Electrical circuit assembly for high-power electronics

Abstract
An electrical circuit assembly includes a flexible electrical circuit having a first side; a heat sink including a metal base plate having a first side and a second side, and a plurality of fins extending from the second side; and a thermally conductive and electrically insulating adhesive directly interconnecting at least a portion of the first side of the flexible electrical circuit with the first side of the base plate.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of an embodiment of an electronic control module of the present invention;



FIG. 2 is a top view of the electronic control module of FIG. 1;



FIG. 3 is a side, sectional view of the electronic control module of FIGS. 1 and 2, taken along line 3-3 in FIG. 2;



FIG. 4 is an end, sectional view of the electronic control module of FIGS. 1 and 2, taken along line 4-4 in FIG. 2;



FIG. 5 is a top view of the flexible electrical circuit used in the electronic control module of FIGS. 1-4;



FIG. 6 is a more detailed top view of a portion of the flexible electrical circuit shown in FIG. 5;



FIG. 7 is a perspective view of another embodiment of an electrical circuit assembly of the present invention; and



FIG. 8 is a side, sectional view of the electrical circuit assembly of FIG. 7, taken along line 8-8 in FIG. 7.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings, and more particularly to FIGS. 1-4, there is shown an embodiment of an electronic control module (ECM) 10 of the present invention. ECM 10 is used for high-current electric drive applications, such as a reel motor on a cutting platform of an agricultural combine or a traction motor for a work machine.


ECM 10 generally includes a housing 12, a control board 14 and an electrical circuit assembly 16. Housing 12 may be of any suitable configuration, and may be formed from any suitable material such as plastic or metal. Housing 12 carries control board 14, and provides external access to an input/output (I/O) connector 18 which is electrically connected with control board 14. Housing 12 also carries and provides access to a pair of input power terminals 20 which are electrically coupled with electrical circuit assembly 16. A flexible jumper circuit 22 interconnects control board 14 with electrical circuit assembly 16. Alternatively, control board 14 may be coupled with electrical circuit assembly 16 using suitable electrical connectors, such as a single inline or dual inline type connector.


Electrical circuit assembly 16 generally includes a flexible electrical circuit 24, heat sink 26, and an adhesive 28. Flexible electrical circuit 24 includes a first side 30 and a second side 32. First side 30 is adhered to heat sink 26 using adhesive 28, as will be described below. Second side 32 carries a plurality of electrical components, such as input power terminals 20, power components 34, capacitors 36 and output power connectors 38. In the embodiment shown, power components 34 are in the form of field effect transistors (FETs) which typically dissipate an appreciable amount of heat during operation. Capacitors 36 may be of any suitable configuration, depending upon the application, and in the embodiment shown are configured as 22 mm diameter by 41 mm length capacitors which are electrically coupled with flexible electrical circuit 24. Output power connectors 38 may also be suitably configured depending upon the application, and are configured as threaded studs in the embodiment shown in FIGS. 1-4 (three studs for a 3-phase motor).


Flexible electrical circuit 24 (FIGS. 3, 5 and 6) is constructed with multiple layers which provide a desired degree of flexibility. More particularly, flexible electrical circuit 24 includes a flexible substrate 40 and a plurality of copper traces 42 on at least one side of substrate 40. Solder dams 44 may be provided at selected locations to prevent a flow of solder into unwanted areas on flexible electrical circuit 24. Solder dams 44 are silk screened onto flexible electrical circuit 24, with each solder dam 44 extending across a corresponding one of copper traces 42, as shown in more detail in FIG. 6. Flexible substrate 40 is in the form of a polyimide substrate in the embodiment shown, but may also be constructed from a different flexible material depending upon the application (the upper, left corner of flexible electrical circuit 24 is shown layered in FIG. 6 to illustrate substrate 40 and adhesive 28).


Power components 34, capacitors 36 and power connectors 38 are preferably each configured as surface mount components, providing quick and easy soldering with corresponding pads (not numbered) associated with copper traces 42 using a “pick-and-place” machine.


Flexible electrical circuit 24 may optionally also include one or more thermal vias 46 extending through flexible electrical circuit 24 from first side 30 to second side 32. Each thermal via 46 is in the form of a plated hole (i.e., a metal filled hole) positioned under a corresponding power component 34 for better conducting heat away from flexible electrical circuit 24.


Additionally, flexible electrical circuit 24 may optionally include a solder mask 48 (FIG. 6) on second side 32 away from heat sink 26. A solder mask is not provided on first side 30 of flexible electrical circuit 24 since it is desired to maximize heat transfer to heat sink 26. A solder mask typically interferes with heat transfer, and thus is not provided on first side 30.


Heat sink 26 includes a metal base plate 50 having a first side 52 and a second side 54. A plurality of heat conducting fins 56 extend from second side 54. Fins 56 can be coupled with base plate 50 in a number of suitable ways, such as welding, bending, etc. Fins 56 are preferably formed as an integral unit with base plate 50, such that heat sink 26 is of monolithic construction. Heat sink 26, including base plate 50 and fins 56, is also preferably formed from aluminum with a sufficient heat conducting coefficient, but may be formed from a different type of material depending upon the application.


Adhesive 28 is a thermally conductive and electrically insulating adhesive which directly interconnects at least a portion of first side 30 of flexible electrical circuit 24 with first side 52 of base plate 50. In one embodiment, adhesive 28 is a pressure sensitive adhesive (PSA) which thermally couples and electrically isolates flexible electrical circuit 24 and base plate 50. For example, adhesive 28 may be in the form of a 2-5 mm thick ceramic based PSA which is used to couple flexible electrical circuit 24 with base plate 50. Other types of adhesives may also be used, such as a prepreg material which is die cut to size (a prepreg material is basically a fiberglass cloth impregnated with a resin which may be cut, placed and cured for adhesive bonding). An example of a prepreg material is Isola 1060 no-flow prepreg.


In the embodiment shown in FIGS. 1-5, flexible electrical circuit 24 includes a first end 58 which is bent away from heat sink 26 at approximately a 90° angle. First end 58 carries the plurality of capacitors 36, and is not adhesively bonded with heat sink 26. Capacitors 36 are through-hole components, rather than SMT components, and bending flexible electrical circuit 24 away from heat sink 26 allows soldering of the through-hole leads extending from capacitors 36. Since FETs 34 are the primary source of heat generated during operation, this still allows ample heat conduction away from flexible electrical circuit 24.


As another option, heat sink 26 may be formed with a pocket (not shown) in base plate 50 beneath a portion of flexible electrical circuit 24 carrying through-hole components, and the leads from the through-hole components may be received within the pocket.


As a further option, flexible electrical circuit 24 can be configured as a rigid board for some applications, which is still nonetheless adhesively bonded directly to heat sink 26 using an appropriate thermally conductive and electrically insulating adhesive 28.


During manufacture, flexible electrical circuit 24 is formed with a suitable trace configuration, and placed on heat sink 26. Locating pins or the like can optionally be used for accurate placement of flexible electrical circuit 24 on heat sink 26. Flexible electrical circuit 24 is adhered to heat sink 26 using a PSA or other suitable adhesive material or technology. The electrical components, including FETs 34, capacitors 36 and power connectors 38, are accurately placed onto flexible electrical circuit 24, preferably using an automated process such as a pick-and-place machine. The assembly is then passed through a solder reflow stage to electrically and mechanically couple the electrical components with flexible electrical circuit 24.


Referring now to FIGS. 7 and 8, there is shown another embodiment of an electrical circuit assembly 60 of the present invention which may be used within an ECM or other high-current electrical module. Similar to electrical circuit assembly 16, electrical circuit assembly 60 includes a flexible electrical circuit 62, heat sink 64 and adhesive 66. Flexible electrical circuit 62 is likewise directly adhesively bonded to the flat side of heat sink 64 using adhesive 66. The primary difference between electrical circuit assembly 16 and electrical circuit assembly 60 is the layout of the electrical components on flexible electrical circuit 62, namely single blade type power connectors 68, FETs 70, signal connectors 72 to a control board (not shown), and a plurality of capacitors 74 (shown in FIG. 8, with mounting locations 76 shown in FIG. 7). In this embodiment, the end of flexible electrical circuit 62 carrying capacitors 74 is also adhesively bonded to heat sink 64, rather than being flexed at a 90 degree angle as shown in FIG. 3.


According to the present invention described above, a flexible electrical circuit is used to connect the power devices, heat sink, bus capacitors, bus structure, external power connectors, signal interconnect, and enclosure. The flexible electrical circuit is bonded directly to the flat side of a large, finned metal heat sink using a PSA or other adhesion method. The PSA acts as a thermal conductor (to help draw heat out of the circuit toward the heat sink) and is also an electrical insulator, effectively isolating the flex circuit from the metal heat sink. The PSA does not require heat curing, as does the dielectric layer in IMST.


The present invention maximizes heat transfer out of the module and therefore allows for the use of smaller, less expensive, surface mount components that can be placed by automated manufacturing pick-and-place machines. (Even though a larger number of these smaller, surface mount devices are needed for high-power applications, in comparison to the larger through-hole versions, they are considerably cheaper and easier to manufacture than the larger versions.) Traditional solutions require larger components, some of which need to be manually inserted or placed through a separate machine or process.


The electrical circuit assembly of the present invention provides two major benefits, namely, 1) simplification of the manufacturing process, and 2) improved conduction of heat away from the high-power circuitry. To reduce the complexity of the design and automate the process, the structure of the module (including the high-power electronics) is interconnected with a flexible electrical circuit. This allows the entire unit to be manufactured on a conventional, high-throughput manufacturing line, and eliminates processes needed for traditional circuits.


Because the flexible electrical circuit is bonded directly to a single-piece finned heat sink, several mechanical components (separate heat sink, screws, clips, etc.) found in traditional heat sink designs can be eliminated. The flexible circuit substrate is directly bonded to a single-piece finned aluminum (or other metal) heat sink using a PSA or other bonding technology. Conventional designs require that the circuit layer be bonded to a flat metal plate, which is in turn connected to a separate finned heat sink to maximize heat conduction. The present invention eliminates the flat metal plate and bonds the circuit directly to a flat side of the finned heat sink. This elimination of an additional external interface increases the thermal conductivity (i.e., improves heat dissipation) for the ECM.


Traditional solutions, such as the IMST technology described above, require a dielectric material or other thin material to be placed between the circuit and the metal surface to which it is to be connected. This dielectric material is a ceramic and must be heat cured, adding an additional process to the manufacture of the module. The present invention eliminates this intermediate layer and bonds the flexible circuit directly to the finned heat sink with a PSA (or other adhesion material or technique).


The present invention eliminates the need for a solder mask material to be used on the end product. A solder mask is used in traditional circuits to keep solder from flowing into sensitive areas of the circuit and causing unwanted electrical connections between traces. However, a solder mask can impede the flow of heat energy out of the circuit. Solder masking is eliminated from the present invention since the flexible circuit does not contain components on the bottom side, which is bonded directly to the finned heat sink. A solder mask is not required on this side and the elimination of the solder mask provides better thermal conduction.


Instead of a solder mask on the topside of the circuit, ink dams (that is, lines placed on and across the circuit traces via a silk screen method) are used to keep solder from flowing into areas on the circuit where it is not wanted. The solder dams are formed with a silkscreen process to “paint” lines on the flexible circuit to prevent solder from flowing into areas where it is not wanted. Silk-screening is a much less expensive process than the application of a solder mask, which reduces product cost and complexity.


Thermal vias (plated holes that pass through the entire flexible circuit to conduct heat to the heat sink) are also used near and under high-power electronics to further improve heat conduction.


The use of a flexible electrical circuit allows for an intrinsic low-inductance bus structure. By its nature, a flexible circuit uses thin copper traces and thin board layers. This arrangement minimizes the amount of inductance present on the circuit traces. The lower the inductance present in the circuit, the better the circuit is able to handle voltage spikes and supply the in-rush current needed in start-up situations.


Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.

Claims
  • 1. An electrical circuit assembly, comprising: a flexible electrical circuit including a first side;a heat sink including a metal base plate having a first side and a second side, and a plurality of fins extending from said second side; anda thermally conductive and electrically insulating adhesive directly interconnecting at least a portion of said first side of said flexible electrical circuit with said first side of said base plate.
  • 2. The electrical circuit assembly of claim 1, wherein said flexible electrical circuit includes a second side, and further including a plurality of electrical components mounted to said second side.
  • 3. The electrical circuit assembly of claim 2, wherein said plurality of electrical components include a plurality of power components, a plurality of capacitors, and a plurality of power connectors.
  • 4. The electrical circuit assembly of claim 3, wherein said plurality of power components include a plurality of field effect transistors.
  • 5. The electrical circuit assembly of claim 2, wherein at least some of said plurality of electrical components are surface mount electrical components.
  • 6. The electrical circuit assembly of claim 2, wherein said flexible electrical circuit includes a polyimide substrate and a plurality of copper traces on at least one side of said substrate.
  • 7. The electrical circuit assembly of claim 6, further including a plurality of solder dams, each said solder dam extending across a corresponding one of said copper traces.
  • 8. The electrical circuit assembly of claim 1, wherein said flexible electrical circuit includes at least one thermal via extending from said first side to said second side, each said thermal via comprising a plated hole associated with one of said electrical components.
  • 9. The electrical circuit assembly of claim 1, wherein said heat sink is an aluminum heat sink of monolithic construction.
  • 10. The electrical circuit assembly of claim 9, wherein said adhesive comprises a pressure sensitive adhesive.
  • 11. The electrical circuit assembly of claim 1, wherein said flexible electrical circuit has an absence of a solder mask on said first side, thereby enhancing thermal conductivity to said adhesive.
  • 12. The electrical circuit assembly of claim 1, wherein said electrical circuit assembly comprises a power circuit.
  • 13. An electronic control module, comprising; a housing;a control board within said housing; anda flexible circuit assembly mounted to said housing, said flexible circuit assembly including: a flexible electrical circuit connected with said control board, said flexible electrical circuit including a first side;a heat sink including a metal base plate having a first side and a second side, and a plurality of fins extending from said second side; anda thermally conductive and electrically insulating adhesive directly interconnecting at least a portion of said first side of said flexible electrical circuit with said first side of said base plate.
  • 14. The electronic control module of claim 13, wherein said flexible electrical circuit includes a second side, and further including a plurality of electrical components mounted to said second side.
  • 15. The electronic control module of claim 14, wherein said plurality of electrical components include a plurality of power components, a plurality of capacitors, and a plurality of power connectors.
  • 16. The electronic control module of claim 15, wherein said plurality of power components include a plurality of field effect transistors.
  • 17. The electronic control module of claim 16, wherein said flexible electrical circuit includes a first end and a second end not adhered to said first side of said base plate, said first end coupled with said control board and said second end carrying said plurality of capacitors.
  • 18. The electronic control module of claim 14, wherein at least some of said plurality of electrical components are surface mount electrical components.
  • 19. The electronic control module of claim 14, wherein said flexible electrical circuit includes a polyimide substrate and a plurality of copper traces on at least one side of said substrate.
  • 20. The electronic control module of claim 19, further including a plurality of solder dams, each said solder dam extending across a corresponding one of said copper traces.
  • 21. The electronic control module of claim 13, wherein said flexible electrical circuit includes at least one thermal via extending from said first side to said second side, each said thermal via comprising a plated hole associated with one of said electrical components.
  • 22. The electronic control module of claim 13, wherein said heat sink is an aluminum heat sink of monolithic construction.
  • 23. The electronic control module of claim 22, wherein said adhesive comprises a pressure sensitive adhesive.
  • 24. The electronic control module of claim 13, wherein said flexible electrical circuit has an absence of a solder mask on said first side, thereby enhancing thermal conductivity to said adhesive.
  • 25. An electrical circuit assembly, comprising: an electrical circuit including a substrate carrying a plurality of electrical components, said electrical circuit having a first side;a heat sink including a metal base plate having a first side and a second side, and a plurality of fins extending from said second side; anda thermally conductive and electrically insulating adhesive directly interconnecting at least a portion of said first side of said electrical circuit with said first side of said base plate.
  • 26. The electrical circuit assembly of claim 25, wherein said electrical circuit comprises a flexible electrical circuit having a polyimide substrate and a plurality of copper traces on at least one side of said substrate.
  • 27. The electrical circuit assembly of claim 26, further including a plurality of solder dams, each said solder dam extending across a corresponding one of said copper traces.
  • 28. A method of manufacturing an electrical circuit assembly, comprising the steps of: providing a flexible electrical circuit including a first side;providing a heat sink including a metal base plate having a first side and a second side, and a plurality of fins extending from said second side; andadhesively bonding at least a portion of said first side of said flexible electrical circuit directly with said first side of said base plate using a thermally conductive and electrically insulating adhesive.
  • 29. The method of manufacturing an electrical circuit assembly of claim 28, wherein said adhesively bonding step is carried out using a pressure sensitive adhesive.
  • 30. The method of manufacturing an electrical circuit assembly of claim 28, wherein said flexible electrical circuit includes a first end and a second end, and said adhesively bonding step comprises adhesively bonding a portion of said flexible electrical circuit between said first end and said second end to said first side of said base plate.
  • 31. The method of manufacturing an electrical circuit assembly of claim 28, wherein said flexible electrical circuit includes a polyimide substrate and a plurality of copper traces on at least one side of said substrate, and further including the step of applying a plurality of solder dams to said flexible electrical circuit, each said solder dam extending across a corresponding one of said copper traces.