Embodiments of the disclosure are in the field of semiconductor devices and processing and, in particular, dummy gate patterning lines, and integrated circuit structures resulting therefrom.
For the past several decades, the scaling of features in integrated circuits has been a driving force behind an ever-growing semiconductor industry. Scaling to smaller and smaller features enables increased densities of functional units on the limited real estate of semiconductor chips. For example, shrinking transistor size allows for the incorporation of an increased number of memory or logic devices on a chip, lending to the fabrication of products with increased capacity. The drive for ever-more capacity, however, is not without issue. The necessity to optimize the performance of each device becomes increasingly significant.
In the manufacture of integrated circuit devices, multi-gate transistors, such as tri-gate transistors, have become more prevalent as device dimensions continue to scale down. In conventional processes, tri-gate transistors are generally fabricated on either bulk silicon substrates or silicon-on-insulator substrates. In some instances, bulk silicon substrates are preferred due to their lower cost and compatibility with the existing high-yielding bulk silicon substrate infrastructure.
Scaling multi-gate transistors has not been without consequence, however. As the dimensions of these fundamental building blocks of microelectronic circuitry are reduced and as the sheer number of fundamental building blocks fabricated in a given region is increased, the constraints on the semiconductor processes used to fabricate these building blocks have become overwhelming.
Dummy gate patterning lines, and integrated circuit structures resulting therefrom, are described. In the following description, numerous specific details are set forth, such as specific integration and material regimes, in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to one skilled in the art that embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known features, such as integrated circuit design layouts, are not described in detail in order to not unnecessarily obscure embodiments of the present disclosure. Furthermore, it is to be understood that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale.
Certain terminology may also be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, “below,” “bottom,” and “top” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, and “side” describe the orientation and/or location of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
Embodiments described herein may be directed to front-end-of-line (FEOL) semiconductor processing and structures. FEOL is the first portion of integrated circuit (IC) fabrication where the individual devices (e.g., transistors, capacitors, resistors, etc.) are patterned in the semiconductor substrate or layer. FEOL generally covers everything up to (but not including) the deposition of metal interconnect layers. Following the last FEOL operation, the result is typically a wafer with isolated transistors (e.g., without any wires).
Embodiments described herein may be directed to back-end-of-line (BEOL) semiconductor processing and structures. BEOL is the second portion of IC fabrication where the individual devices (e.g., transistors, capacitors, resistors, etc.) are interconnected with wiring on the wafer, e.g., the metallization layer or layers. BEOL includes contacts, insulating layers (dielectrics), metal levels, and bonding sites for chip-to-package connections. In the BEOL part of the fabrication stage contacts (pads), interconnect wires, vias and dielectric structures are formed. For modern IC processes, more than 10 metal layers may be added in the BEOL.
Embodiments described below may be applicable to FEOL processing and structures, BEOL processing and structures, or both FEOL and BEOL processing and structures. In particular, although an exemplary processing scheme may be illustrated using a FEOL processing scenario, such approaches may also be applicable to BEOL processing. Likewise, although an exemplary processing scheme may be illustrated using a BEOL processing scenario, such approaches may also be applicable to FEOL processing.
One or more embodiments described herein are directed to approaches for improving structural stability of high aspect ratio dummy gate patterning lines at tight gate pitch.
To provide context, in highly scaled advanced semiconductor processes, dummy gate lines have high aspect ratio and can wiggle or even collapse to a neighboring line after wet clean due to capillary forces at tight gate pitch. Collapsed dummy gate lines can lead to related downstream issues such as, but not limited to, issues with metal gate fill, spacer etch, dummy gate cut, single diffusion break processes, source/drain epitaxial (S/D EPI) processes, and/or metal 0 (M0) via patterning.
In accordance with one or more embodiments described herein, for self-aligned double patterning (SADP), several small cuts are created in a backbone material prior to depositing a line spacer. The process creates a crossbar or “ladder rung” to link the two dummy gate lines to increase the structural stability. For an EUV process, direct print of such a crossbar can be made between two dummy gate lines.
Advantages to implementing embodiments described herein can include, but are not limited by or limited to defect and yield improvement. With respect to artifacts in a fin al product, portions of a “ladder structure” as described in greater detail below, where such portions can be visible by top-down SEM or TEM in reverse engineering processes.
In a first exemplary processing scheme,
Referring to
Referring to
Referring to
Referring to
It is to be appreciated that whether dummy gate lines are retained or permanent gate lines formed directly or formed by a replacement gate process, the structures described in association with
As an exemplary structure that may remain in a final product, with reference again to
In an embodiment, an entirety of the first gate line, the second gate line and the third gate line is on an isolation structure, e.g., in a region of a final product that does not have exposed semiconductor structures. In another embodiment, a portion of the first gate line (or the second gate line, or both) is over a semiconductor body, e.g., in unused region of a final product that has similar semiconductor bodies as other regions for consistent density considerations. In one such latter embodiment, the semiconductor body is a semiconductor fin, examples of which are described below in association with
In an embodiment, a fourth gate line (e.g., one of the gate lines 106A of
In an embodiment, the first, second, and third gate lines include polycrystalline silicon, e.g., in a case where dummy gate lines are retained as dummy material gate lines in an unused region of a final product. In another embodiment, the first, second, and third gate lines include one or more metal-containing layers, e.g., in a case where dummy gate lines are replaced with permanent gate material in an unused region of a final product.
In a second exemplary processing scheme,
Referring to
Referring to
It is to be appreciated that whether dummy gate lines are retained or permanent gate lines formed directly or formed by a replacement gate process, the structures described in association with
As an exemplary structure that may remain in a final product, with reference again to
In an embodiment, an entirety of the first gate line, the second gate line and the third gate line is on an isolation structure, e.g., in a region of a final product that does not have exposed semiconductor structures. In another embodiment, a portion of the first gate line (or the second gate line, or both) is over a semiconductor body, e.g., in unused region of a final product that has similar semiconductor bodies as other regions for consistent density considerations. In one such latter embodiment, the semiconductor body is a semiconductor fin, examples of which are described below in association with
In an embodiment, a fourth gate line (e.g., one of the gate lines 556A of
In an embodiment, the first, second, and third gate lines include polycrystalline silicon, e.g., in a case where dummy gate lines are retained as dummy material gate lines in an unused region of a final product. In another embodiment, the first, second, and third gate lines include one or more metal-containing layers, e.g., in a case where dummy gate lines are replaced with permanent gate material in an unused region of a final product.
More generally, embodiments described herein may enable the fabrication of device structures that include tight pitch gate electrodes for field effect transistors (FETs) such as finFETs, trigate FETs, or nanowire FETs. One or more embodiments may be applicable for high performance, low leakage logic complementary metal oxide semiconductor (CMOS) devices. More specifically, one or more embodiments described herein are directed to approaches for forming silicon (Si)-containing non-planar architectures, although other semiconductor materials may be used in place of or together with silicon. In an embodiment one or more devices described herein may be characterized as a fin-based device, a nanoribbon-based device, a nanowire-based device, a non-planar transistor, an omega-FET, a trigate-based device, a multi-gate device, or a combination thereof.
It is to be appreciated that the structures resulting from the above exemplary processing schemes, e.g., structures from one or more of
Referring to
As shown, gate line 608 includes a gate electrode 650 and a gate dielectric layer 652. In one embodiment, gate line 608 may also include a dielectric cap layer 654. A gate contact 614, and overlying gate contact via 616 are also seen from this perspective, along with an overlying metal interconnect 660, all of which are in inter-layer dielectric stacks or layers 670, such as low-k dielectric materials. Also seen from the perspective of
As is also depicted in
Referring to
In an embodiment, the semiconductor structure or device 600 is a non-planar device such as, but not limited to, a fin-FET or a tri-gate device. In such an embodiment, a corresponding semiconducting channel region is composed of or is formed in a three-dimensional body. In one such embodiment, the gate electrode stacks of gate lines 608 surround at least a top surface and a pair of sidewalls of the three-dimensional body.
Substrate 602 may be composed of a semiconductor material that can withstand a manufacturing process and in which charge can migrate. In an embodiment, substrate 602 is a bulk substrate composed of a crystalline silicon, silicon/germanium or germanium layer doped with a charge carrier, such as but not limited to phosphorus, arsenic, boron or a combination thereof, to form active region 604. In one embodiment, the concentration of silicon atoms in bulk substrate 602 is greater than 97%. In another embodiment, bulk substrate 602 is composed of an epitaxial layer grown atop a distinct crystalline substrate, e.g. a silicon epitaxial layer grown atop a boron-doped bulk silicon mono-crystalline substrate. Bulk substrate 602 may alternatively be composed of a group III-V material. In an embodiment, bulk substrate 602 is composed of a group III-V material such as, but not limited to, gallium nitride, gallium phosphide, gallium arsenide, indium phosphide, indium antimonide, indium gallium arsenide, aluminum gallium arsenide, indium gallium phosphide, or a combination thereof. In one embodiment, bulk substrate 602 is composed of a group III-V material and the charge-carrier dopant impurity atoms are ones such as, but not limited to, carbon, silicon, germanium, oxygen, sulfur, selenium or tellurium.
In accordance with one or more embodiments of the present disclosure, the fin structure including protruding fin portion 604 and sub-fin region 605 has a same semiconductor composition as bulk substrate 602. In a particular embodiment, the bulk substrate 602 is a monocrystalline bulk silicon substrate, and the plurality of semiconductor fins 604/605 is a plurality of silicon fins. In accordance with one or more embodiments of the present disclosure, the fin structure including protruding fin portion 604 and sub-fin region 605 has a different semiconductor composition than bulk substrate 602. In a particular embodiment, the bulk substrate 602 is a monocrystalline bulk silicon substrate, and the plurality of semiconductor fins 604/605 is a plurality of silicon germanium or germanium fins. In another particular embodiment, the bulk substrate 602 is a monocrystalline bulk silicon substrate, and the plurality of semiconductor fins 604/605 is a plurality of group III-V material fins.
Isolation region 606 may be composed of a material suitable to ultimately electrically isolate, or contribute to the isolation of, portions of a permanent gate structure from an underlying bulk substrate or isolate active regions formed within an underlying bulk substrate, such as isolating fin active regions. For example, in one embodiment, the isolation region 606 is composed of a dielectric material such as, but not limited to, silicon dioxide, silicon oxy-nitride, silicon nitride, or carbon-doped silicon nitride.
Gate line 608 may be composed of a gate electrode stack which includes a gate dielectric layer 652 and a gate electrode layer 650. In an embodiment, the gate electrode of the gate electrode stack is composed of a metal gate and the gate dielectric layer is composed of a high-k material. For example, in one embodiment, the gate dielectric layer is composed of a material such as, but not limited to, hafnium oxide, hafnium oxy-nitride, hafnium silicate, lanthanum oxide, zirconium oxide, zirconium silicate, tantalum oxide, barium strontium titanate, barium titanate, strontium titanate, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, lead zinc niobate, or a combination thereof. Furthermore, a portion of gate dielectric layer may include a layer of native oxide formed from the top few layers of the bulk substrate 602. In an embodiment, the gate dielectric layer is composed of a top high-k portion and a lower portion composed of an oxide of a semiconductor material. In one embodiment, the gate dielectric layer is composed of a top portion of hafnium oxide and a bottom portion of silicon dioxide or silicon oxy-nitride. In some implementations, a portion of the gate dielectric is a “U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate.
In one embodiment, the gate electrode is composed of a metal layer such as, but not limited to, metal nitrides, metal carbides, metal silicides, metal aluminides, hafnium, zirconium, titanium, tantalum, aluminum, ruthenium, palladium, platinum, cobalt, nickel or conductive metal oxides. In a specific embodiment, the gate electrode is composed of a non-workfunction-setting fill material formed above a metal workfunction-setting layer. The gate electrode layer may consist of a P-type workfunction metal or an N-type workfunction metal, depending on whether the transistor is to be a PMOS or an NMOS transistor. In some implementations, the gate electrode layer may consist of a stack of two or more metal layers, where one or more metal layers are workfunction metal layers and at least one metal layer is a conductive fill layer. For a PMOS transistor, metals that may be used for the gate electrode include, but are not limited to, ruthenium, palladium, platinum, cobalt, nickel, and conductive metal oxides, e.g., ruthenium oxide. A P-type metal layer will enable the formation of a PMOS gate electrode with a workfunction that is between about 4.9 eV and about 5.2 eV. For an NMOS transistor, metals that may be used for the gate electrode include, but are not limited to, hafnium, zirconium, titanium, tantalum, aluminum, alloys of these metals, and carbides of these metals such as hafnium carbide, zirconium carbide, titanium carbide, tantalum carbide, and aluminum carbide. An N-type metal layer will enable the formation of an NMOS gate electrode with a workfunction that is between about 3.9 eV and about 4.2 eV.
In some implementations, the gate electrode may consist of a “U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate. In another implementation, at least one of the metal layers that form the gate electrode may simply be a planar layer that is substantially parallel to the top surface of the substrate and does not include sidewall portions substantially perpendicular to the top surface of the substrate. In further implementations of the disclosure, the gate electrode may consist of a combination of U-shaped structures and planar, non-U-shaped structures. For example, the gate electrode may consist of one or more U-shaped metal layers formed atop one or more planar, non-U-shaped layers.
Spacers associated with the gate electrode stacks may be composed of a material suitable to ultimately electrically isolate, or contribute to the isolation of, a permanent gate structure from adjacent conductive contacts, such as self-aligned contacts. For example, in one embodiment, the spacers are composed of a dielectric material such as, but not limited to, silicon dioxide, silicon oxy-nitride, silicon nitride, or carbon-doped silicon nitride.
Gate contact 614 and overlying gate contact via 616 may be composed of a conductive material. In an embodiment, one or more of the contacts or vias are composed of a metal species. The metal species may be a pure metal, such as tungsten, nickel, or cobalt, or may be an alloy such as a metal-metal alloy or a metal-semiconductor alloy (e.g., such as a silicide material).
In an embodiment (although not shown), providing structure 600 involves formation of a contact pattern which is essentially perfectly aligned to an existing gate pattern while eliminating the use of a lithographic operation with exceedingly tight registration budget. In one such embodiment, this approach enables the use of intrinsically highly selective wet etching (e.g., versus conventionally implemented dry or plasma etching) to generate contact openings. In an embodiment, a contact pattern is formed by utilizing an existing gate pattern in combination with a contact plug lithography operation. In one such embodiment, the approach enables elimination of the need for an otherwise critical lithography operation to generate a contact pattern, as used in conventional approaches. In an embodiment, a trench contact grid is not separately patterned, but is rather formed between poly (gate) lines. For example, in one such embodiment, a trench contact grid is formed subsequent to gate grating patterning but prior to gate grating cuts.
Furthermore, the gate stack structure 608 may be fabricated by a replacement gate process. In such a scheme, dummy gate material such as polysilicon or silicon nitride pillar material, may be removed and replaced with permanent gate electrode material. In one such embodiment, a permanent gate dielectric layer is also formed in this process, as opposed to being carried through from earlier processing. In an embodiment, dummy gates are removed by a dry etch or wet etch process. In one embodiment, dummy gates are composed of polycrystalline silicon or amorphous silicon and are removed with a dry etch process including use of SF6. In another embodiment, dummy gates are composed of polycrystalline silicon or amorphous silicon and are removed with a wet etch process including use of aqueous NH4OH or tetramethylammonium hydroxide. In one embodiment, dummy gates are composed of silicon nitride and are removed with a wet etch including aqueous phosphoric acid.
In an embodiment, one or more approaches described herein contemplate essentially a dummy and replacement gate process in combination with a dummy and replacement contact process to arrive at structure 600. In one such embodiment, the replacement contact process is performed after the replacement gate process to allow high temperature anneal of at least a portion of the permanent gate stack. For example, in a specific such embodiment, an anneal of at least a portion of the permanent gate structures, e.g., after a gate dielectric layer is formed, is performed at a temperature greater than approximately 600 degrees Celsius. The anneal is performed prior to formation of the permanent contacts.
Referring again to
It is to be appreciated that not all aspects of the processes described above need be practiced to fall within the spirit and scope of embodiments of the present disclosure. For example, in one embodiment, dummy gates need not ever be formed prior to fabricating gate contacts over active portions of the gate stacks. The gate stacks described above may actually be permanent gate stacks as initially formed. Also, the processes described herein may be used to fabricate one or a plurality of semiconductor devices. The semiconductor devices may be transistors or like devices. For example, in an embodiment, the semiconductor devices are a metal-oxide semiconductor (MOS) transistors for logic or memory, or are bipolar transistors. Also, in an embodiment, the semiconductor devices have a three-dimensional architecture, such as a trigate device, an independently accessed double gate device, or a FIN-FET. One or more embodiments may be particularly useful for fabricating semiconductor devices at a 10 nanometer (10 nm) or smaller technology node.
In an embodiment, as used throughout the present description, interlayer dielectric (ILD) material is composed of or includes a layer of a dielectric or insulating material. Examples of suitable dielectric materials include, but are not limited to, oxides of silicon (e.g., silicon dioxide (SiO2)), doped oxides of silicon, fluorinated oxides of silicon, carbon doped oxides of silicon, various low-k dielectric materials known in the arts, and combinations thereof. The interlayer dielectric material may be formed by conventional techniques, such as, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), or by other deposition methods.
In an embodiment, as is also used throughout the present description, metal lines or interconnect line material (and via material) is composed of one or more metal or other conductive structures. A common example is the use of copper lines and structures that may or may not include barrier layers between the copper and surrounding ILD material. As used herein, the term metal includes alloys, stacks, and other combinations of multiple metals. For example, the metal interconnect lines may include barrier layers (e.g., layers including one or more of Ta, TaN, Ti or TiN), stacks of different metals or alloys, etc. Thus, the interconnect lines may be a single material layer, or may be formed from several layers, including conductive liner layers and fill layers. Any suitable deposition process, such as electroplating, chemical vapor deposition or physical vapor deposition, may be used to form interconnect lines. In an embodiment, the interconnect lines are composed of a conductive material such as, but not limited to, Cu, Al, Ti, Zr, Hf, V, Ru, Co, Ni, Pd, Pt, W, Ag, Au or alloys thereof. The interconnect lines are also sometimes referred to in the art as traces, wires, lines, metal, or simply interconnect.
In an embodiment, as is also used throughout the present description, hardmask materials are composed of dielectric materials different from the interlayer dielectric material. In some embodiments, a hardmask layer includes a layer of a nitride of silicon (e.g., silicon nitride) or a layer of an oxide of silicon, or both, or a combination thereof. Other suitable materials may include carbon-based materials. In another embodiment, a hardmask material includes a metal species. For example, a hardmask or other overlying material may include a layer of a nitride of titanium or another metal (e.g., titanium nitride). Potentially lesser amounts of other materials, such as oxygen, may be included in one or more of these layers. Alternatively, other hardmask layers known in the arts may be used depending upon the particular implementation. The hardmask layers maybe formed by CVD, PVD, or by other deposition methods.
In an embodiment, as is used throughout the present description, lithographic operations are performed using 193 nm immersion lithography (i193), EUV and/or EBDW lithography, or the like. A positive tone or a negative tone resist may be used. In one embodiment, a trilayer mask composed of a topographic masking portion, an anti-reflective coating (ARC) layer, and a photoresist layer is used as a lithographic mask to provide a pattern of openings. In a particular such embodiment, the topographic masking portion is a carbon hardmask (CHM) layer and the anti-reflective coating layer is a silicon ARC layer.
In another aspect, it is to be appreciated that semiconductor fins can be fabricated using processes described in association with
Referring to
Pitch division processing and patterning schemes may be implemented to enable embodiments described herein or may be included as part of embodiments described herein. Pitch division patterning typically refers to pitch halving, pitch quartering etc. Pitch division schemes may be applicable to FEOL processing, BEOL processing, or both FEOL (device) and BEOL (metallization) processing. In accordance with one or more embodiments described herein, optical lithography is first implemented to print unidirectional lines (e.g., either strictly unidirectional or predominantly unidirectional) in a pre-defined pitch. Pitch division processing is then implemented as a technique to increase line density.
In an embodiment, the term “grating structure” for fins, gate lines, metal lines, ILD lines or hardmask lines is used herein to refer to a tight pitch grating structure. In one such embodiment, the tight pitch is not achievable directly through a selected lithography. For example, a pattern based on a selected lithography may first be formed, but the pitch may be halved by the use of spacer mask patterning, as is known in the art. Even further, the original pitch may be quartered by a second round of spacer mask patterning. Accordingly, the grating-like patterns described herein may have metal lines, ILD lines or hardmask lines spaced at a substantially consistent pitch and having a substantially consistent width. For example, in some embodiments the pitch variation would be within ten percent and the width variation would be within ten percent, and in some embodiments, the pitch variation would be within five percent and the width variation would be within five percent. The pattern may be fabricated by a pitch halving or pitch quartering, or other pitch division, approach. In an embodiment, the grating is not necessarily single pitch.
In a first example, pitch halving can be implemented to double the line density of a fabricated grating structure.
Referring to
Referring to
Accordingly, for either front-end of line (FEOL) or back-end-of-line (BEOL), or both, integrations schemes, a blanket film may be patterned using lithography and etch processing which may involve, e.g., spacer-based-double-patterning (SBDP) or pitch halving, or spacer-based-quadruple-patterning (SBQP) or pitch quartering. It is to be appreciated that other pitch division approaches may also be implemented. In any case, in an embodiment, a gridded layout may be fabricated by a selected lithography approach, such as 193 nm immersion lithography (193i). Pitch division may be implemented to increase the density of lines in the gridded layout by a factor of n. Gridded layout formation with 193i lithography plus pitch division by a factor of ‘n’ can be designated as 193i+P/n Pitch Division. In one such embodiment, 193 nm immersion scaling can be extended for many generations with cost effective pitch division.
In accordance with one or more embodiments of the present disclosure, a pitch quartering approach is implemented for patterning a semiconductor layer to form semiconductor fins. In one or more embodiments, a merged fin pitch quartering approach is implemented.
Referring to
Embodiments disclosed herein may be used to manufacture a wide variety of different types of integrated circuits and/or microelectronic devices. Examples of such integrated circuits include, but are not limited to, processors, chipset components, graphics processors, digital signal processors, micro-controllers, and the like. In other embodiments, semiconductor memory may be manufactured. Moreover, the integrated circuits or other microelectronic devices may be used in a wide variety of electronic devices known in the arts. For example, in computer systems (e.g., desktop, laptop, server), cellular phones, personal electronics, etc. The integrated circuits may be coupled with a bus and other components in the systems. For example, a processor may be coupled by one or more buses to a memory, a chipset, etc. Each of the processor, the memory, and the chipset, may potentially be manufactured using the approaches disclosed herein.
Depending on its applications, computing device 1000 may include other components that may or may not be physically and electrically coupled to the board 1002. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
The communication chip 1006 enables wireless communications for the transfer of data to and from the computing device 1000. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 1006 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 1000 may include a plurality of communication chips 1006. For instance, a first communication chip 1006 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 1006 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor 1004 of the computing device 1000 includes an integrated circuit die packaged within the processor 1004. In some implementations of embodiments of the disclosure, the integrated circuit die of the processor 1004 includes one or more integrated circuit structures built in accordance with implementations of embodiments of the disclosure. The term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
The communication chip 1006 also includes an integrated circuit die packaged within the communication chip 1006. In accordance with another implementation of the disclosure, the integrated circuit die of the communication chip 1006 includes one or more integrated circuit structures built in accordance with implementations of embodiments of the disclosure.
In further implementations, another component housed within the computing device 1000 may contain an integrated circuit die that includes one or more integrated circuit structures built in accordance with implementations of embodiments of the disclosure.
In various embodiments, the computing device 1000 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultramobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 1000 may be any other electronic device that processes data.
In an embodiment, the first substrate 1102 is an integrated circuit die including one or more integrated circuit structures built in accordance with double patterning implementations of embodiments of the disclosure. In an embodiment, the second substrate 1104 is a memory module, a computer motherboard, or another integrated circuit die including one or more integrated circuit structures built in accordance with implementations of embodiments of the disclosure.
The interposer 1100 may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, a ceramic material, or a polymer material such as polyimide. In further implementations, the interposer 1100 may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials.
The interposer 1100 may include metal interconnects 1108 and vias 1110, including but not limited to through-silicon vias (TSVs) 1112. The interposer 1100 may further include embedded devices 1114, including both passive and active devices. Such devices include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, and electrostatic discharge (ESD) devices. More complex devices such as radio-frequency (RF) devices, power amplifiers, power management devices, antennas, arrays, sensors, and MEMS devices may also be formed on the interposer 1100. In accordance with embodiments of the disclosure, apparatuses or processes disclosed herein may be used in the fabrication of interposer 1100.
The mobile computing platform 1200 may be any portable device configured for each of electronic data display, electronic data processing, and wireless electronic data transmission. For example, mobile computing platform 1200 may be any of a tablet, a smart phone, laptop computer, etc. and includes a display screen 1205 which in the exemplary embodiment is a touchscreen (capacitive, inductive, resistive, etc.), a chip-level (SoC) or package-level integrated system 1210, and a battery 1213. As illustrated, the greater the level of integration in the integrated system 1210 enabled by higher transistor packing density, the greater the portion of the mobile computing platform 1200 that may be occupied by the battery 1213 or non-volatile storage, such as a solid state drive, or the greater the transistor gate count for improved platform functionality. Similarly, the greater the carrier mobility of each transistor in the integrated system 1210, the greater the functionality. As such, techniques described herein may enable performance and form factor improvements in the mobile computing platform 1200.
The integrated system 1210 is further illustrated in the expanded view 1220. In the exemplary embodiment, packaged device 1277 includes at least one memory chip (e.g., RAM), or at least one processor chip (e.g., a multi-core microprocessor and/or graphics processor) fabricated according to one or more processes described herein or including one or more features described herein. The packaged device 1277 is further coupled to the board 1260 along with one or more of a power management integrated circuit (PMIC) 1215, RF (wireless) integrated circuit (RFIC) 1225 including a wideband RF (wireless) transmitter and/or receiver (e.g., including a digital baseband and an analog front end module further includes a power amplifier on a transmit path and a low noise amplifier on a receive path), and a controller thereof 1211. Functionally, the PMIC 1215 performs battery power regulation, DC-to-DC conversion, etc., and so has an input coupled to the battery 1213 and with an output providing a current supply to all the other functional modules. As further illustrated, in the exemplary embodiment, the RFIC 1225 has an output coupled to an antenna to provide and implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. In alternative implementations, each of these board-level modules may be integrated onto separate ICs coupled to the package substrate of the packaged device 1277 or within a single IC (SoC) coupled to the package substrate of the packaged device 1277.
In another aspect, semiconductor packages are used for protecting an integrated circuit (IC) chip or die, and also to provide the die with an electrical interface to external circuitry. With the increasing demand for smaller electronic devices, semiconductor packages are designed to be even more compact and must support larger circuit density. Furthermore, the demand for higher performance devices results in a need for an improved semiconductor package that enables a thin packaging profile and low overall warpage compatible with subsequent assembly processing.
In an embodiment, wire bonding to a ceramic or organic package substrate is used. In another embodiment, a C4 process is used to mount a die to a ceramic or organic package substrate. In particular, C4 solder ball connections can be implemented to provide flip chip interconnections between semiconductor devices and substrates. A flip chip or Controlled Collapse Chip Connection (C4) is a type of mounting used for semiconductor devices, such as integrated circuit (IC) chips, MEMS or components, which utilizes solder bumps instead of wire bonds. The solder bumps are deposited on the C4 pads, located on the top side of the substrate package. In order to mount the semiconductor device to the substrate, it is flipped over with the active side facing down on the mounting area. The solder bumps are used to connect the semiconductor device directly to the substrate.
Referring to
Processing a flip chip may be similar to conventional IC fabrication, with a few additional operations. Near the end of the manufacturing process, the attachment pads are metalized to make them more receptive to solder. This typically consists of several treatments. A small dot of solder is then deposited on each metalized pad. The chips are then cut out of the wafer as normal. To attach the flip chip into a circuit, the chip is inverted to bring the solder dots down onto connectors on the underlying electronics or circuit board. The solder is then re-melted to produce an electrical connection, typically using an ultrasonic or alternatively reflow solder process. This also leaves a small space between the chip's circuitry and the underlying mounting. In most cases an electrically-insulating adhesive is then “underfilled” to provide a stronger mechanical connection, provide a heat bridge, and to ensure the solder joints are not stressed due to differential heating of the chip and the rest of the system.
In other embodiments, newer packaging and die-to-die interconnect approaches, such as through silicon via (TSV) and silicon interposer, are implemented to fabricate high performance Multi-Chip Module (MCM) and System in Package (SiP) incorporating an integrated circuit (IC) fabricated according to one or more processes described herein or including one or more features described herein, in accordance with an embodiment of the present disclosure.
Thus, embodiments of the present disclosure include dummy gate patterning lines, and integrated circuit structures resulting therefrom.
The above description of illustrated implementations of embodiments of the disclosure, including what is described in the Abstract, is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. While specific implementations of, and examples for, the disclosure are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize.
These modifications may be made to the disclosure in light of the above detailed description. The terms used in the following claims should not be construed to limit the disclosure to the specific implementations disclosed in the specification and the claims. Rather, the scope of the disclosure is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
Example embodiment 1: An integrated circuit structure includes a first gate line along a first direction. A second gate line is parallel with the first gate line along the first direction. A third gate line extends between and is continuous with the first gate line and the second gate line along a second direction, the second direction orthogonal to the first direction.
Example embodiment 2: The integrated circuit structure of example embodiment 1, wherein an entirety of the first gate line, the second gate line and the third gate line is on an isolation structure.
Example embodiment 3: The integrated circuit structure of example embodiment 1, wherein a portion of the first gate line is over a semiconductor body.
Example embodiment 4: The integrated circuit structure of example embodiment 3, wherein the semiconductor body is a semiconductor fin.
Example embodiment 5: The integrated circuit structure of example embodiment 1, 2, 3 or 4, the integrated circuit structure further including a fourth gate line non-continuous with the first, second, and third gate lines, the fourth gate line over one or more active semiconductor channel structures.
Example embodiment 6: The integrated circuit structure of example embodiment 1, 2, 3, 4 or 5, wherein the first, second, and third gate lines include polycrystalline silicon.
Example embodiment 7: The integrated circuit structure of example embodiment 1, 2, 3, 4 or 5, wherein the first, second, and third gate lines include one or more metal-containing layers.
Example embodiment 8: A method of fabricating an integrated circuit structure includes patterning a plurality of parallel lines in a hardmask. One or more cuts is formed in one or more of the parallel lines. A spacer structure is formed along sides of each of the plurality of parallel lines and in locations of the one or more cuts. The plurality of parallel lines is removed and the spacer structures is left as remaining. One or more gate structures are formed from the spacer structures.
Example embodiment 9: The method of example embodiment 8, wherein forming the one or more gate structures includes forming a first gate line along a first direction, a second gate line parallel with the first gate line along the first direction, and a third gate line extending between and continuous with the first gate line and the second gate line along a second direction, wherein the second direction is orthogonal to the first direction.
Example embodiment 10: The method of example embodiment 9, wherein an entirety of the first gate line, the second gate line and the third gate line is on an isolation structure.
Example embodiment 11: The method of example embodiment 9, wherein a portion of the first gate line is over a semiconductor body.
Example embodiment 12: The method of example embodiment 11, wherein the semiconductor body is a semiconductor fin.
Example embodiment 13: The method of example embodiment 9, 10, 11 or 12, wherein forming the one or more gate structures further includes forming a fourth gate line non-continuous with the first, second, and third gate lines, the fourth gate line over one or more active semiconductor channel structures.
Example embodiment 14: The method of example embodiment 9, 10, 11, 12 or 13, wherein the first, second, and third gate lines include polycrystalline silicon.
Example embodiment 15: The method of example embodiment 9, 10, 11, 12 or 13, wherein the first, second, and third gate lines include one or more metal-containing layers.
Example embodiment 16: A computing device includes a board, and a component coupled to the board. The component includes an integrated circuit structure. The integrated circuit structure includes a first gate line along a first direction. A second gate line is parallel with the first gate line along the first direction. A third gate line extends between and is continuous with the first gate line and the second gate line along a second direction, the second direction orthogonal to the first direction.
Example embodiment 17: The computing device of example embodiment 16, further including a memory coupled to the board.
Example embodiment 18: The computing device of example embodiment 16 or 17, further including a communication chip coupled to the board.
Example embodiment 19: The computing device of example embodiment 16, 17 or 18, wherein the component is a packaged integrated circuit die.
Example embodiment 20: The computing device of example embodiment 16, 17, 18 or 19, wherein the component is selected from the group consisting of a processor, a communications chip, and a digital signal processor.