGTTTGC TGACGCAACC





241
CCCACTGGTT GGGGCATTGC CACCACCTGT CAGCTCCTTT CCGGGACTTT CGCTTTCCCC





301
CTCCCTATTG CCACGGCGGA ACTCATCGCC GCCTGCCTTG CCCGCTGCTG GACAGGGGCT





361
CGGCTGTTGG GCACTGACAA TTCCGTGGTG TTGTCGGGGA AATCATCGTC CTTTCCTTGG





421
CTGCTCGCCT GTGTTGCCAC CTGGATTCTG CGCGGGACGT CCTTCTGCTA CGTCCCTTCG





481
GCCCTCAATC CAGCGGACCT TCCTTCCCGC GGCCTGCTGC CGGCTCTGCG GCCTCTTCCG





541
CGTCTTCGCC TTCGCCCTCA GACGAGTCGG ATCTCCCTTT GGGCCGCCTC CCC.






In some embodiments, the nucleic acid comprising a nucleic acid sequence encoding BEST1, further comprises a sequence encoding a polyadenylation (polyA) signal. The polyA signal facilitates nuclear export, enhances translation and increases mRNA stability. In some embodiments, the sequence encoding the polyA signal comprises a synthetic or an artificial sequence. In some embodiments, the sequence encoding the polyA signal comprises a sequence isolated or derived from a mammalian gene. In some embodiments, the mammalian gene is a human gene. In some embodiments, the mammalian gene is a bovine growth hormone gene


(BGH). In some embodiments, the sequence encoding the polyA signal comprises a nucleic acid sequence having at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% identity to the nucleic acid sequence of:










(SEQ ID NO: 9)










1
CGCTGATCAG CCTCGACTGT GCCTTCTAGT TGCCAGCCAT CTGTTGTTTG CCCCTCCCCC






61
GTGCCTTCCT TGACCCTGGA AGGTGCCACT CCCACTGTCC TTTCCTAATA AAATGAGGAA





121
ATTGCATCGC ATTGTCTGAG TAGGTGTCAT TCTATTCTGG GGGGTGGGGT GGGGCAGGAC





181
AGCAAGGGGG AGGATTGGGA AGACAATAGC AGGCATGCTG GGGATGCGGT GGGCTCTATG





241
GCTTCTGAGG CGGAAAGAAC CAGCTGGGG.






In some embodiments, the sequence encoding the polyA signal comprises a nucleic acid sequence having 100% identity to the nucleic acid sequence of:










(SEQ ID NO: 9)










1
CGCTGATCAG CCTCGACTGT GCCTTCTAGT TGCCAGCCAT CTGTTGTTTG CCCCTCCCCC






61
GTGCCTTCCT TGACCCTGGA AGGTGCCACT CCCACTGTCC TTTCCTAATA AAATGAGGAA





121
ATTGCATCGC ATTGTCTGAG TAGGTGTCAT TCTATTCTGG GGGGTGGGGT GGGGCAGGAC





181
AGCAAGGGGG AGGATTGGGA AGACAATAGC AGGCATGCTG GGGATGCGGT GGGCTCTATG





241
GCTTCTGAGG CGGAAAGAAC CAGCTGGGG.






AAV Vectors

A vector may comprise the nucleic acid comprising a nucleic acid sequence encoding BEST1. In some embodiments of the compositions of the disclosure, the vector may be a viral delivery vector. Viral delivery vectors of the disclosure may contain sequences necessary for packaging a nucleic acid sequence of the disclosure into a viral delivery system for delivery to a target cell or tissue. Typical viral delivery vectors of the disclosure include, but are not limited to, lentiviral, retroviral or adeno-associated viral (AAV) vectors.


An AAV viral delivery system of the disclosure may be in the form of a mature AAV particle or virion, i.e. nucleic acid surrounded by an AAV protein capsid. In some embodiments, the AAV viral delivery vector may comprise an AAV genome or a derivative thereof.


An AAV genome is a nucleic acid sequence which encodes functions needed for production of an AAV particle. These functions include those operating in the replication and packaging cycle of AAV in a host cell, including encapsidation of the AAV genome into an AAV particle. Naturally occurring AAVs are replication-deficient and rely on the provision of helper functions in trans for completion of a replication and packaging cycle. In preferred embodiments, an AAV genome of a vector of the disclosure is replication-deficient.


The AAV genome may be in single-stranded form, either positive or negative-sense, or alternatively in double-stranded form. The use of a double-stranded form allows bypass of the DNA replication step in the target cell and so can accelerate transgene expression. The AAV genome of a vector of the disclosure may be single-stranded form.


The AAV genome may be from any naturally derived serotype, isolate or Glade of AAV. Thus, the AAV genome may be the full genome of a naturally occurring AAV. As is known to the person skilled in the art, AAVs occurring in nature may be classified according to various biological systems.


AAVs are referred to in terms of their serotype. A serotype corresponds to a variant subspecies of AAV which, owing to its profile of expression of capsid surface antigens, has a distinctive reactivity which can be used to distinguish it from other variant subspecies. A virus having a particular AAV serotype does not efficiently cross-react with neutralizing antibodies specific for any other AAV serotype. AAV serotypes include AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10 and AAV11, and also recombinant serotypes, such as Rec2 and Rec3, recently identified from primate brain. Any of these AAV serotypes may be used in the invention. Thus, in some embodiments, an AAV vector of the invention may be derived from an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, Rec2 or Rec3 AAV.


Reviews of AAV serotypes may be found in Choi et al. (2005) Cur. Gene There. 5: 299-310 and Wu et al. (2006) Molecular Therapy 14: 316-27. The sequences of AAV genomes or of elements of AAV genomes including ITR sequences, rep or cap genes may be derived from the following accession numbers for AAV whole genome sequences: Adeno-associated virus 1 NC_002077, AF063497; Adeno-associated virus 2 NC_001401; Adeno-associated virus 3 NC_001729; Adeno-associated virus 3B NC_001863; Adeno-associated virus 4 NC_001829; Adeno-associated virus 5 Y18065, AF085716; Adeno-associated virus 6 NC_001862; Avian AAV ATCC VR-865 AY186198, AY629583, NC_004828; Avian AAV strain DA-1 NC_006263, AY629583; Bovine AAV NC_005889, AY388617.


AAV may also be referred to in terms of clades or clones. This refers to the phylogenetic relationship of naturally derived AAVs, as well as to a phylogenetic group of AAVs which can be traced back to a common ancestor, and includes all descendants thereof. Additionally, AAVs may be referred to in terms of a specific isolate, i.e. a genetic isolate of a specific AAV found in nature. The term genetic isolate describes a population of AAVs which has undergone limited genetic mixing with other naturally occurring AAVs, thereby defining a recognizably distinct population at a genetic level.


The AAV serotype determines the tissue specificity of infection (or tropism) of an AAV virus. Accordingly, preferred AAV serotypes for use in AAVs administered to patients in accordance with the invention are those which have natural tropism for or a high efficiency of infection of target cells within the eye. In one embodiment, AAV serotypes for use in the invention are those which infect cells of the neurosensory retina, retinal pigment epithelium and/or macula.


The AAV genome of a naturally derived serotype, isolate or Glade of AAV comprises at least one inverted terminal repeat sequence (ITR). An ITR sequence acts in cis to provide a functional origin of replication and allows for integration and excision of the vector from the genome of a cell.


An AAV viral delivery vector may include at least one inverted terminal repeat sequence (ITR), preferably more than one ITR, such as two ITRs or more. One or more of the ITRs may be derived from AAV genomes having different serotypes, or may be a chimeric or mutant ITR. A preferred mutant ITR is one having a deletion of a trs (terminal resolution site). This deletion allows for continued replication of the genome to generate a single-stranded genome which contains both coding and complementary sequences, i.e. a self-complementary AAV genome. This allows for bypass of DNA replication in the target cell, and so enables accelerated transgene expression.


The inclusion of one or more ITRs is preferred to aid concatamer formation of a viral delivery vector of the invention in the nucleus of a host cell, for example following the conversion of single-stranded vector DNA into double-stranded DNA by the action of host cell DNA polymerases. The formation of such episomal concatamers protects the vector construct during the life of the host cell, thereby allowing for prolonged expression of the transgene in vivo.


In some embodiments, ITR elements are the only sequences retained from the native AAV genome in the viral delivery vector. Thus, in some embodiments, a viral delivery vector does not include either the rep or cap genes of the native genome and, furthermore, lacks any other sequences of the native genome. This is preferred for the reasons described above, and also to reduce the possibility of integration of the vector into the host cell genome. Additionally, reducing the size of the AAV genome allows for increased flexibility in incorporating other sequence elements (such as regulatory elements) within the vector in addition to the transgene. In some embodiments, the viral delivery vector of the disclosure comprises sequences encoding AAV2 ITRs. In some embodiments, the sequences encoding the two AAV2 ITRs may comprise or consist of a nucleic acid sequence of:










(SEQ ID NO: 10)










1
ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccgggcgtcg ggcgaccttt






61
ggtcgcccgg cctcagtgag cgagcgagcg cgcagagagg gagtggccaa ctccatcact





121
aggggttcct tgtagttaat gatt.







and/or










(SEQ ID NO: 11)










1
tgcgcgctcg ctcgctcact gaggccgggc gaccaaaggt cgcccgacgc ccgggctttg






61
cccgggcggc ctcagtgagc gagcgagcgc gcagagcttt ttgcaaaagc ctaggcctcc





121
aaaaaagcct cctcactact tctgg.






The AAV genome may comprise a nucleic acid sequence of about 4.7 kb in length. Thus, in those embodiments where the nucleic acid sequence to be delivered by an AAV viral vector is less than 4.7 kb in length, a stuffer or filler sequence may be used. The presence of a stuffer sequence can, in some embodiments, aid in AAV viral vector packaging into the viral particle. In some embodiments, the stuffer sequence comprises a random sequence. An exemplary stuffer sequence of the disclosure may comprise or consist of the nucleic acid sequence of:










(SEQ ID NO: 12)










1
GATGTAACCA TATACTTAGG CTGGATCTTC TCCCGCGAAT TTTAACCCTC ACCAACTACG






61
AGATATGAGG TAAGCCAAAA AAGCACGTAG TGGCGCTCTC CGACTGTTCC CAAATTGTAA





121
CTTATCGTTC CGTGAAGGCC AGAGTTACTT CCCGGCCCTT TCCATGCGCG CACCATACCC





181
TCCTAGTTCC CCGGTTATCT TTCCGAAGTG GGAGTGAGCG AACCTCCGTT TACGTCTTGT





241
TACCAATGAT GTAGCTATGC ACTTTGTACA GGGTGCCAAC GGGTTTCACA ATTCACAGAT





301
AGTGGGGATC CCGGCAAAGG GCCTATATTT GCGGTCCAAC TTAGGCGTAA ACCTCGATGC





361
TACCTACTCA GACCCACCTC GCGCGGGGTA AATAAGGCAC TCATCCCAGC TGGTTCTTGG





421
CGTTCTACGC AGCGACATGT TTATTAACAG TTGTCTGGCA GCACAAAACT TTTACCATGG





481
TCGTAGAAGC CCCCCAGAGT TAGTTCATAC CTAATGCCAC AAATGTGACA GGACGCCGAT





541
GGGTACCGGA CTTTAGGTCG AGCACAGTTC GGTAACGGAG AGACCCTGCG GCGTACTTCA





601
TTATGTATAT GGAACGTGCC CAAGTGACGC CAGGCAAGTC TCAGCTGGTT CCTGTGTTAG





661
CTCGAGGGTA GACATACGAG CTGATTGAAC ATGGGTTGGG GGCCTCGAAC CGTCGAGGAC





721
CCCATAGTAC CTCGGAGACC AAGTAGGGCA GCCTATAGTT TGAAGCAGAA CTATTTCGGG





781
GGGCGAGCCC TCATCGTCTC TTCTGCGGAT GACTCAACAC GCTAGGGACG TGAAGTCGAT





841
TCCTTCGATG GTTATAAATC AAAGACTCAG AGTGCTGTCT GGAGCGTGAA TCTAACGGTA





901
CGTATCTCGA TTGCTCGGTC GCTTTTCGCA CTCCGCGAAA GTTCGTACCG CTCATTCACT





961
AGGTTGCGAA GCCTATGCTG ATATATGAAT CCAAACTAGA GCAGGGCTCT TAAGATTCGG





1021
AGTTGTAAAT ACTTAATACT CCAATCGGCT TTTACGTGCA CCACCGCGGG CGGCTGACAA





1081
GGGTCTCACA TCGAGAAACA AGACAGTTCC GGGCTGGAAG TAGCGCCGGC TAAGGAAGAC





1141
GCCTGGTACG GCAGGACTAT GAAACCAGTA CAAAGGCAAC ATCCTCACTT GGGTGAACGG





1201
AAACGCAGTA TTATGGTTAC TTTTTGGATA CGTGAAACAT ATCCCATGGT AGTCCTTAGA





1261
CTTGGGAGTC TATCACCCCT AGGGCCCATA TCTGGAAATA GACGCCAGGT TGAATCCGTA





1321
TTTGGAGGTA CGATGGAACA GTCTGGGTGG GACGTGCTTC ATTTATAGCC TGCGCAGGCT





1381
GGACCGAGGA CCGCAAGGTG CGGCGGTGCA CAAGCAATTG ACAACTAACC ACCGTGTATT





1441
CATTATGGTA CCAGGAACTT TAAGCCGAGT CAATGAAGCT CGCATTACAG TGTTTACCGC





1501
ATCTTGCCGT TACTCACAAA CTGTGATCCA CCACAAGTCA AGCCATTGCC TCTCTGACAC





1561
GCCGTAAGAA TTAATATGTA AACTTTGCGC GGGTTGACTG CGATCCGTTC AGTCTCGTCC





1621
GAGGGCACAA TCCTATTCCC ATTTGTATGT TCAGCTAACT TCTACCCATC CCCCGAAGTT





1681
AAGTAGGTCG TGAGATGCCA TGGAGGCTCT CGTTCATCCC GTGGGACATC AAGCTTCCCC





1741
TTGATAAAGC ACCCCGCTCG GGTGTAGCAG AGAAGACGCC TTCTGAATTG TGCAATCCCT





1801
CCACCTTATC TAAGCTTGCT ACCAATAATT AGCATTTTTG CCTTGCGACA GACCTCCTAC





1861
TTAGATTGCC ACACATTGAG CTAGTCAGTG AGCGATAAGC TTGACGCGCT TTCAAGGGTC





1921
GCGAGTACGT GAACTAAGGC TCCGGACAGG ACTATATACT TGGGTTTGAT CTCGCCCCGA





1981
CAACTGCAAA CCTCAACTTT TTTAGATTAT ATGGTTAGCC GAAGTTGCAC GAGGTGGCGT





2041
CCGCGGACTG CTCCCCGAGT GTGGCTCTTT CATCTGACAA CGTGCAACCC CTATCGCGGC





2101
CGATTGTTTC TGCGGACGAT GTTGTCCTCA TAGTTTGGGC ATGTTTCCCT TGTAGGTGTG





2161
AAACCACTTA GCTTCGCGCC GTAGTCCCAA TGAAAAACCT ATGGACTTTG TTTTGGGTAG





2221
CACCAGGAAT CTGAACCGTG TGAATGTGGA CGTCGCGCGC GTAGACCTTT ATCTCCGGTT





2281
CAAGCTAGGG ATGTGGCTGC ATGCTACGTT GTCACACCTA CACTGCTCGA AGTAAATATG





2341
CGAAGCGCGC GGCCTGGCCG GAGGCGTTCC GCGCCGCCAC GTGTTCGTTA ACTGTTGATT





2401
GGTGGCACAT AAGCAATATC GTAGTCCGTC AAATTCAGCT CTGTTATCCC GGGCGTTATG





2461
TGTCAAATGG CGTAGAACGG GATTGACTGT TTGACGGTAG.






In some embodiments, the AAV viral delivery vector comprises a nucleic acid sequence comprising a sequence encoding a VMD2 promoter, a sequence encoding a BEST1 protein, and a sequence encoding a WPRE. An exemplary AAV viral delivery vector of the disclosure comprising this nucleic acid sequence (VMD2.BEST1.WPRE.pA) comprises or consists of the nucleic acid sequence of:










(SEQ ID NO: 13)










1
TAGCTGCGCG CTCGCTCGCT CACTGAGGCC GCCCGGGCAA AGCCCGGGCG TCGGGCGACC






61
TTTGGTCGCC CGGCCTCAGT GAGCGAGCGA GCGCGCAGAG AGGGAGTGGC CAACTCCATC





121
ACTAGGGGTT CCTTGTAGTT AATGATTAAC CCGCCATGCT ACTTATCTAC GTAGCCATGC





181
TCTAGGTAAA TTCTGTCATT TTACTAGGGT GATGAAATTC CCAAGCAACA CCATCCTTTT





241
CAGATAAGGG CACTGAGGCT GAGAGAGGAG CTGAAACCTA CCCGGGGTCA CCACACACAG





301
GTGGCAAGGC TGGGACCAGA AACCAGGACT GTTGACTGCA GCCCGGTATT CATTCTTTCC





361
ATAGCCCACA GGGCTGTCAA AGACCCCAGG GCCTAGTCAG AGGCTCCTCC TTCCTGGAGA





421
GTTCCTGGCA CAGAAGTTGA AGCTCAGCAC AGCCCCCTAA CCCCCAACTC TCTCTGCAAG





481
GCCTCAGGGG TCAGAACACT GGTGGAGCAG ATCCTTTAGC CTCTGGATTT TAGGGCCATG





541
GTAGAGGGGG TGTTGCCCTA AATTCCAGCC CTGGTCTCAG CCCAACACCC TCCAAGAAGA





601
AATTAGAGGG GCCATGGCCA GGCTGTGCTA GCCGTTGCTT CTGAGCAGAT TACAAGAAGG





661
GACTAAGACA AGGACTCCTT TGTGGAGGTC CTGGCTTAGG GAGTCAAGTG ACGGCGGCTC





721
AGCACTCACG TGGGCAGTGC CAGCCTCTAA GAGTGGGCAG GGGCACTGGC CACAGAGTCC





781
CAGGGAGTCC CACCAGCCTA GTCGCCAGAC CGGCACCATG ACCATCACTT ACACAAGCCA





841
AGTGGCTAAT GCCCGCTTAG GCTCCTTCTC CCGCCTGCTG CTGTGCTGGC GGGGCAGCAT





901
CTACAAGGTG CTATATGGCG AGTTCTTAAT CTTCCTGCTC TGCTACTACA TCATCCGCTT





961
TATTTATAGG CTGGCCCTCA CGGAAGAACA ACAGCTGATG TTTGAGAAAC TGACTCTGTA





1021
TTGCGACAGC TACATCCAGC TCATCCCCAT TTCCTTCGTG CTGGGCTTCT ACGTGACGCT





1081
GGTCGTGACC CGCTGGTGGA ACCAGTACGA GAACCTGCCG TGGCCCGACC GCCTCATGAG





1141
CCTGGTGTCG GGCTTCGTCG AAGGCAAGGA CGAGCAAGGC CGGCTGCTGC GGCGCACGCT





1201
CATCCGCTAC GCCAACCTGG GCAACGTGCT CATCCTGCGC AGCGTCAGCA CCGCAGTCTA





1261
CAAGCGCTTC CCCAGCGCCC AGCACCTGGT GCAAGCAGGC TTTATGACTC CGGCAGAACA





1321
CAAGCAGTTG GAGAAACTGA GCCTACCACA CAACATGTTC TGGGTGCCCT GGGTGTGGTT





1381
TGCCAACCTG TCAATGAAGG CGTGGCTTGG AGGTCGAATC CGGGACCCTA TCCTGCTCCA





1441
GAGCCTGCTG AACGAGATGA ACACCTTGCG TACTCAGTGT GGACACCTGT ATGCCTACGA





1501
CTGGATTAGT ATCCCACTGG TGTATACACA GGTGGTGACT GTGGCGGTGT ACAGCTTCTT





1561
CCTGACTTGT CTAGTTGGGC GGCAGTTTCT GAACCCAGCC AAGGCCTACC CTGGCCATGA





1621
GCTGGACCTC GTTGTGCCCG TCTTCACGTT CCTGCAGTTC TTCTTCTATG TTGGCTGGCT





1681
GAAGGTGGCA GAGCAGCTCA TCAACCCCTT TGGAGAGGAT GATGATGATT TTGAGACCAA





1741
CTGGATTGTC GACAGGAATT TGCAGGTGTC CCTGTTGGCT GTGGATGAGA TGCACCAGGA





1801
CCTGCCTCGG ATGGAGCCGG ACATGTACTG GAATAAGCCC GAGCCACAGC CCCCCTACAC





1861
AGCTGCTTCC GCCCAGTTCC GTCGAGCCTC CTTTATGGGC TCCACCTTCA ACATCAGCCT





1921
GAACAAAGAG GAGATGGAGT TCCAGCCCAA TCAGGAGGAC GAGGAGGATG CTCACGCTGG





1981
CATCATTGGC CGCTTCCTAG GCCTGCAGTC CCATGATCAC CATCCTCCCA GGGCAAACTC





2041
AAGGACCAAA CTACTGTGGC CCAAGAGGGA ATCCCTTCTC CACGAGGGCC TGCCCAAAAA





2101
CCACAAGGCA GCCAAACAGA ACGTTAGGGG CCAGGAAGAC AACAAGGCCT GGAAGCTTAA





2161
GGCTGTGGAC GCCTTCAAGT CTGCCCCACT GTATCAGAGG CCAGGCTACT ACAGTGCCCC





2221
ACAGACGCCC CTCAGCCCCA CTCCCATGTT CTTCCCCCTA GAACCATCAG CGCCGTCAAA





2281
GCTTCACAGT GTCACAGGCA TAGACACCAA AGACAAAAGC TTAAAGACTG TGAGTTCTGG





2341
GGCCAAGAAA AGTTTTGAAT TGCTCTCAGA GAGCGATGGG GCCTTGATGG AGCACCCAGA





2401
AGTATCTCAA GTGAGGAGGA AAACTGTGGA GTTTAACCTG ACGGATATGC CAGAGATCCC





2461
CGAAAATCAC CTCAAAGAAC CTTTGGAACA ATCACCAACC AACATACACA CTACACTCAA





2521
AGATCACATG GATCCTTATT GGGCCTTGGA AAACAGGGAT GAAGCACATT CCTAATCTAG





2581
CGGCCGCGAA TTCGATATCA AGCTTATCGA TAATCAACCT CTGGATTACA AAATTTGTGA





2641
AAGATTGACT GGTATTCTTA ACTATGTTGC TCCTTTTACG CTATGTGGAT ACGCTGCTTT





2701
AATGCCTTTG TATCATGCTA TTGCTTCCCG TATGGCTTTC ATTTTCTCCT CCTTGTATAA





2761
ATCCTGGTTG CTGTCTCTTT ATGAGGAGTT GTGGCCCGTT GTCAGGCAAC GTGGCGTGGT





2821
GTGCACTGTG TTTGCTGACG CAACCCCCAC TGGTTGGGGC ATTGCCACCA CCTGTCAGCT





2881
CCTTTCCGGG ACTTTCGCTT TCCCCCTCCC TATTGCCACG GCGGAACTCA TCGCCGCCTG





2941
CCTTGCCCGC TGCTGGACAG GGGCTCGGCT GTTGGGCACT GACAATTCCG TGGTGTTGTC





3001
GGGGAAATCA TCGTCCTTTC CTTGGCTGCT CGCCTGTGTT GCCACCTGGA TTCTGCGCGG





3061
GACGTCCTTC TGCTACGTCC CTTCGGCCCT CAATCCAGCG GACCTTCCTT CCCGCGGCCT





3121
GCTGCCGGCT CTGCGGCCTC TTCCGCGTCT TCGCCTTCGC CCTCAGACGA GTCGGATCTC





3181
CCTTTGGGCC GCCTCCCCGG CGGCCGCGCA CCGTCGACTC GCTGATCAGC CTCGACTGTG





3241
CCTTCTAGTT GCCAGCCATC TGTTGTTTGC CCCTCCCCCG TGCCTTCCTT GACCCTGGAA





3301
GGTGCCACTC CCACTGTCCT TTCCTAATAA AATGAGGAAA TTGCATCGCA TTGTCTGAGT





3361
AGGTGTCATT CTATTCTGGG GGGTGGGGTG GGGCAGGACA GCAAGGGGGA GGATTGGGAA





3421
GACAATAGGA GGCATGCTGG GGATGCGGTG GGCTCTATGG CTTCTGAGGC GGAAAGAACC





3481
AGCTGGGGCT CGACTAGAGC ATGGCTACGT AGATAAGTAG CATGGCGGGT TAATCATTAA





3541
CTACAAGGAA CCCCTAGTGA TGGAGTTGGC CACTCCCTCT CTGCGCGCTC GCTCGCTCAC





3601
TGAGGCCGGG CGACCAAAGG TCGCCCGACG CCCGGGCGGC CTCAGTGAGC GAGCGAGCGC





3661
GCAGAGCTTT TTGCAAAAGC CTAGGCCTCC AAAAAAGCCT CCTCACTACT TCTGGAATAG





3721
CTCAGAGGCC GAGGCGGCCT CGGCCTCTGC ATAAATAAAA AAAATTAGTC AGCCATGGGG





3781
CGGAGAATGG GCGGAACTGG GCGGAGTTAG GGGCGGGATG GGCGGAGTTA GGGGCGGGAC





3841
TATGGTTGCT GACTAATTGA GATGCATGCT TTGCATACTT CTGCCTGCTG GGGAGCCTGG





3901
GGACTTTCCA CACCTGGTTG CTGACTAATT GAGATGCATG CTTTGCATAC TTCTGCCTGC





3961
TGGGGAGCCT GGGGACTTTC CACACCCTAA CTGACACACA TTCCACAGCT GCATTAATGA





4021
ATCGGCCAAC GCGCGGGGAG AGGCGGTTTG CGTATTGGGC GCTCTTCCGC TTCCTCGCTC





4081
ACTGACTCGC TGCGCTCGGT CGTTCGGCTG CGGCGAGCGG TATCAGCTCA CTCAAAGGCG





4141
GTAATACGGT TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG AGCAAAAGGC





4201
CAGCAAAAGG CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC





4261
CCCCCTGACG AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA





4321
CTATAAAGAT ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC TGTTCCGACC





4381
CTGCCGCTTA CCGGATACCT GTCCGCCTTT CTCCCTTCGG GAAGCGTGGC GCTTTCTCAT





4441
AGCTCACGCT GTAGGTATCT CAGTTCGGTG TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG





4501
CACGAACCCC CCGTTCAGCC CGACCGCTGC GCCTTATCCG GTAACTATCG TCTTGAGTCC





4561
AACCCGGTAA GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG GATTAGCAGA





4621
GCGAGGTATG TAGGCGGTGC TACAGAGTTC TTGAAGTGGT GGCCTAACTA CGGCTACACT





4681
AGAAGAACAG TATTTGGTAT CTGCGCTCTG CTGAAGCCAG TTACCTTCGG AAAAAGAGTT





4741
GGTAGCTCTT GATCCGGCAA ACAAACCACC GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG





4801
CAGCAGATTA CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT TTCTACGGGG





4861
TCTGACGCTC AGTGGAACGA AAACTCACGT TAAGGGATTT TGGTCATGAG ATTATCAAAA





4921
AGGATCTTCA CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT CTAAAGTATA





4981
TATGAGTAAA CTTGGTCTGA CAGTTACCAA TGCTTAATCA GTGAGGCACC TATCTCAGCG





5041
ATCTGTCTAT TTCGTTCATC CATAGTTGCC TGACTCCTGC AAACCACGTT GTGTCTCAAA





5101
ATCTCTGATG TTACATTGCA CAAGATAAAA ATATATCATC ATGAACAATA AAACTGTCTG





5161
CTTACATAAA CAGTAATACA AGGGGTGTTA TGAGCCATAT TCAACGGGAA ACGTCTTGCT





5221
CGAGGCCGCG ATTAAATTCC AACATGGATG CTGATTTATA TGGGTATAAA TGGGCTCGCG





5281
ATAATGTCGG GCAATCAGGT GCGACAATCT ATCGATTGTA TGGGAAGCCC GATGCGCCAG





5341
AGTTGTTTCT GAAACATGGC AAAGGTAGCG TTGCCAATGA TGTTACAGAT GAGATGGTCA





5401
GACTAAACTG GCTGACGGAA TTTATGCCTC TTCCGACCAT CAAGCATTTT ATCCGTACTC





5461
CTGATGATGC ATGGTTACTC ACCACTGCGA TCCCCGGGAA AACAGCATTC CAGGTATTAG





5521
AAGAATATCC TGATTCAGGT GAAAATATTG TTGATGCGCT GGCAGTGTTC CTGCGCCGGT





5581
TGCATTCGAT TCCTGTTTGT AATTGTCCTT TTAACAGCGA TCGCGTATTT CGTCTCGCTC





5641
AGGCGCAATC ACGAATGAAT AACGGTTTGG TTGATGCGAG TGATTTTGAT GACGAGCGTA





5701
ATGGCTGGCC TGTTGAACAA GTCTGGAAAG AAATGCATAA GCTTTTGCCA TTCTCACCGG





5761
ATTCAGTCGT CACTCATGGT GATTTCTCAC TTGATAACCT TATTTTTGAC GAGGGGAAAT





5821
TAATAGGTTG TATTGATGTT GGACGAGTCG GAATCGCAGA CCGATACCAG GATCTTGCCA





5881
TCCTATGGAA CTGCCTCGGT GAGTTTTCTC CTTCATTACA GAAACGGCTT TTTCAAAAAT





5941
ATGGTATTGA TAATCCTGAT ATGAATAAAT TGCAGTTTCA TTTGATGCTC GATGAGTTTT





6001
TCTAAGGGCG GCCTGCCACC ATACCCACGC CGAAACAAGC GCTCATGAGC CCGAAGTGGC





6061
GAGCCCGATC TTCCCCATCG GTGATGTCGG CGATATAGGC GCCAGCAACC GCACCTGTGG





6121
CGCCGGTGAT GCCGGCCACG ATGCGTCCGG CGTAGAGGAT CTGGCTAGCG ATGACCCTGC





6181
TGATTGGTTC GCTGACCATT TCCGGGTGCG GGACGGCGTT ACCAGAAACT CAGAAGGTTC





6241
GTCCAACCAA ACCGACTCTG ACGGCAGTTT ACGAGAGAGA TGATAGGGTC TGCTTCAGGG





6301
TGAGCGATGT AACCATATAC TTAGGCTGGA TCTTCTCCCG CGAATTTTAA CCCTCACCAA





6361
CTACGAGATA TGAGGTAAGC CAAAAAAGCA CGTAGTGGCG CTCTCCGACT GTTCCCAAAT





6421
TGTAACTTAT CGTTCCGTGA AGGCCAGAGT TACTTCCCGG CCCTTTCCAT GCGCGCACCA





6481
TACCCTCCTA GTTCCCCGGT TATCTTTCCG AAGTGGGAGT GAGCGAACCT CCGTTTACGT





6541
CTTGTTACCA ATGATGTAGC TATGCACTTT GTACAGGGTG CCAACGGGTT TCACAATTCA





6601
CAGATAGTGG GGATCCCGGC AAAGGGCCTA TATTTGCGGT CCAACTTAGG CGTAAACCTC





6661
GATGCTACCT ACTCAGACCC ACCTCGCGCG GGGTAAATAA GGCACTCATC CCAGCTGGTT





6721
CTTGGCGTTC TACGCAGCGA CATGTTTATT AACAGTTGTC TGGCAGCACA AAACTTTTAC





6781
CATGGTCGTA GAAGCCCCCC AGAGTTAGTT CATACCTAAT GCCACAAATG TGACAGGACG





6841
CCGATGGGTA CCGGACTTTA GGTCGAGCAC AGTTCGGTAA CGGAGAGACC CTGCGGCGTA





6901
CTTCATTATG TATATGGAAC GTGCCCAAGT GACGCCAGGC AAGTCTCAGC TGGTTCCTGT





6961
GTTAGCTCGA GGGTAGACAT ACGAGCTGAT TGAACATGGG TTGGGGGCCT CGAACCGTCG





7021
AGGACCCCAT AGTACCTCGG AGACCAAGTA GGGCAGCCTA TAGTTTGAAG CAGAACTATT





7081
TCGGGGGGCG AGCCCTCATC GTCTCTTCTG CGGATGACTC AACACGCTAG GGACGTGAAG





7141
TCGATTCCTT CGATGGTTAT AAATCAAAGA CTCAGAGTGC TGTCTGGAGC GTGAATCTAA





7201
CGGTACGTAT CTCGATTGCT CGGTCGCTTT TCGCACTCCG CGAAAGTTCG TACCGCTCAT





7261
TCACTAGGTT GCGAAGCCTA TGCTGATATA TGAATCCAAA CTAGAGCAGG GCTCTTAAGA





7321
TTCGGAGTTG TAAATACTTA ATACTCCAAT CGGCTTTTAC GTGCACCACC GCGGGCGGCT





7381
GACAAGGGTC TCACATCGAG AAACAAGACA GTTCCGGGCT GGAAGTAGCG CCGGCTAAGG





7441
AAGACGCCTG GTACGGCAGG ACTATGAAAC CAGTACAAAG GCAACATCCT CACTTGGGTG





7501
AACGGAAACG CAGTATTATG GTTACTTTTT GGATACGTGA AACATATCCC ATGGTAGTCC





7561
TTAGACTTGG GAGTCTATCA CCCCTAGGGC CCATATCTGG AAATAGACGC CAGGTTGAAT





7621
CCGTATTTGG AGGTACGATG GAACAGTCTG GGTGGGACGT GCTTCATTTA TACCCTGCGC





7681
AGGCTGGACC GAGGACCGCA AGGTGCGGCG GTGCACAAGC AATTGACAAC TAACCACCGT





7741
GTATTCATTA TGGTACCAGG AACTTTAAGC CGAGTCAATG AAGCTCGCAT TACAGTGTTT





7801
ACCGCATCTT GCCGTTACTC ACAAACTGTG ATCCACCACA AGTCAAGCCA TTGCCTCTCT





7861
GACACGCCGT AAGAATTAAT ATGTAAACTT TGCGCGGGTT GACTGCGATC CGTTCAGTCT





7921
CGTCCGAGGG CACAATCCTA TTCCCATTTG TATGTTCAGC TAACTTCTAC CCATCCCCCG





7981
AAGTTAAGTA GGTCGTGAGA TGCCATGGAG GCTCTCGTTC ATCCCGTGGG ACATCAAGCT





8041
TCCCCTTGAT AAAGCACCCC GCTCGGGTGT AGCAGAGAAG ACGCCTTCTG AATTGTGCAA





8101
TCCCTCCACC TTATCTAAGC TTGCTACCAA TAATTAGCAT TTTTGCCTTG CGACAGACCT





8161
CCTACTTAGA TTGCCACACA TTGAGCTAGT CAGTGAGCGA TAAGCTTGAC GCGCTTTCAA





8221
GGGTCGCGAG TACGTGAACT AAGGCTCCGG ACAGGACTAT ATACTTGGGT TTGATCTCGC





8281
CCCGACAACT GCAAACCTCA ACTTTTTTAG ATTATATGGT TAGCCGAAGT TGCACGAGGT





8341
GGCGTCCGCG GACTGCTCCC CGAGTGTGGC TCTTTCATCT GACAACGTGC AACCCCTATC





8401
GCGGCCGATT GTTTCTGCGG ACGATGTTGT CCTCATAGTT TGGGCATGTT TCCCTTGTAG





8461
GTGTGAAACC ACTTAGCTTC GCGCCGTAGT CCCAATGAAA AACCTATGGA CTTTGTTTTG





8521
GGTAGCACCA GGAATCTGAA CCGTGTGAAT GTGGACGTCG CGCGCGTAGA CCTTTATCTC





8581
CGGTTCAAGC TAGGGATGTG GCTGCATGCT ACGTTGTCAC ACCTACACTG CTCGAAGTAA





8641
ATATGCGAAG CGCGCGGCCT GGCCGGAGGC GTTCCGCGCC GCCACGTGTT CGTTAACTGT





8701
TGATTGGTGG CACATAAGCA ATATCGTAGT CCGTCAAATT CAGCTCTGTT ATCCCGGGCG





8761
TTATGTGTGA AATGGCGTAG AACGGGATTG ACTGTTTGAC GGTAGGGTGA CCTAAGCCAG





8821
ATGCTACACA ATTAGGCTTG TACATATTGT CGTTAGAACG CGGCTACAAT TAATACATAA





8881
CCTTATGTAT CATACACATA CGATTTAGGT GACACTATAG AATACACGGA ATTAATTC.













TABLE 1







Features of the VMD2.BEST1.WPRE.pA plasmid sequence














Mini-
Maxi-

Direc-


Name
Type
mum
mum
Length
tion















130 bp AAV2
LTR
4
133
130
forward


5′ITR


VMD2 promoter
promoter
189
811
623
forward


Kozak
Kozak
812
821
10
forward


BEST1
CDS
818
2,575
1,758
forward


WPRE
WPRE
2,606
3,198
593
forward


bGH pA
polyA_signal
3,220
3,488
269
forward


112 bp AAV2
LTR
3,546
3,657
112
reverse


3′ITR


pBR322 rep
rep_origin
4,230
4,849
620
reverse


origin


AphR (KanR)
CDS
5,190
6,005
816
forward


Randomly
Stuffer
6,306
8,805
2,500
none


generated


stuffer sequence









In some embodiments, the AAV viral delivery vector comprising a nucleic acid sequence comprising a sequence encoding a VMD2 promoter, a sequence encoding a BEST1 protein, a sequence encoding an intron, a sequence encoding an exon and a sequence encoding a WPRE. An exemplary AAV viral delivery vector of the disclosure comprises a nucleic acid sequence encoding a VMD2. IntEx.BEST1.WPRE.pA sequence comprising or consisting of the nucleic acid sequence of:










(SEQ ID NO: 14)










1
TAGCTGCGCG CTCGCTCGCT CACTGAGGCC GCCCGGGCAA AGCCCGGGCG TCGGGCGACC






61
TTTGGTCGCC CGGCCTCAGT GAGCGAGCGA GCGCGCAGAG AGGGAGTGGC CAACTCCATC





121
ACTAGGGGTT CCTTGTAGTT AATGATTAAC CCGCCATGCT ACTTATCTAC GTAGCCATGC





181
TCTAGGTAAA TTCTGTCATT TTACTAGGGT GATGAAATTC CCAAGCAACA CCATCCTTTT





241
CAGATAAGGG CACTGAGGCT GAGAGAGGAG CTGAAACCTA CCCGGGGTCA CCACACACAG





301
GTGGCAAGGC TGGGACCAGA AACCAGGACT GTTGACTGCA GCCCGGTATT CATTCTTTCC





361
ATAGCCCACA GGGCTGTCAA AGACCCCAGG GCCTAGTCAG AGGCTCCTCC TTCCTGGAGA





421
GTTCCTGGCA CAGAAGTTGA AGCTCAGCAC AGCCCCCTAA CCCCCAACTC TCTCTGCAAG





481
GCCTCAGGGG TCAGAACACT GGTGGAGCAG ATCCTTTAGC CTCTGGATTT TAGGGCCATG





541
GTAGAGGGGG TGTTGCCCTA AATTCCAGCC CTGGTCTCAG CCCAACACCC TCCAAGAAGA





601
AATTAGAGGG GCCATGGCCA GGCTGTGCTA GCCGTTGCTT CTGAGCAGAT TACAAGAAGG





661
GACTAAGACA AGGACTCCTT TGTGGAGGTC CTGGCTTAGG GAGTCAAGTG ACGGCGGCTC





721
AGCACTCACG TGGGCAGTGC CAGCCTCTAA GAGTGGGCAG GGGCACTGGC CACAGAGTCC





781
CAGGGAGTCC CACCAGCCTA GTCGCCAGAC CGGGTGCCGC AGGGGGACGG CTGCCTTCGG





841
GGGGGACGGG GCAGGGCGGG GTTCGGCTTC TGGCGTGTGA CCGGCGGCTC TAGAGCCTCT





901
GCTAACCATG TTCATGCCTT CTTCTTTTTC CTACAGCTCC TGGGCAACGT GCTGGTTATT





961
GTGCTGTCTC ATCATTTTGG CAAAGAATTG GCACCATGAC CATCACTTAC ACAAGCCAAG





1021
TGGCTAATGC CCGCTTAGGC TCCTTCTCCC GCCTGCTGCT GTGCTGGCGG GGCAGCATCT





1081
ACAAGCTGCT ATATGGCGAG TTCTTAATCT TCCTGCTCTG CTACTACATC ATCCGCTTTA





1141
TTTATAGGCT GGCCCTCACG GAAGAACAAC AGCTGATGTT TGAGAAACTG ACTCTGTATT





1201
GCGACAGCTA CATCCAGCTC ATCCCCATTT CCTTCGTGCT GGGCTTCTAC GTGACGCTGG





1261
TCGTGACCCG CTGGTGGAAC CAGTACGAGA ACCTGCCGTG GCCCGACCGC CTCATGAGCC





1321
TGGTGTCGGG CTTCGTCGAA GGCAAGGACG AGCAAGGCCG GCTGCTGCGG CGCACGCTCA





1381
TCCGCTACGC CAACCTGGGC AACGTGCTCA TCCTGCGCAG CGTCAGCACC GCAGTCTACA





1441
AGCGCTTCCC CAGCGCCCAG CACCTGGTGC AAGCAGGCTT TATGACTCCG GCAGAACACA





1501
AGCAGTTGGA GAAACTGAGC CTACCACACA ACATGTTCTG GGTGCCCTGG GTGTGGTTTG





1561
CCAACCTGTC AATGAAGGCG TGGCTTGGAG GTCGAATCCG GGACCCTATC CTGCTCCAGA





1621
GCCTGCTGAA CGAGATGAAC ACCTTGCGTA CTCAGTGTGG ACACCTGTAT GCCTACGACT





1681
GGATTAGTAT CCCACTGGTG TATACACAGG TGGTGACTGT GGCGGTGTAC AGCTTCTTCC





1741
TGACTTGTCT AGTTGGGCGG CAGTTTCTGA ACCCAGCCAA GGCCTACCCT GGCCATGAGC





1801
TGGACCTCGT TGTGCCCGTC TTCACGTTCC TGCAGTTCTT CTTCTATGTT GGCTGGCTGA





1861
AGGTGGCAGA GCAGCTCATC AACCCCTTTG GAGAGGATGA TGATGATTTT GAGACCAACT





1921
GGATTGTCGA CAGGAATTTG CAGGTGTCCC TGTTGGCTGT GGATGAGATG CACCAGGACC





1981
TGCCTCGGAT GGAGCCGGAC ATGTACTGGA ATAAGCCCGA GCCACAGCCC CCCTACACAG





2041
CTGCTTCCGC CCAGTTCCGT CGAGCCTCCT TTATGGGCTC CACCTTCAAC ATCAGCCTGA





2101
ACAAAGAGGA GATGGAGTTC CAGCCCAATC AGGAGGACGA GGAGGATGCT CACGCTGGCA





2161
TCATTGGCCG CTTCCTAGGC CTGCAGTCCC ATGATCACCA TCCTCCCAGG GCAAACTCAA





2221
GGACCAAACT ACTGTGGCCC AAGAGGGAAT CCCTTCTCCA CGAGGGCCTG CCCAAAAACC





2281
ACAAGGCAGC CAAACAGAAC GTTAGGGGCC AGGAAGACAA CAAGGCCTGG AAGCTTAAGG





2341
CTGTGGACGC CTTCAAGTCT GCCCCACTGT ATCAGAGGCC AGGCTACTAC AGTGCCCCAC





2401
AGACGCCCCT CAGCCCCACT CCCATGTTCT TCCCCCTAGA ACCATCAGCG CCGTCAAAGC





2461
TTCACAGTGT CACAGGCATA GACACCAAAG ACAAAAGCTT AAAGACTGTG AGTTCTGGGG





2521
CCAAGAAAAG TTTTGAATTG CTCTCAGAGA GCGATGGGGC CTTGATGGAG CACCCAGAAG





2581
TATCTCAAGT GAGGAGGAAA ACTGTGGAGT TTAACCTGAC GGATATGCCA GAGATCCCCG





2641
AAAATCACCT CAAAGAACCT TTGGAACAAT CACCAACCAA CATACACACT ACACTCAAAG





2701
ATCACATGGA TCCTTATTGG GCCTTGGAAA ACAGGGATGA AGCACATTCC TAATCTAGCG





2761
GCCGCGAATT CGATATCAAG CTTATCGATA ATCAACCTCT GGATTACAAA ATTTGTGAAA





2821
GATTGACTGG TATTCTTAAC TATGTTGCTC CTTTTACGCT ATGTGGATAC GCTGCTTTAA





2881
TGCCTTTGTA TCATGCTATT GCTTCCCGTA TGGCTTTCAT TTTCTCCTCC TTGTATAAAT





2941
CCTGGTTGCT GTCTCTTTAT GAGGAGTTGT GGCCCGTTGT CAGGCAACGT GGCGTGGTGT





3001
GCACTGTGTT TGCTGACGCA ACCCCCACTG GTTGGGGCAT TGCCACCACC TGTCAGCTCC





3061
TTTCCGGGAC TTTCGCTTTC CCCCTCCCTA TTGCCACGGC GGAACTCATC GCCGCCTGCC





3121
TTGCCCGCTG CTGGACAGGG GCTCGGCTGT TGGGCACTGA CAATTCCGTG GTGTTGTCGG





3181
GGAAATCATC GTCCTTTCCT TGGCTGCTCG CCTGTGTTGC CACCTGGATT CTGCGCGGGA





3241
CGTCCTTCTG CTACGTCCCT TCGGCCCTCA ATCCAGCGGA CCTTCCTTCC CGCGGCCTGC





3301
TGCCGGCTCT GCGGCCTCTT CCGCGTCTTC GCCTTCGCCC TCAGACGAGT CGGATCTCCC





3361
TTTGGGCCGC CTCCCCGGCG GCCGCGCACC GTCGACTCGC TGATCAGCCT CGACTGTGCC





3421
TTCTAGTTGC CAGCCATCTG TTGTTTGCCC CTCCCCCGTG CCTTCCTTGA CCCTGGAAGG





3481
TGCCACTCCC ACTGTCCTTT CCTAATAAAA TGAGGAAATT GCATCGCATT GTCTGAGTAG





3541
GTGTCATTCT ATTCTGGGGG GTGGGGTGGG GCAGGACAGC AAGGGGGAGG ATTGGGAAGA





3601
CAATAGCAGG CATGCTGGGG ATGCGGTGGG CTCTATGGCT TCTGAGGCGG AAAGAACCAG





3661
CTGGGGCTCG ACTAGAGCAT GGCTACGTAG ATAAGTAGCA TGGCGGGTTA ATCATTAACT





3721
ACAAGGAACC CCTAGTGATG GAGTTGGCCA CTCCCTCTCT GCGCGCTCGC TCGCTCACTG





3781
AGGCCGGGCG ACCAAAGGTC GCCCGACGCC CGGGCGGCCT CAGTGAGCGA GCGAGCGCGC





3841
AGAGCTTTTT GCAAAAGCCT AGGCCTCCAA AAAAGCCTCC TCACTACTTC TGGAATAGCT





3901
CAGAGGCCGA GGCGGCCTCG GCCTCTGCAT AAATAAAAAA AATTAGTCAG CCATGGGGCG





3961
GAGAATGGGC GGAACTGGGC GGAGTTAGGG GCGGGATGGG CGGAGTTAGG GGCGGGACTA





4021
TGGTTGCTGA CTAATTGAGA TGCATGCTTT GCATACTTCT GCCTGCTGGG GAGCCTGGGG





4081
ACTTTCCACA CCTGGTTGCT GACTAATTGA GATGCATGCT TTGCATACTT CTGCCTGCTG





4141
GGGAGCCTGG GGACTTTCCA CACCCTAACT GACACACATT CCACAGCTGC ATTAATGAAT





4201
CGGCCAACGC GCGGGGAGAG GCGGTTTGCG TATTGGGCGC TCTTCCGCTT CCTCGCTCAC





4261
TGACTCGCTG CGCTCGGTCG TTCGGCTGCG GCGAGCGGTA TCAGCTCACT CAAAGGCGGT





4321
AATACGGTTA TCCACAGAAT CAGGGGATAA CGCAGGAAAG AACATGTGAG CAAAAGGCCA





4381
GCAAAAGGCC AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTTCCATA GGCTCCGCCC





4441
CCCTGACGAG CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT





4501
ATAAAGATAC CAGGCGTTTC CCCCTGGAAG CTCCCTCGTG CGCTCTCCTG TTCCGACCCT





4561
GCCGCTTACC GGATACCTGT CCGCCTTTCT CCCTTCGGGA AGCGTGGCGC TTTCTCATAG





4621
CTCACGCTGT AGGTATCTCA GTTCGGTGTA GGTCGTTCGC TCCAAGCTGG GCTGTGTGCA





4681
CGAACCCCCC GTTCAGCCCG ACCGCTGCGC CTTATCCGGT AACTATCGTC TTGAGTCCAA





4741
CCCGGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAACAGGA TTAGCAGAGC





4801
GAGGTATGTA GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG





4861
AAGAACAGTA TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG





4921
TAGCTCTTGA TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTTG TTTGCAAGCA





4981
GCAGATTACG CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTTT CTACGGGGTC





5041
TGACGCTCAG TGGAACGAAA ACTCACGTTA AGGGATTTTG GTCATGAGAT TATCAAAAAG





5101
GATCTTCACC TAGATCCTTT TAAATTAAAA ATGAAGTTTT AAATCAATCT AAAGTATATA





5161
TGAGTAAACT TGGTCTGACA GTTACCAATG CTTAATCAGT GAGGCACCTA TCTCAGCGAT





5221
CTGTCTATTT CGTTCATCCA TAGTTGCCTG ACTCCTGCAA ACCACGTTGT GTCTCAAAAT





5281
CTCTGATGTT ACATTGCACA AGATAAAAAT ATATCATCAT GAACAATAAA ACTGTCTGCT





5341
TACATAAACA GTAATACAAG GGGTGTTATG AGCCATATTC AACGGGAAAC GTCTTGCTCG





5401
AGGCCGCGAT TAAATTCCAA CATGGATGCT GATTTATATG GGTATAAATG GGCTCGCGAT





5461
AATGTCGGGC AATCAGGTGC GACAATCTAT CGATTGTATG GGAAGCCCGA TGCGCCAGAG





5521
TTGTTTCTGA AACATGGCAA AGGTAGCGTT GCCAATGATG TTACAGATGA GATGGTCAGA





5581
CTAAACTGGC TGACGGAATT TATGCCTCTT CCGACCATCA AGCATTTTAT CCGTACTCCT





5641
GATGATGCAT GGTTACTCAC CACTGCGATC CCCGGGAAAA CAGCATTCCA GGTATTAGAA





5701
GAATATCCTG ATTCAGGTGA AAATATTGTT GATGCGCTGG CAGTGTTCCT GCGCCGGTTG





5761
CATTCGATTC CTGTTTGTAA TTGTCCTTTT AACAGCGATC GCGTATTTCG TCTCGCTCAG





5821
GCGCAATCAC GAATGAATAA CGGTTTGGTT GATGCGAGTG ATTTTGATGA CGAGCGTAAT





5881
GGCTGGCCTG TTGAACAAGT CTGGAAAGAA ATGCATAAGC TTTTGCCATT CTCACCGGAT





5941
TCAGTCGTCA CTCATGGTGA TTTCTCACTT GATAACCTTA TTTTTGACGA GGGGAAATTA





6001
ATAGGTTGTA TTGATGTTGG ACGAGTCGGA ATCGCAGACC GATACCAGGA TCTTGCCATC





6061
CTATGGAACT GCCTCGGTGA GTTTTCTCCT TCATTAGAGA AACGGCTTTT TCAAAAATAT





6121
GGTATTGATA ATCCTGATAT GAATAAATTG CAGTTTCATT TGATGCTCGA TGAGTTTTTC





6181
TAAGGGCGGC CTGCCACCAT ACCCACGCCG AAACAAGCGC TCATGAGCCC GAAGTGGCGA





6241
GCCCGATCTT CCCCATCGGT GATGTCGGCG ATATAGGCGC CAGCAACCGC ACCTGTGGCG





6301
CCGGTGATGC CGGCCACGAT GCGTCCGGCG TAGAGGATCT GGCTAGCGAT GACCCTGCTG





6361
ATTGGTTCGC TGACCATTTC CGGGTGCGGG ACGGCGTTAC CAGAAACTCA GAAGGTTCGT





6421
CCAACCAAAC CGACTCTGAC GGCAGTTTAC GAGAGAGATG ATAGGGTCTG CTTCAGGGTG





6481
ACCGATGTAA CCATATACTT AGGCTGGATC TTCTCCCGCG AATTTTAACC CTCACCAACT





6541
ACGAGATATG AGGTAAGCCA AAAAAGCACG TAGTGGCGCT CTCCGACTGT TCCCAAATTG





6601
TAACTTATCG TTCCGTGAAG GCCAGAGTTA CTTCCCGGCC CTTTCCATGC GCGCACCATA





6661
CCCTCCTAGT TCCCCGGTTA TCTTTCCGAA GTGGGAGTGA GCGAACCTCC GTTTACGTCT





6721
TGTTACCAAT GATGTAGCTA TGCACTTTGT ACAGGGTGCC AACGGGTTTC ACAATTCACA





6781
GATAGTGGGG ATCCCGGCAA AGGGCCTATA TTTGCGGTCC AACTTAGGCG TAAACCTCGA





6841
TGCTACCTAC TCAGACCCAC CTCGCGCGGG GTAAATAAGG CACTCATCCC AGCTGGTTCT





6901
TGGCGTTCTA CGCAGCGACA TGTTTATTAA CAGTTGTCTG GCAGCACAAA ACTTTTACCA





6961
TGGTCGTAGA AGCCCCCCAG AGTTAGTTCA TACCTAATGC CACAAATGTG ACAGGACGCC





7021
GATGGGTACC GGACTTTAGG TCGAGCACAG TTCGGTAACG GAGAGACCCT GCGGCGTACT





7081
TCATTATGTA TATGGAACGT GCCCAAGTGA CGCCAGGCAA GTCTCAGCTG GTTCCTGTGT





7141
TAGCTCGAGG GTAGACATAC GAGCTGATTG AACATGGGTT GGGGGCCTCG AACCGTCGAG





7201
GACCCCATAG TACCTCGGAG ACCAAGTAGG GCAGCCTATA GTTTGAAGCA GAACTATTTC





7261
GGGGGGCGAG CCCTCATCGT CTCTTCTGCG GATGACTCAA CACGCTAGGG ACGTGAAGTC





7321
GATTCCTTCG ATGGTTATAA ATCAAAGACT CAGAGTGCTG TCTGGAGCGT GAATCTAACG





7381
GTACGTATCT CGATTGCTCG GTCGCTTTTC GCACTCCGCG AAAGTTCGTA CCGCTCATTC





7441
ACTAGGTTGC GAAGCCTATG CTGATATATG AATCCAAACT AGAGCAGGGC TCTTAAGATT





7501
CGGAGTTGTA AATACTTAAT ACTCCAATCG GCTTTTACGT GCACCACCGC GGGCGGCTGA





7561
CAAGGGTCTC ACATCGAGAA ACAAGACAGT TCCGGGCTGG AAGTAGCGCC GGCTAAGGAA





7621
GACGCCTGGT ACGGCAGGAC TATGAAACCA GTACAAAGGC AACATCCTCA CTTGGGTGAA





7681
CGGAAACGCA GTATTATGGT TACTTTTTGG ATACGTGAAA CATATCCCAT GGTAGTCCTT





7741
AGACTTGGGA GTCTATCACC CCTAGGGCCC ATATCTGGAA ATAGACGCCA GGTTGAATCC





7801
GTATTTGGAG GTACGATGGA ACAGTCTGGG TGGGACGTGC TTCATTTATA CCCTGCGCAG





7861
GCTGGACCGA GGACCGCAAG GTGCGGCGGT GCACAAGCAA TTGACAACTA ACCACCGTGT





7921
ATTCATTATG GTACCAGGAA CTTTAAGCCG AGTCAATGAA GCTCGCATTA CAGTGTTTAC





7981
CGCATCTTGC GGTTACTCAC AAACTGTGAT CCACCACAAG TCAAGCCATT GCCTCTCTGA





8041
CACGCCGTAA GAATTAATAT GTAAACTTTG CGCGGGTTGA CTGCGATCCG TTCAGTCTCG





8101
TCCGAGGGCA CAATCCTATT CCCATTTGTA TGTTCAGCTA ACTTCTACCC ATCCCCCGAA





8161
GTTAAGTAGG TCGTGAGATG CCATGGAGGC TCTCGTTCAT CCCGTGGGAC ATCAAGCTTC





8221
CCCTTGATAA AGCACCCCGC TCGGGTGTAG CAGAGAAGAC GCCTTCTGAA TTGTGCAATC





8281
CCTCCACCTT ATCTAAGCTT GCTACCAATA ATTAGCATTT TTGCCTTGCG ACAGACCTCC





8341
TACTTAGATT GCCACACATT GAGCTAGTCA GTGAGCGATA AGCTTGACGC GCTTTCAAGG





8401
GTCGCGAGTA CGTGAACTAA GGCTCCGGAC AGGACTATAT ACTTGGGTTT GATCTCGCCC





8461
CGACAACTGC AAACCTCAAC TTTTTTAGAT TATATGGTTA GCCGAAGTTG CACGAGGTGG





8521
CGTCCGCGGA CTGCTCCCCG AGTGTGGCTC TTTCATCTGA CAACGTGCAA CCCCTATCGC





8581
GGCCGATTGT TTCTGCGGAC GATGTTGTCC TCATAGTTTG GGCATGTTTC CCTTGTAGGT





8641
GTGAAACCAC TTAGCTTCGC GCCGTAGTCC CAATGAAAAA CCTATGGACT TTGTTTTGGG





8701
TAGCACCAGG AATCTGAACC GTGTGAATGT GGACGTCGCG CGCGTAGACC TTTATCTCCG





8761
GTTCAAGCTA GGGATGTGGC TGCATGCTAC GTTGTCACAC CTACACTGCT CGAAGTAAAT





8821
ATGCGAAGCG CGCGGCCTGG CCGGAGGCGT TCCGCGCCGC CACGTGTTCG TTAACTGTTG





8881
ATTGGTGGCA CATAAGCAAT ATCGTAGTCC GTCAAATTCA GCTCTGTTAT CCCGGGCGTT





8941
ATGTGTCAAA TGGCGTAGAA CGGGATTGAC TGTTTGACGG TAGGGTGACC TAAGCCAGAT





9001
GCTACACAAT TAGGCTTGTA CATATTGTCG TTAGAACGCG GCTACAATTA ATACATAACC





9061
TTATGTATGA TACACATACG ATTTAGGTGA CACTATAGAA TACACGGAAT TAATTC.













TABLE 2







Features of the VMD2.IntEx.BEST1.WPRE.pA plasmid sequence














Mini-
Maxi-

Direc-


Name
Type
mum
mum
Length
tion















AAV2 ITR
LTR
4
133
130
forward


−585 to +38
promoter
189
811
623
forward


VMD2 promoter


Intron
intron
814
936
123
forward


Exon
exon
937
989
53
forward


Kozak
Kozak
990
999
10
forward


BEST1
CDS
996
2753
1758
forward


NotI
RBS
2758
2765
8
none


WPRE
WPRE
2784
3376
593
forward


NotI
RBS
3378
3385
8
none


bGH pA
polyA_signal
3398
3666
269
forward


AAV2 ITR
LTR
3724
3844
121
reverse


pBR322 rep origin
rep_origin
4408
5027
620
reverse


AphR (KanR)
CDS
5368
6183
816
forward


BstEII
RBS
6477
6483
7
none


Randomly generated
Stuffer
6484
8983
2500
none


stuffer sequence


BstEII
RBS
8984
8990
7
none









In some embodiments, the AAV viral delivery vector comprises a nucleic acid sequence comprising a sequence encoding a CAG promoter, a sequence encoding a BEST1 protein and a sequence encoding a WPRE. An exemplary AAV viral delivery vector of the disclosure comprising a nucleic acid sequence encoding a CAG.BEST1.WPRE.pA sequence comprises or consists of the nucleic acid sequence of:










(SEO Id NO: 15)










1
TAGCTGCGCG CTCGCTCGCT CACTGAGGCC GCCCGGGCAA AGCCCGGGCG TCGGGCGACC






61
TTTGGTCGCC CGGCCTCAGT GAGCGAGCGA GCGCGCAGAG AGGGAGTGGC CAACTCCATC





121
ACTAGGGGTT CCTTGTAGTT AATGATTAAC CCGCCATGCT ACTTATCTAC GTAGCCATGC





181
TCTAGGTACC ATTGAGGTGA ATAATGACGT ATGTTCCCAT AGTAACGCCA ATAGGGACTT





241
TCCATTGACG TCAATGGGTG GAGTATTTAC GGTAAACTGC CCACTTGGCA GTACATCAAG





301
TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG CCCGCCTGGC





361
ATTATGCCCA GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC TAGGTATTAG





421
TCATCGCTAT TACCATGGTC GAGGTGAGCC CCACGTTCTG CTTCAGTCTC CCCATCTCCC





481
CCCCCTCCCC ACCCCCAATT TTGTATTTAT TTATTTTTTA ATTATTTTGT GCAGCGATGG





541
GGGCGGGGGG GGGGGGGGGG CGCGCGCCAG GGGGGGGGGG GCGGGGCGAG GGGGGGGGGG





601
GGGCGAGGCG GAGAGGTGCG GCGGCAGCCA ATCAGAGCGG CGCGCTCCGA AAGTTTCCTT





661
TTATGGCGAG GGGGGGGGGG CGGCGGCCCT ATAAAAAGCG AAGCGCGCGG CGGGCGGGAG





721
TCGCTGCGCG CTGCCTTCGC CCCGTGCCCC GCTCCGCCGC CGCCTCGCGC CGCCCGCCCC





781
GGCTCTGACT GACCGCGTTA CTCCCACAGG TGAGCGGGCG GGACGGCCCT TCTCCTCCGG





841
GCTGTAATTA GCGCTTGGTT TAATGACGGC TTGTTTCTTT TCTGTGGCTG CGTGAAAGCC





901
TTGAGGGGCT CCGGGAGGGC CCTTTGTGCG GGGGGAGCGG CTCGGGGCTG TCCGCGGGGG





961
GACGGCTGCC TTCGGGGGGG ACGGGGCAGG GCGGGGTTCG GCTTCTGGCG TGTGACCGGC





1021
GGCTCTAGAG CCTCTGCTAA CCATGTTCAT GCCTTCTTCT TTTTCCTACA GCTCCTGGGC





1081
AACGTGCTGG TTATTGTGCT GTCTCATCAT TTTGGCAAAG AATTGGATCC GCGGCCGCAG





1141
CTTGGTACCG CCACCATGAC CATCACTTAC ACAAGCCAAG TGGCTAATGC CCGCTTAGGC





1201
TCCTTCTCCC GCCTGCTGCT GTGCTGGCGG GGCAGCATCT ACAAGCTGCT ATATGGCGAG





1261
TTCTTAATCT TCCTGCTCTG CTACTACATC ATCCGCTTTA TTTATAGGCT GGCCCTCACG





1321
GAAGAACAAC AGCTGATGTT TGAGAAACTG ACTCTGTATT GCGACAGTTA CATCCAGCTC





1381
ATCCCCATTT CCTTCGTGCT GGGCTTCTAC GTGACGCTGG TCGTGACCCG CTGGTGGAAC





1441
CAGTACGAGA ACCTGCCGTG GCCCGACCGC CTCATGAGCC TGGTGTCGGG CTTCGTCGAA





1501
GGCAAGGACG AGCAAGGCCG GCTGCTGCGG CGCACGCTCA TCCGCTACGC CAACCTGGGC





1561
AACGTGCTCA TCCTGCGCAG CGTCAGCACC GCAGTCTACA AGCGCTTCCC CAGCGCCCAG





1621
CACCTGGTGC AAGCAGGCTT TATGACTCCG GCAGAACACA AGCAGTTGGA GAAACTGAGC





1681
CTACCACACA ACATGTTCTG GGTGCCCTGG GTGTGGTTTG CCAACCTGTC AATGAAGGCG





1741
TGGCTTGGAG GTCGAATCCG GGACCCTATC CTGCTCCAGA GCCTGCTGAA CGAGATGAAC





1801
ACCTTGCGTA CTCAGTGTGG ACACCTGTAT GCCTACGACT GGATTAGTAT CCCACTGGTG





1861
TATACACAGG TGGTGACTGT GGCGGTGTAC AGCTTCTTCC TGACTTGTCT AGTTGGGCGG





1921
CAGTTTCTGA ACCCAGCCAA GGCCTACCCT GGCCATGAGC TGGACCTCGT TGTGCCCGTC





1981
TTCACGTTCC TGCAGTTCTT CTTCTATGTT GGCTGGCTGA AGGTGGCAGA GCAGCTCATC





2041
AACCCCTTTG GAGAGGATGA TGATGATTTT GAGACCAACT GGATTGTCGA CAGGAATTTG





2101
CAGGTGTCCC TGTTGGCTGT GGATGAGATG CACCAGGACC TGCCTCGGAT GGAGCCGGAC





2161
ATGTACTGGA ATAAGCCCGA GCCACAGCCC CCCTACACAG CTGCTTCCGC CCAGTTCCGT





2221
CGAGCCTCCT TTATGGGCTC CACCTTCAAC ATCAGCCTGA ACAAAGAGGA GATGGAGTTC





2281
CAGCCCAATC AGGAGGACGA GGAGGATGCT CACGCTGGCA TCATTGGCCG CTTCCTAGGC





2341
CTGCAGTCCC ATGATCACCA TCCTCCCAGG GCAAACTCAA GGACCAAACT ACTGTGGCCC





2401
AAGAGGGAAT CCCTTCTCCA CGAGGGCCTG CCCAAAAACC ACAAGGCAGC CAAACAGAAC





2461
GTTAGGGGCC AGGAAGACAA CAAGGCCTGG AAGCTTAAGG CTGTGGACGC CTTCAAGTCT





2521
GCCCCACTGT ATCAGAGGCC AGGCTACTAC AGTGCCCCAC AGACGCCCCT CAGCCCCACT





2581
CCCATGTTCT TCCCCCTAGA ACCATCAGCG CCGTCAAAGC TTCACAGTGT CACAGGCATA





2641
GACACCAAAG ACAAAAGCTT AAAGACTGTG AGTTCTGGGG CCAAGAAAAG TTTTGAATTG





2701
CTCTCAGAGA GCGATGGGGC CTTGATGGAG CACCCAGAAG TATCTCAAGT GAGGAGGAAA





2761
ACTGTGGAGT TTAACCTGAC GGATATGCCA GAGATCCCCG AAAATCACCT CAAAGAACCT





2821
TTGGAACAAT CACCAACCAA CATACACACT ACACTCAAAG ATCACATGGA TCCTTATTGG





2881
GCCTTGGAAA ACAGGGATGA AGCACATTCC TAAGAGCTCA AGCTTATCGA TAATCAACCT





2941
CTGGATTACA AAATTTGTGA AAGATTGACT GGTATTCTTA ACTATGTTGC TCCTTTTACG





3001
CTATGTGGAT ACGCTGCTTT AATGCCTTTG TATCATGCTA TTGCTTCCCG TATGGCTTTC





3061
ATTTTCTCCT CCTTGTATAA ATCCTGGTTG CTGTCTCTTT ATGAGGAGTT GTGGCCCGTT





3121
GTCAGGCAAC GTGGCGTGGT GTGCACTGTG TTTGCTGACG CAACCCCCAC TGGTTGGGGC





3181
ATTGCCACCA CCTGTCAGCT CCTTTCCGGG ACTTTCGCTT TCCCCCTCCC TATTGCCACG





3241
GCGGAACTCA TCGCCGCCTG CCTTGCCCGC TGCTGGACAG GGGCTCGGCT GTTGGGCACT





3301
GACAATTCCG TGGTGTTGTC GGGGAAATCA TCGTCCTTTC CTTGGCTGCT CGCCTGTGTT





3361
GCCACCTGGA TTCTGCGCGG GACGTCCTTC TGCTACGTCC CTTCGGCCCT CAATCCAGCG





3421
GACCTTCCTT CCCGCGGCCT GCTGCCGGCT CTGCGGCCTC TTCCGCGTCT TCGCCTTCGC





3481
CCTCAGACGA GTCGGATCTC CCTTTGGGCC GCCTCCCCGC ATCGATACCG TCGACTCGCT





3541
GATCAGCCTC GACTGTGCCT TCTAGTTGCC AGCCATCTGT TGTTTGCCCC TCCCCCGTGC





3601
CTTCCTTGAC CCTGGAAGGT GCCACTCCCA CTGTCCTTTC CTAATAAAAT GAGGAAATTG





3661
CATCGCATTG TCTGAGTAGG TGTCATTCTA TTCTGGGGGG TGGGGTGGGG CAGGACAGCA





3721
AGGGGGAGGA TTGGGAAGAC AATAGCAGGC ATGCTGGGGA TGCGGTGGGC TCTATGGCTT





3781
CTGAGGCGGA AAGAACCAGC TGGGGCTCGA CTAGAGCATG GCTACGTAGA TAAGTAGCAT





3841
GGCGGGTTAA TCATTAACTA CAAGGAACCC CTAGTGATGG AGTTGGCCAC TCCCTCTCTG





3901
CGCGCTCGCT CGCTCACTGA GGCCGGGCGA CCAAAGGTCG CCCGACGCCC GGGCGGCCTC





3961
AGTGAGCGAG CGAGCGCGCA GAGCTTTTTG CAAAAGCCTA GGCCTCCAAA AAAGCCTCCT





4021
CACTACTTCT GGAATAGCTC AGAGGCCGAG GCGGCCTCGG CCTCTGCATA AATAAAAAAA





4081
ATTAGTCAGC CATGGGGCGG AGAATGGGCG GAACTGGGCG GAGTTAGGGG CGGGATGGGC





4141
GGAGTTAGGG GCGGGACTAT GGTTGCTGAC TAATTGAGAT GCATGCTTTG CATACTTCTG





4201
CCTGCTGGGG AGCCTGGGGA CTTTCCACAC CTGGTTGCTG ACTAATTGAG ATGCATGCTT





4261
TGCATACTTC TGCCTGCTGG GGAGCCTGGG GACTTTCCAC ACCCTAACTG ACACACATTC





4321
CACAGCTGCA TTAATGAATC GGCCAACGCG CGGGGAGAGG CGGTTTGCGT ATTGGGCGCT





4381
CTTCCGCTTC CTCGCTCACT GACTCGCTGC GCTCGGTCGT TCGGCTGCGG CGAGCGGTAT





4441
CAGCTCACTC AAAGGCGGTA ATACGGTTAT CCACAGAATC AGGGGATAAC GCAGGAAAGA





4501
ACATGTGAGC AAAAGGCCAG CAAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT





4561
TTTTCCATAG GCTCCGCCCC CCTGACGAGC ATCACAAAAA TCGACGCTCA AGTCAGAGGT





4621
GGCGAAACCC GACAGGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC TCCCTCGTGC





4681
GCTCTCCTGT TCCGACCCTG CCGCTTACCG GATACCTGTC CGCCTTTCTC CCTTCGGGAA





4741
GCGTGGCGCT TTCTCATAGC TCACGCTGTA GGTATCTCAG TTCGGTGTAG GTCGTTCGCT





4801
CCAAGCTGGG CTGTGTGCAC GAACCCCCCG TTCAGCCCGA CCGCTGCGCC TTATCCGGTA





4861
ACTATCGTCT TGAGTCCAAC CCGGTAAGAC ACGACTTATC GCCACTGGCA GCAGCCACTG





4921
GTAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC AGAGTTCTTG AAGTGGTGGC





4981
CTAACTACGG CTACACTAGA AGAACAGTAT TTGGTATCTG CGCTCTGCTG AAGCCAGTTA





5041
CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT CCGGCAAACA AACCACCGCT GGTAGCGGTG





5101
GTTTTTTTGT TTGCAAGCAG CAGATTACGC GCAGAAAAAA AGGATCTCAA GAAGATCCTT





5161
TGATCTTTTC TACGGGGTCT GACGCTCAGT GGAACGAAAA CTCACGTTAA GGGATTTTGG





5221
TCATGAGATT ATCAAAAAGG ATCTTCACCT AGATCCTTTT AAATTAAAAA TGAAGTTTTA





5281
AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG TTACCAATGC TTAATCAGTG





5341
AGGCACCTAT CTCAGCGATC TGTCTATTTC GTTCATCCAT AGTTGCCTGA CTCCCCGTCG





5401
TGTAGATAAC TACGATACGG GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATACCGC





5461
GAGACCCACG CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG





5521
AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT TGTTGCCGGG





5581
AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTTGCGCAA CGTTGTTGCC ATTGCTACAG





5641
GCATCGTGGT GTCACGCTCG TCGTTTGGTA TGGCTTCATT CAGCTCCGGT TCCCAACGAT





5701
CAAGGCGAGT TACATGATCC CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC





5761
CGATCGTTGT CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCACTGC





5821
ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT GAGTACTCAA





5881
CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG CTCTTGCCCG GCGTCAATAC





5941
GGGATAATAC CGCGCCACAT AGCAGAACTT TAAAAGTGCT CATCATTGGA AAACGTTCTT





6001
CGGGGCGAAA ACTCTCAAGG ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC





6061
GTGCACCCAA CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA





6121
CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT TGAATACTCA





6181
TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG TTATTGTCTC ATGAGCGGAT





6241
ACATATTTGA ATGTATTTAG AAAAATAAAC AAATAGGGGT TCCGCGCACA TTTCCCCGAA





6301
AAGTGCCACC TGACGTCTAA GAAACCATTA TTATCATGAC ATTAACCTAT AAAAATAGGC





6361
GTATCACGAG GCCCTTTCGT CTCGCGCGTT TCGGTGATGA CGGTGAAAAC CTCTGACACA





6421
TGCAGCTCCC GGAGACGGTC ACAGCTTGTC TGTAAGCGGA TGCCGGGAGC AGACAAGCCC





6481
GTCAGGGCGC GTCAGCGGGT GTTGGCGGGT GTCGGGGCTG GCTTAACTAT GCGGCATCAG





6541
AGCAGATTGT ACTGAGAGTG CACCATTCGA CGCTCTCCCT TATGCGACTC CTGCATTAGG





6601
AAGCAGCCCA GTAGTAGGTT GAGGCCGTTG AGCACCGCCG CCGCAAGGAA TGGTGCATGC





6661
AAGGAGATGG CGCCCAACAG TCCCCCGGCC ACGGGGCCTG CCACCATACC CACGCCGAAA





6721
CAAGCGCTCA TGAGCCCGAA GTGGCGAGCC CGATCTTCCC CATCGGTGAT GTCGGCGATA





6781
TAGGCGCCAG CAACCGCACC TGTGGCGCCG GTGATGCCGG CCACGATGCG TCCGGCGTAG





6841
AGGATCTGGC TAGCGATGAC CCTGCTGATT GGTTCGCTGA CCATTTCCGG GTGCGGGACG





6901
GCGTTACCAG AAACTCAGAA GGTTCGTCCA ACCAAACCGA CTCTGACGGC AGTTTACGAG





6961
AGAGATGATA GGGTCTGCTT CAGTAAGCCA GATGCTACAC AATTAGGCTT GTACATATTG





7021
TCGTTAGAAC GCGGCTACAA TTAATACATA ACCTTATGTA TCATACACAT ACGATTTAGG





7081
TGACACTATA GAATACACGG AATTAATTC.













TABLE 3







Features of the CAG.BEST1.WPRE.PA plasmid sequence














Mini-
Maxi-

Direc-


Name
Type
mum
mum
Length
tion















AAV2 ITR
repeat_region
7,066
133
177
forward


amp prom
promoter
6,223
6,251
29
reverse


AmpR gene
gene
5,321
6,181
861
reverse


Bla gene
gene
5,321
5,983
663
reverse


ColE1 origin
rep_origin
4,503
5,176
674
forward


rep origin


SV40 origin
origin of
4,059
4,136
78
reverse



replication


AAV2 ITR
repeat_region
3,864
4,000
137
reverse


bGH_PA term
terminator
3,550
3,777
228
forward


WPRE
misc_feature
2,932
3,520
589
forward


Exon 10
exon
2,895
2,913
19
forward


Exon 9
exon
2,256
2,894
639
forward


Exon 8
exon
2,104
2,255
152
forward


Exon 7
exon
2,023
2,103
81
forward


Exon 6
exon
1,870
2,022
153
forward


Exon 5
exon
1,792
1,869
78
forward


Exon 4
exon
1,637
1,791
155
forward


Exon 3
exon
1,403
1,636
234
forward


C > T
modified_base
1,368
1,368
1
forward


Exon 2
exon
1,308
1,402
95
forward


hBEST1 CDS
CDS
1,156
2,913
1,758
forward


Exon 1
exon
1,156
1,307
152
forward


Kozak
unsure
1,147
1,155
9
forward



Editing History
<1133
1,138
>6
none



Insertion


CAG promoter
promoter
189
1,129
941
forward


5′ITR on REP1
LTR
64
183
120
forward


official


sequence file









In some embodiments of the compositions of the disclosure, a vector may comprise a sequence encoding a marker, which may be expressed in a cell when the cell is either in vitro or in vivo. For example, in a vector or nucleic acid sequence of the disclosure, a sequence encoding a marker may be used in place of or may replace a sequence encoding a BEST1 protein of the disclosure (e.g. a sequence comprising a coding sequence of a BEST1 gene). Exemplary markers of the disclosure include, but are not limited to, fluorophore proteins such as GFP, YFP or dsRED as well as various epitope tags such as FLAG, HA, His or Myc. The fluorophore or epitope tag may be fused to the BEST1 coding sequence, for example as an N or C terminal fusion, or may be used in place of BEST1 to characterize a vector of the disclosure. Exemplary uses for a vector containing a marker of the disclosure include, but are not limited to characterizing gene expression, for example levels of expression, or characterizing the cell type specificity of a vector of the disclosure.


An exemplary a vector of the disclosure comprising a marker includes VMD2.GFP.WPRE.pA. A nucleic acid sequence encoding a VMD2.GFP.WPRE.pA construct comprises or consists of:










(SEQ ID NO: 16)










1
TAGCTGCGCG CTCGCTCGCT CACTGAGGCC GCCCGGGCAA AGCCCGGGCG TCGGGCGACC






61
TTTGGTCGCC CGGCCTCAGT GAGCGAGCGA GCGCGCAGAG AGGGAGTGGC CAACTCCATC





121
ACTAGGGGTT CCTTGTAGTT AATGATTAAC CCGCCATGCT ACTTATCTAC GTAGCCATGC





181
TCTAGGTAAA TTCTGTCATT TTACTAGGGT GATGAAATTC CCAAGCAACA CCATCCTTTT





241
CAGATAAGGG CACTGAGGCT GAGAGAGGAG CTGAAACCTA CCCGGGGTCA CCACACACAG





301
GTGGCAAGGC TGGGACCAGA AACCAGGACT GTTGACTGCA GCCCGGTATT CATTCTTTCC





361
ATAGCCCACA GGGCTGTCAA AGACCCCAGG GCCTAGTCAG AGGCTCCTCC TTCCTGGAGA





421
GTTCCTGGCA CAGAAGTTGA AGCTCAGCAC AGCCCCCTAA CCCCCAACTC TCTCTGCAAG





481
GCCTCAGGGG TCAGAACACT GGTGGAGCAG ATCCTTTAGC CTCTGGATTT TAGGGCCATG





541
GTAGAGGGGG TGTTGCCCTA AATTCCAGCC CTGGTCTCAG CCCAACACCC TCCAAGAAGA





601
AATTAGAGGG GCCATGGCCA GGCTGTGCTA GCCGTTGCTT CTGAGCAGAT TACAAGAAGG





661
GACTAAGACA AGGACTCCTT TGTGGAGGTC CTGGCTTAGG GAGTCAAGTG ACGGCGGCTC





721
AGCACTCACG TGGGCAGTGC CAGCCTCTAA GAGTGGGCAG GGGCACTGGC CACAGAGTCC





781
CAGGGAGTCC CACCAGCCTA GTCGCCAGAC CGGCACCATG AGCAAGGGCG AGGAACTGTT





841
CACTGGCGTG GTCCCAATTC TCGTGGAACT GGATGGCGAT GTGAATGGGC ACAAATTTTC





901
TGTCAGCGGA GAGGGTGAAG GTGATGCCAC ATACGGAAAG CTCACCCTGA AATTCATCTG





961
CACCACTGGA AAGCTCCCTG TGCCATGGCC AACACTGGTC ACTACCCTGA CCTATGGCGT





1021
GCAGTGCTTT TCCAGATACC CAGACCATAT GAAGCAGCAT GACTTTTTCA AGAGCGCCAT





1081
GCCCGAGGGC TATGTGCAGG AGAGAACCAT CTTTTTCAAA GATGACGGGA ACTACAAGAC





1141
CCGCGCTGAA GTCAAGTTCG AAGGTGACAC CCTGGTGAAT AGAATCGAGC TGAAGGGCAT





1201
TGACTTTAAG GAGGATGGAA ACATTCTCGG CCACAAGCTG GAATACAACT ATAACTCCCA





1261
CAATGTGTAC ATCATGGCCG ACAAGCAAAA GAATGGCATC AAGGTCAACT TCAAGATCAG





1321
ACACAACATT GAGGATGGAT CCGTGCAGCT GGCCGACCAT TATCAACAGA ACACTCCAAT





1381
CGGCGACGGC CCTGTGCTCC TCCCAGACAA CCATTACCTG TCCACCCAGT CTGCCCTGTC





1441
TAAAGATCCC AACGAAAAGA GAGACCACAT GGTCCTGCTG GAGTTTGTGA CCGCTGCTGG





1501
GATCACACAT GGCATGGACG AGCTGTACAA GTGAAAGCTT ATCGATAATC AACCTCTGGA





1561
TTACAAAATT TGTGAAAGAT TGACTGGTAT TCTTAACTAT GTTGCTCCTT TTACGCTATG





1621
TGGATACGCT GCTTTAATGC CTTTGTATCA TGCTATTGCT TCCCGTATGG CTTTCATTTT





1681
CTCCTCCTTG TATAAATCCT GGTTGCTGTC TCTTTATGAG GAGTTGTGGC CCGTTGTCAG





1741
GCAACGTGGC GTGGTGTGCA CTGTGTTTGC TGACGCAACC CCCACTGGTT GGGGCATTGC





1801
CACCACCTGT CAGCTCCTTT CCGGGACTTT CGCTTTCCCC CTCCCTATTG CCACGGCGGA





1861
ACTCATCGCC GCCTGCCTTG CCCGCTGCTG GACAGGGGCT CGGCTGTTGG GCACTGACAA





1921
TTCCGTGGTG TTGTCGGGGA AATCATCGTC CTTTCCTTGG CTGCTCGCCT GTGTTGCCAC





1981
CTGGATTCTG CGCGGGACGT CCTTCTGCTA CGTCCCTTCG GCCCTCAATC CAGCGGACCT





2041
TCCTTCCCGC GGCCTGCTGC CGGCTCTGCG GCCTCTTCCG CGTCTTCGCC TTCGCCCTCA





2101
GACGAGTCGG ATCTCCCTTT GGGCCGCCTC CCCGGCGGCC GCGCACCGTC GACTCGCTGA





2161
TCAGCCTCGA CTGTGCCTTC TAGTTGCCAG CCATCTGTTG TTTGCCCCTC CCCCGTGCCT





2221
TCCTTGACCC TGGAAGGTGC CACTCCCACT GTCCTTTCCT AATAAAATGA GGAAATTGCA





2281
TCGCATTGTC TGAGTAGGTG TCATTCTATT CTGGGGGGTG GGGTGGGGCA GGACAGCAAG





2341
GGGGAGGATT GGGAAGACAA TAGCAGGCAT GCTGGGGATG CGGTGGGCTC TATGGCTTCT





2401
GAGGCGGAAA GAACCAGCTG GGGCTCGACT AGAGCATGGC TACGTAGATA AGTAGCATGG





2461
CGGGTTAATC ATTAACTACA AGGAACCCCT AGTGATGGAG TTGGCCACTC CCTCTCTGCG





2521
CGCTCGCTCG CTCACTGAGG CCGGGCGACC AAAGGTCGCC CGACGCCCGG GCGGCCTCAG





2581
TGAGCGAGCG AGCGCGCAGA GCTTTTTGCA AAAGCCTAGG CCTCCAAAAA AGCCTCCTCA





2641
CTACTTCTGG AATAGCTCAG AGGCCGAGGC GGCCTCGGCC TCTGCATAAA TAAAAAAAAT





2701
TAGTCAGCCA TGGGGCGGAG AATGGGCGGA ACTGGGCGGA GTTAGGGGCG GGATGGGCGG





2761
AGTTAGGGGC GGGACTATGG TTGCTGACTA ATTGAGATGC ATGCTTTGCA TACTTCTGCC





2821
TGCTGGGGAG CCTGGGGACT TTCCACACCT GGTTGCTGAC TAATTGAGAT GCATGCTTTG





2881
CATACTTCTG CCTGCTGGGG AGCCTGGGGA CTTTCCACAC CCTAACTGAC ACACATTCCA





2941
CAGCTGCATT AATGAATCGG CCAACGCGCG GGGAGAGGCG GTTTGCGTAT TGGGCGCTCT





3001
TCCGCTTCCT CGCTCACTGA CTCGCTGCGC TCGGTCGTTC GGCTGCGGCG AGCGGTATCA





3061
GCTCACTCAA AGGCGGTAAT ACGGTTATCC ACAGAATCAG GGGATAACGC AGGAAAGAAC





3121
ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT





3181
TTCCATAGGC TCCGCCCCCC TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGTGG





3241
CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC





3301
TCTCCTGTTC CGACCCTGCC GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC





3361
GTGGCGCTTT CTCATAGCTC ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTTCGCTCC





3421
AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCGACC GCTGCGCCTT ATCCGGTAAC





3481
TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT





3541
AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT





3601
AACTACGGCT ACACTAGAAG AACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC





3661
TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGT





3721
TTTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAAG GATCTCAAGA AGATCCTTTG





3781
ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAACT CACGTTAAGG GATTTTGGTC





3841
ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTTAA ATTAAAAATG AAGTTTTAAA





3901
TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGTT ACCAATGCTT AATCAGTGAG





3961
GCACCTATCT CAGCGATCTG TCTATTTCGT TCATCCATAG TTGCCTGACT CCTGCAAACC





4021
ACGTTGTGTC TCAAAATCTC TGATGTTACA TTGCACAAGA TAAAAATATA TCATCATGAA





4081
CAATAAAACT GTCTGCTTAC ATAAACAGTA ATACAAGGGG TGTTATGAGC CATATTCAAC





4141
GGGAAACGTC TTGCTCGAGG CCGCGATTAA ATTCCAACAT GGATGCTGAT TTATATGGGT





4201
ATAAATGGGC TCGCGATAAT GTCGGGCAAT CAGGTGCGAC AATCTATCGA TTGTATGGGA





4261
AGCCCGATGC GCCAGAGTTG TTTCTGAAAC ATGGCAAAGG TAGCGTTGCC AATGATGTTA





4321
CAGATGAGAT GGTCAGACTA AACTGGCTGA CGGAATTTAT GCCTCTTCCG ACCATCAAGC





4381
ATTTTATCCG TACTCCTGAT GATGCATGGT TACTCACCAC TGCGATCCCC GGGAAAACAG





4441
CATTCCAGGT ATTAGAAGAA TATCCTGATT CAGGTGAAAA TATTGTTGAT GCGCTGGCAG





4501
TGTTCCTGCG CCGGTTGCAT TCGATTCCTG TTTGTAATTG TCCTTTTAAC AGCGATCGCG





4561
TATTTCGTCT CGCTCAGGCG CAATCACGAA TGAATAACGG TTTGGTTGAT GCGAGTGATT





4621
TTGATGACGA GCGTAATGGC TGGCCTGTTG AACAAGTCTG GAAAGAAATG CATAAGCTTT





4681
TGCCATTCTC ACCGGATTCA GTCGTCACTC ATGGTGATTT CTCACTTGAT AACCTTATTT





4741
TTGACGAGGG GAAATTAATA GGTTGTATTG ATGTTGGACG AGTCGGAATC GCAGACCGAT





4801
ACCAGGATCT TGCCATCCTA TGGAACTGCC TCGGTGAGTT TTCTCCTTCA TTACAGAAAC





4861
GGCTTTTTCA AAAATATGGT ATTGATAATC CTGATATGAA TAAATTGCAG TTTCATTTGA





4921
TGCTCGATGA GTTTTTCTAA GGGCGGCCTG CCACCATACC CACGCCGAAA CAAGCGCTCA





4981
TGAGCCCGAA GTGGCGAGCC CGATCTTCCC CATCGGTGAT GTCGGCGATA TAGGCGCCAG





5041
CAACCGCACC TGTGGCGCCG GTGATGCCGG CCACGATGCG TCCGGCGTAG AGGATCTGGC





5101
TAGCGATGAC CCTGCTGATT GGTTCGCTGA CCATTTCCGG GTGCGGGACG GCGTTACCAG





5161
AAACTCAGAA GGTTCGTCCA ACCAAACCGA CTCTGACGGC AGTTTACGAG AGAGATGATA





5221
GGGTCTGCTT CAGGGTGACC GATGTAACCA TATACTTAGG CTGGATCTTC TCCCGCGAAT





5281
TTTAACCCTC ACCAACTACG AGATATGAGG TAAGCCAAAA AAGCACGTAG TGGCGCTCTC





5341
CGACTGTTCC CAAATTGTAA CTTATCGTTC CGTGAAGGCC AGAGTTACTT CCCGGCCCTT





5401
TCCATGCGCG CACCATACCC TCCTAGTTCC CCGGTTATCT TTCCGAAGTG GGAGTGAGCG





5461
AACCTCCGTT TACGTCTTGT TACCAATGAT GTAGCTATGC ACTTTGTACA GGGTGCCAAC





5521
GGGTTTCACA ATTCACAGAT AGTGGGGATC CCGGCAAAGG GCCTATATTT GCGGTCCAAC





5581
TTAGGCGTAA ACCTCGATGC TACCTACTCA GACCCACCTC GCGCGGGGTA AATAAGGCAC





5641
TCATCCCAGC TGGTTCTTGG CGTTCTACGC AGCGACATGT TTATTAACAG TTGTCTGGCA





5701
GCACAAAACT TTTACCATGG TCGTAGAAGC CCCCCAGAGT TAGTTCATAC CTAATGCCAC





5761
AAATGTGACA GGACGCCGAT GGGTACCGGA CTTTAGGTCG AGCACAGTTC GGTAACGGAG





5821
AGACCCTGCG GCGTACTTCA TTATGTATAT GGAACGTGCC CAAGTGACGC CAGGCAAGTC





5881
TCAGCTGGTT CCTGTGTTAG CTCGAGGGTA GACATACGAG CTGATTGAAC ATGGGTTGGG





5941
GGCCTCGAAC CGTCGAGGAC CCCATAGTAC CTCGGAGACC AAGTAGGGCA GCCTATAGTT





6001
TGAAGCAGAA CTATTTCGGG GGGCGAGCCC TCATCGTCTC TTCTGCGGAT GACTCAACAC





6061
GCTAGGGACG TGAAGTCGAT TCCTTCGATG GTTATAAATC AAAGACTCAG AGTGCTGTCT





6121
GGAGCGTGAA TCTAACGGTA CGTATCTCGA TTGCTCGGTC GCTTTTCGCA CTCCGCGAAA





6181
GTTCGTACCG CTCATTCACT AGGTTGCGAA GCCTATGCTG ATATATGAAT CCAAACTAGA





6241
GCAGGGCTCT TAAGATTCGG AGTTGTAAAT ACTTAATACT CCAATCGGCT TTTACGTGCA





6301
CCACCGCGGG CGGCTGACAA GGGTCTCACA TCGAGAAACA AGACAGTTCC GGGCTGGAAG





6361
TAGCGCCGGC TAAGGAAGAC GCCTGGTACG GCAGGACTAT GAAACCAGTA CAAAGGCAAC





6421
ATCCTCACTT GGGTGAACGG AAACGCAGTA TTATGGTTAC TTTTTGGATA CGTGAAACAT





6481
ATCCCATGGT AGTCCTTAGA CTTGGGAGTC TATCACCCCT AGGGCCCATA TCTGGAAATA





6541
GACGCCAGGT TGAATCCGTA TTTGGAGGTA CGATGGAACA GTCTGGGTGG GACGTGCTTC





6601
ATTTATACCC TGCGCAGGCT GGACCGAGGA CCGCAAGGTG CGGCGGTGCA CAAGCAATTG





6661
ACAACTAACC ACCGTGTATT CATTATGGTA CCAGGAACTT TAAGCCGAGT CAATGAAGCT





6721
CGCATTACAG TGTTTACCGC ATCTTGCCGT TACTCACAAA CTGTGATCCA CCACAAGTCA





6781
AGCCATTGCC TCTCTGACAC GCCGTAAGAA TTAATATGTA AACTTTGCGC GGGTTGACTG





6841
CGATCCGTTC AGTCTCGTCC GAGGGCACAA TCCTATTCCC ATTTGTATGT TCAGCTAACT





6901
TCTACCCATC CCCCGAAGTT AAGTAGGTCG TGAGATGCCA TGGAGGCTCT CGTTCATCCC





6961
GTGGGACATC AAGCTTCCCC TTGATAAAGC ACCCCGCTCG GGTGTAGCAG AGAAGACGCC





7021
TTCTGAATTG TGCAATCCCT CCACCTTATC TAAGCTTGCT ACCAATAATT AGCATTTTTG





7081
CCTTGCGACA GACCTCCTAC TTAGATTGCC ACACATTGAG CTAGTCAGTG AGCGATAAGC





7141
TTGACGCGCT TTCAAGGGTC GCGAGTACGT GAACTAAGGC TCCGGACAGG ACTATATACT





7201
TGGGTTTGAT CTCGCCCCGA CAACTGCAAA CCTCAACTTT TTTAGATTAT ATGGTTAGCC





7261
GAAGTTGCAC GAGGTGGCGT CCGCGGACTG CTCCCCGAGT GTGGCTCTTT CATCTGACAA





7321
CGTGCAACCC CTATCGCGGC CGATTGTTTC TGCGGACGAT GTTGTCCTCA TAGTTTGGGC





7381
ATGTTTCCCT TGTAGGTGTG AAACCACTTA GCTTCGCGCC GTAGTCCCAA TGAAAAACCT





7441
ATGGACTTTG TTTTGGGTAG CACCAGGAAT CTGAACCGTG TGAATGTGGA CGTCGCGCGC





7501
GTAGACCTTT ATCTCCGGTT CAAGCTAGGG ATGTGGCTGC ATGCTACGTT GTCACACCTA





7561
CACTGCTCGA AGTAAATATG CGAAGCGCGC GGCCTGGCCG GAGGCGTTCC GCGCCGCCAC





7621
GTGTTCGTTA ACTGTTGATT GGTGGCACAT AAGCAATATC GTAGTCCGTC AAATTCAGCT





7681
CTGTTATCCC GGGCGTTATG TGTCAAATGG CGTAGAACGG GATTGACTGT TTGACGGTAG





7741
GGTGACCTAA GCCAGATGCT ACACAATTAG GCTTGTACAT ATTGTCGTTA GAACGCGGCT





7801
ACAATTAATA CATAACCTTA TGTATCATAC ACATACGATT TAGGTGACAC TATAGAATAC





7861
ACGGAATTAA TTC.













TABLE 4







Features of the VMD2.GFP.WPRE.pA plasmid sequence














Mini-
Maxi-

Direc-


Name
Type
mum
mum
Length
tion















Randomly
Stuffer
5,241
7,740
2,500
none


generated


stuffer sequence


AphR (KanR)
CDS
4,125
4,940
816
forward


pBR322 rep
rep_origin
3,165
3,784
620
reverse


origin


AAV2 ITR
LTR
2,481
2,601
121
reverse


bGH pA
polyA_signal
2,155
2,423
269
forward


WPRE
WPRE
1,547
2,136
590
forward


GFP
misc_feature
818
1,534
717
forward


Kozak
Kozak
812
817
6
forward


−585 to +38
promoter
189
811
623
forward


VMD2 promoter


AAV2 ITR
LTR
4
133
130
forward









An exemplary a vector of the disclosure comprising a marker includes VMD. IntEx.GFP.WPRE.pA. A nucleic acid sequence encoding a VMD. IntEx.GFP.WPRE.pA construct comprises or consists of:










(SEQ ID NO: 17)










1
TAGCTGCGCG CTCGCTCGCT CACTGAGGCC GCCCGGGCAA AGCCCGGGCG TCGGGCGACC






61
TTTGGTCGCC CGGCCTCAGT GAGCGAGCGA GCGCGCAGAG AGGGAGTGGC CAACTCCATC





121
ACTAGGGGTT CCTTGTAGTT AATGATTAAC CCGCCATGCT ACTTATCTAC GTAGCCATGC





181
TCTAGGTAAA TTCTGTCATT TTACTAGGGT GATGAAATTC CCAAGCAACA CCATCCTTTT





241
CAGATAAGGG CACTGAGGCT GAGAGAGGAG CTGAAACCTA CCCGGGGTCA CGAGACACAG





301
GTGGCAAGGC TGGGACCAGA AACCAGGACT GTTGACTGCA GCCCGGTATT CATTCTTTCC





361
ATAGCCCACA GGGCTGTCAA AGACCCCAGG GCCTAGTCAG AGGCTCCTCC TTCCTGGAGA





421
GTTCCTGGCA CAGAAGTTGA AGCTCAGCAC AGCCCCCTAA CCCCCAACTC TCTCTGCAAG





481
GCCTCAGGGG TCAGAACACT GGTGGAGCAG ATCCTTTAGC CTCTGGATTT TAGGGCCATG





541
GTAGAGGGGG TGTTGCCCTA AATTCCAGCC CTGGTCTCAG CCCAACACCC TCCAAGAAGA





601
AATTAGAGGG GCCATGGCCA GGCTGTGCTA GCCGTTGCTT CTGAGCAGAT TACAAGAAGG





661
GACTAAGACA AGGACTCCTT TGTGGAGGTC CTGGCTTAGG GAGTCAAGTG ACGGCGGCTC





721
AGCACTCACG TGGGCAGTGC CAGCCTCTAA GAGTGGGCAG GGGCACTGGC CACAGAGTCC





781
CAGGGAGTCC CACCAGCCTA GTCGCCAGAC CGGGTGCCGC AGGGGGACGG CTGCCTTCGG





841
GGGGGACGGG GCAGGGCGGG GTTCGGCTTC TGGCGTGTGA CCGGCGGCTC TAGAGCCTCT





901
GCTAACCATG TTCATGCCTT CTTCTTTTTC CTACAGCTCC TGGGCAACGT GCTGGTTATT





961
GTGCTGTCTC ATCATTTTGG CAAAGAATTG GCACCATGAG CAAGGGCGAG GAACTGTTCA





1021
CTGGCGTGGT CCCAATTCTC GTGGAACTGG ATGGCGATGT GAATGGGCAC AAATTTTCTG





1081
TCAGCGGAGA GGGTGAAGGT GATGCCACAT ACGGAAAGCT CACCCTGAAA TTCATCTGCA





1141
CCACTGGAAA GCTCCCTGTG CCATGGCCAA CACTGGTCAC TACCCTGACC TATGGCGTGC





1201
AGTGCTTTTC CAGATACCCA GAGCATATGA AGCAGCATGA CTTTTTCAAG AGCGCCATGC





1261
CCGAGGGCTA TGTGCAGGAG AGAACCATCT TTTTCAAAGA TGACGGGAAC TACAAGACCC





1321
GCGCTGAAGT CAAGTTCGAA GGTGACACCC TGGTGAATAG AATCGAGCTG AAGGGCATTG





1381
ACTTTAAGGA GGATGGAAAC ATTCTCGGCC ACAAGCTGGA ATACAACTAT AACTCCCACA





1441
ATGTGTACAT CATGGCCGAC AAGCAAAAGA ATGGCATCAA GGTCAACTTC AAGATCAGAC





1501
ACAACATTGA GGATGGATCC GTGCAGCTGG CCGACCATTA TCAACAGAAC ACTCCAATCG





1561
GCGACGGCCC TGTGCTCCTC CCAGACAACC ATTACCTGTC CACCCAGTCT GCCCTGTCTA





1621
AAGATCCCAA CGAAAAGAGA GACCACATGG TCCTGCTGGA GTTTGTGACC GCTGCTGGGA





1681
TCACACATGG CATGGACGAG CTGTACAAGT GAAAGCTTAT CGATAATCAA CCTCTGGATT





1741
ACAAAATTTG TGAAAGATTG ACTGGTATTC TTAACTATGT TGCTCCTTTT ACGCTATGTG





1801
GATACGCTGC TTTAATGCCT TTGTATCATG CTATTGCTTC CCGTATGGCT TTCATTTTCT





1861
CCTCCTTGTA TAAATCCTGG TTGCTGTCTC TTTATGAGGA GTTGTGGCCC GTTGTCAGGC





1921
AACGTGGCGT GGTGTGCACT GTGTTTGCTG ACGCAACCCC CACTGGTTGG GGCATTGCCA





1981
CCACCTGTCA GCTCCTTTCC GGGACTTTCG CTTTCCCCCT CCCTATTGCC ACGGCGGAAC





2041
TCATCGCCGC CTGCCTTGCC CGCTGCTGGA CAGGGGCTCG GCTGTTGGGC ACTGACAATT





2101
CCGTGGTGTT GTCGGGGAAA TCATCGTCCT TTCCTTGGCT GCTCGCCTGT GTTGCCACCT





2161
GGATTCTGCG CGGGACGTCC TTCTGCTACG TCCCTTCGGC CCTCAATCCA GCGGACCTTC





2221
CTTCCCGCGG CCTGCTGCCG GCTCTGCGGC CTCTTCCGCG TCTTCGCCTT CGCCCTCAGA





2281
CGAGTCGGAT CTCCCTTTGG GCCGCCTCCC CGGCGGCCGC GCACCGTCGA CTCGCTGATC





2341
AGCCTCGACT GTGCCTTCTA GTTGCCAGCC ATCTGTTGTT TGCCCCTCCC CCGTGCCTTC





2401
CTTGACCCTG GAAGGTGCCA CTCCCACTGT CCTTTCCTAA TAAAATGAGG AAATTGCATC





2461
GCATTGTCTG AGTAGGTGTC ATTCTATTCT GGGGGGTGGG GTGGGGCAGG ACAGCAAGGG





2521
GGAGGATTGG GAAGACAATA GCAGGCATGC TGGGGATGCG GTGGGCTCTA TGGCTTCTGA





2581
GGCGGAAAGA ACCAGCTGGG GCTCGACTAG AGCATGGCTA CGTAGATAAG TAGCATGGCG





2641
GGTTAATCAT TAACTACAAG GAACCCCTAG TGATGGAGTT GGCCACTCCC TCTCTGCGCG





2701
CTCGCTCGCT CACTGAGGCC GGGCGACCAA AGGTCGCCCG ACGCCCGGGC GGCCTCAGTG





2761
AGCGAGCGAG CGCGCAGAGC TTTTTGCAAA AGCCTAGGCC TCCAAAAAAG CCTCCTCACT





2821
ACTTCTGGAA TAGCTCAGAG GCCGAGGCGG CCTCGGCCTC TGCATAAATA AAAAAAATTA





2881
GTCAGCCATG GGGCGGAGAA TGGGCGGAAC TGGGCGGAGT TAGGGGCGGG ATGGGCGGAG





2941
TTAGGGGCGG GACTATGGTT GCTGACTAAT TGAGATGCAT GCTTTGCATA CTTCTGCCTG





3001
CTGGGGAGCC TGGGGACTTT CCACACCTGG TTGCTGACTA ATTGAGATGC ATGCTTTGCA





3061
TACTTCTGCC TGCTGGGGAG CCTGGGGACT TTCCACACCC TAACTGACAC ACATTCCACA





3121
GCTGCATTAA TGAATCGGCC AACGCGCGGG GAGAGGCGGT TTGCGTATTG GGCGCTCTTC





3181
CGCTTCCTCG CTCACTGACT CGCTGCGCTC GGTCGTTCGG CTGCGGCGAG CGGTATCAGC





3241
TCACTCAAAG GCGGTAATAC GGTTATCCAC AGAATCAGGG GATAACGCAG GAAAGAACAT





3301
GTGAGCAAAA GGCCAGCAAA AGGCCAGGAA CCGTAAAAAG GCCGCGTTGC TGGCGTTTTT





3361
CCATAGGCTC CGCCCCCCTG ACGAGCATCA CAAAAATCGA CGCTCAAGTC AGAGGTGGCG





3421
AAACCCGACA GGACTATAAA GATACCAGGC GTTTCCCCCT GGAAGCTCCC TCGTGCGCTC





3481
TCCTGTTCCG ACCCTGCCGC TTACCGGATA CCTGTCCGCC TTTCTCCCTT CGGGAAGCGT





3541
GGCGCTTTCT CATAGCTCAC GCTGTAGGTA TCTCAGTTCG GTGTAGGTCG TTCGCTCCAA





3601
GCTGGGCTGT GTGCACGAAC CCCCCGTTCA GCCCGACCGC TGCGCCTTAT CCGGTAACTA





3661
TCGTCTTGAG TCCAACCCGG TAAGACACGA CTTATCGCCA CTGGCAGCAG CCACTGGTAA





3721
CAGGATTAGC AGAGCGAGGT ATGTAGGCGG TGCTACAGAG TTCTTGAAGT GGTGGCCTAA





3781
CTACGGCTAC ACTAGAAGAA CAGTATTTGG TATCTGCGCT CTGCTGAAGC CAGTTACCTT





3841
CGGAAAAAGA GTTGGTAGCT CTTGATCCGG CAAACAAACC ACCGCTGGTA GCGGTGGTTT





3901
TTTTGTTTGC AAGCAGCAGA TTACGCGCAG AAAAAAAGGA TCTCAAGAAG ATCCTTTGAT





3961
CTTTTCTACG GGGTCTGACG CTCAGTGGAA CGAAAACTCA CGTTAAGGGA TTTTGGTCAT





4021
GAGATTATCA AAAAGGATCT TCACCTAGAT CCTTTTAAAT TAAAAATGAA GTTTTAAATC





4081
AATCTAAAGT ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TCAGTGAGGC





4141
ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT GCCTGACTCC TGCAAACCAC





4201
GTTGTGTCTC AAAATCTCTG ATGTTACATT GCACAAGATA AAAATATATC ATCATGAACA





4261
ATAAAACTGT CTGCTTACAT AAACAGTAAT ACAAGGGGTG TTATGAGCCA TATTCAACGG





4321
GAAACGTCTT GCTCGAGGCC GCGATTAAAT TCCAACATGG ATGCTGATTT ATATGGGTAT





4381
AAATGGGCTC GCGATAATGT CGGGCAATCA GGTGCGACAA TCTATCGATT GTATGGGAAG





4441
CCCGATGCGC CAGAGTTGTT TCTGAAACAT GGCAAAGGTA GCGTTGCCAA TGATGTTACA





4501
GATGAGATGG TCAGACTAAA CTGGCTGACG GAATTTATGC CTCTTCCGAC CATCAAGCAT





4561
TTTATCCGTA CTCCTGATGA TGCATGGTTA CTCACCACTG CGATCCCCGG GAAAACAGCA





4621
TTCCAGGTAT TAGAAGAATA TCCTGATTCA GGTGAAAATA TTGTTGATGC GCTGGCAGTG





4681
TTCCTGCGCC GGTTGCATTC GATTCCTGTT TGTAATTGTC CTTTTAACAG CGATCGCGTA





4741
TTTCGTCTCG CTCAGGCGCA ATCACGAATG AATAACGGTT TGGTTGATGC GAGTGATTTT





4801
GATGACGAGC GTAATGGCTG GCCTGTTGAA CAAGTCTGGA AAGAAATGCA TAAGCTTTTG





4861
CCATTCTCAC CGGATTCAGT CGTCACTCAT GGTGATTTCT CACTTGATAA CCTTATTTTT





4921
GACGAGGGGA AATTAATAGG TTGTATTGAT GTTGGACGAG TCGGAATCGC AGACCGATAC





4981
CAGGATCTTG CCATCCTATG GAACTGCCTC GGTGAGTTTT CTCCTTCATT ACAGAAACGG





5041
CTTTTTCAAA AATATGGTAT TGATAATCCT GATATGAATA AATTGCAGTT TCATTTGATG





5101
CTCGATGAGT TTTTCTAAGG GCGGCCTGCC ACCATACCCA CGCCGAAACA AGCGCTCATG





5161
AGCCCGAAGT GGCGAGCCCG ATCTTCCCCA TCGGTGATGT CGGCGATATA GGCGCCAGCA





5221
ACCGCACCTG TGGCGCCGGT GATGCCGGCC ACGATGCGTC CGGCGTAGAG GATCTGGCTA





5281
GCGATGACCC TGCTGATTGG TTCGCTGACC ATTTCCGGGT GCGGGACGGC GTTACCAGAA





5341
ACTCAGAAGG TTCGTCCAAC CAAACCGACT CTGACGGCAG TTTACGAGAG AGATGATAGG





5401
GTCTGCTTCA GGGTGACCGA TGTAACCATA TACTTAGGCT GGATCTTCTC CCGCGAATTT





5461
TAACCCTCAC CAACTACGAG ATATGAGGTA AGCCAAAAAA GCACGTAGTG GCGCTCTCCG





5521
ACTGTTCCCA AATTGTAACT TATCGTTCCG TGAAGGCCAG AGTTACTTCC CGGCCCTTTC





5581
CATGCGCGCA CCATACCCTC CTAGTTCCCC GGTTATCTTT CCGAAGTGGG AGTGAGCGAA





5641
CCTCCGTTTA CGTCTTGTTA CCAATGATGT AGCTATGCAC TTTGTACAGG GTGCCAACGG





5701
GTTTCACAAT TCACAGATAG TGGGGATCCC GGCAAAGGGC CTATATTTGC GGTCCAACTT





5761
AGGCGTAAAC CTCGATGCTA CCTACTCAGA CCCACCTCGC GCGGGGTAAA TAAGGCACTC





5821
ATCCCAGCTG GTTCTTGGCG TTCTACGCAG CGACATGTTT ATTAACAGTT GTCTGGCAGC





5881
ACAAAACTTT TACCATGGTC GTAGAAGCCC CCCAGAGTTA GTTCATACCT AATGCCACAA





5941
ATGTGACAGG ACGCCGATGG GTACCGGACT TTAGGTCGAG CACAGTTCGG TAACGGAGAG





6001
ACCCTGCGGC GTACTTCATT ATGTATATGG AACGTGCCCA AGTGACGCCA GGCAAGTCTC





6061
AGCTGGTTCC TGTGTTAGCT CGAGGGTAGA CATACGAGCT GATTGAACAT GGGTTGGGGG





6121
CCTCGAACCG TCGAGGACCC CATAGTACCT CGGAGACCAA GTAGGGCAGC CTATAGTTTG





6181
AAGCAGAACT ATTTCGGGGG GCGAGCCCTC ATCGTCTCTT CTGCGGATGA CTCAACACGC





6241
TAGGGACGTG AAGTCGATTC CTTCGATGGT TATAAATCAA AGACTCAGAG TGCTGTCTGG





6301
AGCGTGAATC TAACGGTACG TATCTCGATT GCTCGGTCGC TTTTCGCACT CCGCGAAAGT





6361
TCGTACCGCT CATTCACTAG GTTGCGAAGC CTATGCTGAT ATATGAATCC AAACTAGAGC





6421
AGGGCTCTTA AGATTCGGAG TTGTAAATAC TTAATACTCC AATCGGCTTT TACGTGCACC





6481
ACCGCGGGCG GCTGACAAGG GTCTCACATC GAGAAACAAG ACAGTTCCGG GCTGGAAGTA





6541
GCGCCGGCTA AGGAAGACGC CTGGTACGGC AGGACTATGA AACCAGTACA AAGGCAACAT





6601
CCTCACTTGG GTGAACGGAA ACGCAGTATT ATGGTTACTT TTTGGATACG TGAAACATAT





6661
CCCATGGTAG TCCTTAGACT TGGGAGTCTA TCACCCCTAG GGCCCATATC TGGAAATAGA





6721
CGCCAGGTTG AATCCGTATT TGGAGGTACG ATGGAACAGT CTGGGTGGGA CGTGCTTCAT





6781
TTATACCCTG CGCAGGCTGG ACCGAGGACC GCAAGGTGCG GCGGTGCACA AGCAATTGAC





6841
AACTAACCAC CGTGTATTCA TTATGGTACC AGGAACTTTA AGCCGAGTCA ATGAAGCTCG





6901
CATTACAGTG TTTACCGCAT CTTGCCGTTA CTCACAAACT GTGATCCACC ACAAGTCAAG





6961
CCATTGCCTC TCTGACACGC CGTAAGAATT AATATGTAAA CTTTGCGCGG GTTGACTGCG





7021
ATCCGTTCAG TCTCGTCCGA GGGCACAATC CTATTCCCAT TTGTATGTTC AGCTAACTTC





7081
TACCCATCCC CCGAAGTTAA GTAGGTCGTG AGATGCCATG GAGGCTCTCG TTCATCCCGT





7141
GGGACATCAA GCTTCCCCTT GATAAAGCAC CCCGCTCGGG TGTAGCAGAG AAGACGCCTT





7201
CTGAATTGTG CAATCCCTCC ACCTTATCTA AGCTTGCTAC CAATAATTAG CATTTTTGCC





7261
TTGCGACAGA CCTCCTACTT AGATTGCCAC ACATTGAGCT AGTCAGTGAG CGATAAGCTT





7321
GACGCGCTTT CAAGGGTCGC GAGTACGTGA ACTAAGGCTC CGGACAGGAC TATATACTTG





7381
GGTTTGATCT CGCCCCGACA ACTGCAAACC TCAACTTTTT TAGATTATAT GGTTAGCCGA





7441
AGTTGCACGA GGTGGCGTCC GCGGACTGCT CCCCGAGTGT GGCTCTTTCA TCTGACAACG





7501
TGCAACCCCT ATCGCGGCCG ATTGTTTCTG CGGACGATGT TGTCCTCATA GTTTGGGCAT





7561
GTTTCCCTTG TAGGTGTGAA ACCACTTAGC TTCGCGCCGT AGTCCCAATG AAAAACCTAT





7621
GGACTTTGTT TTGGGTAGCA CCAGGAATCT GAACCGTGTG AATGTGGACG TCGCGCGCGT





7681
AGACCTTTAT CTCCGGTTCA AGGTAGGGAT GTGGCTGCAT GCTACGTTGT CACACCTACA





7741
CTGCTCGAAG TAAATATGCG AAGCGCGCGG CCTGGCCGGA GGCGTTCCGC GCCGCCACGT





7801
GTTCGTTAAC TGTTGATTGG TGGCACATAA GCAATATCGT AGTCCGTCAA ATTCAGCTCT





7861
GTTATCCCGG GCGTTATGTG TCAAATGGCG TAGAACGGGA TTGACTGTTT GACGGTAGGG





7921
TGACCTAAGC CAGATGCTAC ACAATTAGGC TTGTACATAT TGTCGTTAGA ACGCGGCTAC





7981
AATTAATACA TAACCTTATG TATCATACAC ATACGATTTA GGTGACACTA TAGAATACAC





8041
GGAATTAATT C.













TABLE 5







Features of the VMD2.IntEx.GFP.WPRE.pA plasmid sequence














Mini-
Maxi-

Direc-


Name
Type
mum
mum
Length
tion















Randomly
Stuffer
5,419
7,918
2,500
none


generated


stuffer sequence


AphR (KanR)
CDS
4,303
5,118
816
forward


pBR322 rep
rep_origin
3,343
3,962
620
reverse


origin


AAV2 ITR
LTR
2,659
2,779
121
reverse


bGH pA
polyA_signal
2,333
2,601
269
forward


WPRE
WPRE
1,725
2,314
590
forward


GFP
misc_feature
996
1,712
717
forward


Kozak
Kozak
990
995
6
forward


Exon
exon
937
989
53
forward


Intron
intron
814
936
123
forward


−585 to +38
promoter
189
811
623
forward


VMD2 promoter


AAV2 ITR
LTR
4
133
130
forward









AAV Particles

The AAV vectors of the disclosure contain an AAV genome that has been derivatized for the purpose of administration to patients. Such derivatization is standard in the art and the invention encompasses the use of any known derivative of an AAV genome, and derivatives which could be generated by applying techniques known in the art. Derivatization of the AAV genome and of the AAV capsid are reviewed in Coura and Nardi (2007) Virology Journal 4: 99, and in Choi et al. and Wu et al., referenced above.


Derivatives of an AAV genome include any truncated or modified forms of an AAV genome which allow for expression of a transgene from a vector of the invention in vivo. It is possible to truncate the AAV genome significantly to include minimal viral sequence yet retain the above function. This is preferred for safety reasons to reduce the risk of recombination of the vector with wild-type virus, and also to avoid triggering a cellular immune response by the presence of viral gene proteins in the target cell.


The following portions could therefore be removed in a derivative of the invention: one inverted terminal repeat (ITR) sequence, the replication (rep) and capsid (cap) genes. However, in some embodiments, derivatives may additionally include one or more rep and/or cap genes or other viral sequences of an AAV genome. Naturally occurring AAV integrates with a high frequency at a specific site on human chromosome 19, and shows a negligible frequency of random integration, such that retention of an integrative capacity in the vector may be tolerated in a therapeutic setting.


The AAV genome comprises packaging genes, such as rep and/or cap genes which encode packaging functions for an AAV particle. The rep gene encodes one or more of the proteins Rep78, Rep68, Rep52 and Rep40 or variants thereof. The cap gene encodes one or more capsid proteins such as VP1, VP2 and VP3 or variants thereof. These proteins make up the capsid of an AAV particle.


Where a derivative comprises capsid proteins i.e. VP1, VP2 and/or VP3, the derivative may be a chimeric, shuffled or capsid-modified derivative of one or more naturally occurring AAVs. In particular, the invention encompasses the provision of capsid protein sequences from different serotypes, clades, clones, or isolates of AAV within the same vector (i.e. a pseudotyped vector).


Chimeric, shuffled or capsid-modified derivatives are selected to provide one or more desired functionalities for the viral vector. Thus, these derivatives may display increased efficiency of gene delivery, decreased immunogenicity (humoral or cellular), an altered tropism range and/or improved targeting of a particular cell type compared to an AAV vector comprising a naturally occurring AAV genome, such as that of AAV2. Increased efficiency of gene delivery may be effected by improved receptor or co-receptor binding at the cell surface, improved internalization, improved trafficking within the cell and into the nucleus, improved uncoating of the viral particle and improved conversion of a single-stranded genome to double-stranded form. Increased efficiency may also relate to an altered tropism range or targeting of a specific cell population, such that the vector dose is not diluted by administration to tissues where it is not needed.


Chimeric capsid proteins include those generated by recombination between two or more capsid coding sequences of naturally occurring AAV serotypes. This may be performed for example by a marker rescue approach in which non-infectious capsid sequences of one serotype are co-transfected with capsid sequences of a different serotype, and directed selection is used to select for capsid sequences having desired properties. The capsid sequences of the different serotypes can be altered by homologous recombination within the cell to produce novel chimeric capsid proteins.


Chimeric capsid proteins also include those generated by engineering of capsid protein sequences to transfer specific capsid protein domains, surface loops or specific amino acid residues between two or more capsid proteins, for example between two or more capsid proteins of different serotypes.


Shuffled or chimeric capsid proteins may also be generated by DNA shuffling or by error-prone PCR. Hybrid AAV capsid genes can be created by randomly fragmenting the sequences of related AAV genes e.g. those encoding capsid proteins of multiple different serotypes and then subsequently reassembling the fragments in a self-priming polymerase reaction, which may also cause crossovers in regions of sequence homology. A library of hybrid AAV genes created in this way by shuffling the capsid genes of several serotypes can be screened to identify viral clones having a desired functionality. Similarly, error prone PCR may be used to randomly mutate AAV capsid genes to create a diverse library of variants which may then be selected for a desired property.


The sequences of the capsid genes may also be genetically modified to introduce specific deletions, substitutions or insertions with respect to the native wild-type sequence. In particular, capsid genes may be modified by the insertion of a sequence of an unrelated protein or peptide within an open reading frame of a capsid coding sequence, or at the N- and/or C-terminus of a capsid coding sequence. The unrelated protein or peptide may advantageously be one which acts as a ligand for a particular cell type, thereby conferring improved binding to a target cell or improving the specificity of targeting of the vector to a particular cell population. The unrelated protein may also be one which assists purification of the viral particle as part of the production process, i.e. an epitope or affinity tag. The site of insertion will is selected so as not to interfere with other functions of the viral particle e.g. internalization, trafficking of the viral particle. The skilled person can identify suitable sites for insertion based on their common general knowledge. Particular sites are disclosed in Choi et al., referenced above.


The invention additionally encompasses the provision of sequences of an AAV genome in a different order and configuration to that of a native AAV genome. The invention also encompasses the replacement of one or more AAV sequences or genes with sequences from another virus or with chimeric genes composed of sequences from more than one virus. Such chimeric genes may be composed of sequences from two or more related viral proteins of different viral species.


AAV vectors of the invention include transcapsidated forms wherein an AAV genome or derivative having an ITR of one serotype is packaged in the capsid of a different serotype. AAV vectors of the invention also include mosaic forms wherein a mixture of unmodified capsid proteins from two or more different serotypes makes up the viral capsid. An AAV vector may also include chemically modified forms bearing ligands adsorbed to the capsid surface. For example, such ligands may include antibodies for targeting a particular cell surface receptor.


Thus, for example, AAV vectors of the invention include those with an AAV2 genome and AAV2 capsid proteins (AAV2/2), those with an AAV2 genome and AAV5 capsid proteins (AAV2/5) and those with an AAV2 genome and AAV8 capsid proteins (AAV2/8). An AAV vector of the invention may comprise a mutant AAV capsid protein. In one embodiment, an AAV vector of the invention comprises a mutant AAV8 capsid protein. Preferably the mutant AAV8 capsid protein is an AAV8 Y733F capsid protein.


Methods of making AAV viral particles of the disclosure will be known to one of skill in the art. An exemplary, but non-limiting method of preparing AAV viral particles of the disclosure is described below. For generation of a given AAV vector, three plasmids are required: one comprising the viral delivery vector encoding the nucleic acid sequence of interest to be delivered (i.e. the nucleic acid sequence encoding BEST1), a plasmid encoding the rep and cap genes, and a third helper plasmid that contains the required adenoviral genes necessary for successful AAV generation. A promoter may be operably linked to each of the packaging genes. Specific examples of such promoters include the p5, p19 and p40 promoters (Laughlin et al. (1979) Proc. Natl. Acad. Sci. USA 76: 5567-5571). For example, the p5 and p19 promoters are generally used to express the rep gene, while the p40 promoter is generally used to express the cap gene. The plasmids are used to transfect suitable cells that are capable of replicating the AAV viral vector, transcribing and translating the AAV protein, and packaging the AAV viral vector into an AAV viral particle. Exemplary suitable cells comprise HEK293 cells. Post-transfection, the cells are collected and lysed. AAV particles can then be purified from the lysate through a variety of methods. Alternatively, AAV particles can be purified from the supernatant. For example, the lysate can be treated with Benzonase and clarified before applying to an iodixanol gradient comprised of 15%, 25%, 40% and 60% phases. The gradients can spun at 59,000 rpm for 1 hour 30 minutes and the 40% fraction then withdrawn. This AAV phase can then purified and concentrated using an Amicon Ultra-15 100K filter unit.


Pharmaceutical Compositions

The AAV vectors of the invention may be formulated into pharmaceutical compositions. These compositions may comprise, in addition to the medicament, a pharmaceutically acceptable carrier, diluent, excipient, buffer, stabilizer or other materials well known in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient. The precise nature of the carrier or other material may be determined by the skilled person according to the route of administration, e.g. subretinal, direct retinal or intravitreal injection.


The pharmaceutical composition may be formulated as a liquid. Liquid pharmaceutical compositions may include a liquid carrier such as water, petroleum, animal or vegetable oils, mineral oil or synthetic oil. Physiological saline solution, magnesium chloride, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol may be included. In some cases, a surfactant, such as pluronic acid (PF68) 0.001% may be used.


For injection at the site of affliction, the active ingredient may be in the form of an aqueous solution which is pyrogen-free, and has suitable pH, isotonicity and stability. The skilled person is well able to prepare suitable solutions using, for example, isotonic vehicles such as Sodium Chloride Injection, Ringer's Injection or Lactated Ringer's Injection. Preservatives, stabilisers, buffers, antioxidants and/or other additives may be included as required.


Buffers may have an effect on the stability and biocompatibity of the viral vectors and vector particles of the disclosure following storage and passage through injection devices for AAV gene therapy. In some embodiments, the viral vectors and vector particles of the disclosure may be diluted in TMN 200 buffer to maintain biocompatibility and stability. TMN 200 buffer comprises 20 mM Tris (pH adjusted to 8.0), 1 mM MgCl2 and 200 mM NaCl.


The determination of the physical viral genome titer comprises part of the characterization of the viral vector or viral particle. In some embodiments, determination of the physical viral genome titre comprises a step in ensuring the potency and safety of viral vectors and viral particles during gene therapy. In some embodiments, a method to determine the AAV titer comprises quantitative PCR (qPCR). There are different variables that can influence the results, such as the conformation of the DNA used as standard or the enzymatic digestion during the sample preparation. The viral vector or particle preparation whose titer may be measured may be compared against a standard dilution curve generated using a plasmid. In some embodiments, the plasmid DNA used in the standard curve is in the supercoiled conformation. In some embodiments, the plasmid DNA used in the standard curve is in the linear conformation. Linearized plasmid can be prepared, for example by digestion with HindIII restriction enzyme, visualized by agarose gel electrophoresis and purified using the QIAquick Gel Extraction Kit (Qiagen) following manufacturer's instructions. Other restriction enzymes that cut within the plasmid used to generate the standard curve may also be appropriate. In some embodiments, the use of supercoiled plasmid as the standard increased the titre of the AAV vector compared to the use of linearized plasmid.


To extract the DNA from purified AAV vectors for quantification of AAV genome titer, two enzymatic methods can be used. In some embodiments, the AAV vector may be singly digested with DNase I. In some embodiments, the AAV vector may be double digested with DNase I and an additional proteinase K treatment. QPCR can then performed with the CFX Connect Real-Time PCR Detection System (BioRad) using primers and Taqman probe specific to the transgene sequence.


For delayed release, the medicament may be included in a pharmaceutical composition which is formulated for slow release, such as in microcapsules formed from biocompatible polymers or in liposomal carrier systems according to methods known in the art.


Dosages

As used herein, the term “Dnase resistant particle (DRP)” refers to AAV particles that are resistant to Dnase digestion, and are therefore thought to completely encapsulate and protect the AAV vector of the disclosure from Dnase digestion. AAV particles may also be quantified in terms of the total numbers of genome particles (gp) administered in a dose, or gp/mL, the number genome particles per milliliter (mL) of solution. As used herein, genome particle (gp) refers to AAV particles containing a copy of an AAV delivery vector (or AAV genome) of the disclosure. As used herein, the term genome content (GC) per mL refers to the number of viral genomes per mL of solution, and may be determined, for example, by qPCR as described above. The terms GC and VG (viral genomes) may be used synonymously to characterize AAV dosages and concentrations of the disclosure.


In some embodiments of the compositions of the disclosure, a composition comprising an AAV vector or an AAV vector is administered to a subject as a single dose.


In some embodiments of the compositions of the disclosure, a composition comprising an AAV vector or an AAV vector may be formulated as a liquid suspension wherein the AAV vectors are suspended in a pharmaceutically-acceptable carrier. In some embodiments, compositions of the disclosure may comprise a plurality of AAV vectors at a concentration of 1−2×109, 1−2×1010, 1−2×1011, 1−2×1012 or 1−2×1013 genome particles (gp) per mL. In some embodiments, compositions of the disclosure may comprise a plurality of AAV vectors at a concentration of 5×1011 DRP/mL, 1.5×1012 DRP/mL, 5×1012 DRP/mL, 1.2×1012 DRP/mL, 4.5×1012 DRP/mL, 1.2×1013 DRP/mL, 1.5×1013 DRP/mL or 5×1013 DRP/1.2×1012 DRP/mL. In some embodiments, compositions of the disclosure may comprise a plurality of AAV vectors at a concentration of 5×1012 DRP per mL. In some embodiments, compositions of the disclosure may comprise a plurality of AAV vectors at a concentration of 1.5×1013 DRP per mL. Thus, to administer a dose of AAV vector of about 2×1010 gp, for example, a single injection of about 10 microliters of a pharmaceutical composition having a concentration of about 2×1012 gp per mL will achieve the desired dose in vivo.


In some embodiments of the compositions of the disclosure, a composition comprising an AAV vector or an AAV vector may comprise a volume of between 1 and 500 μl, inclusive of the endpoints. In some embodiments of the compositions of the disclosure, a composition comprising an AAV vector or an AAV vector may comprise a volume of between 10-500, 50-500, 100-500, 200-500, 300-500, 400-500, 50-250, 100-250, 200-250, 50-150, 1-100 or 1-10 μl, inclusive of the endpoints for each range. In some embodiments of the compositions of the disclosure, a composition comprising an AAV vector or an AAV vector may comprise a volume of 1, 2, 5, 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 μl or any number of microliters in between. In some embodiments, a composition comprising an AAV vector or an AAV vector may comprise 100 μl.


In some embodiments of the compositions of the disclosure, an entire volume of a composition comprising an AAV vector or an AAV vector may be injected in a single injection. In some embodiments, a portion of a volume of a composition comprising an AAV vector or an AAV vector may be injected in a single injection. In some embodiments, a first portion of a volume of a composition comprising an AAV vector or an AAV vector may be injected in a first single injection and a second portion of a volume of a composition comprising an AAV vector or an AAV vector may be injected in a second single injection


In some embodiments of the compositions of the disclosure, a composition comprising an AAV vector or an AAV vector is administered at a dosage of at least 2×107, 2×108, 5×108, 1.5×109, 2×109, 5×109, 2×1010, 5×1010, 6×1010, 1.2×1011, 2×1011, 4.5×1011, 5×1011, 1.2×1012, 1.5×1012, 2×1012 or 5×1012 gp per eye. In some embodiments, a composition comprising an AAV vector or an AAV vector is administered at a dosage of about 5×1010, 1.5×1011, 5×1011 or 1.5×1011 gp per eye. In some embodiments, a composition comprising an AAV vector or an AAV vector is administered at a dosage of about 5×1011 DRP per eye, by subretinal injection. In some embodiments, a composition comprising an AAV vector or an AAV vector is administered at a dosage of about 2×1010 gp per eye, by subretinal injection. In some embodiments, a composition comprising an AAV vector or an AAV vector is administered at a dosage of about 5×1010 gp per eye, by subretinal injection. In some embodiments, the AAV vector is administered at a dosage of about 6×1010 gp per eye, by subretinal injection. In some embodiments, a composition comprising an AAV vector or an AAV vector is administered at a dosage of about 1.5×1011 gp per eye, by subretinal injection. In some embodiments, a composition comprising an AAV vector or an AAV vector is administered at a dosage of about 2×1011 gp per eye, by subretinal injection. In some embodiments, a composition comprising an AAV vector or an AAV vector is administered at a dosage of about 5×1011 gp per eye, by subretinal injection. In some embodiments, a composition comprising an AAV vector or an AAV vector is administered at a dosage of about 1.5×1012 gp per eye, by subretinal injection.


Dosages or volumes may be calculated based on allometric scaling between species based on vitreal volume. “Allometry”, as used herein, refers to the changes in organisms with respect to body size. Some factors to take into account when comparing species include body volume, surface area, metabolic rate, and unique anatomical, physiological or biochemical processes. The human equivalent dose can be normalized to body surface area, body weight or a combination of surface area and weight. Other factors may also be taken into account.


Delivery

The viral vectors of the invention may be administered to the eye of a subject by subretinal, direct retinal, suprachoroidal or intravitreal injection. A skilled person will be familiar with and well able to carry out individual subretinal, direct retinal or intravitreal injections.


Subretinal injections are injections into the subretinal space, i.e. underneath the neurosensory retina. During a subretinal injection, the injected material is directed into, and creates a space between, the photoreceptor cell and retinal pigment epithelial (RPE) layers. When the injection is carried out through a small retinotomy, a retinal detachment may be created. The detached, raised layer of the retina that is generated by the injected material is referred to as a “bleb”. The hole created by the subretinal injection must be sufficiently small that the injected solution does not significantly reflux back into the vitreous cavity after administration. Such reflux would be particularly problematic when a medicament is injected, because the effects of the medicament would be directed away from the target zone. Preferably, the injection creates a self-sealing entry point in the neurosensory retina, i.e. once the injection needle is removed, the hole created by the needle reseals such that very little or substantially no injected material is released through the hole.


To facilitate this process, specialist subretinal injection needles are commercially available (e.g. DORC 41G Teflon subretinal injection needle, Dutch Ophthalmic Research Center International BV, Zuidland, The Netherlands). These are needles designed to carry out subretinal injections.


Alternatively, subretinal injections can be performed by delivering the composition comprising AAV particles under direct visual guidance using an operating microscope (Leica Microsystems, Germany). One exemplary approach is that of using a scleral tunnel approach through the posterior pole to the superior retina with a Hamilton syringe and 34-gauge needle (ESS labs, UK). Alternatively, sub-retinal injections can be performed using an anterior chamber paracentesis with a 33G needle prior to the subretinal injection using a WPI syringe and a beveled 35G-needle system (World Precision Instruments, UK). An additional alternative is a WPI Nanofil Syringe (WPI, part #NANOFIL) and a 34 gauge WBI Nanofil needle (WPI, part # NF34BL-2).


Vectors or compositions of the disclosure may be administered via suprachoroidal injection. Any means of suprachoroidal injection is envisaged as a potential delivery system for a vector or a composition of the disclosure. Suprachoroidal injections are injections into the suprachoroidal space, which is the space between the choroid and the sclera. Injection into the suprachoroidal space is thus a potential route of administration for the delivery of compositions to proximate eye structures such as the retina, retinal pigment epithelium (RPE) or macula. In some embodiments, injection into the suprachoroidal space is done in an anterior portion of the eye using a microneedle, microcannula, or microcatheter. An anterior portion of the eye may comprise or consist of an area anterior to the equator of the eye. The vector composition or AAV viral particles may diffuse posteriorly from an injection site via a suprachoroidal route. In some embodiments, the suprachoroidal space in the posterior eye is injected directly using a catheter system. In this embodiment, the suprachoroidal space may be catheterized via an incision in the pars plana. In some embodiments, an injection or an infusion via a suprachoroidal route traverses the choroid, Bruch's membrane and/or RPE layer to deliver a vector or a composition of the disclosure to a subretinal space. In some embodiments, including those in which a vector or a composition of the disclosure is delivered to a subretinal space via a suprachoroidal route, one or more injections is made into at least one of the sclera, the pars plana, the choroid, the Bruch's membrane, and the RPE layer. In some embodiments, including those in which a vector or a composition of the disclosure is delivered to a subretinal space via a suprachoroidal route, a two-step procedure is used to create a bleb in a suprachoroidal or a subretinal space prior to delivery of a vector or a composition of the disclosure.


In those embodiments where mice are injected, animals can be anaesthetized by intraperitoneal injection containing ketamine (40-80 mg/kg) and xylazine (1-10 mg/kg) and pupils fully dilated with tropicamide eye drops (Mydriaticum 1%, Bausch & Lomb, UK) and phenylephrine eye drops (phenylephrine hydrochloride 2.5%, Bausch & Lomb, UK). Proxymetacaine eye drops (proxymetacaine hydrochloride 0.5%, Bausch & Lomb, UK) can also applied prior to sub-retinal injection. Post-injection, chloramphenicol eye drops can applied (chloramphenicol 0.5%, Bausch & Lomb, UK) and anaesthesia reversed with atipamezole (2 mg/kg) and carbomer gel applied (Viscotears, Novartis, UK) to prevent cataract formation.


Unless damage to the retina occurs during the injection, and as long as a sufficiently small needle is used, substantially all injected material remains localized between the detached neurosensory retina and the RPE at the site of the localized retinal detachment (i.e. does not reflux into the vitreous cavity). Indeed, the typical persistence of the bleb over a short time frame indicates that there is usually little escape of the injected material into the vitreous. The bleb may dissipate over a longer time frame as the injected material is absorbed.


Visualizations of the eye, in particular the retina, for example using optical coherence tomography, may be made pre-operatively.


The AAV vectors of the invention may be delivered with increased accuracy and safety by using a two-step method in which a localized retinal detachment is created by the subretinal injection of a first solution. The first solution does not comprise the vector. A second subretinal injection is then used to deliver the medicament comprising the vector into the subretinal fluid of the bleb created by the first subretinal injection. Because the injection delivering the medicament is not being used to detach the retina, a specific volume of solution may be injected in this second step. An AAV vector of the invention may be delivered by: (a) administering a solution to the subject by subretinal injection in an amount effective to at least partially detach the retina to form a subretinal bleb, wherein the solution does not comprise the vector; and (b) administering a medicament composition by subretinal injection into the bleb formed by step (a), wherein the medicament comprises the vector.


EXAMPLES
Example 1: Bestrophin-1 Protein in HEK293 Cells Using the CAG Promoter

HEK293 cells were transduced with an AAV2/2 vector containing the CAG promoter driving Best1 expression with a WPRE (AAV2/2 CAG.BEST1.WPRE.pA, FIG. 3) and without a WPRE (AAV2/2 CAG.BEST1.pA), and the expression and localization of Bestrophin-1 protein was examined. In FIG. 6, transduced HEK293 cells were stained with Hoechst and an anti-human Bestrophin-1 (hBEST1 or huBEST1) antibody. Bestrophin-1 protein was found throughout the cytosol when compared to untransduced control cells.


Bestrophin-1 expression in HEK293 cells was quantified from Western Blot (FIG. 7). In FIG. 7A, sample 1 was the AAV2/2 CAG.hBEST1.pA vector; sample 2 was the AAV2/2 CAG.hBEST1.WPRE.pA vector and sample 3 was a negative control. Plasmid-transfected HEK293 cells were used as a positive control. In FIG. 7B, quantification showed that AAV2/2 CAG.BEST1.WPRE.pA (n=9) showed an approximately 4-fold increase in Bestrophin-1 expression over AAV2/2 CAG.BEST1.pA (n=9) (p<0.01 by One-way ANOVA with Tukey's Multiple Comparisons Test) and a statistically significant increase over un-transduced control cells (n=8) (p<0.001) was seen. Although Bestrophin-1 expression was seen in the AAV2/2 CAG.BEST1.pA cells, this was not statistically significant over un-transduced cells. Error bars=±SEM, and *** indicates p<0.001 when compared to un-transduced control.


HEK293 cells expressing Bestrophin-1 were additionally assayed with whole-cell patch clamp recording. FIG. 8A shows the Current (I)/Voltage (V) plots of HEK293 cells transduced with AAV2/2 CAG.BEST1.pA, AAV2/2 CAG.BEST1.WPRE.pA and AAV2/2 CAG.GFP.WPRE.pA vectors as well as an untransduced control. FIG. 8B shows the current waveforms, and chord conductance is shown in FIG. 9.


Example 2: Bestrophin-1 Protein in Cultured ARPE19 Cells Using the VMD2 Promoter

Appropriately differentiated ARPE19 are known to have gene expression profiles similar to those of native retinal pigment epithelium (RPE) cells, and can be used as an alternative to native RPE cells to test gene expression. Differentiated ARPE19 cells were used to test the ability of the VMD2 and CAG promoters to drive BEST1 expression in RPE cells, and to test the effect of the intron-exon (IntEx) sequence on expression from the VMD2 promoter.


ARPE19 cells were transfected and assayed for BEST1 expression using the protocol outlined in FIG. 10B. ARPE19 cells were grown in differentiation medium (DMEM with 4.5 g/l glucose, L-glutamine, and 1 mM sodium pyruvate supplemented with 1% fetal bovine serum (FBS) for 1-4 months at 37° C. and 5% CO2 in 96 well plates. Differentiated ARPE19 cells were then transfected with either pCAG.BEST1.WPRE (CAG promoter), pVMD.BEST1.WPRE (VMD2 promoter), or pVMD2. IntEx.BEST1.WPRE (VMD2 promoter and an intron-exon construct) at 3.8×1010 number of copies of each plasmid per well. Cells treated with TranslT-LT1 reagent alone and cells without transfection reagent or plasmid served as negative controls. Cells were then cultured for 2 days at 37° C., before being fixed and stained with Anti-hBest1 and Anti-ZO1 (also called ZO-1, or zona occludens-1, or tight junction protein 1, a protein located on the cytoplasmic membrane surface of intercellular tight junctions). FIGS. 11-13 show BEST1 expression in differentiated ARPE19 cells transfected with the three vectors encoding BEST1 and an untransfected control.


In ARPE19 cells that were differentiated for one month before transfection, the untransfected cells showed no expression. In contrast, both the pCAG.BEST1.WPRE and pVMD2. IntEx.BEST1.WPRE were able to drive the expression of BEST1 protein in differentiated ARPE19 cells (see FIG. 11A, contrast the first, second and fourth rows). pVMD2.BEST1.WPRE (no exon-intron) was also able to drive the expression of BEST1 in 1 month differentiated ARPE19 cells (FIG. 11B), although this construct seemed to express BEST1 at lower levels than the construct with the intron-exon sequence (pVMD2. IntEx.BEST1.WPRE). In ARPE19 cells that were differentiated for three months, similar results were obtained: pCAG.BEST1.WPRE, pVMD2. IntEx.BEST1.WPRE and pVMD2.BEST1.WPRE were all able to drive expression of BEST1 protein, although the expression with the CAG promoter was higher than with the VMD2 promoter and, with the VMD2 promoter, the intron-exon sequence improves the expression (contrast the first row of FIG. 12A, the untransfected control, with FIG. 12B).


ARPE19 cells were transduced and assayed for BEST1 expression using the protocol outlined in FIG. 10. Differentiated ARPE19 cells were pre-treated with 400 nM doxorubicin before transduction. This drug has been proved to improve AAV2 transduction efficiency in several in vitro models. Four hours after the treatment, cells were transduced with the different viral constructs at different multiplicities of infection (MOIs).


ARPE19 cells differentiated for 4 months, pre-treated with 400 nM doxorubicin and transduced with AAV2/2.CAG.GFP.WPRE and AAV2/2.VMD2. InEx.GFP.WPRE at 2, 4 and 8×104 gp/cell showed higher GFP fluorescence compared to transduced cells without pre-treatment with doxorubicin 10 days after transduction (contrast top and bottom row of each panel of FIG. 13A) AAV2/2.CAG.GFP.WPRE and B) AAV2/2.VMD2. InEx.GFP.WPRE). GFP fluorescence was not detected in untransduced cells, used as negative controls (first column of FIG. 13A and B).


In ARPE19 cells differentiated for 4 months, pre-treated with 400 nM doxorubicin and transduced with AAV2/2.CAG.BEST1.WPRE and AAV2/2.VMD2. InEx.BEST1.WPRE at 1 and 4×104 gp/cell, BEST1 expression could be detected by immunostaining with anti-hBEST1 (red, third column, second to fifth row of FIG. 14) compared to the untransduced control (first row, FIG. 14) 10 days after transduction.


Example 3: 4/8 Week In Vivo Pilot Study in Mice

The ability of the VMD2.BEST1.WPRE and VMD2. IntEx.BEST1.WPRE constructs to drive the expression BEST1 was assayed in vivo. The protocol of the 4/8 week in vivo pilot study is shown in FIG. 15. C57BL/6 mice (6 per group) were injected bilaterally with either a sham injection, AAV2/2 VMD2.BEST1.WPRE or AAV2/2 VMD2. IntEx.BEST1.WPRE AAV viral particles. 1 μL of AAV solution was injected subretinally with a 34 gauge Nanofil needle (WPI #NF34BL-2) at 1×109 GC/μL/eye. Eyes were imaged using optical coherence tomography at 4 and 8 weeks to assess for retinal thinning (toxicity), and 3 animals were sacrificed at each time point to assay BEST1 protein expression by immunohistochemistry and Western Blot.


OCT imaging at 4 and 8 weeks showed that neither VMD2 construct showed photoreceptor toxicity when compared to the sham treatment (FIGS. 16-18).


Three animals were sacrificed at both the 4- and 8-week time points, and BEST1 protein expression was further characterized by western blot (FIG. 21) and immunohistochemistry (FIG. 19). FIG. 19 shows immunohistochemistry results for eyes four weeks post injection, while FIG. 20 shows immunohistochemistry results for eyes eight weeks post injection. Eyes were stained with anti-BEST1 (green) and anti-Rhodopsin (red), which marks photoreceptor cells, and DAPI (FIGS. 19 and 20). BEST1 protein expression was observed from VMD2.BEST1.WPRE.pA and VMD2. IntEx.BEST1.WPRE.pA. VMD2 promoter driven BEST1 expression localized to the conjunction of the RPE layer and photoreceptor outer layer. Western Blot on dissected RPE/choroid complex tissue from four week injected eyes shows protein expression (FIG. 21).


Example 4: 4/13 Week In Vivo Proof of Concept Study in Mice

An additional 4 and 13 week in vivo proof of concept (PoC) study was carried out in mice to confirm the results of the pilot study, assay the effect of AAV viral particle dosage, and look at the effects at later time points post AAV injection. An outline of the protocol for the 4/13 week Proof of Concept study is set forth in FIG. 22. C57BL/6 mice (12 per cohort) were bilaterally injected with VMD2. IntEx.BEST1.WPRE or VMD2.BEST1.WPRE.pA AAV particles at either 1×108 GC/μL/eye or 1×109 GC/μL/eye, or with a sham injection. 1 μL of AAV solution was injected subretinally with a 34 gauge Nanofil needle (WPI #NF34BL-2). Eyes were imaged with OCT at 4 and 13 weeks post injection. Four mice were sacrificed four weeks post injection, and the remaining eight at 13 weeks post injection, and BEST1 expression was characterized by immunohistochemistry and Western blot.


OCT imaging at 4 weeks and 13 weeks showed that neither VMD2 construct (with or without the intron-exon sequence) at either the high dose (1×109 GC/eye) or the low dose (1×108 GC/eye) showed toxicity as evidenced by retinal thinning when compared to the sham control (FIG. 23). Staining with anti-BEST1 (huBEST1 in FIG. 24) and anti-Rhodopsin showed that VMD2 driven BEST1 localized to the RPE layer, with a trend of more BEST1 expression in VMD2. IntEx.BEST1.WPRE injected eyes. Western Blot on pooled dissected RPE/choroid complex tissue from four week injected eyes (4) shows protein expression (FIG. 25B).


Example 5: Good Laboratory Practice (GLP) Toxicity Assessment Study in Mice

The safety and expression of BEST1 AAV over longer periods of time is verified in mice with a Good Laboratory Practice (GLP) toxicity study in mice. An outline of the study is set forth in FIG. 27. Cohorts of 8 male and 8 female mice are injected subretinally and bilaterally with a low (5.0×108 GC/eye), medium (1.5×109 GC/eye) or high (5.0×109 GC/eye) dose of VMD2. IntEx.BEST1.WPRE AAV particles. Using allometric volume scaling, the high mouse dose is equivalent to a dose of 100 μL at 5×1012 GC/mL/eye in humans. Mice are evaluated and sacrificed at 4 weeks and 26 weeks. Eyes are assessed with an ophthalmic examination, tonometry to measure intraocular pressure (TOP), OCT for retinal thickness (predose, and the end of 4 and 13 weeks). Post sacrifice, necropsies assess organ weights and tissues such as the left eye, brain, heart, skeletal muscle, lung, liver, kidney, testes and ovary are collected for qPCR. Histopathological evaluations are carried out, and tissues are reserved, .e.g. by storage in formalin, for additional immunohistochemistry. Alternatively, or in addition, groups of 4 mice are injected with dosages of 2×109 GC/eye and 5×109 GC/eye of VMD2. IntEx.BEST1.WPRE AAV particles and evaluated at 4 weeks to optimize protocols for the larger toxicity study (see FIG. 28 for an outline).


INCORPORATION BY REFERENCE

Every document cited herein, including any cross referenced or related patent or application is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


OTHER EMBODIMENTS

While particular embodiments of the disclosure have been illustrated and described, various other changes and modifications can be made without departing from the spirit and scope of the disclosure. The scope of the appended claims includes all such changes and modifications that are within the scope of this disclosure.

Claims
  • 1. A composition comprising: a nucleic acid sequence comprising:(a) a sequence encoding a vitelliform macular dystrophy-2 (VMD2) promoter, and(b) a sequence encoding a Bestrophin-1 (BEST1) protein.
  • 2. The composition of claim 1, wherein the sequence encoding the VMD2 promoter encodes a human VMD2 promoter.
  • 3. The composition of claim 1, wherein the sequence encoding the BEST1 protein encodes a human BEST1 protein.
  • 4-5. (canceled)
  • 6. The composition of claim 1, wherein the nucleic acid sequence further comprises: (c) a sequence encoding a posttranscriptional regulatory element (PRE):,(d) a sequence encoding a polyadenylation (polyA) signal;(e) a sequence encoding a 5′ untranslated region;(f) a sequence encoding an intron;(g) a sequence encoding an exon; or(h) any combination of (c)-(g).
  • 7-10. (canceled)
  • 11. The composition of claim 6, wherein the sequence encoding the intron is located between the sequence encoding the VMD2 promoter and the sequence encoding the exon,wherein the sequence encoding the exon is located between the sequence encoding the intron and the sequence encoding the 5′ UTR, andwherein the sequence encoding the intron is spliced by a mammalian cell.
  • 12. The composition of claim 6, wherein the sequence encoding the 5′ UTR comprises a sequence encoding a Kozak sequence or a portion thereof.
  • 13. The composition of claim 12, wherein the sequence encoding a Kozak sequence has at least 50% identity to the nucleic acid sequence of GCCRCCATGG.
  • 15. 15 (canceled)
  • 16. The composition of claim 3, wherein the sequence encoding the human BEST1 protein comprises
  • 17. (canceled)
  • 18. The composition of claim 6, wherein the sequence encoding the polyA signal comprises a sequence isolated or derived from a mammalian Bovine Growth Hormone (BGH) gene.
  • 19-22. (canceled)
  • 23. The composition of claim 6, wherein the sequence encoding the intron comprises a sequence encoding a splice donor site, anda sequence encoding a splice branch point and acceptor site.
  • 24. The composition of claim 23, wherein the sequence encoding the splice donor site comprises a sequence isolated or derived from a vertebrate gene.
  • 25. The composition of claim 24, wherein the sequence encoding the splice donor site comprises a sequence isolated or derived from a chicken (Gallus gallus) beta actin gene (CBA).
  • 26-27. (canceled)
  • 28. A vector comprising the composition of claim 1.
  • 29. The vector of claim 28, wherein the vector is a plasmid.
  • 30. (canceled)
  • 31. The vector of claim 29, wherein the vector is a viral delivery vector.
  • 32-41. (canceled)
  • 42. A pharmaceutical composition comprising the composition of claim 1 and a pharmaceutically-acceptable carrier.
  • 43-44. (canceled)
  • 45. A cell comprising the composition of claim 1.
  • 46-51. (canceled)
  • 52. The cell of claim 45, wherein the cell is a neuronal cell, a glial cell, a retinal cell, a photoreceptor cell, a rod cell, a cone cell or a cuboidal cell of the retinal pigment epithelium (RPE).
  • 53-54. (canceled)
  • 55. The cell of claim 45, wherein the cell is isolated or derived from an RPE of a human retina.
  • 56. (canceled)
  • 57. A method of treating macular dystrophy in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of the composition of claim 1.
  • 58-85. (canceled)
RELATED APPLICATIONS

This application claims the benefit of provisional application U.S. Ser. No. 62/653,131, filed Apr. 5, 2018, the contents of which are herein incorporated by reference in their entirety.

Provisional Applications (1)
Number Date Country
62653131 Apr 2018 US
Continuations (1)
Number Date Country
Parent 16376808 Apr 2019 US
Child 17945344 US