This application relates generally to semiconductor devices and device fabrication and, more particularly, to surface processing using electron beams in various configurations to activate and/or stimulate surface processing.
Semiconductor processing is used to form structures and devices such as transistors, capacitors, etc. that in turn are used to form semiconductor memory chips, processing chips, and other integrated circuits. Semiconductor device uses range from personal computers, to MP3 music players, to mobile telephones. In the fabrication process of semiconductor structures and devices, techniques that are frequently used include material deposition processes, and material removal processes such as etching. By sequentially depositing and etching in selected regions on a semiconductor wafer, devices such as transistors, etc. are eventually formed.
As in any manufacturing process, reducing the time needed for a given manufacturing step or eliminating selected manufacturing steps reduces the cost of the final product. Selectively etching a semiconductor surface is a necessary step in most semiconductor processing operations. Selectivity can be obtained using a number of techniques, including use of a protective mask or using chemicals that selectively react with one material over another. Although techniques exist that provide some degree of selectivity, further improvements to processes that reduce time needed to complete a step, and/or eliminate processing steps are desired to further reduce cost. Improving selectivity also provides increased precision, allowing more detailed and/or smaller structure formation.
What is needed is an improved semiconductor processing method that addresses these and other concerns. What is also needed is a system to provide these methods and other processing needs. Also needed are inexpensive and high precision components formed by improved processing methods.
The following detailed description refers to the accompanying drawings that show, by way of illustration, specific aspects and embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention. Other embodiments may be utilized and chemical, structural, logical, and electrical changes may be made without departing from the scope of the present invention. The various embodiments are not necessarily mutually exclusive, as some embodiments can be combined with one or more other embodiments to form new embodiments.
The terms wafer and substrate used in the following description include any structure having an exposed surface with which to form an integrated circuit (IC) structure. The term substrate is understood to include semiconductor wafers. The term substrate is understood to include semiconductor on insulator wafers such as silicon-on-insulator (SOI). The term substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The term conductor is understood to generally include n-type and p-type semiconductors and the term insulator or dielectric is defined to include any material that is less electrically conductive than the materials referred to as conductors.
In one embodiment, a plasma is included in the chamber along with a gas source. In one embodiment only a plasma source such as a remote plasma generator is used. In one embodiment only a gas source is used. One of ordinary skill in the art having the benefit of the present disclosure will recognize that a portion of a plasma generated from a remote plasma source may recombine in the reaction chamber. In such an example, plasma species will be present in the reaction chamber along with non-plasma gas species. In one embodiment, the selected chemical species is capable of etching a region of the semiconductor surface. In addition, in one embodiment, the chemical species included in the reaction chamber are capable of dissociating into one or more species that are capable of etching a region of the semiconductor surface. For example, chemical species are chosen in one embodiment to dissociate when exposed to energies supplied by an electron beam, including, but not limited to a beam in a SEM. In one embodiment, the chemical species includes a halogen species. Examples of halogens include fluorine, chlorine, bromine, iodine, and astatine. In one embodiment, the chemical species further includes carbon. One example of a species that includes carbon and fluorine as a halogen include CF4. In one embodiment, the chemical species includes other species such as hydrogen or another element. One example of a gas including hydrogen is CHF3. In one embodiment, other species in addition to carbon and a halogen include multi-component species such as a carbon and hydrogen chain, or other combination of elements.
In step 110, the semiconductor surface and chemical species adjacent to the surface are exposed to an electron beam. As discussed above, in one embodiment, the electron beam is generated by an electron beam source in an electron microscope such as a SEM. In one embodiment, the electron beam source includes a carbon nanotube source. Carbon nanotube sources include an advantage of higher beam density and smaller spot size. Increased beam density provides more potential activation energy to react with chemical species as discussed below. Further, a smaller spot size allows higher precision in directing the electron beam to only a specific region of the semiconductor surface. In SEM embodiments, a smaller spot size also provides higher imaging resolution.
In a SEM embodiment, the electron beam can be focused using electromagnetic lenses. In one embodiment, the SEM configuration also provides a system to scan the electron beam over an area of the substrate. In one embodiment, such as a SEM embodiment, an imaging system is further included. In one embodiment, an imaging system includes devices such as a secondary electron detector.
One advantage of a SEM configuration includes the ability to focus and scan on only a selected portion of the substrate such as a semiconductor wafer. Another advantage of a SEM configuration includes the ability to concurrently image the selected portion of the surface being exposed to the electron beam. The ability to image allows a user to easily select the region to be exposed to the electron beam from the bulk of the semiconductor surface.
In one embodiment, a material composition detection system is further included. Examples of material composition detection systems include, but are not limited to x-ray detection systems, Fourier transform infrared (FTIR) detection systems, mass spectrometers, etc. In one embodiment, a material composition detection system is used to quantify composition of a coating that is grown in conjunction with electron beam interaction. Growth of such coatings will be discussed in more detail below.
Although an electron microscope is used as an example of an electron beam source, the invention is not so limited. Other embodiments include an electron beam source without additional microscope elements such as lenses, rastering systems, secondary electron detectors, etc. In one embodiment, the electron beam source includes an array of electron beam sources with selectable regions of electron beams. In one embodiment, one or more regions of the array can be varied to include different electron beam energies, or no electron beams in selected regions only. In one embodiment, an array of electron beam sources includes a carbon nanotube array with associated circuitry to select numbers of individual nanotubes within the array.
An advantage of electron beam array embodiments includes further ability to selectively process one region of a semiconductor surface while concurrently or sequentially processing an adjacent region in a different manner. One example includes providing electron beam energy to a first region sufficient to etch the surface of the first region while providing a different electron beam energy or absence of electron beam energy to a second region to grow a protective layer over the second region. As discussed above, in step 120, a portion of an electron beam array is activated to expose the chemical species only in a selected region. In selected embodiments, other energetic beams such as neutron beams, x-rays, etc. are used to provide energy appropriate to dissociate the chosen chemical species. Energetic beams such as electron beams provide an advantage in selected embodiments because they cause minimal damage to the workpiece in contrast to ion beams or other particle beams that may cause sputtering or other surface damage.
In step 130, the chemical species is at least partially dissociated into a number of reactive species. In one embodiment, the energy from the electron beam or electron beam array provides at least a portion of the energy necessary to dissociate the gas into the number of reactive species. The exact composition of the species will depend on the gas that is used. For example CF4 gas will dissociate into a number of species such as CF3, CF2, and CF. One of ordinary skill in the art, having the benefit of the present disclosure will recognize that the energy of the electron beam can be adjusted to more effectively dissociate the species depending on the specific chemistry chosen.
In one embodiment, the chemical species is chosen such that the reactive species selectively etch a specific material on the semiconductor surface. In one embodiment, the reactive species are chosen to etch silicon dioxide. In one embodiment, the reactive species generated from the plasma source and/or the electron beam interaction does not etch a second material such as silicon. In one embodiment, a selective reaction such as etching is determined by a large difference in reaction rate. Although a reaction may be described as occurring on one material and not on another, in one embodiment, the reaction may occur on both materials, however a substantial difference in reaction rate is observed.
In selected embodiments, a coating is deposited on a region of the semiconductor surface, while concurrently an etching reaction is occurring on another region of the semiconductor surface. One example includes a silicon dioxide region that is adjacent to a silicon region. In one embodiment, a coating is deposited on the silicon region while the silicon dioxide region is etched at substantially the same time. Further, in one embodiment, a coating is deposited on the silicon dioxide region while the silicon region is etched at substantially the same time. Although silicon and silicon dioxide are used as examples, the invention is not so limited. Other semiconductor processing materials can be selectively etched or coated using appropriate reactive species chemistry that will be appreciated by one of ordinary skill in the art, having the benefit of the present disclosure. Examples of other semiconductor materials include, but are not limited to nitride materials, spin on glass materials, or other semiconductors such as germanium, or gallium arsenide, etc.
In one embodiment, a deposited coating includes a carbon containing coating. In one embodiment, the coating includes an amount of halogen. Using such an example, the coating can be characterized using a ratio of halogen to carbon.
In one embodiment, the chemical species 220 includes CHF3. In one embodiment, the substrate 210 includes a semiconductor wafer. A first silicon region 214 and a second silicon region 216 are shown with a silicon dioxide region 218 located adjacent to the silicon regions 214, 216.
A plurality of electron beams 230 of a first energy 230 (energy indicated by arrow length) is shown directed at the substrate 210. In one embodiment, the plurality of electron beams 230 are generated by an electron beam generating array 238. Additional particles 236 are shown that are generated as a result of the electron beams 230 interaction with the surface of the substrate 210. Additional particles 236 include, but are not limited to secondary electrons and backscattered particles. In one embodiment, additional particles 236 are used for material characterization.
Also shown in
Using CHF3 gas as a gas species 220 example, a first subspecies example includes HF and a second subspecies includes CF2. In the example, the CF2 subspecies reacts with SiO2 to form SiOFx and COx byproducts and the SiO2 surface, such as surface 219 in
In one embodiment, an etching region such as surface 219 is exposed to electron beams from the electron beam generating array 238 of a first energy while a depositing region such as surface 217 is exposed to either no electron beams, or electron beams of a different energy than the etching region. One advantage of this configuration includes the ability to promote different chemical reactions concurrently in adjacent surface regions. For example, electron beams can be used to promote etching in one region and coating deposition in another region as shown in
An advantage of forming a coating concurrent to etching includes the ability to further enhance selectivity in an etching operation. In one embodiment, the coating serves as a sacrificial coating, and further protects the coated surface from etching. As discussed above, in one embodiment, selective etching is defined as a large difference in etch rate, with a material such as silicon etching, but at a much slower rate than another adjacent material such as silicon dioxide. The presence of a coating further reduces or eliminates any etching of the non selected material. Enhanced selectivity provides a number of advantages including the ability to form more detailed structures with sharper edge profiles, etc.
As mentioned above, in one embodiment, the coating contains both carbon and an amount of halogen such as fluorine. In one embodiment, a ratio of halogen to carbon is controlled to tailor the chemical and physical properties of the coating. Controlling the coating chemistry further enhances desired properties such as selective etching. For example, materials with a lower ratio of halogen to carbon provide better resistance to etching. In one embodiment, the ratio of halogen to carbon in the coating is controlled by further introducing a scavenger gas to the reaction chamber. In one embodiment, the scavenger gas is chosen to react with the halogen to form a byproduct gas that is removed from the reaction chamber by the vacuum system. In this way, the amount of halogen is reduced in the coating.
In one embodiment, the scavenger gas includes hydrogen gas (H2). In a carbon-fluorine gas example, hydrogen forms HF gas, and thus reduces the amount of fluorine available in the chamber to form in the coating. In one embodiment, a scavenger gas is introduced to remove other species. For example, if it is desirable to have a high ratio of halogen to carbon in a coating, a scavenger gas such as O2 can be introduced to preferentially remove carbon from the system, forming COx gasses.
In one embodiment, a noble gas is further introduced to the system. Examples of noble gasses includes helium, neon, argon, krypton, xenon, and radon. In one embodiment, the addition of a noble gas further enhances the dissociation of the gas species 220 from
A gas supply 316 is shown coupled to the reaction chamber 310. In one embodiment, the gas supply 316 provides one or more gas species in selected amounts. One gas includes a gas species to dissociate into etching and coating species. In selected embodiments, the gas supply also provides additional gasses such as scavenger gasses and/or noble gasses as discussed in embodiments above. In one embodiment, the gas supply includes controlling mechanisms and circuitry to function as an atomic layer deposition (ALD) system. For example, selected gasses can be supplied in pulses, and purge gasses or evacuation steps can be included between gas pulses. One of ordinary skill in the art having the benefit of the present disclosure will recognize that ALD gas choice depends on the chemistry of the surface where layer deposition is desired.
In one embodiment, a plasma source 315 such as a remote plasma source is coupled to the reaction chamber 310. In one embodiment, the remote plasma source 315 provides a chemical species as discussed above to dissociate into etching and coating species.
In one embodiment, a detector 314 is further included in the system 300, such as a secondary electron detector. In one embodiment, the detector 314 is used to provide imaging capability to the system 300 such as in a scanning electron microscope configuration. In one embodiment, other detection capability is also included in detector 314 such as detection of elemental composition.
In one embodiment, the electron source 412 includes an electron beam generating array similar to embodiments discussed above. One example includes a carbon nanotube array. Selected embodiments using an electron beam generating array do not include scanning devices, and rather operate by actuating individual electron beam sources within the array to selectively expose portions of the workpiece surface to beams of various energies.
A detector 414 is shown coupled to the system 400. In one embodiment, the detector 414 includes a secondary electron detector as described above to detect secondary electrons 426 as shown in the Figure. In one embodiment, the detector 414 includes other detecting capability such as Fourier transform infrared (FTIR) detection systems, mass spectrometers, etc. for detecting and quantifying material composition.
A gas source 416 is shown coupled to the reaction chamber 410. As discussed in selected embodiments above, an example of a gas supplied by the gas source 416 includes a gas species to dissociate into one or more species that provide etching and coating. In one embodiment, one dissociated species both etches one region and coats another region. In selected embodiments, the gas source 416 provides gasses such as scavenger gasses and/or noble gasses as discussed in embodiments above. Specific gasses include, but are not limited to, H2, O2, noble gasses, and carbon and halogen gasses such as CHF3. In one embodiment, a tube or other directing structure 417 is included to better direct the gas or gasses over the workpiece 402.
A plasma source 415 such as a remote plasma source is also coupled to the reaction chamber 410 in one example. In one embodiment, the remote plasma source 415 provides a chemical species as discussed to dissociate into one or more species that provide etching and coating. In one embodiment, one dissociated species both etches one region and coats another region. One advantage of systems that include both a gas source and a plasma source includes increased density of reactive species. Systems with both a plasma source and an electron beam activated species can generate reactive species from the plasma, as well as through interactions with the electron beam.
Further, in selected chemical systems, reactive species may be unstable, and recombine before reacting with the workpiece surface 402. In one embodiment, an electron beam interaction helps maintain a density of reactive species provided by a plasma source.
Methods of processing semiconducting wafers, semiconductor devices, IC's, surface, etc. including electron beam techniques as described above may be implemented into a wide variety of electronic devices. Embodiments of these devices may include semiconductor memory, telecommunication systems, wireless systems, and computers. Further, embodiments of electronic devices may be realized as integrated circuits.
Peripheral devices 650 may include displays, additional storage memory, or other control devices that may operate in conjunction with controller 610. Alternatively, peripheral devices 650 may include displays, additional storage memory, or other control devices that may operate in conjunction with the controller 610 or memory 630, etc.
Memory 630 may be realized as a memory device containing structures formed by processes in accordance with various embodiments. It will be understood that embodiments are equally applicable to any size and type of memory circuit and are not intended to be limited to a particular type of memory device. Memory types include a DRAM, SRAM (Static Random Access Memory) or Flash memories. Additionally, the DRAM could be a synchronous DRAM commonly referred to as SGRAM (Synchronous Graphics Random Access Memory), SDRAM (Synchronous Dynamic Random Access Memory), SDRAM II, and DDR SDRAM (Double Data Rate SDRAM), as well as Synchlink or Rambus DRAMs and other emerging DRAM technologies.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of embodiments of the present invention. It is to be understood that the above description is intended to be illustrative, and not restrictive, and that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Combinations of the above embodiments and other embodiments will be apparent to those of skill in the art upon studying the above description. The scope of the present invention includes any other applications in which embodiment of the above structures and fabrication methods are used. The scope of the embodiments of the present invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Number | Name | Date | Kind |
---|---|---|---|
4260649 | Dension et al. | Apr 1981 | A |
4543486 | Rose | Sep 1985 | A |
4579750 | Bowen et al. | Apr 1986 | A |
4581248 | Roche | Apr 1986 | A |
4624736 | Gee et al. | Nov 1986 | A |
4655849 | Schachameyer et al. | Apr 1987 | A |
4668304 | Schachameyer et al. | May 1987 | A |
4670063 | Schachameyer et al. | Jun 1987 | A |
4670064 | Schachameyer et al. | Jun 1987 | A |
4685976 | Schachameyer et al. | Aug 1987 | A |
4694777 | Roche | Sep 1987 | A |
4832781 | Mears | May 1989 | A |
4933206 | Cox | Jun 1990 | A |
4938996 | Ziv et al. | Jul 1990 | A |
4940505 | Schachameyer et al. | Jul 1990 | A |
4980198 | Dowben et al. | Dec 1990 | A |
5032435 | Biefeld et al. | Jul 1991 | A |
5047649 | Hodgson et al. | Sep 1991 | A |
5102830 | Sandhu | Apr 1992 | A |
5140164 | Talbot et al. | Aug 1992 | A |
5155053 | Atkinson | Oct 1992 | A |
5164222 | Gottsleben et al. | Nov 1992 | A |
5326981 | Hara et al. | Jul 1994 | A |
5387443 | Ota et al. | Feb 1995 | A |
5403433 | Morrison et al. | Apr 1995 | A |
5429730 | Nakamura et al. | Jul 1995 | A |
5438019 | Sandhu | Aug 1995 | A |
5472935 | Yandrofski et al. | Dec 1995 | A |
5508368 | Knapp et al. | Apr 1996 | A |
5622567 | Kojima et al. | Apr 1997 | A |
5639342 | Chen et al. | Jun 1997 | A |
5641545 | Sandhu | Jun 1997 | A |
5648114 | Paz De Araujo et al. | Jul 1997 | A |
5682041 | Kawakubo et al. | Oct 1997 | A |
5733609 | Wang | Mar 1998 | A |
5754297 | Nulman | May 1998 | A |
5759923 | McMillan et al. | Jun 1998 | A |
5800617 | Sandhu | Sep 1998 | A |
5807650 | Komano et al. | Sep 1998 | A |
5825035 | Mizumura et al. | Oct 1998 | A |
5834331 | Razeghi | Nov 1998 | A |
5942854 | Ryoji et al. | Aug 1999 | A |
5976328 | Azuma et al. | Nov 1999 | A |
5985693 | Leedy | Nov 1999 | A |
5989928 | Nakata et al. | Nov 1999 | A |
6051287 | Marsh | Apr 2000 | A |
6064800 | Sandhu | May 2000 | A |
6091071 | Franz et al. | Jul 2000 | A |
6113751 | Morgenthaler | Sep 2000 | A |
6143085 | Marsh | Nov 2000 | A |
6177147 | Samukawa et al. | Jan 2001 | B1 |
6187492 | Ri et al. | Feb 2001 | B1 |
6214183 | Maishev et al. | Apr 2001 | B1 |
6281072 | Li et al. | Aug 2001 | B1 |
6291341 | Sharan et al. | Sep 2001 | B1 |
6309972 | Pio | Oct 2001 | B1 |
6310341 | Todokoro et al. | Oct 2001 | B1 |
6462333 | Gersonde | Oct 2002 | B1 |
6499425 | Sandhu et al. | Dec 2002 | B1 |
6573199 | Sandhu et al. | Jun 2003 | B2 |
6613702 | Sandhu et al. | Sep 2003 | B2 |
6661005 | Bruenger | Dec 2003 | B1 |
6683005 | Sandhu et al. | Jan 2004 | B2 |
6720272 | Sandhu et al. | Apr 2004 | B2 |
6730367 | Sandhu | May 2004 | B2 |
6753538 | Musil et al. | Jun 2004 | B2 |
6764856 | Holmes et al. | Jul 2004 | B2 |
6787783 | Marchman et al. | Sep 2004 | B2 |
6793736 | Sandhu et al. | Sep 2004 | B2 |
6797337 | Dando et al. | Sep 2004 | B2 |
6809317 | Vandervorst | Oct 2004 | B2 |
6811615 | Sun | Nov 2004 | B2 |
6838114 | Carpenter et al. | Jan 2005 | B2 |
6838121 | Weimer | Jan 2005 | B2 |
6845734 | Carpenter et al. | Jan 2005 | B2 |
6869479 | Shafeev et al. | Mar 2005 | B2 |
6897907 | Morimitsu | May 2005 | B2 |
6911832 | Kolachina et al. | Jun 2005 | B2 |
7113276 | Higgs et al. | Sep 2006 | B1 |
7122125 | Deshmukh et al. | Oct 2006 | B2 |
7238294 | Koops et al. | Jul 2007 | B2 |
7256405 | Nakasuji et al. | Aug 2007 | B2 |
7262555 | Rueger et al. | Aug 2007 | B2 |
7303690 | Amemiya et al. | Dec 2007 | B2 |
7311947 | Dando et al. | Dec 2007 | B2 |
7452477 | Koops et al. | Nov 2008 | B2 |
7569484 | Rueger et al. | Aug 2009 | B2 |
20020173124 | Joo | Nov 2002 | A1 |
20020182542 | Choi et al. | Dec 2002 | A1 |
20030047691 | Musil et al. | Mar 2003 | A1 |
20030170389 | Sandhu | Sep 2003 | A1 |
20030201391 | Shinada et al. | Oct 2003 | A1 |
20040036398 | Jin | Feb 2004 | A1 |
20040048398 | Liang et al. | Mar 2004 | A1 |
20040091638 | Haight et al. | May 2004 | A1 |
20040097076 | Iyer et al. | May 2004 | A1 |
20040113097 | Marchman et al. | Jun 2004 | A1 |
20040124348 | Utz et al. | Jul 2004 | A1 |
20040140437 | Bukofsky et al. | Jul 2004 | A1 |
20040151991 | Stewart et al. | Aug 2004 | A1 |
20050078462 | Dando et al. | Apr 2005 | A1 |
20050087514 | Koops et al. | Apr 2005 | A1 |
20050212092 | Nishizawa | Sep 2005 | A1 |
20050253093 | Gorski et al. | Nov 2005 | A1 |
20050266168 | Poullos | Dec 2005 | A1 |
20060134920 | Liang | Jun 2006 | A1 |
20060147814 | Liang | Jul 2006 | A1 |
20060154477 | Geng et al. | Jul 2006 | A1 |
20060183055 | O'Neill et al. | Aug 2006 | A1 |
20060201911 | Edelberg et al. | Sep 2006 | A1 |
20060228634 | Bret et al. | Oct 2006 | A1 |
20060288937 | Dando et al. | Dec 2006 | A1 |
20060289969 | Dando et al. | Dec 2006 | A1 |
20070158303 | Nasser-Ghodsi et al. | Jul 2007 | A1 |
20070158304 | Nasser-Ghodsi et al. | Jul 2007 | A1 |
20070228002 | Geng et al. | Oct 2007 | A1 |
20070228296 | Mouttet | Oct 2007 | A1 |
20070257212 | Mouttet | Nov 2007 | A1 |
20070278180 | Williamson et al. | Dec 2007 | A1 |
20080006603 | Williamson et al. | Jan 2008 | A1 |
20080006786 | Williamson et al. | Jan 2008 | A1 |
20080009140 | Williamson et al. | Jan 2008 | A1 |
20080038863 | Rueger et al. | Feb 2008 | A1 |
20080038928 | Rueger et al. | Feb 2008 | A1 |
20080038933 | Rueger et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
09064030 | Mar 1997 | JP |
WO-2008021363 | Feb 2008 | WO |
WO-2008021363 | Feb 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080038894 A1 | Feb 2008 | US |