Embodiments of the present disclosure generally relate to apparatus for forming a semiconductor device. More particularly, embodiments described herein relate to a lift pin assembly used for de-chucking substrates.
In semiconductor processing, lift pins are used to lift and lower a semiconductor substrate onto a chuck that is used to hold the substrate in a process chamber. Typically, a robotic arm transports the substrate into an upper portion of the process chamber where the substrate is deposited on lift pins that extend upwardly through the chuck. The lift pins are then lowered into a lower portion of the process chamber to place the substrate on the chuck. Thereafter, the robotic arm is withdrawn from the chamber.
Electrostatic chucks are often used to electrostatically attract and hold the substrate in the process chamber during processing of the substrate. Electrostatic chucks are either monopolar or bipolar chucks. A monopolar electrostatic chuck has a single electrode which operates in conjunction with a plasma formed in the process chamber to accumulate opposing electrostatic charge in the substrate and the electrode. A bipolar chuck can be used in non-plasma processes, and typically includes two or more electrodes which are maintained at opposing electric potentials to induce opposing electrostatic charge in the electrodes and substrate. The opposing electrostatic charges in the substrate and the electrodes of the chuck cause the substrate to be electrostatically held to the chuck. Typically, the electrodes of the chuck are electrically biased with respect to the substrate by a DC voltage or a low frequency AC voltage.
After processing of the substrate, the DC voltage applied to the chuck electrode is terminated to release the substrate, and the lift pins are raised upward through holes in the chuck to lift the substrate off the chuck by pushing up against the substrate. The robotic arm is then reinserted below the substrate to withdraw the processed substrate from the chamber.
One problem with conventional lift pins arises when the lift pins attempt to lift the substrate off the chuck. Residual electrostatic charge in the substrate generates attractive electrostatic forces between the substrate and the chuck, which cause the substrate to adhere to the chuck, even when the voltage to the chuck is terminated. The upwardly pushing lift pins can damage or break the substrate.
Therefore, an improved lift pin assembly is needed.
Embodiments of the present disclosure generally relate to a lift pin assembly used for de-chucking substrates. The lift pin assembly includes a base and one or more lift pin holders. Each lift pin holder includes a first portion and a second portion. The first portion is coupled to the base by a metal connector and the second portion is coupled to the first portion by a metal connector. A resistor is disposed in the first portion of the lift pin holder. The second portion includes a lift pin support for supporting a lift pin. The lift pin, the lift pin support, and the metal connectors are electrically conductive. The base is connected to a reference voltage, such as the ground, forming a path for the residual electrostatic charge in the substrate from the substrate to the reference voltage.
In one embodiment, a lift pin assembly includes a base and a plurality of lift pin holders. Each lift pin holder includes a first portion coupled to the base by a first metal connector, a resistor disposed within the first portion, and a second portion coupled to the first portion by a second metal connector.
In another embodiment, a lift pin assembly includes a base and a plurality of lift pin holders. Each lift pin holder includes a first portion coupled to the base by a first metal stud, a resistor disposed within the first portion, and a second portion coupled to the first portion by a second metal stud.
In another embodiment, a plasma processing chamber includes a bottom, a sidewall, a lid disposed over the sidewall, the bottom, the sidewall and the lid define a processing volume, and a substrate support assembly disposed in the processing volume. The substrate support assembly includes a substrate support and a lift pin assembly. The lift pin assembly includes a base and a plurality of lift pin holders. Each lift pin holder includes a first portion coupled to the base by a first metal connector, a resistor disposed within the first portion, and a second portion coupled to the first portion by a second metal connector.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
The plasma processing chamber 100 includes a bottom 102, a sidewall 104 and a chamber lid 106 disposed over the sidewall 104 defining a processing volume 108. The plasma processing chamber 100 further includes a liner 110 disposed in the processing volume 108 to prevent the sidewall 104 from damage and contamination from the processing chemistry and/or processing by-products. A slit valve door opening 112 is formed through the sidewall 104 and the liner 110 to allow passage of the substrates and substrate transfer mechanism disposed in a system, such as a cluster tool (as described in
The substrate support assembly 101, which includes a substrate support 139 and a connection region 140, is disposed in the processing volume 108 and is supported by support(s) 142. The substrate support 139 may be an electrostatic chuck. A lift 116 is configured to raise and lower lift pins 118 disposed on a lift pin assembly 160 relative to the substrate support assembly 101 during processing and loading/unloading the substrate 102. The lift pin assembly 160 includes a base 161 and a plurality of lift pin holders 162. The connection region 140 of the substrate support assembly 101 is generally not in fluid communication with the processing volume 108. The connection region 140 includes a plurality of electrical connections (e.g., thermocouple wires, heater element wires, shielded e-chuck electrode wires, etc.) and tubes for transferring fluid through the substrate support assembly 101. In one embodiment, the connection region 140 includes the support(s) 142, cooling tubes 144 and electrical connections 122. In one configuration, the electrical connections 122 are used to couple the substrate support assembly 101 to a bias power source 120 for generating chucking force to secure the substrate 102 on the substrate support assembly 101. One or more heating elements 119, such as resistive heating elements, may be embedded in the substrate support 139 for heating and maintaining the substrate 102 to a predetermined temperature. The one or more heating elements 119 may be used to heat the substrate 102 to a temperature up to about 650 degrees Celsius. The connection region 140 may also include cooling tubes 144 for flowing a coolant (e.g., DI water) through the substrate support 139. The cooling tubes are connected to a heat exchanger 146. A temperature measuring device 148 may be coupled to the substrate support assembly 101.
One or more processing gases may be supplied to the processing volume 108 from a gas source 124 via an inlet 126. A vacuum pump 128 is in fluid communication with the processing volume 108. The vacuum pump 128 may be used to pump the processing volume 108 and maintain a low pressure environment through a plenum 130.
The plasma processing chamber 100 includes an antenna assembly 132 disposed outside the chamber lid 106. The antenna assembly 132 may be coupled to a radio-frequency (RF) plasma power source 134 through a matching network 136. During processing, the antenna assembly 132 is energized with RF power provided by the power source 134 to ignite the processing gases within the processing volume 108 to form a plasma and to maintain the plasma during processing of the substrate 102.
The plasma processing chamber 100 may be used for various plasma processes. In one embodiment, the plasma processing chamber 100 may be used to break oxygen bonds in an oxide layer, converting the oxide layer to an evaporable layer, evaporating the evaporable layer, and forming an oxide layer. The above mentioned processes can be performed in the plasma processing chamber 100, which leads to a reduced processing time.
The second portion 304 of the lift pin holder 162 may include a lift pin support 316 that is electrically coupled to the metal connector 308. The lift pin 118 may be disposed in a recess formed in the lift pin support 316. A cap 320 may be coupled to the lift pin support 316 to secure the lift pin 118, and an o-ring 322 may be placed between the cap 320 and the lift pin support 316 to further secure the lift pin 118. The cap 320 may be supported by a cover 318, which is also electrically coupled to the metal connector 308. The cap 320, cover 318, lift pin support 316, metal connectors 306, 308, conductive members 311, 313, and conductive wires 315, 317 may be made of an electrically conductive material, such as stainless steel. During operation, as the lift pins 118 contact the substrate, the residual electrostatic charge in the substrate is discharged by flowing the current through the lift pin 118 and the conductive portions of the lift pin holder 162, reaching the grounded base 161.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/288,288, filed on Jan. 28, 2016, which herein is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5900062 | Loewenhardt | May 1999 | A |
5904779 | Dhindsa | May 1999 | A |
6236555 | Leeser | May 2001 | B1 |
6646857 | Anderson et al. | Nov 2003 | B2 |
8313612 | McMillin et al. | Nov 2012 | B2 |
8628675 | McMillin et al. | Jan 2014 | B2 |
9011602 | Hao | Apr 2015 | B2 |
9025305 | Cooke et al. | May 2015 | B2 |
20030136341 | Na | Jul 2003 | A1 |
20050092438 | Hur | May 2005 | A1 |
20060156988 | Wu | Jul 2006 | A1 |
20060238953 | Hanawa | Oct 2006 | A1 |
20070212200 | Ueda | Sep 2007 | A1 |
20100101491 | Aida | Apr 2010 | A1 |
20100109263 | Jun et al. | May 2010 | A1 |
20110236162 | Shikayama | Sep 2011 | A1 |
20140231389 | Nagami | Aug 2014 | A1 |
20150059974 | Boyd, Jr. | Mar 2015 | A1 |
20170133260 | Pohl | May 2017 | A1 |
Number | Date | Country |
---|---|---|
10-2005-0056751 | Jun 2005 | KR |
20070000686 | Jan 2007 | KR |
WO-2014193138 | Dec 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20170221750 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62288288 | Jan 2016 | US |