The present disclosure relates to semiconductor structures and, more particularly, to electrical and optical via connections on a same chip and methods of manufacture.
Integrated optical and electrical through silicon vias (TSVs) are critical for multifunctional systems on chip (MSoC), for example, having optical circuits and electrical circuits on a single chip. The integration of the optical and electrical TSVs is a great challenge, though. Specifically, current processes require multiple mask sets and complex processes, leading to overall low yields and higher manufacturing costs.
In an aspect of the disclosure, a structure comprises: an optical through substrate via (TSV) comprising an optical material filling the TSV; and an electrical TSV comprising a liner of the optical material and a conductive material filling remaining portions of the electrical TSV.
In an aspect of the disclosure, a structure comprises: an optical through silicon via (TSV) having an annular shape and comprising an optical material; an electrical TSV having a via shape and comprising a liner of the optical material and a conductive material filling remaining portions of the electrical TSV; an airgap formed in the silicon and in alignment with the optical TSV; and a photodetector in alignment with the airgap and the optical TSV.
In an aspect of the disclosure, a method comprises: forming an annular via and a via shaped via in a substrate using a same lithography process; filling the annular via with optical material while forming a liner on sidewalls of a electrical TSV via with the optical material, in a same deposition process; filling remaining portions of the electrical TSV via with conductive material; removing a back side of the substrate to form an annular optical TSV comprising the annular via with the optical material and an electrical via from the electrical TSV via with the optical material and the conductive material; and forming an airgap in the substrate in alignment with the annular optical TSV.
The present disclosure is described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present disclosure.
The present disclosure relates to semiconductor structures and, more particularly, to electrical and optical via connections on a same chip and methods of manufacture. More specifically, the present disclosure provides a method to fabricate optical TSVs and electrical TSVs on a single chip, resulting in an advantageously designed structure. In embodiments, for example, an annular-shape optical TSV and via-shape electric TSV are formed simultaneously on a single chip, enabling a mask-free process. The annular-shape optical TSV and via-shape electric TSV can be formed with other devices on the same chip.
The electrical and optical via connections of the present disclosure can be manufactured in a number of ways using a number of different tools. In general, though, the methodologies and tools are used to form structures with dimensions in the micrometer and nanometer scale. The methodologies, i.e., technologies, employed to manufacture the electrical and optical via connections of the present disclosure have been adopted from integrated circuit (IC) technology. For example, the structures are built on wafers and are realized in films of material patterned by photolithographic processes on the top of a wafer. In particular, the fabrication of the electrical and optical via connections uses three basic building blocks: (i) deposition of thin films of material on a substrate, (ii) applying a patterned mask on top of the films by photolithographic imaging, and (iii) etching the films selectively to the mask.
More specifically and referring to both
Still referring to
In embodiments, the optical via 16 and the electrical via 18 can be fabricated with a single mask 12, e.g., using mask 12 with a single lithography step. For example, in embodiments, the mask 12 can be an oxide material, nitride material, carbide, etc. In more specific embodiments, a resist formed over the mask 12 can be exposed to energy (e.g., light) to form one or more openings (e.g., patterns) which correspond to the dimensions “d1” and “D1”. An etching process, e.g., reactive ion etching (RIE), can be performed through the openings, with a chemistry selective to the mask 12 and underlying semiconductor material 10. The etching process will form openings in the semiconductor material 10 partly through the depth thereof. The resist is then removed using conventional stripants, e.g., oxygen ashing.
In
As shown in
Referring to
In
In embodiments, the airgap 32 has a depth ranging from about 100 nm to about 10 microns. Moreover, the airgap 32 spans the core of the annular shaped optical TSV 26 and overlaps with the optical material filling the optical TSV 26. As should be understood by those of skill in the art, the core of the annular shaped optical TSV 26 is composed of the substrate material 10, e.g., silicon.
The substrates 10, 10′ can be bonded together using an oxide-oxide bond. In embodiments, the electrical TSV 28 formed in the substrate 10 will also be aligned with and in electrical contact with an electrical TSV 28′ formed in the substrate 10′. In embodiments, additional devices 14 can also be formed in the substrate 10′, similar to that which was already described herein.
The method(s) as described above is used in the fabrication of integrated circuit chips. The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
The descriptions of the various embodiments of the present disclosure have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
6152609 | Dzyck et al. | Nov 2000 | A |
7801398 | Kodama et al. | Sep 2010 | B2 |
8283766 | Harada et al. | Oct 2012 | B2 |
8647920 | Tezcan et al. | Feb 2014 | B2 |
8742590 | Beyne | Jun 2014 | B2 |
9666507 | Chen | May 2017 | B2 |
20080308311 | Kodama et al. | Dec 2008 | A1 |
20090212407 | Foster et al. | Aug 2009 | A1 |
20130285256 | Fischer | Oct 2013 | A1 |
20150003841 | McLaren et al. | Jan 2015 | A1 |
20160155685 | Chen et al. | Jun 2016 | A1 |
20160266341 | Park et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
102216201 | Oct 2011 | CN |
102362346 | Feb 2012 | CN |
103403865 | Nov 2013 | CN |
104769467 | Jul 2015 | CN |
2612356 | Jul 2013 | EP |
1515031 | Jun 1978 | GB |
Entry |
---|
Noriki et al. [“Through Silicon Photonic Via (TSPV) with Si Core for Low Loss and High-Speed Data Transmission in Opto-Electronic 2-D LSI”; IEEE International Conf. on 3D Systems Integration (3DIC), Nov. yr 2010, pp. 1-4. |
Search Report dated Feb. 22, 2018 for TW Application No. 105126727, 13 pp. |
Mahavir S. Parekh, et al., “Electrical, Optical and Fluidic Through-Silicon Vias for Silicon Interposer Applications”, Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st., 7 pages. |
Chinese Office Action dated Nov. 21, 2018 in related CN Application No. 201710450341.2, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20180158967 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15187048 | Jun 2016 | US |
Child | 15886927 | US |