Returning to
In another aspect, the insulator layer 104 may be a thermally soft insulator (TSI) that has a liquid phase temperature lower than the liquid phase temperatures of Si 102 or the compound semiconductor 110. Typically, the TSI layer 104 has a flow temperature in the range of about 500° C. to 900° C., where the flow temperature is greater than the solid phase temperature and less than the liquid phase temperature. The TSI insulator layer 104 may be considered to be mechanically soft at the flow temperature, soft enough to isolate any differences in thermal expansion between the Si substrate 102 and the compound semiconductor 110. That is, the TSI layer 104 may be considered to be “soft” at the flow temperature.
The thermally soft insulator 104 may be a doped silicate glass material such as boronsilicate glass (BSG), phosphosilicate glass (PSG), or boronphosphosilicate glass (BPSG). Other materials may also be used that have a relatively low flow temperature. If the doped silicate glass material is BPSG, then it includes phosphorus in the range of about 2 to 4 atomic percentage (at %) and boron in the range of about 3 to 7 at %. If the doped silicate glass is PSG, then it includes phosphorus in the range of about 5 to 9 at %. If BSG, the doped silicate glass includes boron in the range of about 5 to 8 at %. The flow temperature of the TSI material can be varied by adjusting the above-mentioned doping ratios. Additional details of the TSI material are provided in pending parent application entitled, COMPOUND SEMICONDUCTOR-ON-SILICON WAFER WITH A THERMALLY SOFT INSULATOR, invented by Hsu et al., Ser. No. 11/443,144, filed May 30, 2006, Attorney Docket SLA8075, which is incorporated herein by reference.
1) The starting wafer is Si (111).
2) Si nanowires are prepared on the Si (111) wafer using etching or CVD deposition methods.
3) TSI, SiO2, or a SixNy insulator is deposited, and CMP is performed on the insulator to remove catalyst from the insulator top surface. The CMP stops on Si nanowires, as shown in
4) The wafer is HF dip etched for a few seconds to expose top of Si nanowires, as shown in
5) GaN is selectively deposited on the Si nanowires, and lateral epitaxial overgrowth (LEO) permits the coalescence of a crack-free, high quality GaN thick film, as shown in
A variation of the above-presented process is as follows.
1) The starting wafer is Si (111).
2) Si nanowires are prepared on the Si (111) wafer using etching or CVD deposition methods.
3) TSI, SiO2, or a SixNy is deposited, followed by a CMP to remove any catalyst from the insulator top surface, stopping on the Si nanowires.
4) The wafer is HF dip etched for a few seconds to expose the top of the Si nanowires.
5) The Si nanowires are carbonized and SiC is selectively deposited on the Si nanowires.
6) GaN is selectively deposited on the SiC-coated Si nanowires. The GaN layer is formed using the LEO process.
Step 902 forms a Si substrate. As noted above, the Si substrate may have a (111) crystallographic orientation. In another aspect, the Si substrate is a SOI substrate. Step 904 forms an insulator layer overlying the Si substrate, with Si nanowires having exposed tips. Step 906 selectively deposits compound semiconductor on the Si nanowire tips. For example, the compound semiconductor can be deposited by MOCVD. The process is selective because compound semiconductor is more likely to form on the Si nanowire tips, than on the insulator surface. Step 908 uses a lateral epitaxial overgrowth (LEO) process to grow compound semiconductor from the compound semiconductor-coated Si nanowire tips. Step 910 forms a compound semiconductor layer overlying the insulator. The compound semiconductor layer may be made from a material such as GaN, GaAs, GaAlN, or SiC. However, the process is applicable to other compound semiconductor materials.
In one aspect, forming the insulator layer overlying the Si substrate, with Si nanowires having exposed tips, in Step 904 includes substeps. Step 904a forms Si nanowires overlying the Si substrate. For example, the Si nanowires can be formed by etching the Si substrate or by CVD. In one aspect, the Si nanowires have a diameter in a range of about 5 nm to 500 nm, a density per square micrometer (μm−2) in the range of about 0.5 to 1000, and an average length in a range of about 0.2 μm to 3 μm.
Step 904b deposits the insulator overlying the Si nanowires. As noted above, the insulator can be silicon dioxide or Si
In one aspect, Step 905a carbonizes the Si nanowire tips, and Step 905b selectively deposits SiC overlying the carbonized Si nanowire tips. Then, selectively depositing compound semiconductor on the Si nanowire tips in Step 906 includes selectively depositing compound semiconductor on the SiC-coated Si nanowire tips.
In another aspect, forming the insulator in Step 904 includes depositing a thermally soft insulator (TSI) material overlying the Si nanowires. The TSI material has a flow temperature in the range of about 500° C. to 9000° C., where the flow temperature is greater than the solid phase temperature and less than the liquid phase temperature. For example, the thermally soft insulator may be a doped silicate glass material such as BSG, PSG, or BPSG.
A compound semiconductor-on-Si substrate with a Si nanowire buffer layer has been provided, along with a corresponding method of fabrication. Examples of specific layer orderings and materials have been given to illustrate the invention. Although the invention has been presented in the context of Si and GaN materials, the general principles are applicable to the thermal expansion mismatch between other materials. However, the invention is not limited to merely these examples. Other variations and embodiments of the invention will occur to those skilled in the art.
This application is a Continuation-in-part of a pending patent application entitled, COMPOUND SEMICONDUCTOR-ON-SILICON WAFER WITH A THERMALLY SOFT INSULATOR, invented by Hsu et al., Ser. No. 11/443,144, filed May 30, 2006, Attorney Docket SLA8075, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11443144 | May 2006 | US |
Child | 11481437 | US |