Claims
- 1. In a corpuscular beam microscope having a longitudinal axis on which a specimen holder is located and about which a combined condenser and objective magnetic lens system is symmetrically disposed for producing a composite magnetic field along said axis to cause a corpuscular beam to form an angle of at least 30.degree. with said axis at the location of said specimen holder, the improvement wherein said lens system comprises:
- (a) means for producing a first component of said composite magnetic field, said first component having a maximum field strength at a first point on said axis substantially at said location of said specimen holder; and
- (b) means for producing a second component of said composite magnetic field, said second component having a maximum field strength at a second point on said axis, said second point being separated from said first point by a distance less than five times the arithmetic mean of half the half height widths, respectively, of said first component and said second component.
- 2. The improvement according to claim 1, wherein said means for producing said first component includes a first pole piece defining a first aperture aligned on said axis, and wherein said means for producing said second component includes a second pole piece defining a second aperture aligned on said axis, each said means further including, in common, a third pole piece defining a third aperture aligned with said axis, said third piece being disposed intermediate of and spaced from said first and second pole pieces so as to define between the first and third pole pieces a condenser lens gap in which the maximum field strength of said first component occurs and to define between the third and second pole pieces an objective lens gap in which the maximum field strength of said second component occurs.
- 3. The improvement according to claim 2, wherein said first and second pole pieces are integral with, and centrally disposed at opposite ends of, a cylinder of superconducting material in which respective superconducting magnet coils for said first pole piece and said second pole piece are housed; and wherein said third pole piece is a ring of superconducting material connected in a vacuum-tight manner by a first annular sealing member of non-superconducting metal to said first pole piece and in a vacuum-tight manner by a second annular sealing member of non-superconducting metal to said second pole piece.
- 4. In a corpuscular beam microscope having a longitudinal axis on which a specimen holder is located and about which a combined condenser and objective magnetic lens system is symmetrically disposed for producing a composite magnetic field along said axis to cause a corpuscular beam to form an angle of at least 30.degree. with said axis at the location of said specimen holder, the improvement wherein said lens system comprises:
- (a) means defining a first aperture aligned on said axis for producing a first component of said composite magnetic field, said first component having a maximum field strength at a first point on said axis;
- (b) means defining a second aperture aligned on said axis for producing a second component of said composite magnetic field, said second component having a maximum field strength at a second point on said axis separated from said first point;
- (c) a cylinder of superconducting material with which said first and second aperture defining means are integral and at opposite ends of which said first and second aperture defining means are centrally disposed, said cylinder having housed therein respective magnet coils for said first and second aperture defining means; and
- (d) a ring of superconducting material defining a third aperture aligned with said axis, said ring being connected in a vacuum-tight manner by a first annular sealing member of non-super-conducting metal to said first aperture defining means and in a vacuum-tight manner by a second annular sealing member of non-super-conducting metal to said second aperture defining means, a condenser lens gap being formed between said ring and said first aperture defining means in which the maximum field strength of said first component occurs, an objective lens gap being formed between said ring and said second aperture defining means in which the maximum field strength of said second component occurs.
- 5. A corpuscular beam microscope having a longitudinal axis on which a specimen holder is located, said microscope comprising a combined condenser and objective magnetic lens system having successively coaxially arranged along said axis first, second and third annular pole pieces for producing a composite magnetic field from component fields of the type having an exponential distribution, said composite field having a first field strength maximum of from 0.8886 Tesla units to 0.9921 Tesla units between said first and second pole pieces and a second field strength maximum of from 1.0163 Telsa units to 1.3994 Tesla units between said second and third pole pieces, said first and second maxima being separated from one another by a distance of from 7.4298 mm to 9.7661 mm along said axis, the axial location of said specimen holder substantially coinciding with the axial location of said first field strength maximum.
- 6. A corpuscular beam microscope having a longitudinal axis on which a specimen holder is located, said microscope comprising a combined condenser and objective magnetic lens system having successively coaxially arranged along said axis first, second and third annular pole pieces for producing a composite magnetic field from component fields of the Glaser bell type, said composite field having a first field strength maximum of from 0.7333 Tesla units to 0.8945 Tesla units between said first and second pole pieces and a second field strength maximum of from 0.8558 Tesla units to 1.6076 Tesla units between said second and third pole pieces, said first and second maxima being separated from one another by a distance of from 5.9484 mm to 19.0292 mm along said axis, the axial location of said specimen holder substantially coinciding with the axial location of said first field strength maximum.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2541915 |
Sep 1975 |
DEX |
|
Parent Case Info
This is a continuation of application Ser. No. 724,056 filed Sept. 16, 1976 abandoned.
US Referenced Citations (6)
Continuations (1)
|
Number |
Date |
Country |
Parent |
724056 |
Sep 1976 |
|