Esposito, M. S. et al., “Recombinators, recombinases and recombination genes of yeast.” 1994, Current Genetics, vol. 25, pp. 1-11.* |
Osborne, B., et al., “A System for Insertional Mutagenesis and Chromosomal Rearrangement Using the Ds Transposon and Cre-lox,” The Plant Journal, 1995, pp. 687-701, vol. 7(4). |
Umlauf et al. The Functional Significance of DNA Sequence Structure in a Site-Specific Genetic Recombination Reaction, 1988, pp. 1845-1852, IRL Press Limited, Oxford, England. |
Schlake et al. Use of Mutated FLP Recognition Target (FRT) Sites for the Exchange of Expression Cassettes at Defined Chromosomal Loci, Biochem., 1994, vol. 33(43), pp. 12746-12751, American Chemical Society. |
Snaith et al., Multiple Cloning Sites Carrying loxP and FRT Recognition Sites for the Cre and Flp Site-Specific Recombinases, Gene, 1995, pp. 173-174, vol. 166. |
Ow et al., Genome Manipulation Through Site-Specific Recombination, Critical Reviews in Plant Sciences, (1995), pp. 239-261, vol. 14(3). |
Karreman et al. (1996) “On the Use of Double FLP Recognition Targets (FRTs) in the LTR of Retroviruses for the Construction of high Producer Cell Lines”,Nucleic Acids Research 24(9):1616-1624. |
Storici et al. (1997) “Molecular Engineering with the FRT Sequence of the Yeast 2 μmPlasmid: [cir°] Segregant Enrichment By Counterselection for 2 μm Site-Specific Recombination”,Gene 195:245-255. |
Czakó et al. (1997) “Negative Selection Markers for Plants”, Technology Transfer of Plant Biotechnology, Chapter 6, Edited by Peter M. Gresshoff, Plant Molecular Genetics, Institute of Agriculture, Center for Legume Research, The University of Tennessee, Knoxville, Tennessee, CRC Press, pp. 67-93. |
Dasgupta et al. (1991) “Rice Tungro Bacilliform Virus DNA Independently Infects Rice AfterAgrobacterium-mediated Transfer”, Journal of General Virology 721215-1221. |
Grimsley et al. (1988) “Meristematic Tissues of Maize Plants are Most Susceptible to Agroinfection with Maize Streak Virus”,Bio/Technology 6:185-189. |
Louie (1995) “Vascular Puncture of Maize Kernels for the Mechanical Transmission of Maize White Line Mosaic Virus and Other Viruses of Maize”,Phytopathology 85(2):139-143. |
Scholthof et al. (1996) “Plant Virus Gene Vectors For Transient Expression Of Foreign Proteins In Plants”,Annu. Rev. of Phytopathol. 34:299-323. |
Timmermans et al. (1992) “Trans Replication and High Copy Numbers of Wheat Dwarf Virus Vectors in Maize Cells”, Nucleic Acids Research 20 (15):4047-4054. |
Ugaki et al. (1991) “Replication of a Geminivirus Derived Shuttle Vector in Maize Endosperm Cells”,Nucleic Acids Research19 (2):371-377. |
Senecoff et al. Directionality in FLP Protein-Promoted Site-Specific Recombination Is Mediated by DNA-DNA Pairing, J. Biol. Chem., Jun. 5, 1986, pp. 7380-7386, vol. 261(16), The American Society of Biological Chemists, Inc., Madison, Wisconsin. |
Senecoff et al., DNA Recognition by the FLP Recombinase of the Yeast 2 μPlasmid: A Mutational Analysis of the FLP Binding Site, J. Mol. Biol., 1988, pp. 405-421, vol. 201, Academic Press, Ltd., USA. |
Campbell et al., Codon Usage in Higher Plants, Green Algae, and Cyanobacteria, Plant Physiol., 1990, pp. 1-11, vol. 92, Houghton, Michigan. |
O'Gorman et al. Recombinase-Mediated Gene Activation and Site-Specific Integration in Mammalian Cells, Science, Mar. 15, 1991, pp. 1351-1355, vol. 251, Salk Institute for Biological Studies, La Jolla, California. |
Dale et al. Gene Transfer with Subsequent Removal of the Selection Gene From the Host Genome, Proc. Natl. Acad. Sci. USA, Dec. 1991, vol. 88, pp. 1058-10562, Plant Gene Expression Center, U.S. Department of Agriculture, Berkeley, California. |
Sauer, Identification of Cryptic lox Sites in the Yeast Genome by Selection for Cre-mediated Chromosome Translocations that Confer Multiple Drug Resistance, J. Mol. Biol., 1992, pp. 911-928, vol. 223, Academic Press, Ltd., USA. |
Russell et al. Directed Excision of a Transgene from the Plant Genome, Mol. Genet.Genet., (1992), vol. 234, pp. 49-59, MGG Springer-Verlag. |
Lyznik et al. Activity of Yeast FLP Recombinase in Maize and Rice Protoplasts, Nuc. Acids Res., 1993, vol. 21(4), pp. 969-975, Oxford University Press. |
Lyznik et al. Heat-Inducible Expression of FLP Gene in Maize Cells, Plant J., 1995 vol. 8(2), pp. 177-186, Purdue University, West Lafayette, IN. |
Kilby et al. FLP Recombinase in Transgenic Plants: Constitutive Activity in Stably Transformed Tobacco and Generation of Marked Cell Clones in Aradidopsis, Plant J., 1995, vol. 8(5), pp. 637-652, University of Cambridge, Cambridge, UK. |
Albert et al. Site-Specific Integration of DNA into Wild-Type and Mutant Lox Sites Placed in the Plant Genome, Plant J., 1995, vol. 7(4), pp. 649-659, Plant Gene Expression Center, Albany, California. |
Logie et al. Ligand-Regulated Site-Specific Recombination, Proc. Natl. Acad. Sci. USA, Jun. 1995), vol. 92, pp. 5940-5944, European Molecular Biology Laboratory, Heidelberg, Germany. |
Zhang et al. Inducible Site-Directed Recombination in Mouse Embryonic Stem Cells, Nuc. Acids Res., 1996, vol. 24(4), pp. 543-548, Oxford University Press. |
Lyznik et al. FLP-Mediated Recombination of FRT Sites in the Maize Genome, Nuc. Acids Res. 1996, vol. 24(19), pp. 3784-3789, Oxford University Press. |
Araki et al. Targeted Integration of DNA Using Mutant Lox Sites in Embryonic Stem Cells, Nuc. Acids Res., 1997, vol. 25(4), pp. 868-872, Oxford University Press. |
Bethke et al. Segmental Genomic Replacement by Cre-Mediated Recombination: Genotoxic Stress Activation of the p53 Promoter in Single-Copy Transformants, Nuc. Acids Res., 1997, vol. 25(14), pp. 2828-2834, National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Disease, Bethesda, Maryland. |
Golic et al. FLP-Mobilization DNA to Specific Target Sites in Drosophila Chromosomes, Nuc. Acids Res., 1997, vol. 25(18), pp. 3665-3671, Oxford University Press. |
O'Gorman et al. Protamine-Cre Recombinase Transgenes Efficiently Recombine Target Sequences in the Male Germ Line of Mice, but Not in Embryonic Stem Cells, Proc. Natl. Acad. Sci. USA, Dec. 1997, vol. 94, pp. 14602-14607, Salk Institute for Biological Studies, Sand Diego, California. |
Feil et al. Regulation of Cre Recombinase Activity by Mutated Estrogen Receptor Ligand-Binding Domains, Biochem. Biophys. Res. Commun., 1997, vol. 237, pp. 752-757, Academic Press. |
Seibler and Bode, Double-Reciprocal Crossover Mediated by FLP-Recombinase: A Concept and an Assay, Biochemistry, 1997, pp. 1740-1747, vol. 36(7). |
Narasimhulu et al., Early Transcription of Agrobacterium T-DNA Genes in Tobacco and Maize, The Plant Cell, May 1996, pp. 873-886, vol. 8, American Society of Plant Physiologists. |