Embodiments relate generally to electronics circuitry and, more particularly, to conformal 3D non-planar multi-layer circuitry.
Conventional approaches to printed circuit boards (or printed wiring boards) often use rigid, planar substrates.
Weight or volume constraints may limit the use of rigid printed circuit boards in certain applications. Also, mechanical envelope requirements may limit use of planar circuit boards. A need may exist for multi-layer circuitry that conforms to a non-planar 3D surface.
Embodiments were conceived in light of the above problems and limitations of some conventional circuitry types, among other things.
One embodiment includes a method for making conformal non-planar multi-layer circuitry. The method can include providing a substrate having a non-planar surface and depositing a first conformal dielectric layer on the substrate, the first conformal dielectric conforming to the non-planar surface of the substrate and having a non-planar surface. The method can also include applying a first conformal circuitry layer on the first conformal dielectric layer, such that the first conformal circuitry layer conforms to the non-planar surface of the first conformal dielectric, the first conformal circuitry layer having a non-planar surface. The method can further include depositing a second conformal dielectric layer on the first conformal circuitry layer, the second conformal dielectric layer conforming to the non-planar surface of the first conformal circuitry layer, and applying a second conformal circuitry layer on the second conformal dielectric layer. Successive layers can be sequentially deposited to build up a multilayer circuit structure using microvias between circuit layers for electrical connections.
One embodiment includes a method for making non-planar, multi-layer circuitry. The method can include providing a substrate having a non-planar surface and depositing a first conformal dielectric layer on the non-planar surface of the substrate via vapor deposition, the first conformal dielectric conforming to the non-planar surface of the substrate and having a non-planar surface. The method can also include applying a first conformal circuitry layer on the first conformal dielectric layer, such that the first conformal circuitry layer conforms to the non-planar surface of the first conformal dielectric, the first conformal circuitry layer having a non-planar surface and including a first seed layer and a first conductor layer. The method can further include depositing a second conformal dielectric layer on the first conformal circuitry layer, the second conformal dielectric layer conforming to the non-planar surface of the first conformal circuitry layer. The method can also include applying a second conformal circuitry layer on the second conformal dielectric layer, the second conformal circuitry layer including a second seed layer and a second conductor layer.
Applying the first conformal circuitry layer can include applying the first seed layer on the first conformal dielectric layer and applying the first conductor layer on the first seed layer. Applying the first conformal circuitry layer can also include depositing resist material on the first conductor layer and etching the resist material to reveal portions of the first conductor layer and the first seed layer to be etched away. Applying the first conformal circuitry layer can further include etching the first conductor layer, etching the first seed layer, removing remaining resist material, and then filling and leveling any cavities or voids created during the etching of the first conductor layer and the first seed layer (e.g., using an epoxy solder mask material). Each of the first and second seed layers can include an alloy having chrome and copper. Each of the first and second conductor layers can include copper.
In one embodiment, applying the second conformal circuitry layer can include drilling vias in the second conformal dielectric layer. The drilling can be performed using a laser.
The non-planar surface of the first conformal dielectric layer can be etched to roughen the non-planar surface of the first conformal dielectric layer. The etching can be performed using oxygen plasma etching. Etching the resist can include laser imaging or ablation.
One embodiment includes a conformal non-planar multi-layer circuit comprising a substrate having a first non-planar surface and a first conformal dielectric layer on the substrate, the first conformal dielectric conforming to the first non-planar surface of the substrate and having a second non-planar surface. The circuit can also include a first conformal circuitry layer applied on the first conformal dielectric layer, the first conformal circuitry layer conforming to the second non-planar surface of the first conformal dielectric, the first conformal circuitry layer having a third non-planar surface. The circuit can further include a second conformal dielectric layer deposited on the first conformal circuitry layer, the second conformal dielectric layer conforming to the third non-planar surface of the first conformal circuitry layer and having a fourth non-planar surface. The circuit can also include a second conformal circuitry layer applied on the second conformal dielectric layer, the second conformal circuitry layer conforming to the fourth non-planar surface of the second conformal dielectric, the second conformal circuitry layer having a fifth non-planar surface. Successive layers can then be sequentially deposited to build up a multilayer circuit structure using microvias between circuit layers for electrical connections.
In general, deposition processes and lithographic laser patterning are used to sequentially build up layers of copper circuitry on non-planar surfaces, including angled and curved surfaces. The non-planar, multi-layer circuitry can be formed on a variety of substrate materials including metallic, ceramic, and/or plastic substrates.
The non-planar, multi-layer circuitry can be used to build, for example, conformal antennas, conformal circuitry over enclosure structures, power circuitry built directly on heat sinking frames, and functional circuitry residing in a non-planar object, such as a helmet.
At 104, a substrate is provided. The substrate can be a substrate having a non-planar 3D surface (e.g., an anodized aluminum component). Processing continues to 106.
At 106, a circuit layer is applied to the substrate. An example of the preparation of the substrate and application of a circuit layer is described in greater detail below in conjunction with
At 108, micro vias are drilled. Micro vias can be used to connect one circuit layer to another circuit layer. The drilling of micro vias is optional and depends on a contemplated circuit design. The micro vias can be drilled with a laser. Processing continues to 110.
At 110, it is determined whether additional circuit layers are needed. If so, processing continues to 106. If not, processing continues to 112, where the process ends.
At 204, a dielectric layer is applied. When the first circuit layer is being formed, the dielectric layer can be applied to a substrate. For subsequent circuit layers, the dielectric is deposited on the preceding circuit layer. The dielectric can be applied using a vapor deposition process. For example, the dielectric layer can be formed from Parylene HT at a thickness of about 2 mils. Parylene HT is available from Specialty Coating Systems of Indianapolis, Ind. Other suitable dielectric materials can be used. The process continues to 206.
At 206, the surface of the dielectric layer is etched. The etching is done to roughen the surface of the dielectric for better adhesion with subsequent layers. The etching can be done using oxygen plasma. Other etching techniques can be used. The process continues to 208.
At 208, a seed layer of metal is applied. For example, the seed layer can include a chrome/copper (Cr/Cu) alloy applied using sputtering to a thickness of about 1 micron. The process continues to 210.
At 210 the conductor layer is applied. For example, the conductor layer can include copper applied using sputtering and/or electroplating to a thickness of about half a mil (12.7 microns). The process continues to 212.
At 212, a layer of resist material is deposited. The resist material can include any suitable resist material that can resist the etching solutions used to etch the conductor layer and the seed layer. The process continues to 214.
At 214, the resist material is imaged or etched with the circuit pattern. The patterning of the resist material can be performed using a laser. For example, a laser can be used to pattern channels in the resist to facilitate conductor layer etching for fabrication of circuit lines and spaces down to about 3 mils wide. The process continues to 216.
At 216, the conductor and seed layers are etched using etching solutions appropriate to etch the material of each layer. The process continues to 218.
At 218, the resist material is removed (or stripped). The process continues to 220.
At 220, any cavities or voids created during the etching process are filled. For example, the spaces between lines can be filled with an epoxy solder mask material. The process continues to 222 where the process ends. It will be appreciated that 202-222 can be repeated for each layer of a multi-layer circuit. In a multi-layer circuit, the dielectric material applied on top of a preceding layer can be drilled to form micro vias that permit the conductor of a next layer to connect with the conductor of the preceding layer. The drilling could occur, for example, between 206 and 208.
The first circuit layer 304 can be applied directly to the substrate 302 or to a dielectric layer (e.g., dielectric layer 703 in
Prior to applying a next circuit layer, a micro via (402 in
As shown in
Any voids created while forming the circuit layers (e.g., the void where micro via 402 was drilled) can be filled and leveled (602 of
It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, conformal 3D non-planar multi-layer circuits and methods for making the same.
While the invention has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be or are apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of the invention.
This application is a divisional of U.S. application Ser. No. 15/876,552 know U.S. patent Ser. No. 10/568,204) filed on Jan. 22, 2018, which is a continuation of U.S. application Ser. No. 14/993,197 (now U.S. Pat. No. 9,894,760) filed on Jan. 12, 2016, which is a divisional of U.S. application Ser. No. 13/570,365 (now U.S. Pat. No. 9,258,907) filed on Aug. 9, 2012.
Number | Name | Date | Kind |
---|---|---|---|
4574331 | Smolley | Mar 1986 | A |
4859188 | Neumann | Aug 1989 | A |
4940623 | Bosna et al. | Jul 1990 | A |
5286417 | Mahmoud et al. | Feb 1994 | A |
5315481 | Smolley | May 1994 | A |
5368883 | Beaver | Nov 1994 | A |
5427304 | Woods et al. | Jun 1995 | A |
5608434 | Wilson et al. | Mar 1997 | A |
5738797 | Belke, Jr. et al. | Apr 1998 | A |
5938455 | Glovatsky et al. | Aug 1999 | A |
6100200 | Van Buskirk et al. | Aug 2000 | A |
6188582 | Peter | Feb 2001 | B1 |
6198630 | Cromwell | Mar 2001 | B1 |
6264476 | Li et al. | Jul 2001 | B1 |
6370770 | Fan et al. | Apr 2002 | B1 |
6386890 | Bhatt et al. | May 2002 | B1 |
6574114 | Brindle et al. | Jun 2003 | B1 |
6593900 | Craven | Jul 2003 | B1 |
6695623 | Brodsky et al. | Feb 2004 | B2 |
7188282 | Walmsley | Mar 2007 | B2 |
7302592 | Shipton et al. | Nov 2007 | B2 |
7815475 | Peloza et al. | Oct 2010 | B2 |
8686522 | Webb | Apr 2014 | B2 |
8772745 | Gonya et al. | Jul 2014 | B1 |
8878072 | Gonya et al. | Nov 2014 | B2 |
8880139 | Etzkorn et al. | Nov 2014 | B1 |
8963316 | Hsu et al. | Feb 2015 | B2 |
9087617 | Gonya et al. | Jul 2015 | B2 |
9258907 | Gonya et al. | Feb 2016 | B2 |
9263400 | Gonya et al. | Feb 2016 | B2 |
9515030 | Gonya et al. | Dec 2016 | B2 |
9894760 | Gonya et al. | Feb 2018 | B2 |
20020098721 | Fan et al. | Jul 2002 | A1 |
20040074088 | Nakamura et al. | Apr 2004 | A1 |
20040157370 | Gardner | Aug 2004 | A1 |
20040199786 | Walmsley | Oct 2004 | A1 |
20040227205 | Walmsley | Nov 2004 | A1 |
20080113505 | Sparks et al. | May 2008 | A1 |
20080173698 | Marczi et al. | Jul 2008 | A1 |
20080244898 | Shacklette et al. | Oct 2008 | A1 |
20100031064 | Walmsley | Feb 2010 | A1 |
20100213590 | Warren et al. | Aug 2010 | A1 |
20100230806 | Huang et al. | Sep 2010 | A1 |
20100255312 | Dougherty et al. | Oct 2010 | A1 |
20110031982 | Leon et al. | Feb 2011 | A1 |
20110049684 | Lee et al. | Mar 2011 | A1 |
20110090658 | Adams et al. | Apr 2011 | A1 |
20110120764 | Kelley et al. | May 2011 | A1 |
20110227603 | Leon et al. | Sep 2011 | A1 |
20110233766 | Lin et al. | Sep 2011 | A1 |
20120146182 | Oganesian et al. | Jun 2012 | A1 |
20120185636 | Leon et al. | Jul 2012 | A1 |
20130026645 | Mohammed et al. | Jan 2013 | A1 |
20130093032 | Webb | Apr 2013 | A1 |
20130207260 | Hsu et al. | Aug 2013 | A1 |
20130256835 | Di Sarro et al. | Oct 2013 | A1 |
20130292835 | King et al. | Nov 2013 | A1 |
20160105970 | Gonya et al. | Apr 2016 | A1 |
20160128185 | Gonya et al. | May 2016 | A1 |
20160338192 | Gonya et al. | Nov 2016 | A1 |
20170084356 | Gonya et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
1020874 | Jul 2000 | EP |
1840964 | Oct 2007 | EP |
2010057145 | May 2010 | WO |
2011046769 | Apr 2011 | WO |
2012123400 | Sep 2012 | WO |
Entry |
---|
Nonfinal Rejection dated Jan. 31, 2014, in U.S. Appl. No. 13/527,180. |
Notice of Allowance dated Jul. 6, 2014, in U.S. Appl. No. 13/527,180. |
Nonfinal Rejection dated Oct. 2, 2014, U.S. Appl. No. 14/325,670. |
Notice of Allowance dated Mar. 17, 2015, in U.S. Appl. No. 14/325,670. |
Nonfinal Office Action dated Aug. 14, 2015, in U.S. Appl. No. 14/789,885. |
Notice of Allowance dated Sep. 23, 2015, in U.S. Appl. No. 13/570,365. |
Notice of Allowance dated Oct. 1, 2015, in U.S. Appl. No. 14/789,885. |
Nonfinal Office Action dated Mar. 24, 2016, in U.S. Appl. No. 15/014,160. |
Notice of Allowance dated Jul. 28, 2016, in U.S. Appl. No. 15/014,160. |
Nonfinal Office Action dated Aug. 23, 2016, in U.S. Appl. No. 14/511,549. |
Nonfinal Office Action dated Sep. 2, 2016, in U.S. Appl. No. 15/222,333. |
Nonfnal Office Action dated Oct. 13, 2016, in U.S. Appl. No. 14/993,197. |
Final Rejection dated Dec. 21, 2016, in U.S. Appl. No. 14/511,549. |
Final Rejection dated Dec. 21, 2016, in U.S. Appl. No. 15/222,333. |
Nonfinal Office Action dated Mar. 14, 2017, in U.S. Appl. No. 15/367,642. |
Final Office Action dated Mar. 23, 2017, in U.S. Appl. No. 14/993,197. |
Advisory Action dated Mar. 27, 2017, in U.S. Appl. No. 15/222,333. |
Advisory Action dated Mar. 28, 2017, in U.S. Appl. No. 14/511,549. |
Nonfinal Office Action dated Apr. 28, 2017, in U.S. Appl. No. 15/222,333. |
Nonfinal Office Action dated May 1, 2017, in U.S. Appl. No. 14/511,549. |
Notice of Allowance dated Jul. 6, 2017, in U.S. Appl. No. 15/367,642. |
Advisory Action dated Jul. 10, 2017, in U.S. Appl. No. 14/993,197. |
Notice of Allowance dated Oct. 4, 2017, in U.S. Appl. No. 14/993,197. |
Non Final Office Action dated Oct. 12, 2017, in U.S. Appl. No. 15/222,333. |
Non Final Office Action dated Oct. 13, 2017, in U.S. Appl. No. 14/511,549. |
Final Office Action dated Feb. 20, 2018, in U.S. Appl. No. 14/511,549. |
Non-Final Office Action dated Apr. 2, 2018, in U.S. Appl. No. 15/222,333. |
Notice of Allowance dated Jul. 6, 2018, in U.S. Appl. No. 14/511,549. |
Notice of Allowance dated Aug. 3, 2018, in U.S. Appl. No. 15/222,333. |
Notice of Allowance dated Oct. 17, 2019 in U.S. Appl. No. 15/876,552. |
Non-Final Office Action dated May 1, 2019, in U.S. Appl. No. 15/876,552. |
Number | Date | Country | |
---|---|---|---|
20190215955 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15876552 | Jan 2018 | US |
Child | 16351250 | US | |
Parent | 13570365 | Aug 2012 | US |
Child | 14993197 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14993197 | Jan 2016 | US |
Child | 15876552 | US |