1. Field of the Invention
The invention relates to integrated circuit processing and, more particularly, to the patterning of interconnection lines on an integrated circuit.
2. Description of Related Art
Modern integrated circuits use conductive interconnections to connect the individual devices on a chip or to send and receive signals external to the chip. Popular types of interconnections include aluminum alloy interconnection lines and copper interconnection lines coupled to individual devices, including other interconnection lines, by interconnections through vias.
A typical method of forming an interconnection is a damascene process that involves forming a via and an overlying trench in a dielectric to an underlying circuit device, such as a transistor or an interconnection line. The via and trench are then lined with a barrier layer of a refractory material. Common refractory materials include titanium nitride (TiN) or tantalum (Ta). The barrier layer serves, in one aspect, to inhibit the diffusion of the interconnection material that will subsequently be formed in the via into the dielectric. Next, a suitable seed material is deposited on the wall or walls and base of the via. Suitable seed materials for the deposition of copper interconnection material include copper and nickel. Next, interconnection material, such as copper, is deposited in a sufficient amount to fill the via and trench using, for example, an electroplating process. Thus, the interconnection formed in the via includes the barrier layer material since barrier layer material lines the base of the via.
A second method for forming an interconnection is described in the U.S. patent application Ser. No. 09/001,349, filed Dec. 31, 1997, assigned to Intel Corporation of Santa Clara, Calif., and titled “A Single Step Electroplating Process for Interconnect Via Fill and Metal Line Patterning.” That method includes forming a via in a dielectric to an underlying circuit device, such as a transistor or an interconnection line. The via and a top surface of the dielectric are then lined and covered with a barrier layer and a suitable seed material, respectively. A layer of photoresist or other masking material is then patterned over the seed material covering the top of the dielectric. An electroplating process is used to deposit a conductive material such as copper to fill the via and form an interconnection line over the dielectric according to the patterned masking material. The masking material and underlying conductive material is then removed. Once again, the interconnection formed in the via generally includes the barrier layer since barrier layer material lines the base of the via.
In general, the resistivity of the barrier layer material is much greater than the resistivity of copper. Thus, the inclusion of the barrier layer material at the base of the via and as part of the interconnection increases the resistivity of the interconnection. What is needed is an interconnection having reduced resistivity and a method of forming an interconnection with reduced resistivity compared to the prior art.
A method of forming an interconnection is disclosed. The method includes introducing a barrier material in a via of a dielectric to a circuit device on a substrate in such a manner to deposit the barrier material on the circuit device. A seed material is introduced into the via in manner that leaves the barrier material overlying the circuit device substantially exposed. The barrier material overlying the circuit device is substantially removed and a conductive material is introduced into the via to form the interconnection.
The features, aspects, and advantages of the invention will become more thoroughly apparent from the following detailed description, appended claims, and accompanying drawings in which:
The invention relates to a method of forming an interconnection. Compared to prior art interconnections, the invention is useful in one aspect in reducing the resistivity of the interconnection by allowing direct contact between an interconnection and a conductive device, such as an interconnection through a via to an underlying interconnection line.
Surrounding copper interconnection line 110 in
In one embodiment, seed material is, for example, a copper material deposited using standard sputter deposition techniques. Due to the inherent characteristics of the sputter deposition process, the thickness of the deposited copper is shown to be approximately 100 percent, 40 percent, and 5 percent, of the target thickness of seed material 160 on the top surface of substrate 100, the side walls of via 140, and the bottom of via 140, respectively. Thus, by proper targeting of the deposited seed material 160, on the top surface of substrate 100, an insignificant amount of seed material is deposited on the bottom surface of via 140 (i.e., over barrier material 150 at the base of via 140). Thus, in one aspect, the invention seeks to provide a sufficient amount of seed material 160 to seed an interconnection while minimizing the amount of seed material that is deposited at the base of via 140.
The above method of the invention has been described with respect to inventive modifications to a damascene process. It is to be appreciated that the method of the invention has equal applicability to other interconnection formation processes, including the process described in the U.S. patent application Ser. No. 09/001,349. Exemplary of that process is the use of a lithographic or masking step to define the interconnection line. Thus, for example, the portion of the top surface of the dielectric that is not covered with photoresist will provide a conductive path to the electroplating solution. Therefore, the interconnection line formed by the electroplating process will overly a portion of the top surface of the dielectric. Using the techniques of the invention, the interconnection line will be directly coupled to an underlying circuit device, including an underlying interconnection line, without an intervening barrier material.
The above method of forming an interconnection has been described with respect to copper interconnections and copper interconnection lines. It is to be appreciated that similar processing techniques may be used for other interconnection materials, including, but not limited to, aluminum alloy interconnections. The invention describes an integrated circuit and a method of producing an integrated circuit utilizing interconnections with reduced resistivity as compared to prior art interconnections having intervening barrier layers between interconnections.
In the preceding detailed description, the invention is described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This application is a divisional patent application of and claims priority from U.S. patent application Ser. No. 09/163,847, filed Sep. 30, 1998, now issued as U.S. Pat. No. 6,169,024 on Jan. 2, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3705060 | Stork | Dec 1972 | A |
3784440 | Grunwald et al. | Jan 1974 | A |
4016050 | Lesh et al. | Apr 1977 | A |
4960732 | Dixit et al. | Oct 1990 | A |
4996584 | Young et al. | Feb 1991 | A |
5008216 | Huang et al. | Apr 1991 | A |
5151168 | Gilton et al. | Sep 1992 | A |
5275973 | Gelatos | Jan 1994 | A |
5290608 | Grunwald et al. | Mar 1994 | A |
5316974 | Crank | May 1994 | A |
5354712 | Ho et al. | Oct 1994 | A |
5371041 | Liou et al. | Dec 1994 | A |
5436504 | Chakravorty et al. | Jul 1995 | A |
5500559 | Miyata et al. | Mar 1996 | A |
5527739 | Parrillo et al. | Jun 1996 | A |
5595937 | Mikagi | Jan 1997 | A |
5674787 | Zhao et al. | Oct 1997 | A |
5695810 | Dubin et al. | Dec 1997 | A |
5714418 | Bai et al. | Feb 1998 | A |
5744376 | Chan et al. | Apr 1998 | A |
5770517 | Gardner et al. | Jun 1998 | A |
5770519 | Klein et al. | Jun 1998 | A |
5904565 | Nguyen et al. | May 1999 | A |
6150723 | Harper et al. | Nov 2000 | A |
6277249 | Gopalraja et al. | Aug 2001 | B1 |
6323131 | Obeng et al. | Nov 2001 | B1 |
6362089 | Molla et al. | Mar 2002 | B1 |
20020024139 | Chan et al. | Feb 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 09163847 | Sep 1998 | US |
Child | 09672375 | US |